
by P. ZulianiLogical
reversibility

A method has been developed for
transforming a program written in the
probabilistic guarded-command language
(pGCL) into an equivalent but reversible
program. The method extends previous
work on logical reversibility to that language
and pertains to “demonic” nondeterminism
and probability. Use is made of a formal
definition of logical reversibility and the
expectation-transformer semantics for
pGCL. The method should be useful in
the compilation of a general-purpose
programming language for quantum
computation.

1. Introduction
Reversibility, when one is referring to a computing device,
is essentially the carrying out of a computation so that,
at each step, it is possible to choose whether to execute
that step or “undo” it, thus forcing the device and its
environment to return to the conditions prior to
execution.

In the context of logical reversibility, we are interested
in the logical model (e.g., Turing machine, �-calculus,
Guarded Command Language [1]) of such a device,
with the objective of developing a theoretical
framework that allows reversibility of the computing
process.

The first attempt to study reversibility in computing
processes was described by Rolf Landauer in 1961 [2]. He
was the first to use the expression logically reversible to
denote a computation whose output uniquely defines its
input. His main points were 1) that logical irreversibility is
an intrinsic feature of useful computing processes, and 2)

that the erasure of information has a nonzero
thermodynamic cost; i.e., it always generates an increase
of the entropy of the universe (Landauer’s principle).

However, the first was proved to be false in 1963 by
Lecerf [3] and in 1973 by Bennett [4], who, independently,
were able to theoretically construct a logically reversible
device based on a Turing machine, capable of calculating
any computable function. Therefore, in a computation,
in principle at least, it should be possible to avoid
information erasure by using a logically reversible device.
In subsequent years, several physical models of reversible
computing devices were developed; see for example the
billiard-ball computer of Fredkin and Toffoli [5].

Landauer’s principle was used by Bennett in 1981 to
resolve one of the longstanding problems of physics: the
paradox of Maxwell’s demon. What prevents the demon
from breaking the second law of thermodynamics is the
fact that it must erase the record of one measurement to
make room for the next—a physically irreversible process
[6]. In particular, the reversible techniques of this paper
do not apply to the demon’s calculation because it is
permitted only one bit of scratchpad memory.

The physics of computation has gained interest as
efforts directed to apply quantum theory to computation
have proved successful, with important potential
applications to real problems. The most famous of all
quantum algorithms is Shor’s algorithm for integer
factorization [7]. This has raised the question whether it is
possible to develop a suitable programming language for
quantum computers, which we know are inherently
reversible devices. For a traditional imperative
programming language, one of the problems is represented
by the assignment statement, which is logically irreversible
by its own nature. For higher-level languages, it is
represented by nondeterminism and probability.

�Copyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

807

The purpose of this paper is to provide a modern
extension of Bennett’s work on reversible Turing machines
to include nondeterminism and probability. In particular,
we present rules that transform probabilistic Guarded-
Command Language (pGCL) [8] programs to equivalent
but reversible pGCL programs. Furthermore, we extend
Bennett’s result to probabilistic computations, so that
probabilistic classical algorithms can also be made
reversible and run on a quantum computer. The work’s
significance arises as a result of the desire to compile
general-purpose programming languages (e.g., [9]) for
quantum computation. Among other things, such a
programming language must make it possible to
simulate classical computations on a quantum computer.
Additionally, our work supplies techniques for direct
compilation of an irreversible program into a reversible
one.

2. Applications
As mentioned above, logical reversibility is strictly
connected to quantum computation, because the evolution
of a quantum system is governed by operators which are
unitary. Unitary operators have, among other properties,
that of being invertible: Given a quantum-mechanical
operator U, there always exists an inverse operator U�1

such that U � U�1 � �, where � is the identity operator
and � denotes composition of operators (if operators are
represented by matrices, � becomes matrix multiplication).
This means that in principle any quantum computation
can be reversed. On the other hand, classical
(conventional) computations were not designed to be
reversible, since it was thought that in order to be able
to compute any computable function, a certain degree of
irreversibility was necessary. This view was reflected in the
basics of programming languages; take the assignment
x :� 0 for example: The previous value of variable x is lost.

A programming language for quantum computers must
therefore incorporate reversibility. qGCL [9] is a general-
purpose programming language for quantum computation,
developed as a superset of pGCL considered here. In
particular, qGCL extends pGCL with four constructs:

● Transformation q, which converts a classical bit register
to its quantum analog, a qureg.

● Initialization, which prepares a qureg for a quantum
computation.

● Evolution, which consists of iteration of unitary
operators on quregs.

● Finalization or observation, which reads the content
of a qureg.

qGCL enjoys the same features as pGCL: It has a rigorous
semantics and an associated refinement calculus (see for
example [8, 10]), which include program refinement, data

refinement, and combination of specifications with code.
These properties make qGCL suitable for quantum
program development and correctness proof, not just
for expressing quantum algorithms.

