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The POWER4-based p690 systems offer
the highest performance of the IBM eServer
pSeriesTM line of computers. Within the
general-purpose UNIX® server market, they
also offer the highest levels of concurrent
error detection, fault isolation, recovery, and
availability. High availability is achieved by
minimizing component failure rates through
improvements in the base technology, and
through design techniques that permit hard-
and soft-failure detection, recovery, and
isolation, repair deferral, and component
replacement concurrent with system
operation. In this paper, we discuss the fault-
tolerant design techniques that were used for
array, logic, storage, and I/O subsystems for
the p690. We also present the diagnostic
strategy, fault-isolation, and recovery
techniques. New features such as POWER4
synchronous machine-check interrupt, PCI bus
error recovery, array dynamic redundancy, and
minimum-element dynamic reconfiguration are
described. The design process used to verify
error detection, fault isolation, and recovery is
also described.

1. Introduction
The IBM eServer pSeries* p690 is a general-purpose
server consisting of a number of units, including a
processing unit with CPUs, caches, memory, bus control
elements, and a service processor element, a power and
cooling distribution unit, and I/O drawer units. The
processing unit utilizes POWER4 technology.

The POWER4 chip, targeted for frequencies higher
than 1 GHz, contains two independent processor cores,
a shared L2 cache, an L3 directory, and all of the logic
needed to form large SMPs. The chip, containing more
than 170 million transistors, is fabricated using IBM
0.18-�m CMOS SOI technology with seven-layer copper
metallization. Each POWER4 core is an out-of-order
superscalar design with eight execution units: two fixed-
point, two floating-point, two load/store, a branch unit
and an execution unit to perform logical operations
on the condition register. Instructions can be issued to
each execution unit every cycle, although the maximum
instruction retirement rate is five per cycle. Each core also
contains a 64KB L1 instruction cache and a dual-ported
store-through 32KB L1 data cache. Up to eight data- and
three instruction-cache misses are supported. More than
200 instructions can exist concurrently in various stages
of execution. The two cores share an eight-way set-
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associative unified L2 cache organized as three
independent cache controllers. More than 100 GB/s of
data can be moved from the L2 to the two processor
cores. In aggregate, 12 outstanding L2 misses can be
supported by the L2. The on-chip L3 directory supports
an off-chip eight-way set-associative 32MB cache that
supports up to eight outstanding L3 misses. Data transfer
between the L3 (and the memory behind it) and the
POWER4 chip is in excess of 10 GB/s. POWER4 chips
can be mounted on either single-chip modules or
multichip modules to form larger SMP systems.

Up to four POWER4 chips can be mounted on a single
module to form an eight-way system. Four such modules
can be interconnected to form a 32-way system. From a
chip perspective, the interconnect topology is bus-based.
When viewed from a module perspective, it is switch-
based. The interconnection between modules is ringlike.
POWER4-to-POWER4 buses on and off module operate
at half the processor speed. Buses to and from an off-chip
L3 and memory operate at one-third the processor speed.
Multiple POWER4 nodes can be further interconnected in
either a cluster or a NUMA (nonuniform memory access)
configuration to form even larger systems.

The subject of this paper is the fault-tolerant design
used in the p690 system to detect, recover, and isolate
failures throughout the system. Fault-tolerant design
affects two figures of merit vital to customers: availability
and duration of repair. A key design goal of the p690
system is to provide high levels of reliability, availability,
and serviceability (RAS).

At the broadest level, the p690 system is designed to
provide the highest levels of availability and data integrity
in the presence of hardware failures. To provide these
levels of fault tolerance, the hardware, the AIX* operating
system, and the internal service and recovery firmware
have been designed with special characteristics to support
fault tolerance. All system hardware components,
including logic, storage arrays, power, and cooling, have
significantly increased levels of detection, isolation, error
correction, recovery effectiveness, and degraded or bypass
operation.

