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Many numerically intensive computations done
in a scientific computing environment require
uniformly distributed pseudorandom

numbers in the range (0, 1) and (-1, 1). For
multiplicative congruential generators with
modulus 2%, k < 52, and period 2“7, we show
that the cost per random number for these two
distributions is 3 and 3.125 multiply-adds on
RS/6000® processors. Our code, on the IBM
POWER2 Model 590, produces more than 40
million uniformly distributed pseudorandom
numbers per second for both ranges (0, 1) and
(—1, 1). Additionally, our code sustains the 40
million per second rate for data out of cache.
The Numerical Aerodynamic Simulation (NAS)
parallel benchmarks use a linear congruential
generator with modulus 2*. Our result is
about 50 times faster than the generic
implementation given in the benchmarks. The
extra-accuracy fused multiply-add instruction
of RS/6000 machines combined with a few
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algorithmic innovations gives rise to the
50-fold increase. If IEEE 64-bit arithmetic

is used with our Fortran code on POWER

and PowerPC® architectures, the results

we obtain are bit-wise identical to the
generic algorithms. The paper gives several
illustrations of a general technique called

the Algorithm and Architecture approach.

We demonstrate herein that programmer-
controlled unrolling of loops is equivalent to
“customized vectorization of RISC-type code.”
Customized vectorization is more powerful
than ordinary vectorization, and it is only
possible on RISC-type machines. We illustrate
its use to show that RS/6000 processors can
compute the distribution (—1, 1) at the rate of
3.125 multiply-adds. We also specify a linear
congruential generator that is related to the
multiplicative congruential generator referred
to above. It has a full period of 2“, where 2 is
the modulus. The cost per random number
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[in the range (0, 1)] for this generator is four
multiply-adds on RS/6000 processors. Our
code, on the IBM POWER2 Model 590, for

this generator produces more than 30 million
uniformly distributed pseudorandom numbers
per second for the range (0, 1). We show that
this generator is “embarrassingly parallel,” or
EP. Using the Algorithm and Architecture
approach, we describe a new concept called
“generalized unrolling.” Finally, we present a
multiplicative congruential generator for which
the modulus is not a power of 2. Such a
generator, as well as one with modulus 2,

is selectable as the generator used in the
RANDOM_NUMBER intrinsic function of IBM
XL Fortran and XL High Performance Fortran.
All of the generators reported here are EP.
Using an IBM SP2 machine with 250 wide
nodes, it is possible to compute more than ten
billion uniform random numbers in a second.

1. Introduction
The extra-accurate fused multiply-add (FMA) operation
of the RS/6000* and PowerPC* family of RISC
microprocessors offers many opportunities to use
mathematical innovation to produce fast algorithms for
numerically intensive computation (NIC). In this paper we
illustrate this assertion by giving several examples and by
demonstrating a 50-fold increase in performance (over
generic algorithms [1]) for pseudorandom-number
generation. The results obtained are bit-wise identical
to the results of the generic algorithms.

For multiplicative congruential generators [2] of the
type
s,,, = as, mod 2k,

or 27 —1, 1)

Ak
X, ., =2"s i1

it+1
with k = 52, we show that the cost per random number
for the two distribution intervals (0, 1) and (-1, 1) is
respectively 3 and 3.125 multiply-adds on RS/6000
processors.

We also specify a linear congruential generator of the
form
s,., = (as, + ¢) mod 2k
o1 = 2_ksi+1 ’
related to the generator in [2], which has a full period of
2*. The cost per random number [in the range (0, 1)]
for this generator is four multiply-adds on RS/6000
processors.

Finally, we present a multiplicative congruential
generator for the interval (0, 1) of the form
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5., = as, mod 2F-1),
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(discussed in [3]), for which the modulus is not a power
of 2. Such a generator, as well as a generator of

type (1), is selectable as the generator used in the
RANDOM_NUMBER intrinsic function of IBM XL
Fortran (XLF) [4] and XL High Performance Fortran
(XLHPF) [5]. [By “a generator of type (n),” or “generator
(n),” we mean a generator whose description is given by
equation(s) (n).]

We first introduce some notation. We use ¢ to represent
the modulus, either 2% or 2F — 1, depending on the
generator. Arithmetic operators in equations are exact.
Operands are IEEE normalized numbers. We use the
operators ©, ©, ®, & for IEEE double-precision (64-bit)
floating-point arithmetic, and fi(x) for the correctly
rounded double-precision value corresponding to x. In
most cases, x = ab + ¢, where a, b, and ¢ are IEEE
numbers. Unless otherwise stated, the rounding mode
we use is round-to-zero (chop). This leads to the best
performance.

Let a, b, and ¢ be arbitrary IEEE 64-bit floating-point
numbers. The fused multiply-add operation on RS/6000 and
PowerPC computes the correctly rounded d = fl(ab + ¢)
for any of the four IEEE rounding modes. On RS/6000
machines, all 106 bits of the product a * b are added
to ¢ in order to guarantee that d will be correctly
rounded for all possible values of a, b, and c. POWER
and POWER2 RS/6000 machines can on a continuous
basis compute one and two FMAs every machine cycle if
the results of the FMAs do not cause any pipeline delays.
The pipeline delay for these machines is two or three
cycles. Loop unrolling can be used to avoid any pipeline
delays for the pseudorandom-number calculation.

We first consider a multiplicative congruential
pseudorandom-number generator for which the modulus
is a power of 2. See Knuth [2] for a thorough discussion
of pseudorandom-number generators. Let 0 <5, < 2k,
s, 0dd, 1 <a <2 k=52, and fori = 0, let

_ k
s,., = as,mod 2%,

X, = 27ks[+1 . 3)

i+1

For k = 46 and @ = 5" we have a specific instance of
such a generator. This generator has period 2", and

it is extensively used by the Numerical Aerodynamic
Simulation (NAS) suite of paper and pencil benchmarks
[1]. We mention here that the random-number generator
(3) is embarrassingly parallel, or EP. In [1, p. 31, bullet 3],
this point is made for the EP benchmark. Also, on page
29 of [1], Bailey describes the binary algorithm for
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exponentiation that allows one to compute a" mod 2* in
log, () steps. The fact that ¢" mod 2" is computable in
log, (n) steps is crucial to making the random-number
generator (3) embarrassingly parallel. Bailey implicitly
points this out in [1, p. 31, bullet 2]. On the IBM
POWER?2 Model 590, our bit-wise identical algorithms
corresponding to Equation (3) compute more than 40
million random numbers per second. On the IBM SP2
machine, using the Model 590 for its nodes, and using
p such nodes, we can compute more than 40p million
random numbers per second because of the EP nature of
these algorithms. Thus, using 25 nodes our algorithms can
compute more than a billion random numbers in a second.
In [1], Bailey gives a generic algorithm that simulates
base 2% multiple-precision arithmetic to compute the s’s
in (3). This algorithm requires 18 floating-point operations
and four convert-to-integer operations per random
number. We implement the same generator using three
multiply-adds. Any pseudorandom s, from (3) can then
be placed in the range 0 < x, < 1 by the scaling
x, = 27ks1. or be put in the range —1 <x, <1 by
computing x, = 27k+lsl. — 1. These computations
respectively require one and two additional floating-point
operations. In this paper, we redefine (3) to compute each
x, directly, without first computing s,, and thus compute

x,., =ax, mod 1.
i+1 i

This change avoids the actual scalings done above. We
also show how these computations can be done by three
and 3.125 multiply—adds per random number on RS/6000
machines.

When doing modular arithmetic on integers, it is
natural to use the greatest integer function. In floating-
point arithmetic this is achieved by using the IEEE round-
to-zero (chop) rounding mode. Throughout this paper,
except for one place in Section 2, we use the chop
rounding mode.

