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Fast
pseudorandom-
number generators
with modulus
2k or 2k�1
using fused
multiply–add

Many numerically intensive computations done
in a scientific computing environment require
uniformly distributed pseudorandom
numbers in the range (0, 1) and (�1, 1). For
multiplicative congruential generators with
modulus 2 , k < 52, and period 2 k�2, we show
that the cost per random number for these two
distributions is 3 and 3.125 multiply–adds on
RS/6000® processors. Our code, on the IBM
POWER2 Model 590, produces more than 40
million uniformly distributed pseudorandom
numbers per second for both ranges (0, 1) and
(�1, 1). Additionally, our code sustains the 40
million per second rate for data out of cache.
The Numerical Aerodynamic Simulation (NAS)
parallel benchmarks use a linear congruential

about 50 times faster than the generic
implementation given in the benchmarks. The
extra-accuracy fused multiply–add instruction
of RS/6000 machines combined with a few

algorithmic innovations gives rise to the
50-fold increase. If IEEE 64-bit arithmetic
is used with our Fortran code on POWER
and PowerPC® architectures, the results
we obtain are bit-wise identical to the
generic algorithms. The paper gives several
illustrations of a general technique called
the Algorithm and Architecture approach.
We demonstrate herein that programmer-
controlled unrolling of loops is equivalent to
“customized vectorization of RISC-type code.”
Customized vectorization is more powerful
than ordinary vectorization, and it is only
possible on RISC-type machines. We illustrate
its use to show that RS/6000 processors can
compute the distribution (�1, 1) at the rate of
3.125 multiply–adds. We also specify a linear
congruential generator that is related to the
multiplicative congruential generator referred
to above. It has a full period of 2k, where 2k is
the modulus. The cost per random number
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[in the range (0, 1)] for this generator is four
multiply–adds on RS/6000 processors. Our
code, on the IBM POWER2 Model 590, for
this generator produces more than 30 million
uniformly distributed pseudorandom numbers
per second for the range (0, 1). We show that
this generator is “embarrassingly parallel,” or
EP. Using the Algorithm and Architecture
approach, we describe a new concept called
“generalized unrolling.” Finally, we present a
multiplicative congruential generator for which
the modulus is not a power of 2. Such a
generator, as well as one with modulus 2k,
is selectable as the generator used in the
RANDOM NUMBER intrinsic function of IBM
XL Fortran and XL High Performance Fortran.
All of the generators reported here are EP.
Using an IBM SP2 machine with 250 wide
nodes, it is possible to compute more than ten
billion uniform random numbers in a second.

1. Introduction
The extra-accurate fused multiply–add (FMA) operation
of the RS/6000* and PowerPC* family of RISC
microprocessors offers many opportunities to use
mathematical innovation to produce fast algorithms for
numerically intensive computation (NIC). In this paper we
illustrate this assertion by giving several examples and by
demonstrating a 50-fold increase in performance (over
generic algorithms [1]) for pseudorandom-number
generation. The results obtained are bit-wise identical
to the results of the generic algorithms.

For multiplicative congruential generators [2] of the
type

si�1 � asi mod 2 k,

xi�1 � 2 �ksi�1 or 2 �k�1si�1 � 1, (1)

with k � 52, we show that the cost per random number
for the two distribution intervals (0, 1) and (�1, 1) is
respectively 3 and 3.125 multiply–adds on RS/6000
processors.

We also specify a linear congruential generator of the
form

si�1 � �asi � c� mod 2 k,

xi�1 � 2 �ksi�1 ,

related to the generator in [2], which has a full period of
2 k . The cost per random number [in the range (0, 1)]
for this generator is four multiply–adds on RS/6000
processors.

Finally, we present a multiplicative congruential
generator for the interval (0, 1) of the form

si�1 � asi mod �2 k
� 1�,

xi�1 �
si�1

2 k
� 1

, (2)

(discussed in [3]), for which the modulus is not a power
of 2. Such a generator, as well as a generator of
type (1), is selectable as the generator used in the
RANDOM NUMBER intrinsic function of IBM XL
Fortran (XLF) [4] and XL High Performance Fortran
(XLHPF) [5]. [By “a generator of type (n),” or “generator
(n),” we mean a generator whose description is given by
equation(s) (n).]

We first introduce some notation. We use q to represent
the modulus, either 2 k or 2 k � 1, depending on the
generator. Arithmetic operators in equations are exact.
Operands are IEEE normalized numbers. We use the
operators Q, C, R, A for IEEE double-precision (64-bit)
floating-point arithmetic, and fl( x) for the correctly
rounded double-precision value corresponding to x. In
most cases, x � ab � c, where a, b, and c are IEEE
numbers. Unless otherwise stated, the rounding mode
we use is round-to-zero (chop). This leads to the best
performance.

Let a, b, and c be arbitrary IEEE 64-bit floating-point
numbers. The fused multiply–add operation on RS/6000 and
PowerPC computes the correctly rounded d � fl(ab � c)
for any of the four IEEE rounding modes. On RS/6000
machines, all 106 bits of the product a � b are added
to c in order to guarantee that d will be correctly
rounded for all possible values of a, b, and c. POWER
and POWER2 RS/6000 machines can on a continuous
basis compute one and two FMAs every machine cycle if
the results of the FMAs do not cause any pipeline delays.
The pipeline delay for these machines is two or three
cycles. Loop unrolling can be used to avoid any pipeline
delays for the pseudorandom-number calculation.

We first consider a multiplicative congruential
pseudorandom-number generator for which the modulus
is a power of 2. See Knuth [2] for a thorough discussion
of pseudorandom-number generators. Let 0 � s0 � 2 k ,
s0 odd, 1 � a � 2 k , k � 52, and for i � 0, let

si�1 � asi mod 2 k,

xi�1 � 2 �ksi�1 . (3)

For k � 46 and a � 513 we have a specific instance of
such a generator. This generator has period 2 k�2 , and
it is extensively used by the Numerical Aerodynamic
Simulation (NAS) suite of paper and pencil benchmarks
[1]. We mention here that the random-number generator
(3) is embarrassingly parallel, or EP. In [1, p. 31, bullet 3],
this point is made for the EP benchmark. Also, on page
29 of [1], Bailey describes the binary algorithm for
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exponentiation that allows one to compute an mod 2 k in
log2 (n) steps. The fact that an mod 2 k is computable in
log2 (n) steps is crucial to making the random-number
generator (3) embarrassingly parallel. Bailey implicitly
points this out in [1, p. 31, bullet 2]. On the IBM
POWER2 Model 590, our bit-wise identical algorithms
corresponding to Equation (3) compute more than 40
million random numbers per second. On the IBM SP2
machine, using the Model 590 for its nodes, and using
p such nodes, we can compute more than 40p million
random numbers per second because of the EP nature of
these algorithms. Thus, using 25 nodes our algorithms can
compute more than a billion random numbers in a second.

In [1], Bailey gives a generic algorithm that simulates
base 223 multiple-precision arithmetic to compute the si ’s
in (3). This algorithm requires 18 floating-point operations
and four convert-to-integer operations per random
number. We implement the same generator using three
multiply–adds. Any pseudorandom si from (3) can then
be placed in the range 0 � xi � 1 by the scaling
xi � 2�ksi or be put in the range �1 � xi � 1 by
computing xi � 2�k�1si � 1. These computations
respectively require one and two additional floating-point
operations. In this paper, we redefine (3) to compute each
xi directly, without first computing si , and thus compute

xi�1 � axi mod 1.

This change avoids the actual scalings done above. We
also show how these computations can be done by three
and 3.125 multiply–adds per random number on RS/6000
machines.

When doing modular arithmetic on integers, it is
natural to use the greatest integer function. In floating-
point arithmetic this is achieved by using the IEEE round-
to-zero (chop) rounding mode. Throughout this paper,
except for one place in Section 2, we use the chop
rounding mode.

Many NIC algorithms are rated by their megaflop rate,
although this popular measure is often misleading. We
think that pseudorandom-number generation is such a
case. An NIC computation related to pseudorandom
generation is the EP NAS benchmark [1, 6]. By using
mathematical innovation and the fast random-number
generation described here, we were able to demonstrate
that the RS/6000 POWER2 Model 590 could currently
outperform a Cray YMP for EP [6]. In this paper we
compare the ratio of the computing time for the generic
algorithm [1] to the time of our algorithm. In both cases
we use the same model of RS/6000. The new algorithm
is written entirely in Fortran and is compiled using the
XL Fortran (XLF) compiler [4].