Factors such as hardware-intrinsic reliability as well as
recovery do help in reducing machine repairs and outages.
Hardware-intrinsic reliability for the p690 has been
provided by careful component selection in order to
reduce as much as possible the opportunity for failure,
achieving a significant reduction over predecessor systems.
The remaining leverage is derived from painstaking
component-level design for fault masking and recovery.

Built-in hardware error detection and FRU isolation
[1, 2] have been an integral feature of IBM mainframes
beginning with the IBM 308X and continuing through
the IBM 3090*, ES/9000*, and zSeries* systems. In the
pSeries, this capability was introduced in 1997 in the F50,

S70, and all following servers. It has been successfully
used in all of these platforms to quickly isolate failures
to a failing field-replaceable unit (FRU). A key design
characteristic which zSeries and pSeries share, and which
is also used in the p690 design, is to a) detect errors
during normal machine operation, b) capture machine
status information at the time of error detection, and c)
isolate the failing FRU by analysis of the data captured at
the time of detection of the error. Fault-isolation design is
discussed in Section 2.

2. Run-time self-diagnostic fault isolation
The diagnostics goal for the p690 system is to isolate 95%
of the failures to a single FRU. For 5% of the failures,
two FRUs plus any boards or wires that interconnect the
FRUs are candidates for fault identification. In these 5%
of cases, manual isolation procedures may be employed by
the service person.

The role of error checkers in diagnostics
All POWER4 error-checking mechanisms, including parity,
ECC, and control checks, have three distinct but related
attributes. First, checkers provide data integrity. Second,
checkers initiate appropriate recovery mechanisms, from
bus retry based on parity error detection, to ECC
correction based on hardware detection of a nonzero
syndrome in the ECC logic, to firmware-executing
recovery routines based on parity detection. Third, and
equally important, all error-check stations have been
placed in POWER4 system data and control paths to
deterministically isolate physical faults based on run-time
detection of each unique failure that may occur. All error
checkers are instrumented with software-readable error-
capture fault-isolation registers (FIRs) and blocking
logic, so that for every detected error only the first
checker that encounters the error records it. This form
of instantaneous run-time diagnostics greatly enhances
other forms of diagnostic testing, such as built-in self-test
(BIST), which relies on reproducible defects rather than
the intermittent ones often present or evident only at run
time. Run-time error diagnostics are deterministic in that
for every check station, the unique error domain for that
checker is defined and documented. Diagnostic validation
consists of dynamic run-time injection of intermittent
error conditions, to determine that the correct physical
component is called out by the diagnostic.

Let us consider FRU isolation. It is desirable to confine
100% of failures to a single FRU to minimize service cost
and customer impact. This is not always possible [3] in a
multi-FRU system, for reasons given below. In a multi-
FRU system, the board provides wires for inter-FRU
communication of data-bus, address, and control signals.
When a bad signal is received on the receiving FRU, it
is not possible to tell whether the driver on the sending
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FRU has failed, the receiver on the receiving FRU has
failed, or the board wire that interconnects them has
failed. Hence, when an error is detected on an inter-FRU
communication path, the failure is classified as isolated to
two FRUs. The percentage of failures for which two FRUs
are called can be kept to a minimum by checking the
signal on the sending FRU and checking the received
signal on the receiving FRU. Roughly 5% of the total
number of circuits on a FRU are used for inter-FRU
communication, so the design permits calling two FRUs
plus the board for 5% of failures and calling a single FRU
for all remaining failures.

Next, we describe two design techniques that are used
to achieve a high percentage of single-FRU isolation. We
also describe the role played by the service processor in
FRU isolation. Finally, the fault-isolation process is
described.

Design techniques for FRU isolation
To isolate failures to a single FRU, it is necessary to
minimize situations in which failure of a circuit on one
FRU is detected by a checker on another FRU. Two
techniques, or design rules, are used to accomplish this:
a) rules for checking of signals that cross FRU boundaries,
and b) use of the active source identifier as part of the
detected and captured error state. These techniques are
described below.