With the techniques presented here, it is possible to
transform any pGCL program into a reversible equivalent
one, thus making it suitable to run on a quantum
computer. The result is readily extended to qGCL
programs, since initialization and evolution are themselves
unitary transformations, while finalization is intrinsically
irreversible.

It is assumed that a compiler for qGCL will be used
which will produce code executable by some quantum
hardware architecture, for example quantum gates [11].
Such a compiler should be multiplatform, since qGCL
programs may contain classical as well as quantum code.
Quantum processors are likely to be expensive resources,
and their use should be restricted to genuine quantum
computations, leaving all other tasks to classical
processors. Also, the limited availability of quantum
algorithms due to the difficulty of quantum programming
is another reason for our multiplatform choice.

Classical code in qGCL programs will be treated with
the standard compiler techniques. Quantum code must be
distinguished in two parts: transformations already unitary
and classical code that must be run on the quantum
architecture. The latter must be treated by the techniques
of this paper in order to produce a reversible version of
the code and its corresponding unitary transformation.1

At this point, all of the unitary transformations can be
passed to that part of the compiler which will output
the code for the chosen quantum architecture.

3. Previous work
Lecerf [3] proposed the first model of logically reversible
computing. He gave a formal definition of a reversible
Turing machine and proved that an irreversible Turing
machine can be simulated by a reversible one, at the
expense of a linear space–time slowdown. However, he
developed that result to prove a conjecture of theoretical
computer science, and his work was not immediately
useful for reversible computing. Bennett’s work was
instead inspired by the previous studies of Landauer on
the physics of computation and led to a key difference:
Bennett’s reversible Turing machine is a particular three-
tape Turing machine whose behavior can be divided into
three steps: During step one (forward computation) the
machine carries out the required computation, saving the
history of that in the second tape and using the first tape
as workspace. In step two the output of the computation
is copied into the third tape. In the last step the forward

1 Paolo Zuliani, “Quantum Programming,” Ph.D. thesis, Oxford University
Computing Laboratory, 2001; in preparation.

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

808

computation is traced back using the history tape and
cleaning the first tape. Thus, in the end the first and
second tapes return to their initial configuration, and the
third contains the output.

In the second step lies the key difference between
Lecerf’s and Bennett’s work, since without saving the
output, any logically reversible computer would be of little
practical use.

Another model of logical reversibility, the Fredkin
gate [5], is a 3-bit logic gate defined by the function
FG:� 3 3 �

3:

� c, x, y:� • FG�c, x, y� :� �c, cx � ¬cy, ¬cx � cy�;

that is, it swaps x and y if the control bit c is 0 and
otherwise leaves them unchanged. The Fredkin gate is
both reversible (it is its own inverse) and conservative:
Input and output have the same number of bits at 1.
In conservative computing, a computation is ultimately
reduced to a conditional exchanging of bits, since they are
treated as unalterable objects which cannot be created or
destroyed. The Fredkin gate is also universal for classical
computation, since it is able to simulate the NAND gate,
for example.

Reversibility and conservativity are two independent
properties: However, although conservativity is a property
satisfied by many physical systems, we do not consider it
here, since it does not seem to pertain to the present
work.

Fredkin and Toffoli [5] went further and described a
physical model of computation, based on the reversible
laws of classical mechanics, which could implement the
Fredkin gate: the billiard-ball model of computation. The
model involves planar elastic collisions between hard balls
and fixed reflectors, governed by the laws of classical
kinetic theory; a bit of information is given by the
presence or absence of a ball at a certain time and
position. The computer “hardware” is here represented
by the spatial disposition of the reflectors, while the
“software” and input data are given through the initial
conditions of the balls. Since the balls are rigid and the
collisions are elastic, the number of balls inside the
“computer” does not vary; therefore, the model is
intrinsically conservative. The billiard-ball computer
clearly requires perfect isolation from all sources
of thermal noise, both internal (the balls and the
reflectors themselves) and external. A discussion of
the thermodynamics of computation lies beyond the
scope of this paper, but the interested reader can
find an extensive treatment in Bennett’s review [6].

Toffoli’s work on reversible computing [12] considered
the problem of realizing in a reversible way any function
�:�m 3 �

n , for arbitrary m, n � 0. He solved it by
embedding � in a bigger (i.e., augmented domain and
codomain) invertible function, constructed upon a

reversible primitive, the Toffoli gate. This gate is defined
by the function TG:� 3 3 �

3:

� x, c1, c2:� • TG� x, c1, c2� :� �¬ xc1c2 � ¬�c1c2� x, c1, c2�;

that is, it negates x if the control bits c1 , c2 are set and
otherwise leaves them unchanged. The Toffoli gate is
universal but evidently not conservative.

When embedding a function � into an invertible one,
we must provide specified values on certain input lines
(source) and disregard certain output lines (sinks). Toffoli
also distinguished garbage lines, that is, lines whose value
depends on the input data and thus cannot be used as
source lines for a new computation; temporary storage
consists instead of output lines with constant values,
thus useful for further computations. Toffoli discussed
methods for reducing the use of source and garbage lines,
culminating in the following theorem: Using as a primitive
the Toffoli gate, any function � can be realized reversibly,
possibly with temporary storage, but with no garbage.
The technique is essentially the same as that adopted by
Bennett, i.e., uncomputing intermediate results and thus
reusing temporary storage so that no garbage remains.

