
by G. P. Rodgers
I. G. Bendrihem
T. J. Bucelot
B. D. Burchett
J. C. Collins

Infrastructure
requirements
for a large-scale,
multi-site VLSI
development
project

This paper describes the design infrastructure
and environment that were established to
support the multi-site design of the IBM
POWER4 microprocessor. The Common
Tools Environment was created to provide a
consistent means for accessing design tools
and initiating operating system variables from
multiple sites in a site-independent manner.
The AIX® operating system and the Common
Tools Environment masked local, site-specific
details of the design environment, allowing
site-specific design practices, shared storage,
and information system policies to be
transparently maintained. The design data-
management system, the importance of highly
reliable wide- and local-area networks, and the
establishment of automated network
monitoring are discussed.

Introduction
The design of the POWER4 microprocessor described
in detail in this issue was a large, multi-site effort. The
logical, circuit, physical, and verification design teams

were composed of several subteams spread across two IBM
divisions and five IBM sites. The IBM divisions involved in
the design effort were the Server Group in Austin, Texas,
East Fishkill, New York, Poughkeepsie, New York, and
Rochester, Minnesota, and the Research Division in
Yorktown Heights, New York.

Before the formation of the POWER4 design team,
each subteam at the various sites had developed its own
set of practices, policies, methodologies, and requirements
that define the design environment within which each
person works. A design environment includes such
elements as

● Operating system.
● Default design-tool locations.
● Shared and private data storage locations and access

permissions.
● Workstation access policies.
● Batch-processing policies.
● Design-tool problem tracking and resolution.
● Design-tool license access and accounting.
● Design methodology requirements.
● Design-tool release and qualification policies.

�Copyright 2002 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/02/$5.00 © 2002 IBM

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 G. P. RODGERS ET AL.

87

Additionally, the information technology support
department at each site had its own set of practices,
policies, and requirements:

● Backup policies.
● Scheduled maintenance.
● Problem identification, tracking, and resolution.
● Networking availability and performance standards.
● Help desk.

Each of these aspects of the design environment
interacts with the others. To form a multi-site design
environment, a common set of elements must be carefully
defined so as to produce an enabling work environment. It
is very easy to create a cumbersome, restrictive, and even
conflicting set of rules that must be followed and endured
by the design community, especially when formerly
independent sites are initially combined. To be efficient,
all designers at all sites should see a common design
environment. Some aspects of the implementation details
may be different, but the environment should at least
appear to be common from the users’ point of view. The
design environment can enable multi-site design if done
correctly, or inhibit it if done poorly.

POWER4 was designed on IBM RS/6000* hardware,
ranging from single-processor user workstations to
collections of centrally managed multiprocessor batch
systems in large computing farms, all running on the IBM
AIX* operating system [1]. The design-tool set was a
combination of internally developed and vendor-purchased
tools. The design methodology dictated that the team
would use the best tool available for any particular
function.

The POWER4 team successfully adopted common
design-environment components that worked across all
sites. Although far from a single, corporate-wide
environment, the POWER4 effort successfully
incorporated the best practices and required policies
from each site. Two different distributed-data file systems
were used to store POWER4 data. Each site utilized the
Distributed File System (DFS*) [2] to store the actual
chip design, while one site (Yorktown) used the Andrew
File System (AFS*) [3] to store tool data and act as the

master tool repository. A major component of the
POWER4 design environment was the Common Tools
Environment, or CTE.1 CTE is a schema that allows
design tools to be accessed in a common way that is site-,
project-, and user-independent. If a tool interface is
developed in a CTE-compliant manner, it will operate in
the same way at any site, accommodating local differences
and hiding them from the designer. Another important
component developed for multi-site design is the CTE
shadow process. This process is a means of distributing
tools and synchronizing tool updates from a master site
to all other sites, so that each design subteam has access
to the current (or production-level) code, as well as
selectable access to beta-level code. As described later in
this paper, the CTE shadow process is network-aware, and
works successfully with different shared-storage systems.
Much was learned about sharing large amounts of data,
communication, monitoring, and design-environment
problem resolution among several physically separated
sites. The common design-environment elements
developed for POWER4 continue to evolve and serve as a
foundation for other multi-site microprocessor programs
within IBM.