We also implemented another generator of the type (3)
in which a � 44 485 709 377 909 and k � 48. This
generator is the RANF( ) pseudorandom function used

on the CDC Cyber 174 computer, and is also generator 2 in
the RANDOM NUMBER intrinsic function provided with
the IBM XLF and XLHPF compilers. It is described in
the book Stochastic Simulation by Brian Ripley [7, p. 216],
who presents statistical test results for several generators;
he finds this generator “quite acceptable.” Gordon
Slishman has implemented this generator1 using three
multiply–adds for single-processor execution of
RANDOM NUMBER. The parallel implementation
in XLF and XLHPF is described in Section 4.

Slishman also implemented the generator (2), for which
the modulus is not a power of 2, for generator 1 of single-
processor RANDOM NUMBER. Parallel versions of
both generators 1 and 2 in RANDOM NUMBER were
implemented by Robert Enenkel for SP (distributed-
memory) machines, and by Enenkel and Xinmin Tian2

for SMP (shared-memory) machines. Generator (2) is
discussed in detail in Section 5.

In Section 2 we describe some elementary mathematical
ideas that can be used to compute (3) rapidly. These ideas
are used to derive an algorithm to compute pseudorandom
numbers in the range (0, 1) in three multiply–adds and
pseudorandom numbers in the range (�1, 1) in 3.125
multiply–adds. Also, using the IEEE round-to-nearest
mode, we show how the latter computation can be done
in three multiply–adds.

We now discuss POWER and PowerPC models. Before
the advent of vector processors, integer arithmetic was
generally faster than floating-point arithmetic. It was
then customary to produce pseudorandom numbers
using fixed-point arithmetic and then convert these
integers to floating point with scaling to get floating-
point pseudorandom numbers. When fast floating-point
processors became available, it became more economical
to produce the random numbers directly in floating point.
For example, the first equation of generator (1) could be
computed on an RS/6000 by setting 0 � s0 � 2 k , s0 odd,
and letting, for i � 0,

u � fl�asi � 2 52�k �,

v � u � 2 52�k,

si�1 � fl�asi � v�.

The above three statements define pseudorandom integers
in the range 0 � si � 2 k that are bit-wise identical to
the generator (1). However, one usually wants random
floating-point numbers in the range (0, 1) or (�1, 1). The
formulas above would then require modification; i.e.,

xi � 2 �ksi or xi � 2 �k�1si � 1.

1 Gordon Slishman, private communication, IBM Toronto Laboratory,
January 1994.
2 Xinmin Tian, private communication, IBM Toronto Laboratory, 1997.
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However, these computations require an extra multiply–
add in addition to the four needed to compute si .
One intention of this paper is to demonstrate that this
additional multiply–add can be removed. This results in
improvement factors of 4/3 and 4/3.125, which come
to 33% and 28% improvements per iteration over
computation based on the above four statements.

In Section 3 we describe two full-period linear
congruential generators,

xi�1 � �axi � c� mod 1, (4)

that compute pseudorandom numbers in the range (0, 1)
in four multiply–adds for c � 2�k and c � a2�k . We show
a proof that these generators are EP. The proof involves
showing that (1 � a � . . . � an�1) mod q can be
computed in log2 (n) steps. Our four-multiply–add
implementation of these generators requires us to avoid
conditional operations in the unrolled inner loop. It turns
out that ordinary unrolling via vectorization fails. To
overcome this failure, we introduce “generalized
unrolling,” which becomes possible because the generator
is EP.

In [2, Section 3.6, pp. 170 –173], Knuth provides a
summary on “how to generate random numbers.” He
recommends using a linear congruential generator,

X4 �aX � c� mod q, (5)

that satisfies seven properties. However, he states that
this class of generator applies primarily to machine-level
coding and hence is not portable. For IEEE arithmetic, it
makes sense to choose q � 2 k . The fused multiply–add
instruction is provided by many computer architectures,
including the IBM RS/6000 POWER and PowerPC, IBM
S/390* G5, Intel/HP IA-64 Itanium**, Apple Power
Mac**, HP Precision Architecture RISC 2.0 (e.g.,
HP900/800), and SGI MIPS** R-8000.3 Thus, within
this more restrictive domain, we can propose our
four-multiply–add generator as being “portable.”

In Section 5 we extend the ideas of the previous
sections to the generator (2). The modulus of this
generator is 231 � 1, and not a power of 2 as for the
previous generators. To achieve high performance,
nontrivial changes to the algorithm are required.

In Section 6 we describe the performance of these
algorithms relative to the generic algorithm of [1].

2. Three multiplicative congruential generators
Let a and y be positive integers less than 2 k , where
k � 52. Clearly a and y are IEEE numbers. Let x � 2�ky
so that 0 � x � 1. Also, x is an IEEE number. Let
p � ax. The base-2 (bit) representation of p is

p1 p2
. . . pk .pk�1pk�2

. . . p2k , where each pi is 0 or 1.
Represent p � I � F, where I � p1

. . . pk and
F � .pk�1

. . . p2k ; i.e., I and F are the integer and
fractional parts of p. Note that ax mod 1 � F, that I and F
are IEEE numbers, and that 252

� p � 252
� 253 � 1. Let

u � fl�ax � 2 52�. (6)

All 252 positive integers in the range 252 to 253 � 1 are all
of the IEEE numbers in that range. Thus, u in (6) is an
integer, and since we are in chop mode, u is the largest
integer not exceeding p � 252; i.e., u � p � I. (See
Lemma 1 for a detailed constructive proof.) Let

v � u � 2 52. (7)

The computation in (7) is done exactly, since v is computed
using IEEE arithmetic, in which u, 252, and v � I are all
IEEE numbers. Now let

w � fl�ax � v�. (8)

On RS/6000, w is the fractional part F of ax because the
fused multiply–add instruction always delivers the correct
answer when its operands and result are IEEE numbers.
Note that ax � v � F. Thus,

w � ax mod 1. (9)

We have just proved the following.

Theorem 1
The computation in (6), (7), and (8) above produces the
result (9). The value computed by (8) is bit-wise identical
to the infinitely precise result (9).

When unrolled, Equations (6), (7), and (8) constitute a
three-multiply–add implementation of the random-number
generator (3). Let a � 513 and choose 1 � s0 � 2 k

with s0 an odd integer and k � 46. Set x0 � s02�k .
Then 0 � x0 � 1. Note that the seven lower-order
bits of x0 are zero. In fact, each xi , i � 0, given by

xi�1 � axi mod 1 (10)

has this property.
We now discuss some aspects of the Algorithm and

Architecture approach [8] and how it relates to unrolling.
In Section 1.3 of [1], Bailey et al. describe sample codes
for the NAS benchmarks. There were two codes
distributed for random-number generation, namely
RANDLC and VRANLC; the latter is of interest to this
paper. Subroutine VRANLC generates n REAL�8 uniform
pseudorandom numbers in the range (0, 1) by using
Equation (3). The documentation states that VRANLC
is the standard version designed for scalar or RISC
systems. A comment in this code states that the DO
loop below in (11) which generates the n uniform
pseudorandom numbers is not vectorizable.

3 W. Kahan, private communication, Computer Science Division, University of
California, Berkeley, August 2000.
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T1 � R23 � A

A1 � AINT (T1)

A2 � A � T23 � A1

C

C Generate N results. This loop is not

C vectorizable.

C

DO 120 I � 1, N

C

C Break X into two parts such that

C X � 223
� X1 � X2, compute

C Z � A1 � X2 � A2 � X1 (mod 2 23), and then

C X � 2 23
� Z � A2 � X2 (mod 2 46).

C

T1 � R23 � X

X1 � AINT (T1)

X2 � X � T23 � X1

T1 � A1 � X2 � A2 � X1

T2 � AINT (R23 � T1)

Z � T1 � T23 � T2

T3 � T23 � Z � A2 � X2

T4 � AINT (R46 � T3)

X � T3 � T46 � T4

Y(I)� R46 � X

120 CONTINUE (11)

We believe the authors’ statement about the code in
(11). Today’s compilers are not able to vectorize this loop.
On the other hand, Equation (3) is vectorizable. The
Algorithm and Architecture approach to handling
Equation (3) would be to rewrite the code so that it
performs well when run on some actual machine, e.g.,
an RS/6000 RISC-type machine. In the present case we
would also need to unroll Equations (6), (7), and (8).
Please note that the code in (11) can be replaced by
the following code, in which TP52 � 252:

DO i � 0, n � 1

u � a � x(i) � TP52

v � u � TP52

x(i�1) � a � x(i) � v

ENDDO (12)

However, the above code will not execute in three
cycles because of pipeline delays. This code is also not
vectorizable by a compiler. In producing the code in (12),
we have used the extra accuracy feature of the fused
multiply–add instruction that is present on RS/6000 and
PowerPC machines. Also, the code in (12) is equivalent to
using Equation (9). A compiler cannot recognize this fact.
This is where we use the Architecture feature of our
approach. We now show how to “unroll” the code in
(12). In doing so, we vectorize the code in (12).