The very influential work of Feynman [13] considered
the limitations of computers due to quantum mechanics,
eventually discovering that no limitations apply. Feynman
wanted to build a Hamiltonian (i.e., the state evolution
operator for quantum systems) for a possible quantum
system which could function as a computer. For this
purpose he introduced two reversible primitives: the
controlled-NOT (CNOT) and the controlled-controlled-
NOT (CCNOT) gates. The latter is the Toffoli gate; the
former is again the Toffoli gate, but with just one control
bit (it is a 2-bit gate). Feynman then described the
“hardware” of the system: a collection of two-state
quantum systems (atoms). Therefore, one bit would be
represented by a single atom being in one of the two
possible states. He then described the corresponding
quantum operators for the CNOT and CCNOT gates
using the method of creation and annihilation operators
on single atoms.

The subsequent problem was to describe the operator
for a general logic unit executing finite sequences of
generic quantum operators: that is, implementing by
quantum hardware the high-level construct of iteration
(though restricted to finite loops). Nowadays this problem
belongs to the hardware compilation approaches (see
[14, 15] for example), in which one can directly compile a
high-level program into hardware, using reconfigurable
hardware devices such as field-programmable gate arrays
(FPGAs). Feynman solved the problem by augmenting
the system with a supplementary array of atoms, to keep
track of the operations performed. For a sequence of k
operations to be executed, we add k � 1 atoms (program
counter sites). The Hamiltonian contains both the forward

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

809

and the backward computation (the Hamiltonian must be
hermitian), and what drives the computation is the content
of the program atoms. The Hamiltonian is formulated
such that if all program atoms are set to 0, nothing occurs;
otherwise, there is at any time only one program atom in
state 1 (cursor), say i, indicating that the operations from
1 to i have been performed. Therefore, when the cursor is
in atom k, all of the sequence has been executed. To start
the computer it is necessary simply to set program atom 0
to state 1; the Hamiltonian then “passes” the cursor from
atom site j to site j � 1. When it reaches site k, the
Hamiltonian “kicks” the cursor back to site k � 1,
uncomputes operation k, and so on, until the cursor
returns to site 0. At this point, the Hamiltonian restarts
the formal computation. Therefore, to achieve the
execution of k operations, the cursor is set to 0 when it is
at site k (so that no further computation is performed).

There have been other models of computation using the
laws of quantum mechanics, a good survey of which can
be found in Bennett’s paper on the history of reversible
computing [16].

Our approach to logical reversibility differs from the
previous models in essentially two points: It considers a
high-level programming language instead of “low-level”
models such as Turing machines and logic gates. The
rigorous semantics of pGCL and its associated refinement
calculus help us to carry out reasoning with clarity and
formality. The second point is that our model includes
(demonic) nondeterminism and probability, which have
never been considered before. These two features are
both present in quantum computation [9], and the need
to design a quantum programming language has guided
our effort to include both forms of nondeterminism
(demonic and probabilistic) in such a language.

4. Logical reversibility

Reversible devices
Before describing the theory we need to use, we discuss
some points which will later motivate our choices.

A physically reversible device is a system whose
behavior is governed by the reversible law of physics:
for example a quantum computer [17] or the billiard-
ball computer [5]. If we look at such a system as a
dynamical system, we can identify a state space X and a
transition function (we suppose the behavior to be time-
independent) f : X 3 X, possibly partial (input/output form
part of state before/after, as explained in the next subsection).
The reversibility hypothesis implies the injectivity of f,
which in turn implies that any step of the evolution of
the system can be traced back.

Classical irreversible computations can be carried out
on a physically reversible computer, as Lecerf and Bennett
discovered, but that is not trivial to prove. The following

discussion rules out one of the most obvious solutions:
copying the input in the output. Let g: A 3 A be a
deterministic computation on some state space A:
We may define gr: A 3 A � A by

� a: A • gr.a :� �a, g.a�.

Since gr is clearly injective and computable, it seems that
with very little effort we have given a positive answer to
our question. This is not so, as the function gr is not
homogeneous, whereas the transition function of a physical
system always satisfies this property. One could recover
homogeneity by changing the domain of gr in A � A, but
in this way injectivity is lost.

In conclusion, we seek a logically reversible device
with which it is possible to reverse any single step of the
computation and which is homogeneous.

pGCL
In this section we describe pGCL, the probabilistic
guarded-command language, a programming language for
describing probabilistic algorithms of the type described
for example in the book by Motwani and Raghavan [18].
The language has also found application in the description
of quantum algorithms and in particular observation (or
measurement) [9]. Its main strengths are its rigorous
semantics [8, 19] and its associated refinement calculus,
which make it possible to carry out formal reasoning and
derivation of code [10].