Distributed data management
A large microprocessor design project consumes vast
amounts of both shared and private data. Two enterprise-
wide file systems, DFS and AFS, were used to manage
shared data. Both were necessary because of the
differences in data-management strategies at each site. All
project workstations were required to be able to access
both of these file systems. For performance reasons, the
AIX native local file system, the Journaled File System
(JFS) [4], was often used as temporary storage during a
tool run before tool results were copied back to DFS. Also
for performance reasons, final chip assembly used the
Network File System (NFS**) [5] to share data among a
subset of the project workstations. UNIX** environment
variables were used to make data references as
transparent as possible. Table 1 shows how data was

1 I. G. Bendrihem, IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, private communication, July 31, 1996.

Table 1 Locations and management strategies for project data by type.

Data type File system Data-management strategy

Design data DFS Directory structure
Tool and reference data DFS and AFS CTE
Shared scratch data DFS Spooling
Final chip assembly NFS Cadence library consolidation
Local workstation data JFS Site administration guidelines

G. P. RODGERS ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

88

characterized and where it was located. The first four
types of data require sharing among workstations and
among users. The following sections describe how each
of the various data types was managed.

Design data management
The design data is the primary product of a
microprocessor design project. It is important to have a
consistent strategy for managing such data. The following
objectives were considered in creating the data-
management strategy:

● Shared read access for all members of the project.
● Shared update access to a component of the data for all

members of that component design team, also called a
unit design team.

● Distribution among geographic sites for reasonable
performance.

● Synchronization of logic design, simulation, verification,
and physical design.

● Auditing of data to be sure of its validity.
● Access control to provide security and prevent

invalidation of audit results.
● Support of the integration of data through multiple

levels of design hierarchy.
● Overlapping of unit design schedules and chip

integration schedules.
● Practical physical-volume management constraints for

shared volumes.

Since DFS has intersite access-control mechanisms, it was
used for all design data management.

To facilitate the sharing and site distribution of data, we
created a high-level directory tree that was replicated at
each site. The nodes of the tree, containing the low-level
directory structure, were either local to a specific site or a
symbolic link to another site. An environment variable
pointed to the root of the tree, which was local to each
site. This allowed consistent and transparent access to the
design data. When referencing project data that was
located at another site, performance could be affected,
especially when trying to update design data not located at
the local site. The physical location of the data was chosen
so that it was most quickly accessed by the subteam
responsible for creating the data.

The high-level directory structure was organized by
chip, project, unit, major division of work, and release.
The low-level directory structure was organized
by type. The entire structure can be described
as follows:

$CTEPROJPATH/�chipid�/�unit�/�division�/�release�/�type�,

where CTEPROJPATH was an environment variable that
contained the name of the directory in which the project
resided for the particular site.

The �chipid� was also an environment variable that
indicated the revision of the chip being referenced. The
�unit� designated the particular unit or team that
created a component or related set of components of the
chip. Examples of units were the floating-point unit, the
fixed-point unit, the standard cell library, or the processor
core. Data within a unit had to be organized by one of
three major parts of the design process; we called these
�divisions�. The three fixed divisions were logic, sim, and
PD. These corresponded to logic design, simulation and
formal verification, and physical design. This organization
was intended to facilitate the flow of data among the
different �divisions�. For example, after the logic design
was completed, it was passed to the simulation and
verification teams, and then to the physical design (PD)
team.

The design of a typical component was a multi-pass
process. Function was usually added progressively over
time. When a component reached a certain level of
function, a �release� of that component was made.
It was important to identify this release and use this
identification among the three �divisions� of work.
All of the data associated with a particular release of a
particular �division� of a particular unit was organized
under the release directory.

One could say that our release-data management was
done with a brute-force directory organization. This
resulted in replication of data that was unchanged
between releases. This inefficiency was accepted because
no data-management tool existed that could span the wide
variety of data types and various tool-access methods. One
advantage of this practice was that we could use DFS to
write-lock an entire unit-release directory tree after some
level of qualification, so that it could be reliably used in
the next level of the chip hierarchy for integration and
assembly. For example, all units would use a read-only
copy of the standard cell and component libraries.

The data within a release directory was organized
by �type�. The directory tree below the type varied
depending on the particular tool or method used to access
the data. For example, physical design data such as
schematics and layout were managed with type�''cds''.
The Cadence Design Framework II** (dfII) [6] managed all
of the type-''cds'' data in Cadence libraries. DfII has its own
revision control for iterations of a design within a release.