Many NIC algorithms are rated by their megaflop rate,
although this popular measure is often misleading. We
think that pseudorandom-number generation is such a
case. An NIC computation related to pseudorandom
generation is the EP NAS benchmark [1, 6]. By using
mathematical innovation and the fast random-number
generation described here, we were able to demonstrate
that the RS/6000 POWER2 Model 590 could currently
outperform a Cray YMP for EP [6]. In this paper we
compare the ratio of the computing time for the generic
algorithm [1] to the time of our algorithm. In both cases
we use the same model of RS/6000. The new algorithm
is written entirely in Fortran and is compiled using the
XL Fortran (XLF) compiler [4].

We also implemented another generator of the type (3)
in which a = 44 485709 377909 and k = 48. This
generator is the RANF( ) pseudorandom function used

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

on the CDC Cyber 174 computer, and is also generator 2 in
the RANDOM_NUMBER intrinsic function provided with
the IBM XLF and XLHPF compilers. It is described in
the book Stochastic Simulation by Brian Ripley [7, p. 216],
who presents statistical test results for several generators;
he finds this generator “quite acceptable.” Gordon
Slishman has implemented this generator' using three
multiply-adds for single-processor execution of
RANDOM_NUMBER. The parallel implementation

in XLF and XLHPF is described in Section 4.

Slishman also implemented the generator (2), for which
the modulus is not a power of 2, for generator 1 of single-
processor RANDOM_NUMBER. Parallel versions of
both generators 1 and 2 in RANDOM_NUMBER were
implemented by Robert Enenkel for SP (distributed-
memory) machines, and by Enenkel and Xinmin Tian”
for SMP (shared-memory) machines. Generator (2) is
discussed in detail in Section 5.

In Section 2 we describe some elementary mathematical
ideas that can be used to compute (3) rapidly. These ideas
are used to derive an algorithm to compute pseudorandom
numbers in the range (0, 1) in three multiply-adds and
pseudorandom numbers in the range (—1, 1) in 3.125
multiply-adds. Also, using the IEEE round-to-nearest
mode, we show how the latter computation can be done
in three multiply—adds.

We now discuss POWER and PowerPC models. Before
the advent of vector processors, integer arithmetic was
generally faster than floating-point arithmetic. It was
then customary to produce pseudorandom numbers
using fixed-point arithmetic and then convert these
integers to floating point with scaling to get floating-
point pseudorandom numbers. When fast floating-point
processors became available, it became more economical
to produce the random numbers directly in floating point.
For example, the first equation of generator (1) could be
computed on an RS/6000 by setting 0 < s, < 2k, s, odd,
and letting, for i = 0,

u = fl(as, + 2%,
v=1u e 252+k
s, = fi(as, — v).

The above three statements define pseudorandom integers
in the range 0 <5, < 2" that are bit-wise identical to

the generator (1). However, one usually wants random
floating-point numbers in the range (0, 1) or (—1, 1). The
formulas above would then require modification; i.e.,

—k —k+1
x,=2" or x=2""s—L1

i

I Gordon Slishman, private communication, IBM Toronto Laboratory,
January 1994.
2 Xinmin Tian, private communication, IBM Toronto Laboratory, 1997. 99
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However, these computations require an extra multiply—
add in addition to the four needed to compute s,.
One intention of this paper is to demonstrate that this
additional multiply-add can be removed. This results in
improvement factors of 4/3 and 4/3.125, which come
to 33% and 28% improvements per iteration over
computation based on the above four statements.

In Section 3 we describe two full-period linear
congruential generators,

X, = (ax; + ¢) mod 1, (4)

that compute pseudorandom numbers in the range (0, 1)
in four multiply-adds for ¢ = 27 and ¢ = a2™*. We show
a proof that these generators are EP. The proof involves
showing that (1 + a + --- + a"~") mod ¢ can be
computed in log, (n) steps. Our four-multiply—-add
implementation of these generators requires us to avoid
conditional operations in the unrolled inner loop. It turns
out that ordinary unrolling via vectorization fails. To
overcome this failure, we introduce “generalized
unrolling,” which becomes possible because the generator
is EP.

In [2, Section 3.6, pp. 170-173], Knuth provides a
summary on “how to generate random numbers.” He
recommends using a linear congruential generator,

X < (aX + ¢) mod q, (5)

that satisfies seven properties. However, he states that
this class of generator applies primarily to machine-level
coding and hence is not portable. For IEEE arithmetic, it
makes sense to choose g = 2*. The fused multiply-add
instruction is provided by many computer architectures,
including the IBM RS/6000 POWER and PowerPC, IBM
S/390* G5, Intel/HP IA-64 Itanium**, Apple Power
Mac**, HP Precision Architecture RISC 2.0 (e.g.,
HP900/800), and SGI MIPS** R-8000." Thus, within

this more restrictive domain, we can propose our
four-multiply-add generator as being “portable.”

In Section 5 we extend the ideas of the previous
sections to the generator (2). The modulus of this
generator is 2*' — 1, and not a power of 2 as for the
previous generators. To achieve high performance,
nontrivial changes to the algorithm are required.

In Section 6 we describe the performance of these
algorithms relative to the generic algorithm of [1].

2. Three multiplicative congruential generators
Let a and y be positive integers less than 2, where

k = 52. Clearly a and y are IEEE numbers. Let x = 27ky
so that 0 < x < 1. Also, x is an IEEE number. Let

p = ax. The base-2 (bit) representation of p is

3 W. Kahan, private communication, Computer Science Division, University of
California, Berkeley, August 2000.
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PPy " PyPrsiPrss * " Py Where each p,is 0 or 1.
Represent p = I + F, where I = p, -+ p, and

F = p,,, " py e, andF are the integer and
fractional parts of p. Note that ax mod 1 = F, that I and F
are IEEE numbers, and that 2 = p + 2% = 2% — 1. Let

u = fi(ax +27). (6)

All 2% positive integers in the range 2 to 2 — 1 are all
of the IEEE numbers in that range. Thus, u in (6) is an
integer, and since we are in chop mode, u is the largest
integer not exceeding p + 2°*; ie, u = p + I. (See
Lemma 1 for a detailed constructive proof.) Let

v=u©2% (7)

The computation in (7) is done exactly, since v is computed
using IEEE arithmetic, in which u, 2°% and v = I are all
IEEE numbers. Now let

w = fl(ax — v). (8)

On RS/6000, w is the fractional part F of ax because the

fused multiply—add instruction always delivers the correct
answer when its operands and result are IEEE numbers.

Note that ax — v = F. Thus,

w = ax mod 1. 9)

We have just proved the following.

Theorem 1

The computation in (6), (7), and (8) above produces the
result (9). The value computed by (8) is bit-wise identical
to the infinitely precise result (9).

When unrolled, Equations (6), (7), and (8) constitute a
three-multiply-add implementation of the random-number
generator (3). Let a = 5" and choose 1 < 5, < 2
with s, an odd integer and k = 46. Set x, = 30271‘.

Then 0 < x, < 1. Note that the seven lower-order
bits of x, are zero. In fact, each x,, i = 0, given by

x,,, =ax, mod 1 (10)

has this property.

