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DELPHI: A
pattern-based
method for
detecting
sequence
similarity

We describe DELPHI, a new computational
tool for identifying sequence similarity
between a query sequence and a database
of proteins. Use is made of a set of patterns
obtained from the underlying database through
a one-time computation. The patterns are
subsequently matched against every query
sequence presented to the system. A pattern
matched by a region of the query pinpoints a
potential local similarity between that region
and all of the database sequences also
matching that pattern. In a final step, all such
local similarities are examined more closely by
aligning and scoring the corresponding query
and database regions. By prudently choosing
a set of patterns, the method can be used
to discover weak but biologically important
similarities. We provide a number of examples
using both classified and unclassified proteins
that corroborate this claim.

1. Introduction
The first task following the sequencing of a new gene is
to identify the function of its related protein. Computer-

assisted annotation techniques attempt to achieve this goal
by exploiting the following biological fact: If two peptide
stretches exhibit sufficient similarity at the sequence
level, they probably are biologically related [1– 4]. More
specifically, when presented with a query sequence Q
(representing a protein) and a set D of well-characterized
proteins, such techniques look for all regions of Q which
are similar to regions of sequences in D. Substantial
homologies are then used for transferring information
from the sequences of D to the query sequence Q.

The first approaches [5, 6] used for realizing this
task were based on a technique known as dynamic
programming. Unfortunately, the computational
requirements of this method quickly render it impractical,
especially for searching large databases (as is the current
norm). The problem is, roughly speaking, that dynamic
programming variants spend a good part of their time
computing homologies which eventually turn out to be
unimportant. In an effort to work around this issue, a
number of algorithms have been proposed which focus
on discovering only extensive local similarities; the best
known are FASTA [7, 8] and BLAST [9]. In the majority
of the cases, increased performance is achieved by first
looking for ungapped homologies, i.e., similarities due
exclusively to mutations and not insertions or deletions.
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The rationale behind this approach is that in any gapped
substantial homology between two peptide strings, chances
are that there exists at least a pair of substrings whose
match contains no gaps. Locating these substrings (the
ungapped homology) can then be used as the first step
toward obtaining the entire (gapped) homology.

Identifying the similar regions between the query and
the database sequences is, however, only the first (and
computationally most demanding) part of the process. The
second part (the one that is of interest to biologists) is the
evaluation of these similarities, i.e., deciding whether they
are substantial enough to sustain the inferred relation
(functional, structural, or otherwise) between the query
and the corresponding database sequence(s). Such
evaluations are usually performed by combining biological
information and statistical reasoning. Typically, similarity
is quantified as a score computed for every pair of related
regions. Computation of this score involves the use of gap
costs (for gapped alignments) and appropriate mutation
matrices representing the evolutionary probability of any
given amino acid changing into another (e.g., the PAM
[10] and BLOSUM [11] matrices). Then, the statistical
importance of this cost is evaluated by computing the
probability (under some statistical model) that such a
score could arise purely by chance [12, 13]. Depending on
the statistical model used, this probability can depend
on a number of factors such as the length of the query
sequence and the size of the underlying database.

Existing statistical frameworks are memoryless;
whenever a homology is found between a region A of
the query sequence and a region B of some database
sequence, the similarity is evaluated without taking into
account that A might also be similar to several other
database regions. So, although seen in isolation the
homology between A and B might seem statistically
insignificant, this is certainly not the case when the overall
objective is considered. In this work, we try to address
this issue by introducing memory into our calculations.

Memory is introduced by identifying groups of related
oligopeptides, each of which appears unexpectedly many
times in the underlying database. Each such group is
represented by an appropriate regular expression,
designated as a pattern (to be described precisely in
the following section). Whenever a query sequence is
presented to the system, we locate all of the query regions
matching one or more patterns. Every match acts as a
hypothesis of similarity between the query region and all
of the database regions also matching a specific pattern.
In a final step, all of these hypotheses are further
examined by aligning and scoring the areas around the
corresponding similarity regions. The highest-scoring
among them are then reported to the user.