To ensure the consistency and quality of the design
data, an auditing methodology was instituted. The audit
checked such items as whether or not the data had been
scanned for design-rule violations; whether time stamps
were consistent; and what version of a particular tool
had been used to operate on or generate the data. The

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 G. P. RODGERS ET AL.

89

audit system assigned an overall grade associated with a
particular release for a particular unit, and was organized
around the release directory. When a unit design reached
a certain level of audit, it was available for integration
into the core or chip. Often, when a unit design team
reached a particular audit milestone, they would move
on to the next release of the design for that unit. This
is how the overlap of schedules was accomplished.

Management of tool and reference data and
associated replication technology
Most of the tool and reference data was read-only from
the designers’ perspective. A key requirement for these
types of data was that they be consistent for all designers
using the tools or libraries. As a result, replication
methods were created so that tool and library access could
always be performed locally to minimize network latency.
Most of the design tools for POWER4 were managed
in the CTE tool repository, as described later.

Reference libraries were copied or replicated to all
sites when a library was released. We seldom allowed an
update to a released library. Through configuration files,
a unit release was associated with a particular level of a
library. This would not typically change within the design
period of that unit release. If a new reference library
was available, the next unit release would use it.

Spool data
The tasks of simulation, verification, and synthesis were
often done with background or batch jobs, submitted to
a workload-management system. These batch jobs often
required huge amounts of temporary data. One approach
would have been to allocate large amounts of disk storage
to each designer and let the designer manage this data.
This would have resulted in large inefficiencies in disk
utilization and large start-up times to acquire data for
each designer. Often, tool designers were not cognizant
of the space requirements of their particular tool.
Furthermore, it is more important for the tool maintainer
to focus on the technology being delivered with the tool
than to have data-management expertise for each tool.
This would also have resulted in a variety of data-
management strategies. Some tools were conservative and
deleted intermediate data and/or wrote over the previous
job output, while others were extremely liberal and left
the task of data management to the user.

To address this issue, we introduced the concept of
spooling (actually borrowed from mainframe batch-
management systems). Spooled data was automatically
purged with a predictable policy. This allowed users
to share spool disk space. It is important to have a
documented policy and repeatable practice when dealing
with spool data. This consistency guaranteed that
designers had temporary space available for a sufficient

period of time to complete post-analysis work. The Austin
site had the largest spool, which consisted of 70 four-
gigabyte volumes.

Spooling was implemented through the customization of
application interfaces which were typically graphical user
interfaces. The application user interface called a utility,
spoolsubmit, for submitting a batch job. This utility created
a new directory on a spool volume, copied necessary input
files to the directory, and then called the appropriate batch
job manager. The spoolsubmit utility could accommodate
about 40 parameters, but required only one, the application
command itself.

Spooling simplified the application-shell programming in
three significant ways. First, since spooling allowed the
application to use the current-directory paradigm, each job
could run within a new directory. Users or application
owners did not have to worry about writing over the
results of a previous job. Second, spooling provided
independence from the batch manager. An application-
shell interface had to call only a single spool interface,
spoolsubmit, and indicate with a parameter the type of
batch system desired. Often this was selected by the user.
Finally, because temporary job data was created in a
consistent manner, post-job-analysis tools could be
built on top of this standard directory organization.
A user would typically find all job output in a personal
$HOME/spool directory, organized by job type, part name,
and job number. Sophisticated spool browsers made it
easy to analyze, clean up, save, or promote the results of
any batch job that used spooling. Promotion was required
when the job generated data that was required for the
design and promoted to the next level, or had to be
saved for audit purposes.

Spooling also provided job-status monitoring,
application-completion messages, and system diagnostics
that could be used in the event of a failure. Since the
spool was managed in a shared space, tool-support
personnel could easily look at a job output to help
diagnose a problem.

Spooling allowed for the creation of special-purpose
job-control features that could be shared by all
applications. For example, one option permitted the job
directory to be moved to a local directory at the beginning
of job execution, and then moved all of the results back
to the spool at the end of the job. This had significant
performance benefits for simulation and verification jobs
that repeatedly opened and closed files or wrote large
amounts of data.

Since the spool was a shared-update area, it was
managed on the largest logical volumes available. Because
spool data was temporary and not as critical as design
data, these volumes did not require backup, or could be
backed up with a lower priority than the design data.