We now discuss some aspects of the Algorithm and
Architecture approach [8] and how it relates to unrolling.
In Section 1.3 of [1], Bailey et al. describe sample codes
for the NAS benchmarks. There were two codes
distributed for random-number generation, namely
RANDLC and VRANLC; the latter is of interest to this
paper. Subroutine VRANLC generates n REAL+8 uniform
pseudorandom numbers in the range (0, 1) by using
Equation (3). The documentation states that VRANLC
is the standard version designed for scalar or RISC
systems. A comment in this code states that the DO
loop below in (11) which generates the n uniform
pseudorandom numbers is not vectorizable.
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Tl = R23 * A
Al = AINT (T1)
A2 = A - T23 * Al
C
C Generate N results. This loop is not
c vectorizable.
C
DO 120 I =1, N
C
C Break X into two parts such that
Cc x =2% % X1 + X2, compute
C7Z=2al%3X2 + A2 * X1 (mod 27), and then
Cx=2"%2+ a2 % x2 (mod 2%).
C
Tl = R23 * X
X1 = AINT (T1)
X2 = X - T23 * X1
Tl = Al * X2 + A2 #* X1
T2 = AINT (R23 * T1)
Z = T1 - T23 * T2
T3 = T23 * Z + A2 * X2
T4 = AINT (R46 * T3)
X = T3 - T46 * T4
Y(I)= R46 * X
120 CONTINUE (11)

We believe the authors’ statement about the code in
(11). Today’s compilers are not able to vectorize this loop.
On the other hand, Equation (3) is vectorizable. The
Algorithm and Architecture approach to handling
Equation (3) would be to rewrite the code so that it
performs well when run on some actual machine, e.g.,
an RS/6000 RISC-type machine. In the present case we
would also need to unroll Equations (6), (7), and (8).
Please note that the code in (11) can be replaced by
the following code, in which TP52 = 2°*:

DO i =0, n-1

u=a % x(i) + TP52
v = u - TP52
x(1+1) = a * x(1) - v
ENDDO (12)

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

However, the above code will not execute in three
cycles because of pipeline delays. This code is also not
vectorizable by a compiler. In producing the code in (12),
we have used the extra accuracy feature of the fused
multiply-add instruction that is present on RS/6000 and
PowerPC machines. Also, the code in (12) is equivalent to
using Equation (9). A compiler cannot recognize this fact.
This is where we use the Architecture feature of our
approach. We now show how to “unroll” the code in
(12). In doing so, we vectorize the code in (12).

Leta, = @’ mod 2" for 1 = j = m. Note that, from (3),

— i
S, =as,; mod ¢q

= a5, mod g,
so that
as, mod ¢
Xy = T
=axmodl, 1=j=m. (13)

Thus, given x, and (13), we have defined the next m
iterations of (10). This unrolling of (10) by m constitutes
using a vector of length m to compute these next m
iterations of (10). In effect, RS/6000 machines can be
viewed as vector machines with a short vector length.
Because RS/6000 machines possess functional parallelism
(see [9]), RS/6000 machines have very low vector start-up
costs. This fact implies that using a short vector length is
not a performance drawback. However, to achieve this
vectorization it must be programmed. Now let m = 4.
Thus, the code in (12) becomes

DO i=0,n-4, 4
u=a * x(i) + TP52
u2 = a2 % x(i) + TP52
u3 = a3 % x(i) + TP52
ud = a4 * x(i) + TP52
v = u - TP52
v2 = u2 - TP52

v3 = u3 - TP52

vd = ud - TP52

x(1+1) = a * x(1) - v
x(i+2) = a2 * x(i) - v2
x(i+3) = a3 * x(i) - v3
x(i+4) = a4 * x(i) - v4

ENDDO

R. C. AGARWAL ET AL.
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The above code eliminates most of the pipeline delays.
Every target of an FMA in that code is separated by three
independent FMAs. However, the last FMA of the loop is
followed by the first FMA of the loop with i replaced by
i + 4; thus, there is no separation between the target
x(i + 4) and the target u. In order to eliminate all
pipeline delays, we need a more complicated “unrolling”
of the code in (12). Consider

xi = x(4)
x13 = x(3)
xi2 = x(2)
xil = x(1)

DOi=0,n-28, 8
ud = a4 * xi + TP52
u3 = a3 * xi + TP52
u2 = a2 * xi + TP52
u =a % xi + TP52
x(1+3) = x1i3
x(1+4) = x1i
vd = ud - TP52
v3 = u3 - TP52
v2 = u2 - TP52

v = u - TP52

xi0 = a4 * xi - v4
xi3 = a3 * xi - v3
x(1+1) = xil
x(1+2) = xi2

xi2 = a2 * xi - v2
xil = a * xi - v

ud = a4 * xi0 + TP52
u3 = a3 * xi0 + TP52
u2 = a2 * xi0 + TP52
u =a % xi0 + TP52
x(1+7) = x13

x(1i+8) = xi0

vd = ud - TP52

v3 u3 - TP52

v2 u2 - TP52

R. C. AGARWAL ET AL.

v = u - TP52

xi = a4 * xi0 - v4
xi3 = a3 * xi0 - v3
x(1+5) = xil
x(1+6) = xi2
xi2 = a2 % xi0 - v2

xil = a * xi0 - v
ENDDO (14)

The code in (14) eliminates all pipeline delays and
hence should execute at the rate of one pseudorandom
number every three multiply-adds. To start the pipeline,
we need to precompute outside of the loop the first four
pseudorandom numbers, x(i), i = 1, --- , 4. The code
in (14) is unrolled by 8.

Now we demonstrate another feature of the Algorithm
and Architecture approach. Suppose we decide to use (13)
to unroll by m = 8. We have seen that a compiler cannot
unroll the present loop (12). We were forced to program
the unrolling and to introduce the concept of a “vector
instruction” into RS/6000 coding. We now claim that
this necessity of having to program a “vector instruction”
gives rise to a feature of superscalar machines that vector
machines do not possess. This feature allows us to produce
“customized vector instructions.” We remark that this is a
part of the Algorithm and Architecture approach, and we
now illustrate this concept with the example of generating
uniform pseudorandom numbers in the range (—1, 1). A
standard implementation requires an extra operation to
convert the range from (0, 1) to (—1, 1).

Letcl = 2% and ¢2 = 27 — 1. Let 0 < s < 2" with
s odd and k = 46. Letx = 27"'s. Then 0 < x < 2. Let,
fori =1,

u = fl(ax +cl), (15)
v=u®Oc2, (16)
and

X = ﬂ(ajx - ), (17)

where 1 = j < 8. Forj = 8§ we let

u="fl(a,x +cl), (18)
v=uBcl, (19)
x =fl(a,x — v), (20)
and

X, =xOL (21)
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Equations (15) to (21) define a loop, unrolled by 8, in
which the next eight random iterates are computed and
also the “seed” x is updated in Equation (20).

The first seven iterations cost three multiply-adds, while
the last iteration costs four multiply—adds. The functional
parallelism of RS/6000 indicates that this loop will execute in

25 multiply—adds, or 25/8 = 3.125 multiply—adds per iteration.

We close Section 2 by demonstrating a use of the IEEE
“round-to-nearest” rounding mode. Let 0 < u, < 1 be the
x, computed by Equation (10). For each u,, let x, = 2u, — 1.
Then —1 <x, < 1. Letcl = 2% + 2" Let SEED be the
seed x,, for the u, computation given by Equation (10):

C use round-to-nearest mode

TWO #* SEED - ONE

x(0)
DOi=0,n-1

uc = a * x(1i) + cl

v = uc - cl

x(1+1) = a * x(1) - v
ENDDO
SEED = HALF * x(n) + HALF

We now prove the following.

Theorem 2

The above code produces results that are bit-wise identical
tox, = 2u, — 1, where u, is the x, given by (10).

Proof Letau, =1+ F,where 0 <F <1,sou, =F.
We want to show x,,, = 2F — 1. Letu = ax, + cl.
Since a is odd, @ = 2a, + 1 for some a, and
r=2(I—a,)+cl + 2F — 1. Note that —2° < ax, < 2,
so that 2 < u < 2% + 2", For IEEE numbers x with
exponent 53, namely those x that satisfy 2% = x = 2™ — 2,
x is an even integer. For round-to-nearest, the

computed value of u, namely uc, is the IEEE number
closest to u. We claim uc = ¢1 + 2(I — a,). Since uc is
an even number with exponent 53, it is an IEEE number.
Also,u —uc =2F —1lor —1<u —uc <1 as

0 < F < 1. Thus, uc is the closest IEEE number to u.
The fused multiply-add instruction computes v and x,,
exactly. Thus, v = 2(I — a,) and x,,, = 2F — 1.

3. Two full-period generators

We now specify a high-level description of the full-period
generators. Recall that the full-cycle generator is a linear
congruential generator of the form (5) with ¢ = 2*. We
follow the recommendation of Knuth (see [2, p. 171]) and
choose the value of ¢ to be 1 or a. These two choices of ¢
give rise to the two versions of our full-period generator.

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

These generators have implementations that are nearly
the same as the three-multiply-add generator given by
Equations (6), (7), and (8).