A guarded-command language program is a sequence of
assignments, skip, and abort manipulated by the standard
constructors of sequential composition, conditional
selection, repetition, and nondeterministic choice [1].
Assignment is in the form x :� E, where x is a vector of
program variables and E a vector of expressions whose
evaluations always terminate with a single value. pGCL
denotes the guarded-command language extended with the
binary constructor pQ for p:[0, 1], in order to deal with
probabilism. The other basic statements and constructors
of pGCL are

● Skip, which always terminates doing nothing.
● Abort, which models divergence.
● Var, variable declaration.
● Sequential composition, R;.. S, which first executes R

and then, if R has terminated, executes S.
● Iteration, while cond do S, which executes S as long as

predicate cond holds.
● Binary conditional, R “cond” S, which executes R if

predicate cond holds and executes S otherwise.
● Nondeterministic choice, R ▫ S, which executes R or S

according to some rule inaccessible to the program
at the current level of abstraction.

● Probabilistic choice, R pQ S, which executes R with
probability p and S with probability 1 � p.

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

810

● Procedure declaration, proc P(param) :� body,
where body is a valid pGCL statement (including the
specification statement; see below) and param is the
parameter list, which may be empty. Parameters can
be declared as value, result, or value result, according
to Morgan’s notation [10]. We assume that a value
parameter is read-only, a result parameter is write-only,
and a value result parameter can be read and written.
Procedure P is invoked by simply writing its name and
filling the parameter list according to P’s declaration.

Definition 1
The state x of a program P is the array of global variables
used during the computation. That is,

x :� �v1, · · · , vn�:T1 � T2 � . . . � Tn .

The Cartesian product T1 � T2 � . . . � Tn of all of the
data types used is called the state space of program P.

The only problem that might arise is the case in which
input and output have different types: This can easily be
solved by forming a new type from their discriminated
union. Therefore, there is no distinction among the types
of initial, final, and intermediate states of a computation;
they all belong to the same state space.

For our purposes it is also useful to augment pGCL
with the specification statement:

x:� pre, post	.

The statement describes a computation which changes
variable x in such a way that, if predicate pre holds on the
initial state, termination is ensured in a state satisfying
predicate post over the initial and final states; if pre does
not hold, the computation aborts.

Semantics for pGCL can be given either relationally
[19] or in terms of expectation transformers [20]. We use
the latter approach because of its simplicity in calculations.
Expectation transformer semantics is an extension of
predicate transformer semantics. An expectation is a
[0, 1]-valued function on a state space X and may be
thought of as a “probabilistic predicate.” The set � of all
expectations is defined as

� :� X3 �0, 1	.

Expectations can be ordered using the standard pointwise
functional ordering, and we use the symbol ? to denote
it. The pair (�, ?) forms a complete lattice, with the
greatest element the constant expectation 1 and the least
element the constant expectation 0. For i, j:� we write
i
 j iff i ? j and j ? i.

Standard predicates are easily embedded in � by
identifying true with expectation 1 and false with 0. For
standard predicate q we write [q] for its embedding.

The set � of all expectation transformers is defined as

� :� �3 �.

In predicate transformer semantics, a transformer maps
post-conditions to their weakest pre-conditions. Analogously,
expectation transformer j:� represents a computation by
mapping post-expectations to their greatest pre-expectations.

Not every expectation transformer corresponds to a
computation: Only the sublinear ones do. Expectation
transformer j:� is said to be sublinear if

� a, b, c:�
�, � A, B:� • j.��aA � bB� � c� > �a� j. A�

� b� j.B�� � c,

where C denotes truncated subtraction over expectations

x � y :� � x � y� max 0.

Sublinearity implies, among other properties,
monotonicity of an expectation transformer.

Table 1 lists the expectation-transformer semantics for
pGCL (we retain the wp prefix of predicate-transformer
calculus for convenience): q:�, x: X, p � [0, 1], and
cond, pre, post are arbitrary Boolean predicates; q[x �E]
denotes the expectation obtained after replacing all free
occurrences of x in q with expression E; � denotes the
greatest lower bound; z is a subvector of state x and
denotes the variables the specification statement is allowed
to change; and x0: X denotes the initial state. In the
specification statement, expectation q must not contain
any variable in x0 . Recursion is treated in general using
the existence of fixed points in �.

Note that binary conditional R “cond” S is a special
case of probabilistic choice: It is just R [cond]Q S. This
results in some simplification of the proof of our main
theorem in the next section.