G. P. RODGERS ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

90

Final chip assembly
The integration of all of the physical design data for the
final chip assembly was the most data-intensive task for
the project. The team responsible for chip assembly was
known as the chip-integration team. Their function was
to create the “release interface tape (RIT),” the final
data set for release to manufacturing. The term RIT
is historical, and IBM no longer uses tapes for this
process. The RIT process could be quite long and often
required processing times that extended through normal
maintenance windows of the AFS and DFS file systems.
Furthermore, larger-than-normal files and volumes were
necessary to collect all of the data required for RIT. As a
result, a special self-contained computing facility known as
the RIT room was created. About a dozen IBM RS/6000
Model 270 workstations were consolidated on a single 100-
megabit Ethernet network. In addition, three large NFS
Version 3 data servers were created to export volumes to
other machines in the RIT room on the same Ethernet
LAN. The RIT room machines required DFS for copying
release data from other unit teams to the NFS volumes.
However, they were isolated from WAN, LAN, and site
file-server outages because all of the necessary data and
tools were copied to the file servers in the RIT room.

Management of local workstation client
It was not critical that workstation administration practices
be identical at each site. All IBM sites that do VLSI
development consistently use the AIX operating system
for design. AIX ensures backward compatibility for
applications compiled on older versions of AIX. This
allows each site to maintain its own local IT practices.
Consistent operation between sites resulted more from
standard AIX practices than requirements from our multi-
site project. No common network infrastructure or userid
administration was required. The only mandatory design
workstation requirements were 1) AIX Version 4.1 or
later, 2) a DFS client, 3) an AFS client, and 4) a batch-
processing client.

Three batch managers were available:

● LoadLeveler* [7], an IBM-developed manager, used at
almost all IBM sites.

● Qman, an internally developed workload manager for
logic simulation, used only in Austin.

● UNIX background for jobs that would run on the user’s
personal workstation.

Common design environment
Multi-site development efforts have a critical requirement
that designers, regardless of where they are located, see a
design environment with consistent elements. This is not
a simple task. One example is the computer platform on
which the design tools are run. Normally at IBM, each

division, and often each site within a division, has its own
IT organization in charge of creating and installing
operating systems (OS) on their local computing
resources. At the start of the project, various versions of
AIX were present at each site. Even when two sites were
running the same version of AIX, it was often the case
that the sets of patches that each site had applied to their
AIX image were different. In addition, AIX gives users
unlimited flexibility in allowing them to customize their
OS environment. Users can choose from a variety of OS
shells (ksh, csh, bash, tcsh, sh, etc.) [8] and graphical
interfaces (Common Desktop Environment, Motif**, etc.)
[9]. At log-in time, each user can preset environment
variables that can affect the way any tool can run. The
challenge was to provide a design environment that would
present a common interface to the design tools, regardless
of any variations in OS level, environment, and setup.

Several design revisions, or RITs, are necessary to
complete a multipass microprocessor design. The
POWER4 project treated each RIT as a semi-independent
project, with a tool and data set that were independent
from those of the other RITs. Although tool sets were
very similar, the versions of the tools used in each RIT
could be, and often were, different. Most designers need
to work on at least two RITs at the same time, or on one
RIT for one project and another RIT for a follow-on,
derivative product. The design environment had to
allow designers to work simultaneously on multiple
projects while logged in to their workstations. For
each project/RIT combination, a simple script was provided
that would start an X-Windows terminal session (aixterm),
configured for a project/RIT combination. Within this
window, it was guaranteed that the design environment
was specific to one RIT, free from cross-project
environment contamination (e.g. environment variable
settings). Design tools started from the RIT-specific
windows were guaranteed to belong to the proper tool set
for that RIT, even when submitted to the batch pool.

The design environment used the facilities provided by
the Common Tools Environment (CTE) to ensure that
tools were accessed in a site-independent manner. CTE
also provided the means to assign a set of tool versions
to a specific RIT as well as to the tool repository.

Common tools environment
Multi-site projects have a site-independence requirement;
that is, projects must continue to function regardless of
whether a specific site is down or inaccessible; tool access
must be free of site-specific dependencies, such as hard-
coded paths to tools; and tools must be replicated across
sites for good performance and accessibility. Design teams
must see a common design environment and common tool
interfaces, and must have seamless migration paths for the
design environment from one project release to the next

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 G. P. RODGERS ET AL.