Let x be the current iterate, in which 0 < x < 1. Then the
following four multiply—add statements in (22) to (25)
below describe the full-period generator:

u=fl(ax + 2%, (22)
v=u62% (23)
w = fl(ax — v), (24)
x=wec. (25)

In (25), the last operation, x = w © ¢, computes the next
random number. In (25), ¢ = 27" when ¢ = 1, and

¢ = a2 " when ¢ = a. We first consider the case ¢ = 27",
We were not able to reduce the number of multiply—adds
to three as we did in Equations (15) to (21). We would
need to define ¢2 = 2°% + 27* and this value cannot be
represented in a double-precision word. In Equation (295),
note that w < 1. This fact follows from (9). Since ¢ is the
smallest random number, we are guaranteed that the new
x = 1. In fact, x will equal 1 only once in 2" iterations

of the generator. For k = 46, this is a very rare event.
Suppose x = 1. Then (22), (23), and (24) compute w = 0
because x is an integer. However, the new x = ¢, and we
reach the conclusion that the generator is self-correcting!
This feature is very important (see [3] for another
example), because it is not necessary to “check” x during
each iteration of the calculation. Suppose we chose

27% < ¢ < 1. Then, x in (25) could be greater than 1.

In that case we would have to test and possibly correct x
during every iteration:

IF (x .gt. 1) x =x - 1 (26)

A conditional statement of this sort, when present
in a pipelined inner loop, can significantly degrade
performance. Thus, the choice of ¢ = 27* is essential to
making the performance of the full-cycle generator fast.
To obtain a new random number every four multiply—
adds, it is necessary to unroll (22), (23), (24), and (25)
by at least a factor of 2. Our numerical experiments
on POWER?2 showed that unrolling by 8 was necessary.
The code for a linear congruential generator without
unrolling is

DO 1 =0, n-1

u =a * x(i) + TP52

v = u - TP52
w=a * x(i) - v
x(1+1) = w + C
ENDDO (27)
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Because of pipeline delays, this code will not execute
at the rate of one random number produced every four
multiply-adds. It turns out that unrolling via “program
vectorization” described in Section 2 does not work well.
To see this, note that

X =ax +c, (28)

where a, = a’ mod 2* and G=[0+a+ -+ a™
mod 2"]¢. The ¢;’s are now variable! We have previously
seen that the choice of ¢ = 27" was essential in order to
maintain good performance. Any other value of ¢ gave
rise to the use of conditional statements in the code, such
as the statement in (26). Thus, the type of unrolling that
comes from ordinary vectorization fails to provide peak
performance. However, another form of unrolling works.
In the present context, we call this “generalized
unrolling.”

Let N = 2n be an arbitrary even integer. Suppose
that we can compute a, and ¢, of Equation (28) in
log, (n) steps. Then we can unroll the code by 2 in
(27) as follows:

DO i =0, n-1
u =a * x(1i) + TP52
ul = a * x(1i+n) + TP52
v = u - TP52

vl = ul - TP52

w=a * x(1i) - v
wl = a % x(i+n) - vl
x(1+1) = w + C
x(n+i+l) = wl + ¢
ENDDO (29)

The code in (29) constitutes “generalized unrolling.”
We have divided the vector x(0:N — 1) into two vectors
x(0:n — 1) and y(0:n — 1) = x(n:N — 1) and worked
on them independently. This type of unrolling gives rise
to a form of single-instruction, multiple-data (SIMD)
parallelism on a single processor. In [9] we also exploit
this form of SIMD parallelism on POWER?2 machines.
The crucial point of the code in (29) for the present
application is that the two vectors x and y both use the
same C.

We show how to compute ¢, in log, (n) steps. First note
that

¢, mod 1 = (a’ mod 2°)(¢, mod 1) + ¢ mod 1 (30)

and
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a’" ' mod 2* = (¢’ mod 2%)(a’ mod 2% (31)

hold for all i and j. We construct a table = TBL(2, 0:46)
whose ith entries TBL(1:2, i) are a” and c,, for
0 =i = 46. Note that

TBL(1,i+ 1) = TBL(1, i) * TBL(1, i) mod 2%, (32)
TBL(2,i + 1) = [TBL(1,i) + 1]% TBL(2, i) mod 1, (33)

along with TBL(1, 0) = a and TBL(2, 0) = 27,
generates the table in 46 steps. We can now, given x,, and
the precomputed table, use Equations (28), (30), and (31)
to compute x, in log, () steps as follows:

t = x(0)
nd = n
1b =0

IF (n0 .gt. 2 * nn) THEN

u =t % TBL (1, 1b) + TP52

ENDIF
1b = 1b + 1
n0 = nn

IF (n0 .gt. 0) goto 1
x(n) = t (34)

We now consider the second generator; this generator
has ¢ = a2 *. Consider the following code, in which
TPMK = 2%

DO i =0, n-1
u = x(1) + TPMK
v = a % u + TP52
w = v - TP52
x(1i+1l) = a * u - w
ENDDO (35)

Here we have 0 = x, < 1. Whenx, = 1 — 27k
x,., = 0 asu = 1. Again, this generator is self-correcting.

The unrolled-by-2 version of (35) becomes
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DOi=0,n-1
u = x(1) + TPMK
ul = x(i+n) + TPMK
v = a * u + TP52
vl = a * ul + TP52
w = v - TP52
wl = vl - TP52
xX(i+1l) = a *u - w
x(n+ti+1l) = a * ul - wl

ENDDO (36)

Equations (30), (31), (32), and (34) remain unchanged.
Equation (33) is modified to

TBL(2,i + 1) =[TBL(1,i) +a]* TBL(2,i) mod 1. (37)

4. Parallel implementation for HPF

The IBM XL Fortran (XLF) [4] and XL High
Performance Fortran (HPF) [5] languages include a
RANDOM_NUMBER intrinsic function that implements
two multiplicative congruential generators. These
generators are also part of PESSL, the IBM Parallel
Engineering and Scientific Subroutine Library for AIX
[10]. Generator 1 is of type (2), with @ = 7°, k = 31, and
modulus ¢ = 2" — 1. Generator 2 is of type (3), with

a = 44485709 377909, k = 48, and modulus ¢ = 2",
The generator that is to be used is selected by setting the
generator argument of RANDOM_NUMBER to 1 or 2,
respectively. In this section, we discuss implementation
issues arising from the parallel directives in HPF for the
modulus 2% generator. The modulus 2" — 1 generator

is discussed in Section 5.

HPF parallel directives
The HPF statement

CALL RANDOM_NUMBER (A)

fills the scalar, vector, or array A with random numbers.
HPF provides directives (ALIGN, DISTRIBUTE,
BLOCK, CYCLIC, etc.) that allow the programmer

to specify what elements of A are to reside on what
processor. To achieve high performance, the parallel
algorithm works by computing on each processor only
those random numbers resident on that processor,
ultimately achieving linear speedups for large quantities
of random numbers.
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The N random numbers required on a particular
processor j € {0, ---, P — 1} are sub-sequences of
Xgs X;5 Xy, =+, X, from (3) of the form
(38)

Ko X Ko ™7 Xy vk

where k is called the stride of the sequence. If A is BLOCK-
distributed, k = 1 and I =jN,j=0,---,P - 1.If Ais
CYCLIC-distributed, k = P and i, = j,j = 0,---, P — L.
A contiguous sequence is one with stride k = 1, and one
with k > 1 is called strided. (There is also a BLOCK-
CYCLIC distribution and other variations which are not
discussed here for brevity, but which are handled by
applying techniques similar to those presented here.)

The rest of this section shows how it is possible
to compute (38) in O(N + log i) time, resulting in
asymptotically linear speedup. The algorithm used
depends on whether the required sequence is contiguous
or strided.

Contiguous random-number sequences
A contiguous random-number sequence has the form

X, X

i i+l’x X

T I R

Contiguous sequences are required in HPF on each
processor when the random numbers are written to a
BLOCK-distributed vector or array. Once the starting
number x, is known for a particular processor, the rest of
the sequence can be directly computed by the code (14).
The fast calculation of the starting numbers on each
processor is dealt with next.