With regard to the procedures used, three cases
must be distinguished, depending on the kind of
parameter used; without loss of generality we assume
the use of only one parameter. Consider a procedure
P defined by

proc P��value�result�value result� f :T� :� body,

Table 1 Expectation-transformer semantics for pGCL.

wp.abort.q :� 0
wp.skip.q :� q

wp.(x :� E).q :� q[x �E]
wp.(R;.. S).q :� wp.R.(wp.S.q)

wp.(R “cond” S).q :� [cond] � (wp.R.q) � [¬cond] � (wp.S.q)
wp.(R ▫ S).q :� (wp.R.q) � (wp.S.q)

wp.(R pQ S).q :� p � (wp.R.q) � (1 � p) � (wp.S.q)
wp.(z:[pre, post]).q :� [pre] � ([@z • [post] ? q])[x0 � x]

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

811

where T is some data type. Then a call to P has the
following expectation-transformer semantics:

wp.�P�value f :T �E��.q :� �wp.body.q�� f �E	,

wp.�P�result f :T �v��.q :� � � f • wp.body.q�v � f 		,

wp.�P�value result f :T �v��.q :� �wp.body.q�v � f 	�� f �v	,

where E is an expression of type T and v :T; f must not
occur free in q.

In predicate-transformer semantics, termination of
program P occurs when wp.P.true � true, which translates
directly to wp.P.1
 1 in expectation-transformer
semantics.

Definition 2
Two pGCL programs R, S are equivalent (R � S) if and
only if for any q:�, wp.R.q
 wp.S.q.

This definition induces an equivalence relation over the
set of all programs. The following lemma is also useful
later (we skip the proof, since it is a simple application
of the above semantic rules).

Lemma 1
For pGCL programs A, B, and C we have

�skip;.. A� � � A;.. skip� � A,

� A ▫ B�;.. C � � A;.. C� ▫ �B;.. C�,

� A pQ B�;.. C � � A;.. C� pQ �B;.. C�.

Reversible programs
In this section we present a formal definition of
reversibility for pGCL programs and establish some
properties.

To simplify the exposition, we omit proofs which are
not useful for our purposes; the interested reader can
find them in [21].

Definition 3
A statement R is called reversible iff there exists a
statement S such that

�R;.. S� � skip;

S is called an inverse of R; clearly it is not unique.

Definition 4
A program P is called reversible iff every statement of P is
reversible.

The requirement that any statement of P and not just P
must be reversible corresponds to the requirement that
any step of the computation must be invertible. The
following example motivates this requirement: Consider

the programs R, S defined (see the next section for a
formal definition of stack, push, and pop) as

R :� �push x;.. x :� �7;.. x :� x 2�,

S :� pop x.

One can informally check that indeed (R;.. S) � skip,
while it is not true that any step of R can be inverted.

Lemma 2
Let R be a reversible program. Then there exists a
program S such that

�R;.. S� � skip.

Again, S is called an inverse of R and it is not unique.
A reversible program must necessarily terminate for all
inputs, as stated in the following lemma.

Lemma 3
Let R be a reversible program. Then wp.R.1
 1.

The converse of the previous lemma is false. Consider
the trivial program x :� 0: It does terminate, but it is
certainly not reversible.

Recall that here we consider probabilistic termination
(i.e., termination with probability 1) and not just
deterministic (absolute) termination. In Section 6 we
provide an example of this and apply our reversibility
techniques to it.

Stacks
Before turning to the main theorem of this work, we
briefly introduce a well-known data structure: the stack
data structure. The specifications for state and operations
are, for a data type D (in terms of state x0 before and
state x after),

module stack
var x:seq D •

proc push �value f :D� :� x : � x � f : x0	

proc pop �result f :D� :� x, f : � x0 � f : x	

end,

where seq denotes the sequence data type. There is no
need for initialization: Any sequence of type D will do.

The semantics is the usual: push just copies the content
of f on the top of the stack, whereas pop saves the top of
the stack in f and then clears it. The stack is of unlimited
capacity; that is, we may save as many values as we wish.

From the definitions it follows easily that the
precondition for push is true and the precondition
for pop is that x0 must not be empty.

The next lemma shows that an assignment can be
regarded as a particular sequential composition of push
and pop.

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

812

Lemma 4
For variable v :D and expression E:D we have

�push E;.. pop v� � v :� E.

Proof We consider an arbitrary expectation q over
variables x : seq D and v :D:

wp.�push E;.. pop v�.q

 semantics of sequential composition

wp.�push E�.wp.�pop v�.q

 semantics of pop

wp.�push E�.�� � f • � � x, v • � x0 � v : x	 ? q�v � f 			�� x0� x	

 logic and x: seq D

wp.�push E�.�� � f • �q�v� f 	�� x, f � tail� x0�, head� x0�		�� x0� x	

 syntactical substitution

wp.�push E�.�� � f � q� x, v � tail� x0�, head� x0�		�� x0� x	

 syntactical substitution and logic

wp.�push E�.�q� x, v � tail� x�, head� x�	�

 semantics of push

�wp.� x: � x � f : x0	�.q� x, v � tail� x�, head� x�	�� f �E	

 semantics of specification

��q� x, v� tail� x�, head� x�	�� x � f : x0	�� f �E	

 syntactical substitution

�q� x, v � tail� f : x�, head� f : x�	�� f �E	

 sequence properties

�q� x, v � x0, f 	�� f �E	

 syntactical substitution

q� x, v� x0, E	

 x0 is arbitrary

wp.�v :� E�.q

e

We immediately derive the corollary that, when applied to
program variables, push is reversible and an inverse is pop.