91

and from project to project. The CTE enables common
tool usage by defining an efficient, fully customizable
design environment that is project-, site-, and technology-
independent. It also provides a tool repository that
ensures consistent access to design tools from site to
site. There are advantages to keeping all tools under one
directory structure. The CTE tool repository defines this
structure. For instance, the CTE tool directory tree is
shadowed, on a nightly basis, to several sites across the
company. Multi-site projects can function only if their
designers access the same code level, regardless of their
location.

The POWER4 project used a combination of internally
developed and vendor tools. The methodology team was
free to choose the best tool for the job. This practice
had the advantage of optimizing each step in the design
process, but also presented many challenges such as data
formatting, language, and tool compatibility. The design-
tool framework application and the interface from which
most tools were launched was Cadence’s dfII.

CTE specifies how to access tools, either from
Cadence’s dfII environment via Cadence’s SKILL**
[10] programming language, or from the AIX shell.
The specification allows for site, project, and user
customizations. CTE also specifies how to install tools in
the CTE repository. Tools must be self-contained; that is,
the tool installation directory must contain everything the
tool requires in order to run, or have dependencies only
on other tools already installed in the repository. In
addition, CTE also allows for tool versioning. CTE
distinguishes between point tools and applications. Point
tools are programs that exercise a particular aspect of
the design methodology. Examples of point tools are
Cadence [10] (netlist extraction, place and route), ACES2

(simulation), and BooleDozer2* (synthesis). Applications
are small programs or shell scripts that improve the
designer’s productivity. One example of an application
is an interface to a point tool. Tool interfaces increase
productivity by hiding the complexity of running a point
tool. The CTE tool repository includes about 80 point
tools and more than 100 applications. It also includes
some basic technology data, such as design libraries,
device models, and technology ground rules. It does
not contain any project-specific design data, such as
schematics or physical design layouts. Although the
existence of a tool repository might imply that CTE is
a design methodology, it is not. CTE does not specify
which tools to use or how to use them. It enables any
methodology and facilitates multi-site design collaboration.

Under the CTE repository, each tool is allocated its
own AFS or DFS volume or set of volumes, depending on
the size of a single version of the tool. As of this writing,

390 volumes have been allocated for more than 100 GB
of storage. The master repository resides at the Watson
AFS cell in Yorktown. For the POWER4 project, the
repository was shadowed to the participating sites. The
CTE shadow program uses an efficient, parallelized
replication algorithm. Only files that have changed are
copied to other sites. A batch job is generated for each
volume that has changed since the last time the volume
was shadowed. Typically, the shadow completes within
30 minutes per site. Tool maintainers can force a shadow
at any time, from any site, via a client-server program.

Under CTE, a tool is accessed via an AIX shell, Perl
[11], or a Tcl/Tk3 [12], CTE-compliant “wrapper.”
The wrapper hides tool-requirement details, such as
environment variables and paths, from users. CTE-
compliant wrappers are sensitive to version control; that
is, projects or users may switch to a different tool version
on the fly without having to reinitialize their environment.
The wrapper obtains tool location information either from
a tool-specific CTE AIX environment variable or from the
CTE parameter database. Default locations for tools are
specified in a CTE global file, but they can be overridden
at the site, project, and even user level. CTE-compliant
wrappers are essential to guarantee site-independent
access to tools.

Cadence’s dfII environment was used to provide
schematic and layout design entry and the means to
launch tools that operated on the design data. Cadence’s
SKILL programming language provides an application
program interface (API) for building forms or graphical
user interfaces (GUIs), or tools interfaces and applications
that can be launched from Cadence’s framework.
Although it is fairly easy to program using this API, GUIs
built from it are hard to customize because they require
forms to be instantiated on the screen before they can be
tailored to project-specific needs. CTE provides an API
that sits on top of dfII, which specifies how to build CTE-
compliant tool interfaces and applications. The GUI and
application defaults are stored in a database, providing
easy customization at the site, project, and user level: No
recoding is necessary. The CTE API is sensitive to version
control, and it is independent of any changes Cadence
might introduce to its own API from release to release.
Currently, the CTE API contains more than 250 SKILL
functions.