Strided random-number sequences

If the CYCLIC distribution directive is used in HPF
with more than one processor, the sequence of random
numbers resident on each processor consists of strided
(k > 1) sub-sequences of the form (38). In addition,
for a BLOCK distribution, the starting values X,
j=20,---, P —11in (38) must be computed from
some available previous x,, for example, x,. Both of
these situations require the efficient computation of
multiple steps of the recurrence (13). That is, given

x, and n, we must compute x,, . The code in (14)

does this for several fixed n to achieve the unrolling.
However, since n is not known a priori in the current
context, we cannot simply precompute the value of

a,=a"mod g, (39)

and must therefore devise an efficient means to compute
it for general n.

We now show how to compute (13) in O(log,n) steps,
which is crucial to the asymptotically linear speedup of the
parallel algorithm. Binary algorithms for exponentiation
are described in [2], and one is used in Bailey’s random-
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number generator implementation [1]. We use a binary

exponentiation algorithm here, but achieve high

performance through the use of the FMA instruction.
Let the binary representation of n be

n=b,-b,b #0, k=Llognln+0.
Then
k

n=>2b

j=0

and
a,x,mod1=[(a % 2jbf’) mod ¢g] x, mod 1
[/ &
= H a” | mod g x, mod 1
he0
[«
= 1—[ (a” mod q) x, mod 1. (40)
o
The values T, = a” mod q,i=0,---,log,q — 1,

are precomputed and stored in a table, allowing the
computation of the product (40) in k =< log,n steps. The
product is accumulated in a loop, as in the following
pseudocode:

IF (b, # 0) THEN
c Compute ¢ = (T, mod 1.
u =+t % T(i) + TP52

v =u - TP52

t =t % T(i) - v
ENDIF
ENDDO
X(i+n) = t (41)

5. A modulus 2°' — 1 generator

We now consider efficient implementation of the
generator of type (2) used in RANDOM_NUMBER. This
is an extension of the work in the previous section, but is
significantly more complicated since the modulus is no
longer a power of 2. For the modulus 2*' — 1 generator,
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high performance is achieved by scaling the integer
recurrence by 2", finding a fast implementation of the
scaled recurrence, and finally transforming the resulting
numbers to the range (0, 1). Both the mathematical issues
and the implementation issues arising from the parallel
directives in HPF are discussed next.

Generator recurrence

The random-number sequence

x,€(0,1),i=0,1,--- (42)
produced by the generator is defined by the recurrence
s.,, =as,mod q, (43)

S,
_ 1+1, (44)
q

xi+l
where s is an integer, 0 <5, < ¢, and
a=7 =16807,

g=2"-1.

It has a period of ¢ — 1.

This value of ¢ is well suited to an implementation on a
machine with 32-bit floating-point arithmetic, such as the
IBM S/360 [3]. Although the target architecture of XLF
and XLHPF is the IBM RS/6000, which uses IEEE
floating-point, this generator has been provided for
compatibility with existing applications. The mathematical
properties of this generator are discussed in [3].

As for the modulus 2* generator, the algorithm used
depends on whether the required sequence is contiguous
or strided.

Contiguous random-number sequences
Before discussing the main contribution of this section,
parallel algorithms for strided random-number sequences,
it is useful to describe the sequential algorithms (due to
G. Slishman*) on which they are based. Although the
ideas here are based on earlier sections of this paper, the
implementation for this generator is more involved, since
q is not a power of 2.

RANDOM_NUMBER uses a sequential implementation
of (43) and (44) to produce contiguous random-number
sequences of the form

X, X X X

P T2 > VitN-17

when the starting number x; is known. These sequences
are also required by HPF when the random numbers
are written to a BLOCK-distributed vector or array.

It is convenient for computational purposes to rewrite
(43) and (44) in terms of the value

4 Gordon Slishman, private communication, IBM Toronto Laboratory, January
1994.
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y, = 2%, (45)

so that

y[+1

31

ayl.ZJ =31
ay. — (1-277)
|

=ay,— Layisj(l —27, (46)

where

1-27"
=1+27"+2%+27 4.0, (47)

We now use Lemmas 1, 2, and 6 in the Appendix to
transform (46) into an expression (51) that can be
efficiently computed with FMAs. Let

s=1+27",

which is exactly representable as a double-precision IEEE
floating-point number. By Lemma 2, we can use § in
place of s in (48), giving (49). By Lemma 1, we compute
Lay;s], giving (50). [Since ay,5 = 7°27%'s,(1 + 27°') where
s, <2 = 1, ap,5 < 2", satisfying the condition of the
lemma.] By Lemma 6, we rearrange the terms in the form
of three FMAs (51):

Vi =@~ Layisj(l -2 (48)
=ay, —laysla1-27" (49)
=ay, — (y5®27627)(1-27) (50)

=fl[ay, — (ay,5®27%) (1 —27") =271 -27]. (51)

The random number x,_, is recovered via (44) and (45) as

1

31
27
Xip1 = 23l _ 1
= Vi
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The floating-point values y,,, and X, ,, corresponding
respectively to y,,, and x,,,, are computed in
RANDOM_NUMBER by the sequence of instructions

Yo =Y

and

u="A(ya+2%, (52)
v =fl(uk, — k), (53)
Vi = fl(Fa =), (54)
X.,=3., ®F, (55)
where

a=as,

k=1-27"

and

k,=27-2%

are exactly representable in IEEE double precision.
The program (52)-(55) computes u = L)’/lﬁj + 2%, vis
computed exactly, and it follows thaty,,, =y, and
%., = fi(x,,). (A detailed proof is given by Lemma 7
in the Appendix.)

Although an RS/6000 POWER machine is capable of
computing one FMA per clock cycle, the code in (52)—(55)
will not execute in four cycles because of pipeline delays.
The reason for this is that the result of each FMA is not
available for 2-3 cycles, although another independent
FMA can be started immediately. Pipeline delays can be
eliminated by loop unrolling [as explained in Section 2 for
the modulus 2" generator (12)], if a means of efficiently
computing y,, , given y,, is available. Using (43), (44), and
(45), and proceeding as in the derivation of (49), we have

s,,,=a"s, mod g

=a,s, modq,
Vi, =a,y,—Llaysld-27", (56)
where

_ n
a,=a"modgq.

This is computed by the following sequence of
instructions:

Vo=

and

u=y®a, (57)
v="1(y.a,+u), (58)
w=0v®2% (59)
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x=wO2% (60)

y =1l(y,a, —x), (61)
oy =12 x +y), (62)
Xy =5.,95, (63)
where

a=2"%,. (64)

The program (57)-(63) computes x = LanyiEJ, y is
computed exactly, and it follows that y,,, =y, , and
¥., = fi(x.,). (A detailed proof is given by Lemma 8
in the Appendix.)

Unlike the modulus 2* generator, the modulus 2 -1
generator requires more instructions to compute a strided
random-number sequence than a contiguous one. An
unrolled loop based on (57)-(63) takes seven (instead of
four) cycles per number on an RS/6000 POWER machine.
Therefore, the direct unrolling used for the 2* generator
in (14) does not achieve maximum performance for the
2" —1 generator.

Instead, the sequential implementation of the 2*' — 1
generator in RANDOM_NUMBER produces contiguous
random-number sequences by using two nested unrolled
loops based on (57)—(63) and (52)—(55), analogous to the
generalized unrolling in Section 3. For a fixed, preselected
batch size m = 32, precomputed values of am = a,,
a2m = a, ,a3m = a, , and abar = g, ambar = a_,
a2mbar = a, , admbar = a, are kept. Given an initial
seed yi = y,, the following code (65) then computes
random numbers x(0), - - -, x(N) in batches of size 4m.
(We assume that N is a multiple of 4m for simplicity.)

It takes 18 + 16m cycles per 4m random numbers,
for an average of 4.14 cycles per number.