Corollary 1
For variable v : D, we have

�push v;.. pop v� � skip.

5. Reversibility
The significance of the following theorem is that an
arbitrary terminating pGCL computation can be
performed in a reversible manner. For any pGCL program
P there is a corresponding reversible program Pr and an
inverse P i . Since (Pr;

.

. Pi) � skip, it would seem that we
cannot access the output of Pr, thus obtaining nothing
useful. However, as in Bennett’s work [4], copying the
final state of Pr before the execution of Pi solves the
problem. In this way we would end up with the final
and the initial state of Pr (the latter because of the
execution of Pi). This new three-step reversible
program is therefore not exactly equivalent to P
but rather to P preceded by a copy program that
saves the initial state of P.

A program transformer t:pGCL 3 pGCL is a finite set of
(computable) syntactical substitution rules that, applied
to a program P, uniquely define another program Pt.
Examples of program transformers are the various
preprocessors for programming languages such as C
or C��.

Theorem 1
There exist three program transformers r, c, and i such
that for any terminating program P, Pr is an inverse of P i

and

�Pr;
.
. Pc;

.

. Pi� � �Pc;
.
. P�.

Proof The proof of the theorem relies on the
following reversible equivalent, inverse of every atomic
statement, and constructor of pGCL; they are listed in
Table 2, where v :D for some data type D, b:� (� :� {F, T})
is a Boolean variable, and c is a predicate. The variable
declaration var is not included because it does not contain
any code.

Program Pr can be constructed from program P by
simply applying to every statement of P the reversible
rules given in the previous table (of course, the rules must
be recursively applied until we arrive at an atomic pGCL
statement). Similarly, program P i can be developed from
program P by applying the inverse rules of the table to
every statement of P.

Program Pc is just a “copy” program that copies the state
x : X of P into a stack SC: stack.X. If x � {v1 , v2 , . . . , vn},
then Pc is

push v1;
.
. push v2;

.

. . . . ;.. push vn�1;
.
. push vn .

By Corollary 1, Pc is reversible.
The strategy is the following: Pr behaves like P, except

that it saves its history in the stack S:stack.(X � �). The
copy program Pc copies the final state xf of Pr into stack
SC. Finally P i “undoes” the computation and takes
variables x, b, S back to their original value (i.e., before

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

813

the beginning of Pr); the output is encoded in the state xf

saved by Pc in the stack SC.
The execution of (Pc;

.

. P) therefore has the same effect
as (Pr;

.

. Pc;
.
. Pi), except that x and head(SC) are swapped.

Adjustments can be made by executing swap(head(SC), x)
after either (Pr;

.

. Pc;
.
. Pi) or (Pc;

.

. P). Note that swap is
reversible and self-inverse.

The first step of the proof is to show that every
reversible atomic statement and every reversible
constructor is, with regard to the previous definition,
really reversible.

For skip the verification is immediate. For the
assignment v :� E, we have to show that

�push v;.. v :� E;.. pop v� � skip.

We reason as follows:

wp.�push v;.. v :� E;.. pop v�.q

 sequential composition semantics

wp.�push v�.wp.�v :� E�.wp.�pop v�.q

 pop semantics

wp.�push v�.wp.�v :� E�.�q� x, v�tail� x�, head� x�	�

 assignment semantics

wp.�push v�.�q� x, v�tail� x�, head� x�	��v�E	

 logic

wp.�push v�.�q� x, v�tail� x�, head� x�	�

 see proof of Lemma 4

q

The proof for the constructors is by induction: The
hypothesis is to have two reversible statements Rr, Sr

(and their inverse R i , S i), and we have to prove that
the six reversible constructors will still generate
reversible statements.

For sequential composition we have to show that

�Rr;
.
. Sr;

.

. Si;
.
. Ri� � skip.

We simplify the LHS:

wp.�Rr;
.
. Sr;

.

. Si;
.
. Ri�.q

 semantics

wp.�Rr�.wp.�Sr�.wp.�Si�.wp.�Ri�.q

 associativity

Table 2 Basis for proof of Theorem 1.

pGCL atomic statement S Reversible statement Sr Inverse statement Si

v :� e push v ;.. v :� e pop v

skip skip skip

pGCL constructor C Reversible constructor Cr Inverse constructor Ci

R;.. S Rr;
.
. Sr Si;

.

. Ri

while c do S od push b;.. push F;.. pop b;..
while c do while b do

Sr;
.
. push T Si;

.

. pop b
od od;..

pop b

R “c” S push b;.. pop b;..
(Rr;

.

. push T) “c” (Sr;
.
. push F) (Ri “b” Si);

.

.

pop b

R ▫ S push b;.. pop b;..
(Rr;

.

. push T) ▫ (Sr;
.
. push F) (Ri “b” Si);

.

.

pop b

R pQ S push b;.. pop b;..
(Rr;

.

. push T) pQ (Sr;
.
. push F) (Ri “b” Si);

.