Checking of signals crossing FRU boundaries
An example of using error checkers at FRU boundaries to
improve and define the optimum FRU isolation is shown
in Figure 1. Signals to be sent originate at a parity-
checked register on FRU 1. They enter combinational
logic, array, or gating logic. Error checker E is used to
isolate the failure of the combinational logic circuits to a
single FRU. When these circuits fail, checkers D and E
are off and checker F is on.

Active source identifier
In addition to the identity of the error checker that
detected an error, certain machine-state information
must be captured along with the error checker name to
facilitate FRU isolation. The specific information,
collectively called the active source identifier (ASI), was
first introduced in the IBM 308X [1] and 9021 processors
and is briefly explained here. It is used to point to the
source of the data in a situation for which one source out
of many possible sources supplies the data that is checked.

An example of an active source identifier is shown in
Figure 2. Register A or Register B could be the source of
the data that is sent to Register C. A latch (ASI) points
to the source of the data. Thus, the ASI contains, for
example, a 0 if data came from Register B and a 1 if

data came from Register A. Consider data transfer from
Register B to Register C. The ASI would be 0. If parity
checker C detects an error, the failure is isolated to

Figure 2

Example of an active source identifier (ASI).
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FRU 2. In the absence of the ASI, both FRU 1 and FRU
2 would have to be called when parity checker C comes

on. In the p690 implementation of the ASI concept, the
ASI information would be combined directly with the
error checker C output, so that one of two different fault-
isolation register (FIR) bits would be set, depending on
the data source. This allows simpler analysis of the error
state by the processor runtime diagnostic (PRD) firmware,
since extra state bits do not have to be examined by the
firmware in most cases to obtain the minimum diagnostic
resolution. These internal hardware functions are defined
by the diagnostic team item by item, often three years
before system deployment, early in the chip development
of any new chip set.

Who’s on first logic structure
For every error checker there is a latch which is set to
ON when the checker detects an error. Prior to design
closure on every hardware element, each error checker is
examined as to the domain of failures which can cause the
checker to come on. This analysis takes into account the
total p690 system set of error checkers, including special
hardware which determines which error checker came on
first.

The logic structure which supports this procedure is
sometimes called “who’s on first” (WOF), and is depicted
in Figure 3. The WOF limits the domain of any error
checker backward in the data or control flow to the
previously checked signal source, and resolves any
ambiguity due to error propagation. It is implemented
in every POWER4 chip. To keep the wiring within
reasonable bounds, the WOF structure is actually
implemented as a hierarchy of global, MCM, and chip-
internal FIR registers, which are examined sequentially to
determine the source domain of an error. In particular
cases, the WOF counters on each chip are examined in
order to pinpoint which chip first detected an error, and
which FIR points to the source error. Ultimately, the
domain becomes the FRU call. If design analysis reveals
that a chip function has ORed two different error checks,
one with a single FRU domain and the other with a
domain spanning two or more FRUs, the design is
changed so that each such checker has a separate latch
rather than sharing a latch with one or more other
checkers. This critical hardware analysis is performed on
all p690 and pSeries hardware, so that the self-diagnostic
FRU call is deterministic, not requiring manual
interpretation.

System error-checker placement
The diagram in Figure 4 shows a high-level summary of
the internal check stations that feed the various levels of
the FIR structure to support the p690 full-spectrum
diagnostic design.

Figure 3

Logical structure of POWER4 multichip module.
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Summary diagram of FIR internal check stations.
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Design for chip isolation internal to the FRU
The level of diagnostic resolution of most error checkers
in IBM products such as the p690 is generally more precise
or refined than a FRU, even though the FRU resolution
is sufficient for field-repair purposes. For example, the
CPU FRU for the p690 is a multichip module (MCM)
containing eight processor cores and four L2 caches, on
four separate chips. Each of these chips has separate
and unique FIR registers, so that the actual diagnostic
resolution of a detected error is a single chip. The
chip call information at time of failure is permanently
written into a separate hardware module returned to a
manufacturing facility along with the replaced MCM. This
allows root-cause analysis of the defect based on the exact
error state, including chip and exact checker, without
resorting to recreating the failure, and is a key element
of IBM’s continuous hardware field-quality monitoring.
Figure 5 indicates error-checker placement in a typical 32-
way p690 system, for the purpose of detailed diagnostic
resolution. (Error checkers are denoted as in Figure 3.)