This approach is also adopted in the following XLHPF
1.2 parallel algorithm for generating contiguous random-
number sequences, which are required when the
RANDOM_NUMBER argument vector or array is
BLOCK-distributed:

DO i =0, N-4 *%m, 4 *m
C (57)-(63) unrolled by 3
ul = yi * ambar
u2 = yi * a2mbar
u3 = yi * a3mbar
vl = yi *% am + ul
v2 = yi * a2m + u2
v3 = yi * a3m + u3

wl = vl + TP52
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w2 = v2
w3 = v3
x1l = wl
X2 = w2
x3 = w3
vl = vyi
v2 = vyi
yv3 = vyi
yipm =
vip2m =
yvip3m =

DO j =

(52) -

u =

ul =
uz2 =
u3 =
v =
vl =
v2 =
v3 =
vi =

yipm

+ TP52

+ TP52

- TP52

- TP52

- TP52

# am — x1

* a2m - x2

* ad3m - x3

TPM31 * x1 + vyl

TPM31 * x2 + y2

TPM31 * x3 + y3

1, m

(55) unrolled by 4

vi * abar + TP52

yipm * abar + TP52
yip2m * abar + TP52

yip3m % abar + TP52

u * kl - k2

ul * k1 - k2
u2 * k1l - k2
u3d * k1 - k2
yi * a - v

= yipm * a — vl

yjp2m = yip2m * a - v2

vip3m = yip3m * a - v3

x(i+j) = yj * sbar
X (i+m+j) = yjpm * sbar
x(1i+2 * m+3j) = yjp2m * sbar
x(1i+3 * m+3j) = yjp3m * sbar
END DO
vi = yjp3m

END DO

(65)
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Strided random-number sequences

If the CYCLIC distribution directive is used in HPF
with more than one processor, the sequence of random
numbers resident on each processor consists of strided
(k > 1) sub-sequences of the form (38). In addition,

for a BLOCK distribution, the starting values X
j=20,---,P —1,in (38) must be computed from some
available previous x;, for example x,. Both of these
situations require the efficient computation of multiple
steps of the recurrence (43), (44). That is, given y, and n
in (56), we must compute y,, . This is performed by the
code in (57)—(63). However, since n is not known a priori,
we cannot simply precompute the value of

_ n
a,=a" modgq,

and must therefore devise an efficient means to compute
it for general n.

We now consider how to compute a, in O(log,n) steps,
which is crucial to the asymptotically linear speedup of the
parallel algorithm. The outline of the approach is similar
to (41), but it is complicated by the need to compute the
product modulo ¢ instead of 1:

a =1
DO i =0, k
IF (b, # 0) THEN
a,=a T modgq
ENDIF
ENDDO (66)

A means for efficiently computing the modulus
operation in (66) using IEEE double-precision arithmetic
and the RS/6000 FMA instruction is a main contribution
of this section, and is derived next.

Computing products modulo q

We now consider how to efficiently compute modular
products of the form (66). (This is a more detailed
description of results that were briefly outlined in [11].)
Let

d = bc mod ¢,

where b and c¢ are integers representable in IEEE double
precision (IEEE integers, for short), with 0 < b < ¢ and
0 < ¢ < g, where b and c are powers of a, modulo gq.
[In particular, the values b = a, and ¢ = T(i) from

(66) satisfy these conditions.] Then

be
d=bc— {*J q.
q

By (47),
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1
r 277, (67)
so that

d =bc —Lbc27s]2% - 1).

By Lemma 3 in the Appendix, it follows that the infinite
series s can be replaced by its first two terms; that is,

d=bc—Lbc275]2" - 1). (68)

[In Lemma 3 we use m = be < ¢° < 2% and the
condition that ¢ + m is satisfied, since ¢ + b and q + ¢
(b < g and ¢ < g) and q is prime.]

We now show how (68) can be computed.

Theorem 3

Let b and c be integers representable in IEEE double
precision (IEEE integers), with 0 < b < 2" — 1 and
0<c<2"-1 Let

d = bc mod 2*' - 1),

and compute as follows using IEEE double-precision
arithmetic with the round-to-zero rounding mode:

u=02 " ®c, (69)
v=1[Q27"b)c + u], (70)
w=0®2% (71)
x=wo2%, (72)
y=2"®ux, (73)
z = fl(bc —y), (74)
d=zDx. (75)
Then d = d.

Proof  (See Appendix.)

In RANDOM_NUMBER, strided random-number
sequences are computed by an unrolled loop based on
(57)-(63), similar to (76) below. Given a stride k, ai = a
i=1,---,4, are first computed by (66) and (69)—(75).

ki’

Let aibar = a,, i = 1,---, 4. Starting with y1 = y,_.,
y2 =Y., ¥3 =y,_,,yi =y, the unrolled loop (76) computes
strided random numbers X(i) = x,;, i = 1,- -+, N. It takes

seven cycles per random number.
DO i =0, N-4, 4

ud adbar

Il

S
-
*

u3 = yi * a3bar

u2 a2bar

I

<
.
*

« albar 109

I

9
-

*

ul
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X(i+1) = yl * sbar
vd = yi % ad + ud

v3 a3 + u3

Il

<
B-
*

v2 a2 + u2

]

L9
-
*

X(i+2) = y2 * sbar

+ TP52

B
=
Il
<
=

w3 = v3 + TP52

w2 = v2 + TP52

wl = vl + TP52
X(i+3) = y3 #* sbar
x4 = wd - TP52

x2 = w2 - TP52

x3 = w3 - TP52

xl = wl - TP52
X(i+4) = yi = sbar
z4d = yi * ad - x4

z3 = yi * a3 - x3

z2 = yi * a2 - x2

zl = yi % al - x1

yi = TPM31 * x4 + z4
yv3 = TPM31 % x3 + z3
y2 = TPM31 * x2 + z2
vyl = TPM31 * x1 + zl

END DO (76)

6. POWER2 timing results

We now give timings for the generators described in
Sections 2 and 3. We have confined our timing studies to
the RS/6000 POWER?2 Model 590. POWER?2 is capable of
producing two FMAs every cycle, with a pipeline delay of
two or three cycles [8, 9]. The POWER2 Model 590 has
a clock cycle of 15 ns. The code in Equation (14) gives a
pipeline delay of two cycles. To be safe we have doubled
the unrolling from 8 to 16 in the actual code used for the
timing below. (There are enough floating-point registers
on the POWER?2 to allow one to double the unrolling
factor without negative impact. Running at the lesser
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unrolling, however, did not affect performance in any
measurable way.) Since each uniform random number in
the range (0, 1) costs three FMAs, the peak possible rate
of random-number generation is 44.44 million per second.
We measured performance of the (0, 1) generator for
batches of double-word random numbers of size n = 2/,
where i = 12 to 21. The size of the 590 cache is 2"
doublewords, and the size of its TLB is 2'® doublewords.
All timing measurements were done using the XLF RTC
(real-time clock) utility, and represent actual elapsed
“wall-clock” time, including system time, etc. For i
between 14 and 21, the performance was essentially
constant. It varied between 42.90 and 43.50 million
random numbers per second. For i = 12 and 13, the
values were 39.33 and 41.79. This dropoff is due to a fixed
setup cost for the generator. The setup cost consists of
saving and restoring the user rounding mode, setting the
rounding mode to chop, initializing the unrolled loop so
that stores to memory are optimal, and the completion of
the loop modulo the unrolled count. Without the setup
cost, we measured a rate of 42.33 million random numbers
per second for i = 12. For large n this cost becomes
negligible. The (0, 1) generator runs at 98% of the peak
obtainable rate. The result was independent of a and k.
We tested two generators where a = 5" and k = 46,
and a = 44 485709377909 and k = 48.

The generic generator of Bailey et al. [1] ran at the rate
of 810 000 pseudorandom numbers for the data in cache
and 803 000 for data not in cache. Thus, the new
generator is 53 times faster than the generic generator
for both data in cache and data not in cache.