Let aj � aj mod 2 k for 1 � j � m. Note that, from (3),

si�j � a jsi mod q

� aj si mod q,

so that

xi�j �
aj si mod q

q

� aj xi mod 1, 1 � j � m. (13)

Thus, given xi and (13), we have defined the next m
iterations of (10). This unrolling of (10) by m constitutes
using a vector of length m to compute these next m
iterations of (10). In effect, RS/6000 machines can be
viewed as vector machines with a short vector length.
Because RS/6000 machines possess functional parallelism
(see [9]), RS/6000 machines have very low vector start-up
costs. This fact implies that using a short vector length is
not a performance drawback. However, to achieve this
vectorization it must be programmed. Now let m � 4.
Thus, the code in (12) becomes

DO i � 0, n � 4, 4

u � a � x(i) � TP52

u2 � a2 � x(i) � TP52

u3 � a3 � x(i) � TP52

u4 � a4 � x(i) � TP52

v � u � TP52

v2 � u2 � TP52

v3 � u3 � TP52

v4 � u4 � TP52

x(i�1) � a � x(i) � v

x(i�2) � a2 � x(i) � v2

x(i�3) � a3 � x(i) � v3

x(i�4) � a4 � x(i) � v4

ENDDO
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The above code eliminates most of the pipeline delays.
Every target of an FMA in that code is separated by three
independent FMAs. However, the last FMA of the loop is
followed by the first FMA of the loop with i replaced by
i � 4; thus, there is no separation between the target
x(i � 4) and the target u. In order to eliminate all
pipeline delays, we need a more complicated “unrolling”
of the code in (12). Consider

xi � x(4)

xi3 � x(3)

xi2 � x(2)

xi1 � x(1)

DO i � 0, n � 8, 8

u4 � a4 � xi � TP52

u3 � a3 � xi � TP52

u2 � a2 � xi � TP52

u � a � xi � TP52

x(i�3) � xi3

x(i�4) � xi

v4 � u4 � TP52

v3 � u3 � TP52

v2 � u2 � TP52

v � u � TP52

xi0 � a4 � xi � v4

xi3 � a3 � xi � v3

x(i�1) � xi1

x(i�2) � xi2

xi2 � a2 � xi � v2

xi1 � a � xi � v

u4 � a4 � xi0 � TP52

u3 � a3 � xi0 � TP52

u2 � a2 � xi0 � TP52

u � a � xi0 � TP52

x(i�7) � xi3

x(i�8) � xi0

v4 � u4 � TP52

v3 � u3 � TP52

v2 � u2 � TP52

v � u � TP52

xi � a4 � xi0 � v4

xi3 � a3 � xi0 � v3

x(i�5) � xi1

x(i�6) � xi2

xi2 � a2 � xi0 � v2

xi1 � a � xi0 � v

ENDDO (14)

The code in (14) eliminates all pipeline delays and
hence should execute at the rate of one pseudorandom
number every three multiply–adds. To start the pipeline,
we need to precompute outside of the loop the first four
pseudorandom numbers, x(i), i � 1, . . . , 4. The code
in (14) is unrolled by 8.

Now we demonstrate another feature of the Algorithm
and Architecture approach. Suppose we decide to use (13)
to unroll by m � 8. We have seen that a compiler cannot
unroll the present loop (12). We were forced to program
the unrolling and to introduce the concept of a “vector
instruction” into RS/6000 coding. We now claim that
this necessity of having to program a “vector instruction”
gives rise to a feature of superscalar machines that vector
machines do not possess. This feature allows us to produce
“customized vector instructions.” We remark that this is a
part of the Algorithm and Architecture approach, and we
now illustrate this concept with the example of generating
uniform pseudorandom numbers in the range (�1, 1). A
standard implementation requires an extra operation to
convert the range from (0, 1) to (�1, 1).

Let c1 � 253 and c2 � 253 � 1. Let 0 � s � 2 k with
s odd and k � 46. Let x � 2�k�1s. Then 0 � x � 2. Let,
for i � 1,

u � fl�aj x � c1�, (15)

v � u � c2, (16)

and

xi�j � fl�aj x � v�, (17)

where 1 � j � 8. For j � 8 we let

u � fl�a7 x � c1�, (18)

v � u � c1, (19)

x � fl�a7 x � v�, (20)

and

xi�8 � x � 1. (21)
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Equations (15) to (21) define a loop, unrolled by 8, in
which the next eight random iterates are computed and
also the “seed” x is updated in Equation (20).

The first seven iterations cost three multiply–adds, while
the last iteration costs four multiply–adds. The functional
parallelism of RS/6000 indicates that this loop will execute in
25 multiply–adds, or 25/8 � 3.125 multiply–adds per iteration.

We close Section 2 by demonstrating a use of the IEEE
“round-to-nearest” rounding mode. Let 0 � ui � 1 be the
xi computed by Equation (10). For each ui, let xi � 2ui � 1.
Then �1 � xi � 1. Let c1 � 253 � 2 k . Let SEED be the
seed x0 for the ui computation given by Equation (10):

C use round-to-nearest mode

x(0) � TWO � SEED � ONE

DO i � 0, n � 1

uc � a � x(i) � c1

v � uc � c1

x(i�1) � a � x(i) � v

ENDDO

SEED � HALF � x(n) � HALF

We now prove the following.

Theorem 2
The above code produces results that are bit-wise identical
to xi � 2ui � 1, where ui is the xi given by (10).

Proof Let aui � I � F, where 0 � F � 1, so ui�1 � F.
We want to show xi�1 � 2F � 1. Let u � axi � c1.
Since a is odd, a � 2a1 � 1 for some a1 , and
r � 2(I � a1) � c1 � 2F � 1. Note that �2k � axi � 2k,
so that 253 � u � 253 � 2 k�1 . For IEEE numbers x with
exponent 53, namely those x that satisfy 253

� x � 254 � 2,
x is an even integer. For round-to-nearest, the
computed value of u, namely uc, is the IEEE number
closest to u. We claim uc � c1 � 2(I � a1). Since uc is
an even number with exponent 53, it is an IEEE number.
Also, u � uc � 2F � 1 or �1 � u � uc � 1 as
0 � F � 1. Thus, uc is the closest IEEE number to u.
The fused multiply–add instruction computes v and xi�1

exactly. Thus, v � 2(I � a1) and xi�1 � 2F � 1.

3. Two full-period generators
We now specify a high-level description of the full-period
generators. Recall that the full-cycle generator is a linear
congruential generator of the form (5) with q � 2 k . We
follow the recommendation of Knuth (see [2, p. 171]) and
choose the value of c to be 1 or a. These two choices of c
give rise to the two versions of our full-period generator.

These generators have implementations that are nearly
the same as the three-multiply–add generator given by
Equations (6), (7), and (8).

Let x be the current iterate, in which 0 � x � 1. Then the
following four multiply–add statements in (22) to (25)
below describe the full-period generator:

u � fl�ax � 2 52 �, (22)

v � u � 2 52, (23)

w � fl�ax � v�, (24)

x � w � c� . (25)

In (25), the last operation, x � w Q c� , computes the next
random number. In (25), c� � 2�k when c � 1, and
c� � a2�k when c � a. We first consider the case c� � 2�k .
We were not able to reduce the number of multiply–adds
to three as we did in Equations (15) to (21). We would
need to define c2 � 252 � 2�46 , and this value cannot be
represented in a double-precision word. In Equation (25),
note that w � 1. This fact follows from (9). Since c� is the
smallest random number, we are guaranteed that the new
x � 1. In fact, x will equal 1 only once in 2 k iterations
of the generator. For k � 46, this is a very rare event.
Suppose x � 1. Then (22), (23), and (24) compute w � 0
because x is an integer. However, the new x � c� , and we
reach the conclusion that the generator is self-correcting!
This feature is very important (see [3] for another
example), because it is not necessary to “check” x during
each iteration of the calculation. Suppose we chose
2�46 � c� � 1. Then, x in (25) could be greater than 1.
In that case we would have to test and possibly correct x
during every iteration:

IF (x .gt. 1) x � x � 1 (26)

A conditional statement of this sort, when present
in a pipelined inner loop, can significantly degrade
performance. Thus, the choice of c� � 2�k is essential to
making the performance of the full-cycle generator fast.