In addition to being a central component of the
POWER4 design environment, CTE has enabled design
tool convergence and environment commonality across
IBM’s major microprocessor efforts. It has become a
framework standard for implementing tool convergence
and commonality by allowing site, project, and user
customizations while maintaining site and technology

2 Internally developed IBM design tools. 3 Copyright 1999, Brown University, Providence, RI. All rights reserved.

G. P. RODGERS ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

92

independence. Convergence has resulted in significant
sharing of resources, adoption of common goals and
methodologies, and the elimination of many previously
duplicated efforts.

IT practices and support
From an IT support perspective, a number of challenges
were encountered and problems overcome in establishing
the multi-site design environment. The infrastructure was
not built from the ground up for POWER4 specifically,
but utilized network and file-system resources that were in
existence and shared by other users. The challenge was to
make the existing infrastructures at five physical locations
work together as one, enhance them as necessary, and
contain costs. An obvious problem could have been
the successful integration of IT services at the various
independently operated locations, but a tight coupling
of IT services among the sites turned out not to be
necessary. Code levels for the file systems and OS
were independent, and multiple levels were employed.
Individual networks were also deployed by location, with
combinations of fiber-distributed data interface (FDDI),
Ethernet, Token Ring, and ATM in use. However,
planned outages were communicated among the locations
and to the user community. Although the infrastructure
services varied by location and were generally independent
in execution, the user’s data dependencies among sites had
to be actively managed. Some special monitoring was
performed to quickly detect intersite networking problems
and aid in problem determination and resolution. As an
example, probes were created in each of the POWER4
sites and were used to measure response time to the
file systems at both the local and remote locations.

Additionally, one site also monitored tool and data
availability, network response time, batch-processing
facilities, and the proper functioning of the availability-
monitoring applications. The state of the design
environment was checked every three minutes, 24 hours a
day. If a slowdown in communication or a loss of service
occurred, the event was logged as a down, and a radio
page was sent to a small group in the design team. This
group would evaluate the situation and decide whether
the problem was critical enough to take immediate action
and coordinate with the IT team. This monitoring often
prevented relatively small problems from becoming larger,
work-stopping situations and kept the design team
apprised of the situation during planned and unplanned
outages. When the problem was resolved, an up event was
logged, and another radio page was sent to the team. The
logged events formed an availability database as viewed
from the design team’s perspective. Once a week, a
summary report was generated and reviewed. In terms
of absolute server availability, we managed to achieve
an average of 99.98% availability.

The standard IBM help desk, used by multiple IBM
divisions, was used to record and track problems. As
the POWER4 project progressed, each site developed
additional services as needed. For example, Austin
initiated a “walk-in” help desk to supplement the standard
services. This gave engineers immediate, direct contact
with support personnel. Yorktown instituted a code-word
policy which was used to signify a high-priority POWER4
issue that would receive immediate, special attention.
Through close cooperation between the design teams
and the site IT departments, maintenance outages were
scheduled around critical times in the design process. This
communication and cooperation proved extremely valuable
during critical phases of the design process.

At a file-system level, the multi-site design worked well.
Standard networking response time between sites was
typically 100 ms or less. In order for the network to be
unnoticeable by a designer, a latency of approximately
50 ms to 75 ms would have been necessary. Much
lower latencies (10 ms) were realized among some sites
(Yorktown, Poughkeepsie, and East Fishkill). Although
100-ms latencies were sometimes inhibiting, they were not
insurmountable. The POWER4 team shared the existing
intersite network with many other users in IBM. It was
impossible to know how many other users were present
at any one time. No attempt was made, nor was it
necessary to try to manage or schedule all user activities.
Occasionally performance was degraded by very large file
transfers, but in general the capacities shown in Figure 1
proved adequate to support the POWER4 effort as well as
all other traffic among the various sites.

Project communication
Effective communication among subteams located at
different sites was an obvious requirement for the
POWER4 project. In addition to significant amounts of

Figure 1

Wide area network capacity that supported the POWER4 multiple-
site design project.

Rochester,
MN

Poughkeepsie,
NY

Yorktown Heights,
NY

East Fishkill,
NY

Austin,
TX

20
 M

b/
s

30 M
b/s

32 M
b/s 64 Mb/s

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 G. P. RODGERS ET AL.

93

travel between sites, many tools and procedures were used
to aid in this communication. Regularly scheduled voice
and video conference meetings were heavily used. It soon
became evident that video conferencing required at least
384Kb/s ISDN links to be effective. Lotus SmartSuite** and
Lotus Notes** databases provided many communication
tools and single points of access for status reports and
presentations for all team members. A secure, project-wide
Web site was used to provide access to methodology and
project documentation as well as design team contact
information.