.

pop b
proc Q(param) :� body proc Qr(param) :� bodyr proc Qi(param) :� bodyi

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

814

wp.�Rr�.�wp.�Sr�.wp.�Si��.wp.�Ri�.q

 induction hypothesis on Sr

wp.�Rr).wp.(Ri�.q

 induction hypothesis on Rr

q

Now consider the probabilistic combinator pQ. Let Qr, Qi

be the programs

Qr :� �push b;..
�Rr;

.

. push T) Qp �Sr;
.
. push F�

�
Qi :� �

pop b;..
(Ri “b” Si);

.

.

pop b
�

We show that (Qr;
.
. Qi) � skip:

Qr;
.
. Qi

� Lemma 1

push b;.. �Rr;
.
. push T;.. Qi� pQ �Sr ;

.

. push F;.. Qi�

Next, we develop the LHS of pQ:

Rr;
.
. push T;.. pop b;.. �Ri “b” Si�;

.

. pop b

� associativity

Rr;
.
. �push T;.. pop b�;.. �Ri “b” Si�;

.

. pop b

� Lemma 4

Rr;
.
. b :� T;.. �Ri “b” Si�;

.

. pop b

� associativity

Rr;
.
. �b :� T;.. �Ri “b” Si��;

.

. pop b

� conditional selection

Rr;
.
. Ri;

.

. pop b

� induction hypothesis

skip;.. pop b

� programming law

pop b

A similar calculation of the RHS of pQ gives the same
result; therefore,

Qr;
.
. Qi

�

push b;.. �pop b pQ pop b�

� programming law

push b;.. pop b

� Corollary 1

skip

The proof for the nondeterministic combinator is
almost identical to the previous one, so we omit it. The
conditional selection is a special case of probabilistic
choice, and it does not require further attention. The
proof for the iteration construct is rather long and
technical, but it can be found in [21].

For the procedure definition, we prove only the most
general case of parameters, value result. Consider the
procedure Q defined by

proc Q�value result f :T� :� body.

We must show that, for variable a:T,

Qr�a�;.. Qi�a� � skip.

We reason as follows:

wp.�Qr�a�;.. Qi�a��.q

 sequential composition

wp.Qr�a�.�wp.Qi�a�.q�

 definition of Q i and substitution

wp.Qr�a�.��wp.�bodyi�.q�a � f 	�� f �a	�

 definition of Qr and substitution

wp.�bodyr�.��wp.�bodyi�.q�a � f 	�� f �a	��a�g)� g�a	

 logic

�wp.�bodyr�.�wp.�bodyi�.q�a� f 	��� f �g)

 induction hypothesis

�q�a� f 	�� f �g	

 logic

q�a�g	

 g is arbitrary

q

We can see from the table that the reversible
constructors for conditional, probabilistic, and
nondeterministic choice are very similar, whereas the
inverse constructors are the same for all three. In fact,
with respect to reversibility, it does not matter how the
selection of two possible ways has been carried out:
It only matters which way has been followed.

e

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

815

6. Example
In this section we illustrate the application of our
reversible and inverse techniques to a program which
terminates only with probability 1 (not absolutely).
Consider the following program P:

P :� �
var c:� •

c :� T;..
while c do

�skip) 1/2Q (c :� F�

od
� .

Elementary probabilistic reasoning shows that wp.P.1
 1.
Using the reversible rules of the table, we develop
program Pr:

Pr

� definition of Pr

�
var c:� •

c :� T;..
while c do

�skip) 1/2Q (c :� F�

od
�

r

� sequential composition and local block

var c:� •

�c :� T�r;
.
.

�
while c do

�skip) 1/2Q (c :� F�

od �
r

� assignment and loop

var c, b:� •

push c;..
c :� T;..
push b;.. push F;..
while c do

��skip) 1/2Q (c :� F��r;
.
.

push T
od

� probabilistic choice

var c, b:� •

push c;..
c :� T;..
push b;.. push F;..
while c do

��skip;.. push T) 1/2Q ((c :� F�r;
.
. push F�);..

push T
od

� assignment

var c, b:� •

push c;..
c :� T;..
push b;.. push F;..
while c do

��skip;.. push T� 1/ 2 � �push c;.. c :� F;.. push F��;..
push T

od

Analogously, program P i , an inverse of Pr, is developed by
applying the inverse rules of the table,

Pi � �
var c, b:� •

pop b;..
while b do

pop b;..
(skip) “b” �pop c�;..
pop b;.. pop b

od

pop b;.. pop c

� ,

and we see that (Pr;
.
. Pi) � skip.

7. Conclusions
We have developed a set of rules that, given a pGCL
program P, enables us to write another program Pr

that computes the same output as P, but in a logically
reversible manner. For this purpose, Pr saves its “history”
on a stack during a forward computation; the stack will be
cleaned by a backward computation that takes Pr to its
initial state. The output of the forward computation is
copied onto another stack in order to be available at the
end of the process.