To obtain a new random number every four multiply–
adds, it is necessary to unroll (22), (23), (24), and (25)
by at least a factor of 2. Our numerical experiments
on POWER2 showed that unrolling by 8 was necessary.
The code for a linear congruential generator without
unrolling is

DO i � 0, n � 1

u � a � x(i) � TP52

v � u � TP52

w � a � x(i) � v

x(i�1) � w � c�

ENDDO (27)
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Because of pipeline delays, this code will not execute
at the rate of one random number produced every four
multiply–adds. It turns out that unrolling via “program
vectorization” described in Section 2 does not work well.
To see this, note that

xj�i � aj xi � c� j , (28)

where aj � aj mod 2 k and c� j � [(1 � a � . . . � aj�1)
mod 2 k]c� . The c� j ’s are now variable! We have previously
seen that the choice of c� � 2�k was essential in order to
maintain good performance. Any other value of c� gave
rise to the use of conditional statements in the code, such
as the statement in (26). Thus, the type of unrolling that
comes from ordinary vectorization fails to provide peak
performance. However, another form of unrolling works.
In the present context, we call this “generalized
unrolling.”

Let N � 2n be an arbitrary even integer. Suppose
that we can compute an and c� n of Equation (28) in
log2 (n) steps. Then we can unroll the code by 2 in
(27) as follows:

DO i � 0, n � 1

u � a � x(i) � TP52

u1 � a � x(i�n) � TP52

v � u � TP52

v1 � u1 � TP52

w � a � x(i) � v

w1 � a � x(i�n) � v1

x(i�1) � w � c�

x(n�i�1) � w1 � c�

ENDDO (29)

The code in (29) constitutes “generalized unrolling.”
We have divided the vector x(0�N � 1) into two vectors
x(0�n � 1) and y(0�n � 1) � x(n�N � 1) and worked
on them independently. This type of unrolling gives rise
to a form of single-instruction, multiple-data (SIMD)
parallelism on a single processor. In [9] we also exploit
this form of SIMD parallelism on POWER2 machines.
The crucial point of the code in (29) for the present
application is that the two vectors x and y both use the
same c� .

We show how to compute c� n in log2 (n) steps. First note
that

c� j�i mod 1 � �a j mod 2 k��c� i mod 1� � c� j mod 1 (30)

and

a j�i mod 2 k
� �a j mod 2 k��a i mod 2 k� (31)

hold for all i and j. We construct a table � TBL(2, 0�46)
whose ith entries TBL(1�2, i) are a 2i

and c� 2
i, for

0 � i � 46. Note that

TBL�1, i � 1� � TBL�1, i� � TBL�1, i� mod 2 k, (32)

TBL�2, i � 1� � �TBL�1, i� � 1� � TBL�2, i� mod 1, (33)

along with TBL(1, 0) � a and TBL(2, 0) � 2�46,
generates the table in 46 steps. We can now, given x0 and
the precomputed table, use Equations (28), (30), and (31)
to compute xn in log2 (n) steps as follows:

t � x(0)

n0 � n

lb � 0

1 nn � n0/2

IF (n0 .gt. 2 � nn) THEN

u � t � TBL (1, lb) � TP52

v � u � TP52

w � t � TBL (1, lb) � v

t � t � TBL (2, lb)

IF (t .gt. 1) t � t � 1

ENDIF

lb � lb � 1

n0 � nn

IF (n0 .gt. 0) goto 1

x(n) � t (34)

We now consider the second generator; this generator
has c� � a2�k . Consider the following code, in which
TPMK � 2�k :

DO i � 0, n � 1

u � x(i) � TPMK

v � a � u � TP52

w � v � TP52

x(i�1) � a � u � w

ENDDO (35)

Here we have 0 � xi � 1. When xi � 1 � 2�k ,
xi�1 � 0 as u � 1. Again, this generator is self-correcting.
The unrolled-by-2 version of (35) becomes
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DO i � 0, n � 1

u � x(i) � TPMK

u1 � x(i�n) � TPMK

v � a � u � TP52

v1 � a � u1 � TP52

w � v � TP52

w1 � v1 � TP52

x(i�1) � a � u � w

x(n�i�1) � a � u1 � w1

ENDDO (36)

Equations (30), (31), (32), and (34) remain unchanged.
Equation (33) is modified to

TBL�2, i � 1� � �TBL�1, i� � a� � TBL�2, i� mod 1. (37)

4. Parallel implementation for HPF
The IBM XL Fortran (XLF) [4] and XL High
Performance Fortran (HPF) [5] languages include a
RANDOM NUMBER intrinsic function that implements
two multiplicative congruential generators. These
generators are also part of PESSL, the IBM Parallel
Engineering and Scientific Subroutine Library for AIX
[10]. Generator 1 is of type (2), with a � 75, k � 31, and
modulus q � 2 k � 1. Generator 2 is of type (3), with
a � 44 485 709 377 909, k � 48, and modulus q � 2 k .
The generator that is to be used is selected by setting the
generator argument of RANDOM NUMBER to 1 or 2,
respectively. In this section, we discuss implementation
issues arising from the parallel directives in HPF for the
modulus 248 generator. The modulus 231 � 1 generator
is discussed in Section 5.

HPF parallel directives
The HPF statement

CALL RANDOM_NUMBER (A)

fills the scalar, vector, or array A with random numbers.
HPF provides directives (ALIGN, DISTRIBUTE,
BLOCK, CYCLIC, etc.) that allow the programmer
to specify what elements of A are to reside on what
processor. To achieve high performance, the parallel
algorithm works by computing on each processor only
those random numbers resident on that processor,
ultimately achieving linear speedups for large quantities
of random numbers.

The N random numbers required on a particular
processor j � {0, . . . , P � 1} are sub-sequences of
x0 , x1 , x2 , . . . , xN from (3) of the form

xij
, xij�k, xij�2k, · · · , xij��N�1�k , (38)

where k is called the stride of the sequence. If A is BLOCK-
distributed, k � 1 and ij � jN, j � 0, . . . , P � 1. If A is
CYCLIC-distributed, k � P and ij � j, j � 0, . . . , P � 1.
A contiguous sequence is one with stride k � 1, and one
with k 	 1 is called strided. (There is also a BLOCK-
CYCLIC distribution and other variations which are not
discussed here for brevity, but which are handled by
applying techniques similar to those presented here.)

The rest of this section shows how it is possible
to compute (38) in O(N � log ij) time, resulting in
asymptotically linear speedup. The algorithm used
depends on whether the required sequence is contiguous
or strided.

Contiguous random-number sequences
A contiguous random-number sequence has the form

xi, xi�1, xi�2, · · · , xi�N�1 .

Contiguous sequences are required in HPF on each
processor when the random numbers are written to a
BLOCK-distributed vector or array. Once the starting
number xi is known for a particular processor, the rest of
the sequence can be directly computed by the code (14).
The fast calculation of the starting numbers on each
processor is dealt with next.

Strided random-number sequences
If the CYCLIC distribution directive is used in HPF
with more than one processor, the sequence of random
numbers resident on each processor consists of strided
(k 	 1) sub-sequences of the form (38). In addition,
for a BLOCK distribution, the starting values xij

,
j � 0, . . . , P � 1 in (38) must be computed from
some available previous xi , for example, x0 . Both of
these situations require the efficient computation of
multiple steps of the recurrence (13). That is, given
xi and n, we must compute xi�n . The code in (14)
does this for several fixed n to achieve the unrolling.
However, since n is not known a priori in the current
context, we cannot simply precompute the value of

an � a n mod q, (39)

and must therefore devise an efficient means to compute
it for general n.

We now show how to compute (13) in O(log2 n) steps,
which is crucial to the asymptotically linear speedup of the
parallel algorithm. Binary algorithms for exponentiation
are described in [2], and one is used in Bailey’s random-
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number generator implementation [1]. We use a binary
exponentiation algorithm here, but achieve high
performance through the use of the FMA instruction.