Role of the service processor in FRU isolation
The role of the service processor in FRU isolation is
similar to that in IBM 308X, 3090, and 9021 machines.

The service processor (Figure 6) is a separate independent
processor that provides hardware initialization during
system IPL, operation monitoring of environmental and

Figure 5

Placement of error checkers in the p690 system.
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Service processor schematic.
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error events, and maintenance support for the p690. For
run-time diagnostic purposes, the communication between
the service processor and the p690 consists of 1) attention
signals from the p690 hardware and 2) read/write
communication between the service processor and all
hardware-internal FIRs, using specialized JTAG1 ports
between the service processor and all p690 chips. This
diagnostic read/write capability of hardware error registers
is simultaneous, asynchronous, and transparent to any
system activity running on the p690. Described another
way, these FIRs are known only to the service processor
and are not accessible by system software.

When an error is detected in hardware, an appropriate
attention signal is generated to the service processor. The
ultimate response of the service processor is to read the
appropriate FIR, based on analysis of the WOF structure,
to examine the active FIR bits, and to post the FRU
callout in the p690 nonvolatile RAM. The NVRAM acts
as a “mailbox” for the service processor, the system
firmware, and the AIX running on the p690. The
formatted FRU callout is moved by system firmware to
AIX and into the AIX system error log, along with
notification about the nature of the event, usually a
deferred repair, based on the p690 internal-element
availability mode: CPU, L2, L3, memory, or peripheral
component interconnect (PCI) adapter offline. Following
the analysis of a recovered event, the service processor
resets the FIRs so that they can accurately record any
future error events.

Run-time diagnostics for PCI adapters
From the above, it is clear that one of the critical co-
requisites of run-time diagnostic isolation is run-time
access to the internal error state. For the unique p690
hardware, this access is via special service processor data
ports or hardware implementation-specific memory-
mapped error registers for run-time system firmware
access. For industry-standard PCI adapters, this scan-
path access is not currently available. The alternative is
to use the existing adapter device-driver access to sense
information. IBM encourages device drivers to be written
so that they respond to any adapter error indication by
reading and logging into the AIX error log all sense data
from the adapter. The sense data are examined by an AIX
function called Diagnostic Error Log Analysis, which
creates the appropriate FRU callout. Before deploying any
PCI adapter into an AIX release, the adapter specification
is examined to be sure that all internal sense data is 1)
logged and 2) defined so that Diagnostic Error Log
Analysis will call the correct PCI adapter FRU. This

behavior is also tested by IBM during maintenance package
verification for the adapter.

3. Internal array and memory fault tolerance

Recovery from soft errors
In POWER4 CMOS technology, the ability to tolerate and
mask soft errors in all caches and arrays is paramount. If
these errors were not recovered, unacceptable customer
outages would result because of aggregate soft-error rates
(SERs) on the SRAMs. These SERs exceed by as much
as a factor of 5000 the technology-conventional intrinsic
failure rate. Error correction at all cache levels and in
most large arrays is provided. In the POWER4 L2 and
L3 caches, this is accomplished by standard single-error-
correct, double-error-detect Hamming ECC [4]. In the L1
data cache (D-cache), because of its store-through design,
the L1 D-cache and D-cache tag are parity-protected.
Errors encountered are reported as synchronous machine-
check interrupts. To support error recovery, the p690
machine-check interrupt handler is implemented in
system-specific firmware code. When the interrupt occurs,
the firmware saves the processor-architected states and
examines the processor registers to determine the recovery
and error status. If the interrupt is recoverable, the system
firmware removes the error by invalidating the D-cache
and incrementing the error counter. If the D-cache error
count is greater than a predefined threshold, which is an
indication of a solid error, the system firmware disables
the failing portion of the D-cache. The system firmware
then restores the processor-architected states and “calls
back” the operating system machine-check handler with
the “fully recovered” status. The operating system checks
the return status from firmware and resumes execution.
With the D-cache invalidated, data now loads from the
L2. Similar recovery function is provided for data ERAT
(effective-to-real address translation) and TLB (translation
lookaside buffer) arrays.