Virtual classrooms were created with a workstation
application-sharing tool known as XMX;3 XMX creates a
virtual root window running a second server on which
shared applications are run. This enables workstation
windows to be shared across multiple displays and
multiple sites. XMX proved extremely useful for multi-site
classes as well as for designer-to-designer communication
and problem debugging. Another workstation tool, known
as Issues,4 was used to document concerns such as design-
tool problems or networking issues. Design team
members could open an issue in a database, which would
automatically notify support teams as well as all others
who subscribed to the issue category. This application
provided a means for public dialog and status tracking
for many tool and network issues.

Conclusions
We have presented an overview of the infrastructure
requirements and design environment that were used in
the IBM multi-site POWER4 design effort. The adoption
of a Common Tools Environment across the sites, as well
as the commonality of the computing platform and the
AIX operating system, allowed the project to encompass
many local, site-specific IT and project design practices
and policies. The Common Tools Environment hid local,
site-specific paths from the user and created a consistent,
portable work environment for all of the subteams. We
kept productivity high by maintaining a reliable network
with adequate bandwidth, closely monitoring network
connectivity and file accessibility, and coordinating
problem identification and resolution.

Careful planning for the location of distributed data and
the need to replicate certain files at each site enabled us
to reduce, though not eliminate, network dependencies.
We will apply the lessons learned about distributed data
management, network monitoring, site-independent,
network-aware tool wrappers, and intersite communication
and cooperation to future joint programs that take
advantage of corporation-wide resources.

Acknowledgment
The authors wish to thank Susan Beck, Peter Dudley,
David Lewis, Kelvin Lewis, Robert Morel, Jeff Price, and
John Jackson for their help and support in creating and
maintaining the POWER4 multi-site design environment.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc., The Open Group, Cadence Design Systems, Inc., or
Lotus Development Corporation.

References
1. IBM Certification Study Guide pSeries AIX System

Administration, IBM Redbook Publication No. SG24-6191-
00, November 26, 2001; see IBM Redbooks Publications,
http://www.redbooks.ibm.com/.

2. IBM DFS 3.1 and DFS 3.1 for Web Enabled Environments,
Software Announcement 200-047, March 14, 2000; see
http://www.transarc.ibm.com/Product.

3. See http://www.transarc.ibm.com/Product/EFS/index.html.
4. AIX Logical Volume Manager from A to Z: Introduction

and Concepts, IBM Redbook Publication No. SG24-5432-
00, January 20, 2000; see IBM Redbooks Publications,
http://www.redbooks.ibm.com/.

5. IBM DFS 3.1 and DFS 3.1 for Web Enabled Environments,
Software Announcement 200-047, March 14, 2000; see
http://www.transarc.ibm.com/Product.

6. See http://www.cadence.com/datasheets/analog_design_
environment.html.

7. Workload Management with LoadLeveler, IBM Redbook
Publication No. SG24-6038-00, November 29, 2001, ISBN
0738422096; see http://www.redbooks.ibm.com.

8. The Waite Group’s UNIX System V Primer Second Edition,
SAMS, Prentice-Hall Computer Publishing, Carmel, IN
46032, 1992, pp. 313–321.

9. RS/6000 Graphics Handbook, IBM Redbook Publication
No. SG24-5130-00, March 30, 1999; see IBM Redbooks
Publications, http://www.redbooks.ibm.com/.

10. SKILL Language Reference Manual, Publication No.
900-60024-0101, Cadence Design Systems, San Jose,
CA 95134, 1994.

11. Larry Wall and Randal L. Schwartz, Programming perl,
O’Reilly & Associates, Inc., Sebastopol, CA 95472, 1992.

12. Brent B. Welch, Practical Programming in Tcl and Tk,
Prentice-Hall, Inc., Upper Saddle River, NJ 07458, 1997.

Received July 20, 2001; accepted for publication
December 19, 2001

3 Copyright 1999, Brown University, Providence, RI. All rights reserved.
4 Internally developed IBM tool.

G. P. RODGERS ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

94

Gregory P. Rodgers IBM Linux Technology Center, 18 Frew
Close, Nicholls, ACT 2913, Australia (rodgersg@us.ibm.com).
Dr. Rodgers joined IBM in 1981 as an MVS systems
and application programmer. As part of the IBM Resident
Study Program, he received his Ph.D. in computer science
from Pennsylvania State University in 1989. Dr. Rodgers was
a computer-aided design (CAD) development programmer
for the IBM electronic design automation organization,
working on parallel circuit simulation programs. From 1996
to 1999, he led the development and operation of the CAD
environment for the POWER4 microprocessor development
team. In 2000, he led a team that ported Linux to the
POWER4. Today he continues to work on PowerPC Linux as
part of the IBM Linux Technology Center on assignment to
the IBM laboratory in Canberra, Australia.