Let the binary representation of n be

n � bk · · · b0, bk � 0, k � log2 n, n � 0.

Then

n � �
j�0

k

2 jbj

and

an xi mod 1 � ��a ¥ j�0
k 2 jbj� mod q� xi mod 1

� ���j�0
bj
0

k

a 2 j� mod q� xi mod 1

� ��j�0
bj
0

k

�a 2 j
mod q�� xi mod 1. (40)

The values Ti � a 2i
mod q, i � 0, . . . , log2 q � 1,

are precomputed and stored in a table, allowing the
computation of the product (40) in k � log2 n steps. The
product is accumulated in a loop, as in the following
pseudocode:

t � X(i)

DO i � 0, k

IF �bi 
 0� THEN

C Compute t � tTi mod 1.

u � t � T(i) � TP52

v � u � TP52

t � t � T(i) � v

ENDIF

ENDDO

X(i�n) � t (41)

5. A modulus 231 � 1 generator
We now consider efficient implementation of the
generator of type (2) used in RANDOM NUMBER. This
is an extension of the work in the previous section, but is
significantly more complicated since the modulus is no
longer a power of 2. For the modulus 231 � 1 generator,

high performance is achieved by scaling the integer
recurrence by 2�31, finding a fast implementation of the
scaled recurrence, and finally transforming the resulting
numbers to the range (0, 1). Both the mathematical issues
and the implementation issues arising from the parallel
directives in HPF are discussed next.

Generator recurrence
The random-number sequence

xi � �0, 1�, i � 0, 1, · · · (42)

produced by the generator is defined by the recurrence

si�1 � asi mod q, (43)

xi�1 �
si�1

q
, (44)

where s0 is an integer, 0 � s0 � q, and

a � 7 5
� 16807,

q � 2 31
� 1.

It has a period of q � 1.
This value of q is well suited to an implementation on a

machine with 32-bit floating-point arithmetic, such as the
IBM S/360 [3]. Although the target architecture of XLF
and XLHPF is the IBM RS/6000, which uses IEEE
floating-point, this generator has been provided for
compatibility with existing applications. The mathematical
properties of this generator are discussed in [3].

As for the modulus 2 k generator, the algorithm used
depends on whether the required sequence is contiguous
or strided.

Contiguous random-number sequences
Before discussing the main contribution of this section,
parallel algorithms for strided random-number sequences,
it is useful to describe the sequential algorithms (due to
G. Slishman4) on which they are based. Although the
ideas here are based on earlier sections of this paper, the
implementation for this generator is more involved, since
q is not a power of 2.

RANDOM NUMBER uses a sequential implementation
of (43) and (44) to produce contiguous random-number
sequences of the form

xi, xi�1, xi�2, · · · , xi�N�1 ,

when the starting number xi is known. These sequences
are also required by HPF when the random numbers
are written to a BLOCK-distributed vector or array.

It is convenient for computational purposes to rewrite
(43) and (44) in terms of the value

4 Gordon Slishman, private communication, IBM Toronto Laboratory, January
1994.
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yi � 2 �31si , (45)

so that

yi�1 �
ayi 2

31 mod q

2 31

�

ayi 2
31

�
ayi 2

31

q
q

2 31

� ayi �
ayi 2

31

q
�1 � 2 �31�

� ayi � ayi s�1 � 2 �31�, (46)

where

s �
2 31

q

�
2 31

2 31
� 1

�
1

1 � 2 �31

� 1 � 2 �31
� 2 �62

� 2 �93
� · · · . (47)

We now use Lemmas 1, 2, and 6 in the Appendix to
transform (46) into an expression (51) that can be
efficiently computed with FMAs. Let

s� � 1 � 2 �31,

which is exactly representable as a double-precision IEEE
floating-point number. By Lemma 2, we can use s� in
place of s in (48), giving (49). By Lemma 1, we compute
ayis�, giving (50). [Since ayi s� � 752�31si(1 � 2�31) where
si � 231 � 1, ayi s� � 215, satisfying the condition of the
lemma.] By Lemma 6, we rearrange the terms in the form
of three FMAs (51):

yi�1 � ayi � ayi s�1 � 2 �31� (48)

� ayi � ayi s��1 � 2 �31� (49)

� ayi � �ayi s� � 2 52
� 2 52��1 � 2 �31� (50)

� fl �ayi � �ayi s� � 2 52��1 � 2 �31� � 2 52�1 � 2 �31��. (51)

The random number xi�1 is recovered via (44) and (45) as

xi�1 �
2 31yi�1

2 31
� 1

� syi�1 .

The floating-point values ỹi�1 and x̃i�1 , corresponding
respectively to yi�1 and xi�1 , are computed in
RANDOM NUMBER by the sequence of instructions

ỹ0 � y0

and

u � fl� ỹi a� � 2 52�, (52)

v � fl�uk1 � k2�, (53)

ỹi�1 � fl� ỹi a � v�, (54)

x̃i�1 � ỹi�1 � s�, (55)

where

a� � as�,

k1 � 1 � 2 �31,

and

k2 � 2 52
� 2 21

are exactly representable in IEEE double precision.
The program (52)–(55) computes u � ỹia�  � 252, v is
computed exactly, and it follows that ỹi�1 � yi�1 and
x̃i�1 � fl( xi�1). (A detailed proof is given by Lemma 7
in the Appendix.)

Although an RS/6000 POWER machine is capable of
computing one FMA per clock cycle, the code in (52)–(55)
will not execute in four cycles because of pipeline delays.
The reason for this is that the result of each FMA is not
available for 2–3 cycles, although another independent
FMA can be started immediately. Pipeline delays can be
eliminated by loop unrolling [as explained in Section 2 for
the modulus 2 k generator (12)], if a means of efficiently
computing yi�n , given yi , is available. Using (43), (44), and
(45), and proceeding as in the derivation of (49), we have

si�n � a nsi mod q

� ansi mod q,

yi�n � an yi � an yi s��1 � 2 �31�, (56)

where

an � a n mod q.

This is computed by the following sequence of
instructions:

ỹ0 � y0

and

u � ỹi � a� n , (57)

v � fl� ỹi an � u�, (58)

w � v � 2 52, (59)
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x � w � 2 52, (60)

y � fl� ỹi an � x�, (61)

ỹi�n � fl�2 �31x � y�, (62)

x̃i�n � ỹi�n � s�, (63)

where

a� n � 2 �31an . (64)

The program (57)–(63) computes x � an ỹi s�, y is
computed exactly, and it follows that ỹi�1 � yi�1 and
x̃i�1 � fl( xi�1). (A detailed proof is given by Lemma 8
in the Appendix.)

Unlike the modulus 2 k generator, the modulus 231 � 1
generator requires more instructions to compute a strided
random-number sequence than a contiguous one. An
unrolled loop based on (57)–(63) takes seven (instead of
four) cycles per number on an RS/6000 POWER machine.
Therefore, the direct unrolling used for the 2 k generator
in (14) does not achieve maximum performance for the
231 � 1 generator.

Instead, the sequential implementation of the 231 � 1
generator in RANDOM NUMBER produces contiguous
random-number sequences by using two nested unrolled
loops based on (57)–(63) and (52)–(55), analogous to the
generalized unrolling in Section 3. For a fixed, preselected
batch size m � 32, precomputed values of am � am ,
a2m � a2m , a3m � a3m , and abar � a� , ambar � a� m ,
a2mbar � a� 2m , a3mbar � a� 3m are kept. Given an initial
seed yi � yi , the following code (65) then computes
random numbers x(0), . . . , x(N) in batches of size 4m.
(We assume that N is a multiple of 4m for simplicity.)
It takes 18 � 16m cycles per 4m random numbers,
for an average of 4.14 cycles per number.