We tested two versions of the (—1, 1) generator. For
one of these, the number of cycles for 16 random numbers
was 25. This is the 3.125-FMA generator, in which
rounding is toward zero. The second one produced 16
random numbers in 24 cycles. This is the three-FMA
generator, where rounding is to nearest. The results for
the round-to-nearest (—1, 1) generator were identical to
the results for the (0, 1) generator. Returning to the
3.125-FMA (-1, 1) generator, for i = 14 to 21 the
performance was essentially constant; it varied between
41.15 and 40.52 million random numbers per second. The
peak obtainable rate is 24/25 of 44.44 = 42.67 million
random numbers per second. The measured results were
at 96.4% of the peak obtainable rate. For i = 12 and 13,
the rates were 37.53 and 39.91 million random numbers
per second. Here again we see the effect of the fixed setup
cost. In summary, for large enough batches of numbers
the multiplicative random-number generators deliver more
than 40 million random numbers per second regardless of
whether the batch size fits in cache.

Now we discuss the four-FMA linear congruential
generator. Here we chose batches of size 2’ for i = 12,
13, 14, and 15. For i = 12, 13, and 14, we generated
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27.62, 29.35, and 30.14 million random numbers per
second. The peak possible rate is 33.33 million per second.
Thus, our measured rate is about 90% of the peak
obtainable. The smaller value for i = 12 was due to the
fixed setup cost for this generator. For i = 15, the result
was 26.40 million random numbers per second. For larger
values of 7, this rate per second dropped off very sharply
because of cache and TLB thrashing. To alleviate this
problem, we set n = 2 — 544 % 8. The number 544 is the
sum of a page plus a line in doublewords. The factor of 8
was obtained by dividing n by 8 to set up eight different
store queues. However, almost any other value of n would
have worked equally well. We tried new batches of size n,
where i = 15 to 21. The rates were 30.32, 29.76, 29.91,
29.76, 29.76, 29.75, and 29.76 million random numbers per
second. In summary, the four-FMA generator delivers
about 30 million pseudorandom numbers per second

both for data in cache and data out of cache.

7. Conclusions
In this paper, we have given several illustrations of a
general technique called the Algorithm and Architecture
approach [11]. We have used algorithmic innovation and
the FMA instruction in the design of several uniformly
distributed pseudorandom-number generators for the
intervals (0, 1) and (=1, 1).

We have implemented multiplicative congruential
pseudorandom-number generators, for the ranges (0, 1)
and (=1, 1), of the form

_ k
s,,, = as,mod 2%,

or 27l

_ Ak
X, =2"s 1

i+1

-1, (77)

i+1

which have a period of 2*">. We have shown that the
theoretical cost per random number for the two ranges
is respectively 3 and 3.125 multiply-adds on RS/6000
processors. Our codes, on the IBM POWER?2 Model 590,
run at 98% and 96.4% of the peak obtainable rate,
respectively, and produce more than 40 million uniformly
distributed pseudorandom numbers per second for both
ranges. Additionally, our code sustains the 40 million per
second rate for data out of cache. Our code is about 50
times faster than the generic implementation with k = 46
given in the NAS parallel benchmarks [1], while producing
bit-wise identical results.

We also implemented a linear congruential generator
of the form

— k
5., = (as,+ ¢) mod 27,

=2"% (78)

i+1?

which has the full period of 2. We have shown that the
theoretical cost per random number [in the range (0, 1)]
for this generator is four multiply-adds on RS/6000
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processors. Our code, on the IBM POWER2 Model 590,
runs at about 90% of the peak obtainable rate and
produces more than 30 million uniformly distributed
pseudorandom numbers per second.

Finally, we implemented a multiplicative-congruential
generator for the interval (0, 1) of the form

s,., = as, mod 2F-1),

X, = , (79)

for which the modulus is not a power of 2. Generators of
type (77) and (79), for the interval (0, 1), are available
in the RANDOM_NUMBER intrinsic function of IBM
XL Fortran [4] and XL High Performance Fortran [5].

All of the generators reported here are “embarrassingly
parallel.” Using an IBM SP2 machine with 250 POWER2
wide nodes, it is possible to compute more than ten billion
uniform random numbers in a second.

8. Appendix
This section contains detailed proofs for the lemmas used
in the paper.

We first prove a result that allows the floor operation
to be computed quickly using IEEE arithmetic.

Lemma 1
Let v be representable in IEEE double precision, with
0 < v < 2°%. Then, with the round-to-zero rounding mode,

v® 2% =|v]+27
and

(1®2%) 02" =0l

Proof  The lemma is trivially true for v = 0. Therefore,
assume that » > 0. Since v is IEEE, it can be written in
binary as

v=>b,.b b, X2°b =1,
where e < 52 since v < 2°2. Then,

by b, e=0,
L”J‘{o e <0.

Clearly L v] is an IEEE number.

Suppose first that e = 0. Then v ® 2° performs the
following addition, the result of which is truncated to 53
bits. The number of zeros inserted for the normalization
of visk =52 — e, and k = 1 since e < 52:

v =0.0---0 by---b, b, b, x 2%
2% =1 . x 2%,
v®2% =1 .0---0 b,---b, x 2%, 111
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If e <0, then k > 52 and (v ® 2%) = 2%
Thus,

0@ 2% =Lo]+ 2%,
and this establishes the first part of Lemma 1. Now
(v®2%)©2% =4,

because the operands and result are IEEE numbers. [l

Corollary 1

Let x and y be IEEE double-precision numbers satisfying
0 =xy < 2% Then fi(xy + 2%) = Lxy] + 2% and
fi(xy + 2%) © 2% = Lyyl.

Proof ~ Use Lemma 1, except that v @ 2°* in the lemma
is replaced by fi(xy + 2%), and also

Xy =0.0---0 by---b, b, b, x 2"
2% =1. x 2%
fi(xy +2%)=1.0---0 b, ---b, x 2%,
Therefore fi(xy + 2°%) = Lxy] + 2%, and the result
follows. U
Lemma 2

Leta =T, y, = 2731s‘., where s, is an integer with
0<s,<g=2"—-1lands=1+27",
s=1+2"+2% +... Then Lay,.sJ = LayiEJ.

Proof  Letm = 231ay,.. Then Lemma 3 gives the
required result, provided we can show that m satisfies
the conditions of Lemma 3.

First, we show that m is an integer,

m = 2%y, = 27727, = 7%, (80)

which is an integer because s, is.
Second, we show that 0 < m < 2%. From (80), m > 0
since s, is. Also from (80), m < 7°2% < 8°2% = 2% < 2%
Third, we show that ¢ + m. Since q is prime, if g|m,
then gla or gls,. But ¢ > a and ¢ > s; thus, ¢ + m. O

Lemma 3
Letm € Z,0 <m < 2% (2" — 1) ¥ m. Then

L27m+2%m]=27"m + 2 %m +2"m +2"m
.
Proof  Let the binary representation of m be

m=b>bb, -

172

)

627

where each b, is either 0 or 1. Then,
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62 °
Let

-31 —62

and
hy=2 Bm,

hy=2"m+2"%m,

h=>2""m, =34,
j=3

h=>2"m
j=3

= lim h,.
o (81)

We must show that g + 4] = Lgl. Suppose, to get a
contradiction, that Lg + 2] # LgJ). Then adding h to g
must cause the integer part of g to change. Since the 2™
to 27" bits of 4 are all zero, this means that either

(A) A carry-out must occur from the 2% bit of ¢ + h, and
this carry must be propagated into the integer part;

or

(B) No carry is propagated into the integer part, but all of
the (infinite number of) bits in the fractional part of
g + h are 1, so that

g+h=12""ml+.11---=27"ml+1€2 (82)
However, (B) is impossible, since by (47),

m
g+h= U
so (2" = 1) ¥ m implies g + h ¢ Z, contradicting (82).
Thus (A) holds. But also,

g+th= E 27 %m,
j=1

and is not an integer. Therefore, for J sufficiently large,
lg+h)=lg+hl.