Isidore G. Bendrihem IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (igb@us.ibm.com). Mr. Bendrihem is a Senior
Engineer in the VLSI Design Systems Department at the IBM
Thomas J. Watson Research Center. He received the B.S.,
M.S., and M.Phil. degrees in electrical engineering from
Columbia University in 1984, 1986, and 1988, respectively.
He joined the IBM Research Division in 1992, working on
several VLSI design tool issues for microprocessor design. Mr.
Bendrihem is the architect for the Common Tools Environment
(CTE), currently used at all major microprocessor development
efforts at IBM. Current areas of research interest include
design environments for project-independent, multi-site VLSI
development. Mr. Bendrihem received an IBM Outstanding
Technical Achievement Award in 1997 and a Research
Division Outstanding Contribution Award in 1998 for his
work in the design of the G4 and G5 S/390 microprocessors.

Thomas J. Bucelot IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (bucelot@us.ibm.com). Dr. Bucelot is a Research
Staff Member and Manager of the Design Systems Group at
the IBM Thomas J. Watson Research Center. He received his
B.S. degree in physics education from the State University of
New York, College at Cortland, in 1969 and his Ph.D. in low-
temperature physics from the University of Virginia in 1979.
He joined IBM Research in 1979 to work on the Josephson
superconducting computer project. From 1983 to 1992 he
worked with and managed a group doing research in device
and process measurements for liquid nitrogen and room-
temperature-optimized CMOS technologies. In 1992 he joined
the VLSI Design Department. Dr. Bucelot has received IBM
Outstanding Technical Achievement Awards for the design of
liquid nitrogen probe stations and for his contributions to the
design of the G4 microprocessor. His current interests include
multi-site design infrastructure issues and VLSI design-tool
development for high-performance, low-power
microprocessors.

Barry D. Burchett IBM Global Services, 11400 Burnet Road,
Austin, Texas 78758 (burchett@us.ibm.com). Mr. Burchett
received his B.S. degree in mathematics from the University
of Kentucky. He joined ARDIS, a joint venture of IBM
and Motorola, in 1990 as a network analyst and became
operations manager. He joined IBM in 1996 as a manager
of SAP delivery for IBM internal and commercial customers
for Global Services. In 1998, Mr. Burchett became Delivery

Project Executive for IBM Austin infrastructure, inclusive of
file systems. Today, he remains with IBM Global Services as
the Global Project Executive to the IBM Storage Technology
Division. He also is an IBM Certified Project Manager.

John C. Collins IBM Corporation, 11400 Burnet Road,
Austin, Texas 78758 (jcollin@us.ibm.com). Mr. Collins joined
IBM in East Fishkill, New York, in 1969 and until 1984
worked as an engineer and manager in the high-performance
chip design area. From 1984 to 1989 he was a Senior Manager
in the large-systems channel-switching area. Mr. Collins joined
the Austin Development Laboratory in 1990 and worked as a
Project Manager in RS/6000 Development and Manufacturing
until 1996. He then worked as a Project Manager with the
POWER3 and POWER4 chip design teams in the IBM
Microprocessor Development organizations. Mr. Collins
retired from IBM in 2000 and worked as a Project
Manager/Consultant for Schlumberger in the Chip Test
operations organization. He returned to IBM in 2001 to work
as a Project Manager Consultant. He received a B.S. degree
in electrical engineering from Virginia Polytechnic Institute
(1969) and an M.E. degree in industrial administration
from Union College (1980). He also completed a Master’s
Certificate in project management from George Washington
University (1999) and was certified as a Project Management
Professional in 1999 by the Project Management Institute. Mr.
Collins also holds patents and publications related to the
technology and system area.

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 G. P. RODGERS ET AL.

95