Figure 7 shows the p690 array-recovery flow chart.
For the I-cache, I-cache tag, and I-ERAT, the hardware
reports parity errors as if a cache miss had occurred,
causing a refetch from an L2 or I-ERAT miss and a
reload from the TLB. In the L2 ECC implementation,
correct data is always written back into the L2, and the
correct data is actually refetched from the L2 cache. This
is different from most main-store ECC implementations,
where corrected data is presented to the fetch requester
but not rewritten into the main store until a special write
operation such as scrubbing takes place.

Redundancy for array availability
While the most likely failure event in a processor is a soft
single-bit error in one of its caches, other events can occur

1 JTAG (Joint Test Action Group) is an IEEE working group responsible for
certain IEEE hardware testing standards.
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and must be distinguished from one another. For the L1,
L2, and L3 caches and their directories, hardware and
firmware keep track of whether permanent errors are
being corrected beyond a threshold. If the threshold
is exceeded, a deferred-repair error log is created.
Additional run-time availability actions, such as CPU vary
off or L3 cache-line delete, are also initiated. L1 and L2
caches and L2 and L3 directories on the POWER4 chip
are manufactured with spare bits in their arrays, which can
be accessed via programmable steering logic to replace
faulty bits in the respective arrays. This is analogous to
the redundant bit steering, employed in main store
as a mechanism to avoid physical repair, that is also
implemented in POWER4 systems. The steering logic is
activated during processor initialization. It is initiated by
the built-in self-test (BIST) at power-on time. L3 cache
redundancy is implemented at the cache-line granularity
level. Exceeding correctable-error thresholds while running
causes the invocation of a dynamic L3 cache-line delete
function, capable of up to two deletes per cache. In the
rare event of solid-bit errors exceeding this quantity, the
cache continues to run, but a message calling for deferred
repair is issued. If the POWER4 system is rebooted
without such repair, the L3 cache is placed in bypass
mode, and the system comes up with this cache
deconfigured.

Main-memory fault tolerance
The problem of detecting and correcting multiple errors
originating from a single point of failure in memory was
first described from the standpoint of detection [5], using
standard Hamming ECC. The solution to this problem
implemented in p690 main memory is called chip-kill ECC,
and it refers to designing the memory-card wiring so that
every system ECC word has all of its individual bits
mapped onto different DRAM chips. The effect is
that not only are single-cell failures corrected on the
fly, but also a more serious defect such as an entire
DRAM chip kill can be corrected on the fly, since
even such a large number of bad bits still appear
to the ECC logic as correctable single-bit errors.

4. System recovery from data corruption

POWER4 synchronous machine-check interrupt
In order to support non-checkstop behavior in the unlikely
event of corrupt data from a variety of sources, the
POWER4 CPU core is designed to respond to load data
which has either a parity error from L1/ERAT/TLB/SLB
or an uncorrectable error from L2 with a synchronous
machine-check interrupt. The p690 system-specific
firmware machine-check interrupt handler examines the
POWER4 machine and error state and determines the
appropriate response. In the case of L1, TLB, or ERAT

parity error, the firmware initiates recovery as described
in the previous section. For the case of an uncorrectable
error, the firmware machine-check handler restores the
processor-architected states so that the SRR0 register
contains the effective address of the instruction which
referred to the corrupt data at the time of interrupt. The
firmware machine-check handler then “calls back” the
operating system machine-check handler with the “not
recovered” and “error sync” (error synchronous to the
current context) status. Operating-system recovery consists
of determining the nature of the affected process and
initiating user process termination, kernel process restart,
or operating system termination, depending on whether
the kernel was damaged. In a logical partitioned (LPAR)
system, only the affected partition is terminated, which

Figure 7

Array error recovery flowchart for the p690.
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localizes the error impact and maintains overall p690
system availability. The affected partition can be restarted
with a fast partition reboot.