Consider the 27 bit of g + /. If b, + b, = 0 or 10,
an incoming carry would change the bit to 1 and no
further carry would be propagated. Therefore, by (A),
by, + b, = 1. Repeating this argument with the
higher-order bits shows that
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b.., +b=1, i=1,---,31 (83)

i+31 i

Now consider the two lowest-order terms in /,, those
corresponding toj =J — 1 andj = J in (81):

=31(J-1) —

2 m=.0---0 bl‘”bn b32' .b62’

2—31]m =.0---0 0---0 b1"'b31 bgz 'boz'
31

There is no carry-out from b, - -+ b, in 27" "m, since the
corresponding bits in 27" Ym are zero. Therefore, there
is no carry-in to the next higher-order 31 bits of the

sum, which are therefore all 1 by (83), with no carry-out.
Repeating this argument with each higher-order block of
31 bits shows that there is no carry-out from the 27 bit
of g + h, contradicting (A). Therefore, Lg + h] = Lg). O

Lemma 4

Compute v as in (69) and (70). Then

Lol =Lbec27" +27%) 1.

Proof  Since b, ¢ € Z with 0 < b < 2*' — 1 and

0 <c <2~ 1implies bc € Z with 0 < bc < 2%,
we can write bc in binary as

be=bb, by, X2,

where 1 = ¢ = 62 and b, # 0. Then 27%be + 27%bc is
the result of the following addition:

27e = bbby by, X 2%,

2"%c = cby by by by X 207

27 +2 % = Cp € Gy Gyttt Gy by by X 2%
(84)

Since e — 62 = 0,

[27%c + 2 %bcl =Le, - - ey x 2%, (85)

Now

u=2""®c= bbby, byx27% (86)

since b, # 0 and b,, - - - b, are truncated. The FMA in
(70) computes

v="102bc +u).

When we replace 2~ "bc in (84) with u from (86), the sum
in (84) becomes

v=2cC, "

e—62
0 Cy - C by X277,

3167

so that
Lol =Le, - e, x 2]
=12""c + 27%bc]
by (85) as required. O
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Lemma 5
Compute y as in (69)—(73). Then bc — y is an IEEE
integer.

Proof By (91),

be—y=bc—2"[bc2 " +2 " ]ez,

and so will be IEEE if [bc — y| < 2%. For all x € R,
x — 1 < Llx] = x; thus,

b7 +27) —1<be@7 + 27 = b7 +27%),

be — 2% + 27 = bc — 2% be27 +27%) ]
<bc—2""be2 +27% 1],

=27%c=bc —y<-2"bc + 27"

However, 0 < be < 2%, so

2N <be—y< 27"+ 2" <2,

hence, |bc — y| < 27 O

Lemma 6
Let 0 < u < 2% be an IEEE number. Then,

Wd2702)1 -2 =f[u®d2H(1 -2
=21 -2""). (87)

Proof By Lemma 1, u © 2°2 = lu] + 2°% Thus, the
right side of (87) equals

f[lul + 2 -2 - 271 - 270 = f[lul(1 - 27)]

= fiflul — 27" [ul].

Since 0 = u < 2%, Lu] is an integer with at most 22 bits.
Therefore, Lul — 273'Lu] has at most 22 + 31 = 53 bits,
making it exactly representable. The right side of (87) thus
becomes LuJ(1 — 27°"), which equals the left side by
Lemma 1. O

Lemma 7

(52)=(55) result iny,., =y, and %, = fl(x,, ).

Proof By definition, y, = y,. Applying induction on

i, assume y, =y, to show 3., =y, . By Corollary 1,

u = Lyiﬁj + 2%, We first show that (53) is exact.
ya=2"as <272 - 1281 + 27 < 2",

so that u = I + 2%, where I is an integer less than 2.
Thus, v = (I + 27)(1 — 27" =27 + 2" =1 -27"'L
This is an IEEE number, since [ is an integer with at most
15 bits, and so v has at most 15 + 31 = 46 < 53 bits.

Therefore, (53) exactly computes
v=u(l -2 - (2% -2%).

Since v is exact, (54) computes §,,, =y
(51), provided y,, , is IEEE. Buty -

.., exactly by
=27, by (45), 113

it+1 it+1
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where s, is an integer less than 2" — 1, 50 Y., 1s an
IEEE number.

Finally, to show that (55) computes ¥,,, = fi(x,,,), we
must establish that

fi(y..s) = fl(y, 5. (88)

. . . 3] .
Since s,,, is an integer less than 2° — 1, we can write

$,,, = b, -+ b, in binary. Thus,

Vit = . b, by,

2*31),”1: L0 -0 by,

YoS = .b by b by,

VS = .b by b by b by

Let i be the index of the first nonzero bit of y, . The 53
bits of the mantissa of fl(y,, s) begin at b, in the first
group of 31 bits of y,_s. If i = 10, they end with b, _, in
the second group of 31 bits, in which case (88) holds. If
i > 10, they end with b,_,, in the third group of 31 bits.
For (88) to hold in this case, we need the bits of the
mantissa coming from the third group to be zero, that is,

b, =--- =b,_, = 0. But since b, is the first nonzero bit,
b, =---=b,_ =0, and the result follows. O
Lemma 8

(57)-(63) result iny,., =y, and %, = fl(x,, ).

Proof By definition, y, = y,. Applying induction on i,
assume y, =y, to show y,,, =y, . We first show that
x=lol = |_yian§J. LetI = s,a,. Then I is an integer
satisfying I < (2*' = 1)(2"' = 1) < 2%, so we can
write [ in binary as I = b, -+ - b,, and y,a, = 27
Nowyas =ya, +ya,u=y ®a,v="1(ya, +u),

n’

and
Y4, = b, by . by by,
31
2 7ya,= < by by by, by

For L v] to be exact, it is only necessary for the first 31 bits
of u to be correct, since the less significant bits align with
zeros in y,.a, and so cannot affect the integer part of the
result. But at least the first 53 bits of u are correct; thus,
Lol = Lyianﬂ. By Lemma 1, then, x = [v/.

Next, we show that y is exact. This follows if y.a, — LyianEJ
is an IEEE number. lya 5] = lya, + 27"ya 1 =lya, ]
orlya,] + 1, since the bits of 27"'y.a, do not overlap
with the integer part of y,a . Thusy.a, — Lyianij is
either b, - - - b, or one less than this value, both of which
contain at most 31 bits, and thus are IEEE numbers.

Finally,

Foy =127 +y)

i+1

=1fl[2 731|_yianﬂ +ya — Lyianﬂ]

i'n
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=fl[ya, - lyasl1-27"]
= fi[y,a, - Ly,a,s)(1 —27")] by Lemma 2
= ﬂ(yi+n) by (56)

T Vien>
since y,,, = 27313,4,. by (45), where s, is an integer
less than 2*' — 1, so .., is an IEEE number.
It follows that X, = fl(x,,, ), by an argument similar to
that used in Lemma 7 to show that X, = fl(x ). U

Theorem 3

Let b and c be integers representable in IEEE double
precision (IEEE integers), with 0 < b < 2" — 1 and
0<c<2" -1 Let

d =bcmod (2% - 1),
and compute as in (69)—(75), using IEEE double-precision
clrithmetic with the round-to-zero rounding mode. Then
d=d.
Proof  From (68),
d=bc—Lbc2 (1 +27h]2" - 1)

=be—2"bc@2 "+ 27 +be + 27 ). (89)
We now make use of Lemmas 4 and 5. By Lemma 4,
Lol =Lbe(2 7 +27%) 1.
Since be < 2%,
Lol=[2%27" +27%)]

=27 +1,

so v satisfies the condition of Lemma 1. By Lemma 1,
x=Lul (90)

Then, since the multiplication in (73) by a power of 2 is
exact,

y= 2%
=22 +27%) 1. (91)

The FMA in (74) is exact when its result is an IEEE
integer. By Lemma 5, bc — y is an IEEE integer; thus,
z = bc — y. From (89), (90), and (91),

d=bc—y+x
=z +x.

Since z + x = d = bc mod ¢ is an IEEE integer,
it follows that z + x =z ® x = d. [l

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation,
Apple Computer, Inc., or MIPS Technologies, Inc.
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