This approach is also adopted in the following XLHPF
1.2 parallel algorithm for generating contiguous random-
number sequences, which are required when the
RANDOM NUMBER argument vector or array is
BLOCK-distributed:

DO i � 0, N � 4 � m, 4 � m

C (57)–(63) unrolled by 3

u1 � yi � ambar

u2 � yi � a2mbar

u3 � yi � a3mbar

v1 � yi � am � u1

v2 � yi � a2m � u2

v3 � yi � a3m � u3

w1 � v1 � TP52

w2 � v2 � TP52

w3 � v3 � TP52

x1 � w1 � TP52

x2 � w2 � TP52

x3 � w3 � TP52

y1 � yi � am � x1

y2 � yi � a2m � x2

y3 � yi � a3m � x3

yipm � TPM31 � x1 � y1

yip2m � TPM31 � x2 � y2

yip3m � TPM31 � x3 � y3

DO j � 1, m

C (52)–(55) unrolled by 4

u � yi � abar � TP52

u1 � yipm � abar � TP52

u2 � yip2m � abar � TP52

u3 � yip3m � abar � TP52

v � u � k1 � k2

v1 � u1 � k1 � k2

v2 � u2 � k1 � k2

v3 � u3 � k1 � k2

yj � yi � a � v

yjpm � yipm � a � v1

yjp2m � yip2m � a � v2

yjp3m � yip3m � a � v3

x(i�j) � yj � sbar

x(i�m�j) � yjpm � sbar

x(i�2 � m�j) � yjp2m � sbar

x(i�3 � m�j) � yjp3m � sbar

END DO

yi � yjp3m

END DO (65)
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Strided random-number sequences
If the CYCLIC distribution directive is used in HPF
with more than one processor, the sequence of random
numbers resident on each processor consists of strided
(k 	 1) sub-sequences of the form (38). In addition,
for a BLOCK distribution, the starting values xij

,
j � 0, . . . , P � 1, in (38) must be computed from some
available previous xi , for example x0 . Both of these
situations require the efficient computation of multiple
steps of the recurrence (43), (44). That is, given yi and n
in (56), we must compute yi�n . This is performed by the
code in (57)–(63). However, since n is not known a priori,
we cannot simply precompute the value of

an � a n mod q,

and must therefore devise an efficient means to compute
it for general n.

We now consider how to compute an in O(log2 n) steps,
which is crucial to the asymptotically linear speedup of the
parallel algorithm. The outline of the approach is similar
to (41), but it is complicated by the need to compute the
product modulo q instead of 1:

an � 1

DO i � 0, k

IF �bi 
 0� THEN

an � anTi mod q

ENDIF

ENDDO (66)

A means for efficiently computing the modulus
operation in (66) using IEEE double-precision arithmetic
and the RS/6000 FMA instruction is a main contribution
of this section, and is derived next.

Computing products modulo q
We now consider how to efficiently compute modular
products of the form (66). (This is a more detailed
description of results that were briefly outlined in [11].)
Let

d � bc mod q,

where b and c are integers representable in IEEE double
precision (IEEE integers, for short), with 0 � b � q and
0 � c � q, where b and c are powers of a, modulo q.
[In particular, the values b � an and c � T(i) from
(66) satisfy these conditions.] Then

d � bc �
bc

q
q.

By (47),

1

q
� 2 �31s, (67)

so that

d � bc � bc2 �31s�2 31
� 1�.

By Lemma 3 in the Appendix, it follows that the infinite
series s can be replaced by its first two terms; that is,

d � bc � bc2 �31s��2 31
� 1�. (68)

[In Lemma 3 we use m � bc � q 2 � 262 and the
condition that q � m is satisfied, since q � b and q � c
(b � q and c � q) and q is prime.]

We now show how (68) can be computed.

Theorem 3
Let b and c be integers representable in IEEE double
precision (IEEE integers), with 0 � b � 231 � 1 and
0 � c � 231 � 1. Let

d � bc mod �2 31
� 1�,

and compute as follows using IEEE double-precision
arithmetic with the round-to-zero rounding mode:

u � �2 �62b� � c, (69)

v � fl ��2 �31b�c � u�, (70)

w � v � 2 52, (71)

x � w � 2 52, (72)

y � 2 31
� x, (73)

z � fl�bc � y�, (74)

d̃ � z � x. (75)

Then d̃ � d.

Proof (See Appendix.)
In RANDOM NUMBER, strided random-number

sequences are computed by an unrolled loop based on
(57)–(63), similar to (76) below. Given a stride k, ai � aki ,
i � 1, . . . , 4, are first computed by (66) and (69)–(75).
Let aibar � a� ki , i � 1, . . . , 4. Starting with y1 � yi�3 ,
y2 � yi�2, y3 � yi�1, yi � yi, the unrolled loop (76) computes
strided random numbers X(i) � xki, i � 1, . . . , N. It takes
seven cycles per random number.

DO i � 0, N � 4, 4

u4 � yi � a4bar

u3 � yi � a3bar

u2 � yi � a2bar

u1 � yi � a1bar
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X(i�1) � y1 � sbar

v4 � yi � a4 � u4

v3 � yi � a3 � u3

v2 � yi � a2 � u2

v1 � yi � a1 � u1

X(i�2) � y2 � sbar

w4 � v4 � TP52

w3 � v3 � TP52

w2 � v2 � TP52

w1 � v1 � TP52

X(i�3) � y3 � sbar

x4 � w4 � TP52

x2 � w2 � TP52

x3 � w3 � TP52

x1 � w1 � TP52

X(i�4) � yi � sbar

z4 � yi � a4 � x4

z3 � yi � a3 � x3

z2 � yi � a2 � x2

z1 � yi � a1 � x1

yi � TPM31 � x4 � z4

y3 � TPM31 � x3 � z3

y2 � TPM31 � x2 � z2

y1 � TPM31 � x1 � z1

END DO (76)

6. POWER2 timing results
We now give timings for the generators described in
Sections 2 and 3. We have confined our timing studies to
the RS/6000 POWER2 Model 590. POWER2 is capable of
producing two FMAs every cycle, with a pipeline delay of
two or three cycles [8, 9]. The POWER2 Model 590 has
a clock cycle of 15 ns. The code in Equation (14) gives a
pipeline delay of two cycles. To be safe we have doubled
the unrolling from 8 to 16 in the actual code used for the
timing below. (There are enough floating-point registers
on the POWER2 to allow one to double the unrolling
factor without negative impact. Running at the lesser

unrolling, however, did not affect performance in any
measurable way.) Since each uniform random number in
the range (0, 1) costs three FMAs, the peak possible rate
of random-number generation is 44.44 million per second.
We measured performance of the (0, 1) generator for
batches of double-word random numbers of size n � 2 i ,
where i � 12 to 21. The size of the 590 cache is 215

doublewords, and the size of its TLB is 218 doublewords.
All timing measurements were done using the XLF RTC
(real-time clock) utility, and represent actual elapsed
“wall-clock” time, including system time, etc. For i
between 14 and 21, the performance was essentially
constant. It varied between 42.90 and 43.50 million
random numbers per second. For i � 12 and 13, the
values were 39.33 and 41.79. This dropoff is due to a fixed
setup cost for the generator. The setup cost consists of
saving and restoring the user rounding mode, setting the
rounding mode to chop, initializing the unrolled loop so
that stores to memory are optimal, and the completion of
the loop modulo the unrolled count. Without the setup
cost, we measured a rate of 42.33 million random numbers
per second for i � 12. For large n this cost becomes
negligible. The (0, 1) generator runs at 98% of the peak
obtainable rate. The result was independent of a and k.
We tested two generators where a � 513 and k � 46,
and a � 44 485 709 377 909 and k � 48.

The generic generator of Bailey et al. [1] ran at the rate
of 810 000 pseudorandom numbers for the data in cache
and 803 000 for data not in cache. Thus, the new
generator is 53 times faster than the generic generator
for both data in cache and data not in cache.

We tested two versions of the (�1, 1) generator. For
one of these, the number of cycles for 16 random numbers
was 25. This is the 3.125-FMA generator, in which
rounding is toward zero. The second one produced 16
random numbers in 24 cycles. This is the three-FMA
generator, where rounding is to nearest. The results for
the round-to-nearest (�1, 1) generator were identical to
the results for the (0, 1) generator. Returning to the
3.125-FMA (�1, 1) generator, for i � 14 to 21 the
performance was essentially constant; it varied between
41.15 and 40.52 million random numbers per second. The
peak obtainable rate is 24/25 of 44.44 � 42.67 million
random numbers per second. The measured results were
at 96.4% of the peak obtainable rate. For i � 12 and 13,
the rates were 37.53 and 39.91 million random numbers
per second. Here again we see the effect of the fixed setup
cost. In summary, for large enough batches of numbers
the multiplicative random-number generators deliver more
than 40 million random numbers per second regardless of
whether the batch size fits in cache.