System recovery hierarchy
POWER4 system error handling and recovery has multiple
layers to maximize system availability. ECC throughout
the system and bus retry accomplish recovery for the bulk
of the errors expected. In the rare event that the ECC
capability is exceeded, or bus retry fails to provide correct
data, predecessor machines will respond with some form
of system checkstop to maintain data integrity. For
POWER4 systems, the hardware, firmware, and AIX are
designed to keep running, avoiding a hardware checkstop
while maintaining data integrity. Any corrupt data is
tagged with a variety of hardware indicators (special
unrecoverable-error syndrome in memory, Derr signal on
buses, special error packets on I/O transmissions, etc.).
System error handling occurs only when corrupt data
is referenced. For the case of a processor load, the
POWER4 synchronous machine-check interrupt indicates
to the operating system the address of the instruction
loading the corrupt data. In an LPAR system, only the
partition referencing the corrupt data will have an outage.
If the kernel is not affected by the data error, only the
user process is terminated.

5. PCI fault tolerance
On a large server such as the p690, the total number
of included PCI adapters and devices accounts for a
significant fraction of the total opportunity for failure,
as high as 25% of the total expected outages on a fully
configured system. While PCI “hot swap” is supported
with both hardware and firmware enablement, PCI hot
swap does not deal directly with run-time recovery for an
operating adapter. It does allow concurrent repair and
continuous operation in configurations where failover
to a redundant or alternate path is provided. Run-time
recovery from PCI failures has two significant components
based on the origin of the error or failure: 1) unique
internal device recovery and error status reporting
combined with AIX device-driver behavior in the event
of a fatal error, and 2) the ability to recover from errors
originating on the PCI bus itself. The first category of
recovery has been standard in AIX device drivers and is
well understood. The second category, errors originating
on the PCI bus itself, is not covered by industry-standard
PCI device drivers, and the effect has been system global
machine-check interrupts, usually not recoverable.

Beginning with the p690, new PCI bus hardware
behavior is combined with system firmware and new AIX
device-driver behavior to support command-level retry
recovery from PCI bus intermittent errors, and device-

driver-supported system recovery for permanent PCI bus
errors, including partition error containment for LPAR.

“Extended error handling for PCI” is the term used
to describe the combination of hardware, firmware, and
device-driver behavior which accomplishes the recovery.
The first requirement is a hardware mechanism that can
report to a software device driver that a PCI bus error
has been encountered. The p690 PCI bridge hardware
has been designed so that PCI bus parity errors cause the
bridge logic generating the PCI bus to enter a freeze state
and return a special data pattern to the requesting device
driver. The device driver that receives this data pattern
then uses special firmware functions to interrogate the
specific PCI bridge internal error registers to determine
the cause, and can invoke a firmware function to unfreeze
the bridge and retry the operation. The specific fault-
isolation state is also captured during this activity, and
even if it is successful, error thresholds are kept and
analyzed to call out the PCI adapter and slot if the
threshold is exceeded. On the basis of failure statistics
of pin connectors used in standard PCI adapters,
PCI bus error recovery can account for reducing as
many as 250 events per 1000 systems per year; it is a
critical fault-masking technique for achieving the
p690 goal.

6. Minimum-impact availability modes
Internal redundancy within the p690 cache arrays
has already been described, and is the first line of defense
for permanent errors, even though ECC continues to
correct them. These mechanisms provide full availability
without degradation, and do not require even a deferred
repair action. This was described in Section 3. Beyond this
capability, for failures which may exceed the capacity of
the internal redundancy, individual small elements within
the p690 system can be completely deconfigured to
allow continued system operation with minimum
performance impact.