The contributions of this work are primarily two:
With respect to previous works in logical reversibility,
we consider a high-level programming language, pGCL,
instead of “low-level” models such as Turing machines
and logic gates. pGCL enjoys a rigorous semantics and an
associated refinement calculus, which facilitate reasoning
about programs. The second contribution is the presence
in our model of (demonic) nondeterminism and
probability, which have not previously been considered.

For future work, consideration should be given to
examining the uniqueness of the reversible and inverse
statements Sr and S i: Our argument just shows that it is
possible to find one. Furthermore, consideration should
be given to simplifying the proof for the reversible loop
constructor by making use of further wp laws.

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

816

Acknowledgments
The author thanks his supervisor, Dr. Jeff Sanders, for
suggestions and for reading various drafts of this paper.
This work was supported by a scholarship from the
Engineering and Physical Sciences Research Council (UK)
and by a scholarship from Università degli Studi di
Perugia (Italy).

References
1. E. W. Dijkstra, “Guarded Commands, Nondeterminacy

and the Formal Derivation of Programs,” Commun. ACM
18, 453– 457 (1975).

2. R. Landauer, “Irreversibility and Heat Generation in the
Computing Process,” IBM J. Res. & Dev. 5, 183–191
(1961).

3. Yves Lecerf, “Machines de Turing Réversibles. Récursive
Insolubilité en n�� de l’Équation u � 	nu, où 	 est un
Isomorphisme de Codes,” Comptes Rendus de l’Académie
Française des Sciences 257, 2597–2600 (1963).

4. Charles H. Bennett, “Logical Reversibility of
Computation,” IBM J. Res. & Dev. 17, 525–532 (1973).

5. Edward Fredkin and Tommaso Toffoli, “Conservative
Logic,” Int. J. Theor. Phys. 21, 219 –253 (1981).

6. Charles H. Bennett, “The Thermodynamics of
Computation—A Review,” IBM J. Res. & Dev. 21,
905–940 (1981).

7. Peter W. Shor, “Algorithms for Quantum Computation:
Discrete Log and Factoring,” Proceedings of the 35th
Annual Symposium on the Foundations of Computer
Science, 1994, pp. 20 –22.

8. Carroll Morgan and Annabelle McIver, “pGCL: Formal
Reasoning for Random Algorithms,” South African
Computer J. 22, 14 –27 (1999).

9. Jeff W. Sanders and Paolo Zuliani, “Quantum
Programming,” Math. Program Constr. 1837, 80 –99
(2000).

10. Carroll Morgan, Programming from Specifications,
Prentice-Hall International, New York, 1994.

11. A. Barenco, C. H. Bennett, C. H. Cleve, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
“Elementary Gates for Quantum Computation,” Phys.
Rev. A 52, 3457–3467 (1995).

12. Tommaso Toffoli, “Reversible Computing,” Automata,
Languages, and Programming, J. de Bakker, Ed., Springer-
Verlag, New York, 1980.

13. Richard P. Feynman, “Quantum Mechanical Computers,”
Found. Phys. 16, 507–531 (1986).

14. J. Bowen, H. Jifeng, and I. Page, “Hardware
Compilation,” Towards Verified Systems, J. Bowen, Ed.,
Elsevier, New York, 1994, pp. 193–207.

15. Ian Page, “Constructing Hardware–Software Systems from
a Single Description,” J. VLSI Signal Proc. 12, 87–107
(1996).

16. Charles H. Bennett, “Notes on the History of Reversible
Computation,” IBM J. Res. & Dev. 32, 16 –23 (1988).

17. David Deutsch, “Quantum Theory, the Church–Turing
Principle and the Universal Quantum Computer,” Proc.
Roy. Soc. Lond. A 400, 97–117 (1985).

18. Rajeev Motwani and Prabhakar Raghavan, Randomized
Algorithms, Cambridge University Press, Cambridge,
England, 1995.

19. H. Jifeng, A. McIver, and K. Seidel, “Probabilistic Models
for the Guarded Command Language,” Sci. Computer
Program. 28, 171–192 (1997).

20. C. Morgan, A. McIver, and K. Seidel, “Probabilistic
Predicate Transformers,” ACM Trans. Program. Lang. &
Syst. 18, 325–353 (1996).

21. Paolo Zuliani, “Logical Reversibility,” Technical
Report TR-11-00, Oxford University Computing
Laboratory, Oxford, England, 2000; available at
http://www.comlab.ox.ac.uk.

Received November 3, 2000; accepted for publication
May 1, 2001

IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001 P. ZULIANI

817

Paolo Zuliani Oxford University Computing Laboratory,
OX1 3QD, Oxford, United Kingdom (pz@comlab.ox.ac.uk).
After receiving a Laurea Degree in computer science in 1997
from Università degli Studi di Milano, Italy, Mr. Zuliani
began graduate studies at Oxford University. He is now
completing his work toward a Ph.D. degree as a member
of the Programming Research Group in the Computing
Laboratory under the supervision of Dr. Jeff Sanders.
His current research interests are quantum computation
and formal methods.

P. ZULIANI IBM J. RES. & DEV. VOL. 45 NO. 6 NOVEMBER 2001

818