Now we discuss the four-FMA linear congruential
generator. Here we chose batches of size 2 i for i � 12,
13, 14, and 15. For i � 12, 13, and 14, we generated
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27.62, 29.35, and 30.14 million random numbers per
second. The peak possible rate is 33.33 million per second.
Thus, our measured rate is about 90% of the peak
obtainable. The smaller value for i � 12 was due to the
fixed setup cost for this generator. For i � 15, the result
was 26.40 million random numbers per second. For larger
values of i, this rate per second dropped off very sharply
because of cache and TLB thrashing. To alleviate this
problem, we set n � 2 i � 544 � 8. The number 544 is the
sum of a page plus a line in doublewords. The factor of 8
was obtained by dividing n by 8 to set up eight different
store queues. However, almost any other value of n would
have worked equally well. We tried new batches of size n,
where i � 15 to 21. The rates were 30.32, 29.76, 29.91,
29.76, 29.76, 29.75, and 29.76 million random numbers per
second. In summary, the four-FMA generator delivers
about 30 million pseudorandom numbers per second
both for data in cache and data out of cache.

7. Conclusions
In this paper, we have given several illustrations of a
general technique called the Algorithm and Architecture
approach [11]. We have used algorithmic innovation and
the FMA instruction in the design of several uniformly
distributed pseudorandom-number generators for the
intervals (0, 1) and (�1, 1).

We have implemented multiplicative congruential
pseudorandom-number generators, for the ranges (0, 1)
and (�1, 1), of the form

si�1 � asi mod 2 k,

xi�1 � 2 �ksi�1 or 2 �k�1si�1 � 1, (77)

which have a period of 2 k�2 . We have shown that the
theoretical cost per random number for the two ranges
is respectively 3 and 3.125 multiply–adds on RS/6000
processors. Our codes, on the IBM POWER2 Model 590,
run at 98% and 96.4% of the peak obtainable rate,
respectively, and produce more than 40 million uniformly
distributed pseudorandom numbers per second for both
ranges. Additionally, our code sustains the 40 million per
second rate for data out of cache. Our code is about 50
times faster than the generic implementation with k � 46
given in the NAS parallel benchmarks [1], while producing
bit-wise identical results.

We also implemented a linear congruential generator
of the form

si�1 � �asi � c� mod 2 k,

xi�1 � 2 �ksi�1 , (78)

which has the full period of 2 k . We have shown that the
theoretical cost per random number [in the range (0, 1)]
for this generator is four multiply–adds on RS/6000

processors. Our code, on the IBM POWER2 Model 590,
runs at about 90% of the peak obtainable rate and
produces more than 30 million uniformly distributed
pseudorandom numbers per second.

Finally, we implemented a multiplicative-congruential
generator for the interval (0, 1) of the form

si�1 � asi mod �2 k
� 1�,

xi�1 �
si�1

2 k
� 1

, (79)

for which the modulus is not a power of 2. Generators of
type (77) and (79), for the interval (0, 1), are available
in the RANDOM NUMBER intrinsic function of IBM
XL Fortran [4] and XL High Performance Fortran [5].

All of the generators reported here are “embarrassingly
parallel.” Using an IBM SP2 machine with 250 POWER2
wide nodes, it is possible to compute more than ten billion
uniform random numbers in a second.

8. Appendix
This section contains detailed proofs for the lemmas used
in the paper.

We first prove a result that allows the floor operation
to be computed quickly using IEEE arithmetic.

Lemma 1
Let v be representable in IEEE double precision, with
0 � v � 252. Then, with the round-to-zero rounding mode,

v � 2 52
� v � 2 52

and

�v � 2 52� � 2 52
� v.

Proof The lemma is trivially true for v � 0. Therefore,
assume that v 	 0. Since v is IEEE, it can be written in
binary as

v � b0 . b1 · · · b52 � 2 e, b0 � 1,

where e � 52 since v � 252. Then,

v � �b0 · · · be e � 0,
0 e � 0.

Clearly v is an IEEE number.
Suppose first that e � 0. Then v Q 252 performs the

following addition, the result of which is truncated to 53
bits. The number of zeros inserted for the normalization
of v is k � 52 � e, and k � 1 since e � 52:

v � 0 . 0 . . . 0 b0
. . . be be�1

. . . b52 � 2 52,

2 52
� 1 . � 2 52,

v � 2 52
� 1 . 0 . . . 0 b0

. . . be � 2 52.
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If e � 0, then k 	 52 and (v Q 252) � 252.
Thus,

v � 2 52
� v � 2 52,

and this establishes the first part of Lemma 1. Now

�v � 2 52� � 2 52
� v,

because the operands and result are IEEE numbers. �

Corollary 1
Let x and y be IEEE double-precision numbers satisfying
0 � xy � 252. Then fl( xy � 252) �  xy � 252 and
fl( xy � 252) C 252 �  xy.

Proof Use Lemma 1, except that v Q 252 in the lemma
is replaced by fl( xy � 252), and also

xy � 0 . 0 · · · 0 b0 · · · be be�1 · · · b105 � 2 52

2 52
� 1 . � 2 52

fl� xy � 2 52� � 1 . 0 · · · 0 b1 · · · be � 2 52.

Therefore fl( xy � 252) �  xy � 252, and the result
follows. �

Lemma 2
Let a � 75, yi � 2�31si , where si is an integer with
0 � si � q � 231 � 1, and s� � 1 � 2�31 ,
s � 1 � 2�31 � 2�62 � . . . . Then ayi s � ayi s�.

Proof Let m � 231ayi . Then Lemma 3 gives the
required result, provided we can show that m satisfies
the conditions of Lemma 3.

First, we show that m is an integer,

m � 2 31ayi � 2 317 52 �31si � 7 5si , (80)

which is an integer because si is.
Second, we show that 0 � m � 262. From (80), m 	 0

since si is. Also from (80), m � 75231 � 85231 � 246 � 262.
Third, we show that q � m. Since q is prime, if q�m,

then q�a or q�si . But q 	 a and q 	 si ; thus, q � m. �

Lemma 3
Let m � Z, 0 � m � 262, (231 � 1) � m. Then

2 �31m � 2 �62m � 2 �31m � 2 �62m � 2 �93m � 2 �124m

� · · · .

Proof Let the binary representation of m be

m � b1b2 · · · b62 ,

where each bi is either 0 or 1. Then,

2 �31m � b1 · · · b31 . b32 · · · b62 ,

2 �62m � . b1 · · · b31 b32 · · · b62 ,

2 �93m � . 0 · · · 0 b1 · · · b31 b32 · · · b62 .

Let

g � 2 �31m � 2 �62m

and

h3 � 2 �93m,

h4 � 2 �93m � 2 �124m,
···

hi
� �

j�3

i

2 �31jm, i � 3, 4, · · · ,

h � �
j�3

�

2 �31jm

� lim
i3�

hi .
(81)

We must show that g � h � g. Suppose, to get a
contradiction, that g � h 
 g. Then adding h to g
must cause the integer part of g to change. Since the 2�1

to 2�31 bits of h are all zero, this means that either

(A) A carry-out must occur from the 2�32 bit of g � h, and
this carry must be propagated into the integer part;

or

(B) No carry is propagated into the integer part, but all of
the (infinite number of) bits in the fractional part of
g � h are 1, so that

g � h � 2 �31m � .11 · · · � 2 �31m � 1 � Z. (82)

However, (B) is impossible, since by (47),

g � h �
m

2 31
� 1

,

so (231 � 1) � m implies g � h � Z, contradicting (82).
Thus (A) holds. But also,

g � h � �
j�1

�

2 �31jm,

and is not an integer. Therefore, for J sufficiently large,

g � hJ � g � h.

Consider the 2�31 bit of g � hJ . If b62 � b31 � 0 or 10,
an incoming carry would change the bit to 1 and no
further carry would be propagated. Therefore, by (A),
b62 � b31 � 1. Repeating this argument with the
higher-order bits shows that
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bi�31 � bi � 1, i � 1, · · · , 31. (83)

Now consider the two lowest-order terms in hJ , those
corresponding to j � J � 1 and j � J in (81):

2 �31� J�1�m � . 0 · · · 0 b1 · · · b31 b32 · · · b62 ,

2 �31Jm � . 0 · · · 0 0 · · · 0 b1 · · · b31 b32 · · · b62 .

There is no carry-out from b32
. . . b62 in 2�31Jm, since the

corresponding bits in 2�31( J�1)m are zero. Therefore, there
is no carry-in to the next higher-order 31 bits of the
sum, which are therefore all 1 by (83), with no carry-out.
Repeating this argument with each higher-order block of
31 bits shows that there is no carry-out from the 2�32 bit
of g � h, contradicting (A). Therefore, g � h � g. �

Lemma 4
Compute v as in (69) and (70). Then

v � bc�2 �31
� 2 �62�.