Deconfiguring a failed element
The p690 is designed to provide the maximum possible
computing power, even when it is necessary to deconfigure
a failing CPU, cache, or memory for deferred repair.
The hardware and firmware are designed to be able to
deconfigure the minimum functional element either
dynamically during system run time or during boot time,
with the remainder of the system unaffected. A p690
processor or an L3 cache line can be dynamically
deconfigured while the system is running, and a processor,
memory segment, or L3 cache module can be persistently
deconfigured during boot time to avoid rediscovery of
a failure while awaiting a repair. In the case of the L3
cache, of which there are 16 in a 32-way p690, each
individual L3 module can be placed by firmware in a
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bypass mode, with all 32 CPUs, all of main memory, and
all of the remaining 15 L3 modules forming an operational
p690. For the case of an L2 cache ever becoming
inoperative, it is necessary to deconfigure the two
CPUs which operate out of it. Individual memory
cards of the p690 can be deconfigured for deferred
repair, and the follow-on system will allow deconfiguration
of a half-card, with the remaining half-card fully
addressable.

7. Verification of fault-tolerant behavior

Verification of run-time self-diagnostic fault
isolation
There are several hardware, firmware, and software
behaviors that contribute sequentially to the end-to-end
diagnostic behavior, and each is tested and verified
independently during its phase of development, as well as
being tested and verified as a complete behavior. During
hardware chip development, the critical behavior is error
detection within the individual error domains, the correct
setting in logic of the FIR registers, and the driving of
attention-notification signals to the service processor. Prior
to chip final design, these behaviors are simulated using
logic-model error injection.

Prior to the first-pass release of any chip logic design,
the processor run-time diagnostic team conducts detailed
design walkthroughs of the chip hardware specification,
with specific focus on the FIR design, to make sure that
FRU callouts are correctly identified and documented in
the chip specification, even though the actual diagnostic
code will not be written for about two years.

The final phase of verification is to perform run-time
error injection on production-level hardware, firmware,
and software. To enable this activity, special error-inject
functions are designed into the POWER4 chip set. These
hardware functions are programmed by specialized
firmware running in the service processor, which can scan
special patterns into any one of the hundreds of error-
checker domains, causing a single-cycle “bit flip” to occur
in either a parity-protected or ECC-protected data packet.
The test engineer injects a large number of specific
individual errors, each one with a predetermined outcome
as to recovery, availability mode, threshold, and FRU
callout. Incorrect behavior of any kind is documented for
a design change. The inject points are chosen throughout
the CPU, cache, memory, system bus, PCI, and power and
cooling subsystems.

Verification of recovery and availability modes
The basic foundation of all recovery and availability
modes is the run-time fault-isolation behavior, and the
basic verification activities described above cover the bulk
of these. Areas such as buses, where retry is the recovery

mode, are verified using the same error-inject
methodology, but the test consists of verifying the
fact that retry actually occurred and was successful,
and that the error state captured indicated the specific
bus and its recovered error count.

There are several availability modes that are invoked
only when thresholds of recovered errors are exceeded,
leading to an isolated component being varied offline. To
verify this behavior, the error-inject logic has a second
mode in which it can be programmed to continuously
inject a stream of errors at a fixed interval. This allows
testing of any such threshold behavior and identifies the
subsequent correct availability mode.

Maintenance package verification
This activity extends run-time diagnostic verification down
to the more classical “solid bug” error behavior. This
allows validation that the error-recreating POST, ABIST,
LBIST, and wire-test activities that occur during the IPL
sequence can find and isolate electrical opens and shorts,
as well as those internal problems that such pattern testing
can find. More significant in this phase of verification is
that the full production-level service documentation is
included, service notification to an external location can
be tested, actual field service personnel conduct parts of
the test, and procedures involving physical removal and
replacement can be tested.

8. Summary
The IBM eServer p690 system contains many significant
design improvements in fault tolerance over previous
systems, all of which are based on run-time self-diagnostic
technology as the fundamental building block throughout
the hardware system design: CPU, cache, memory, I/O,
and power and cooling. This capability permits a wide
variety of concurrent and deferred repairs to take place
for all system elements. In addition, internal ECC, spare
bits, and predictive deconfiguration availability modes are
provided to keep the p690 operating. Self-diagnosis as
opposed to manual diagnosis enables automatic dispatch
of the correct repair part simultaneously with the
placement of the service call, even before the service
person arrives on the scene.
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