Proof Since b, c � Z with 0 � b � 231 � 1 and
0 � c � 231 � 1 implies bc � Z with 0 � bc � 262,
we can write bc in binary as

bc � .b1b2 · · · b62 � 2 e,

where 1 � e � 62 and b1 
 0. Then 2�31bc � 2�62bc is
the result of the following addition:

2�31bc � b1 · · · b31 . b32 · · · b62 � 2 e�62,

2�62bc � . b1 · · · b31 b32 · · · b62 � 2 e�62,

2�31bc � 2�62bc � c0 c1 · · · c31 . c32 · · · c62 b32 · · · b62 � 2 e�62.

(84)
Since e � 62 � 0,

2 �31bc � 2 �62bc � c0 · · · c31 � 2 e�62. (85)

Now

u � 2 �62b � c � .b1 · · · b31 b32 · · · b53 � 2 e�62, (86)

since b1 
 0 and b54
. . . b62 are truncated. The FMA in

(70) computes

v � fl�2 �31bc � u�.

When we replace 2�62bc in (84) with u from (86), the sum
in (84) becomes

v � c0 · · · c31 . c32 · · · c62 b32 · · · b53 � 2 e�62,

so that

v � c0 · · · c31 � 2 e�62

� 2 �31bc � 2 �62bc

by (85) as required. �

Lemma 5
Compute y as in (69)–(73). Then bc � y is an IEEE
integer.

Proof By (91),

bc � y � bc � 2 31 bc�2 �31
� 2 �62� � Z,

and so will be IEEE if �bc � y� � 253. For all x � R,
x � 1 �  x � x; thus,

bc�2�31
� 2�62� � 1 � bc�2�31

� 2�62� � bc�2�31
� 2�62�,

bc � 2 31bc�2 �31
� 2 �62� � bc � 2 31 bc�2 �31

� 2 �62�

� bc � 2 31�bc�2 �31
� 2 �62� � 1�,

�2 �31bc � bc � y � �2 �31bc � 2 31.

However, 0 � bc � 262, so

�2 31
� bc � y � �2 �31

� 2 31
� 2 31;

hence, �bc � y� � 231. �

Lemma 6
Let 0 � u � 222 be an IEEE number. Then,

�u � 2 52
� 2 52��1 � 2 �31� � fl��u � 2 52��1 � 2 �31�

�2 52�1 � 2 �31�]. (87)

Proof By Lemma 1, u Q 252 � u � 252. Thus, the
right side of (87) equals

fl ��u � 2 52��1 � 2 �31� � 2 52�1 � 2 �31�� � fl �u�1 � 2 �31��

� fl �u � 2 �31 u�.

Since 0 � u � 222, u is an integer with at most 22 bits.
Therefore, u � 2�31u has at most 22 � 31 � 53 bits,
making it exactly representable. The right side of (87) thus
becomes u(1 � 2�31), which equals the left side by
Lemma 1. �

Lemma 7
(52)–(55) result in ỹi�1 � yi�1 and x̃i�1 � fl( xi�1).

Proof By definition, ỹ0 � y0 . Applying induction on
i, assume ỹi � yi to show ỹi�1 � yi�1 . By Corollary 1,
u � yia�  � 252. We first show that (53) is exact.
yi a� � 2�31sias� � 2�31(231 � 1)215(1 � 2�31) � 215,
so that u � I � 252, where I is an integer less than 215.
Thus, v � (I � 252)(1 � 2�31) � 252 � 221 � I � 2�31I.
This is an IEEE number, since I is an integer with at most
15 bits, and so v has at most 15 � 31 � 46 � 53 bits.
Therefore, (53) exactly computes

v � u�1 � 2 �31� � �2 52
� 2 21�.

Since v is exact, (54) computes ỹi�1 � yi�1 exactly by
(51), provided yi�1 is IEEE. But yi�1 � 2�31si�1 by (45),
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where si�1 is an integer less than 231 � 1, so yi�1 is an
IEEE number.

Finally, to show that (55) computes x̃i�1 � fl( xi�1), we
must establish that

fl� yi�1s� � fl� yi�1s��. (88)

Since si�1 is an integer less than 231 � 1, we can write
si�1 � b1

. . . b31 in binary. Thus,

yi�1 � . b1 · · · b31 ,

2 �31yi�1 � . 0 · · · 0 b1 · · · b31 ,

yi�1s� � . b1 · · · b31 b1 · · · b31 ,

yi�1s � . b1 · · · b31 b1 · · · b31 b1 · · · b31 · · · .

Let i be the index of the first nonzero bit of yi�1 . The 53
bits of the mantissa of fl( yi�1s) begin at bi in the first
group of 31 bits of yi�1s. If i � 10, they end with b21�i in
the second group of 31 bits, in which case (88) holds. If
i 	 10, they end with bi�10 in the third group of 31 bits.
For (88) to hold in this case, we need the bits of the
mantissa coming from the third group to be zero, that is,
b1 � . . . � bi�10 � 0. But since bi is the first nonzero bit,
b1 � . . . � bi�1 � 0, and the result follows. �

Lemma 8
(57)–(63) result in ỹi�1 � yi�1 and x̃i�1 � fl( xi�1).

Proof By definition, ỹ0 � y0 . Applying induction on i,
assume ỹi � yi to show ỹi�1 � yi�1 . We first show that
x � v � yians�. Let I � sian . Then I is an integer
satisfying I � (231 � 1)(231 � 1) � 262, so we can
write I in binary as I � b1

. . . b62 , and yian � 2�31I.
Now yians� � yian � yia� n , u � yi R a� n , v � fl( yian � u),
and

yi an � b1 · · · b31 . b32 · · · b62 ,

2 �31yi an � . b1 · · · b31 b32 · · · b62 .

For v to be exact, it is only necessary for the first 31 bits
of u to be correct, since the less significant bits align with
zeros in yian and so cannot affect the integer part of the
result. But at least the first 53 bits of u are correct; thus,
v � yians�. By Lemma 1, then, x � v.

Next, we show that y is exact. This follows if yi an � yians�
is an IEEE number. yians� � yian � 2�31yian � yian
or yian � 1, since the bits of 2�31yian do not overlap
with the integer part of yian . Thus yian � yians� is
either b32

. . . b62 or one less than this value, both of which
contain at most 31 bits, and thus are IEEE numbers.

Finally,

ỹi�1 � fl�2 �31x � y�

� fl �2 �31 yi ans� � yi an � yians��

� fl � yi an � yi ans��1 � 2 �31��

� fl � yi an � yi ans�1 � 2 �31�� by Lemma 2

� fl� yi�n� by (56)

� yi�n ,

since yi�n � 2�31si�n by (45), where si�n is an integer
less than 231 � 1, so yi�n is an IEEE number.

It follows that x̃i�n � fl( xi�n), by an argument similar to
that used in Lemma 7 to show that x̃i�1 � fl( xi�1). �

Theorem 3
Let b and c be integers representable in IEEE double
precision (IEEE integers), with 0 � b � 231 � 1 and
0 � c � 231 � 1. Let

d � bc mod �2 31
� 1�,

and compute as in (69)–(75), using IEEE double-precision
arithmetic with the round-to-zero rounding mode. Then
d̃ � d.

Proof From (68),

d � bc � bc2 �31�1 � 2 �31��2 31
� 1�

� bc � 2 31 bc�2 �31
� 2 �62� � bc�2 �31

� 2 �62�. (89)

We now make use of Lemmas 4 and 5. By Lemma 4,

v � bc�2 �31
� 2 �62�.

Since bc � 262,

v � 2 62�2 �31
� 2 �62�

� 2 31
� 1,

so v satisfies the condition of Lemma 1. By Lemma 1,

x � v. (90)

Then, since the multiplication in (73) by a power of 2 is
exact,

y � 2 31x

� 2 31 bc�2 �31
� 2 �62�. (91)

The FMA in (74) is exact when its result is an IEEE
integer. By Lemma 5, bc � y is an IEEE integer; thus,
z � bc � y. From (89), (90), and (91),

d � bc � y � x

� z � x.

Since z � x � d � bc mod q is an IEEE integer,
it follows that z � x � z Q x � d̃. �

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation,
Apple Computer, Inc., or MIPS Technologies, Inc.
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