The success of the method we propose here depends
crucially on our ability to identify a set of patterns

characteristic of the underlying database. Previously there
were no computational tools powerful enough to handle
the task of pattern discovery in datasets of the size of
existing protein databases. As a result, analogous efforts
[14 –16] were restricted to patterns characterizing groups
of proteins already known to be related. Here, however,
we use TEIRESIAS, a new pattern-discovery algorithm
[17, 18] which is suitable for use on large datasets. We are
thus able to detect not only family-specific patterns but
also patterns that appear to cross family boundaries.

In the sections that follow, we describe the precise
methodology used to obtain the patterns used, and give
examples of the power of our new tool, designated as
DELPHI, by applying the tool to both annotated and
unannotated sequences. We also discuss how our approach
can lead to extremely fast search times. The database used
as a test bed in this work is SwissProt [19] Release 34, but
the methodology we propose can be used on any protein
database.

2. Motivation and definitions
The key concept used is that of a pattern. Patterns are
regular expressions describing families of polypeptides. As
we explain later, the polypeptide family represented by a
single pattern is expected to contain stretches of related
amino acids (in which the nature of the relationship
may be structural, functional, or evolutionary).

More specifically, given the alphabet S of amino acids,
we define a pattern P as a regular expression of the form

S ~S ø $‘.’%!* S,

where ‘.’ (referred to as the don’t-care character) denotes
a position that can be occupied by an arbitrary residue.
Since it is a regular expression, every pattern P defines a
language G(P) of polypeptides consisting of all the strings
that can be obtained from P by substituting an arbitrary
residue from S for each don’t-care character. For the
pattern “A.CHPE,” for example, the following
polypeptides are all elements of G(“A.CHPE”):

ADCHFFE ALCHESE AGCHADE.

Given a pattern P and a sequence S [ S*, we say that
P matches S if S contains a substring (a continuous stretch
of residues) which is a member of G(P). Furthermore, if
D 5 {S1 , S2 , . . . , Sn} # S*, we say that a given pattern
P has support K (1 # K # n) within D if P exactly
matches K of the sequences in D. We also define the offset
list of P with respect to D (or simply the offset list of P,
when D is unambiguously implied) as the set of pairs

LD~P! 5 {~i, j! u P matches the substring of
Si starting at offset j}.
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As an example, consider the pattern P 5 “APDFE”
and the set of sequences

D 5 $S1 5 GHASEDFER, S2 5 LKERAHPDFE,

S3 5 LKMNAKLD}.

In this set, the pattern P has support 2 (the boldface
substrings indicate the sequence regions matching P),
and its offset list is LD(P) 5 {(1, 3), (2, 5)}.

A pattern P is regarded as being maximal with respect
to D, if for every other pattern P9 that is more specific
than P (i.e., P9 can be obtained from P either by
substituting characters from S for don’t-cares or/and by
extending P to the left or/and right) has an offset list
strictly smaller than the offset list of P, i.e., uLD(P)u .

uLD(P9)u. In the context of pattern-discovery algorithms, it
is always desirable to look exclusively for maximal patterns
in order to reduce the redundancy of the output.

Given a pattern P, the backbone of P is defined as a
string over the alphabet {1, 0} obtained from P by turning
every residue of P into the character “1” and every don’t-
care into the character “0.” For example, the backbone of
the pattern P 5 “APDFE” introduced above is the string
B 5 “100111.” Backbones partition the set of patterns
into equivalent classes, with each class containing all of
the patterns sharing the same backbone. A pattern with
backbone B is designated as a B-pattern.

Another useful concept is that of the density of a
pattern. Roughly speaking, the density describes the
minimum amount of homology between any two members
of G(P) and is defined by two integers L and W (L # W):
A pattern P has an ^L, W & density if every substring of P
that starts and ends with an amino acid and has a length
of at least W contains L or more residues (notice that, by
definition, an ^L, W & pattern has at least L residues). The
integers L and W are parameters of our method, and their
values control the amount of similarity allowed in the
searches performed.1 At the level of our pattern-discovery
algorithm, the integers L and W define a structural
restriction on the patterns to search for. More specifically,
TEIRESIAS takes as input a set D of n sequences, and
three integer parameters L, W, and K (where K # n).
The algorithm produces as output the complete set of all
of the maximal ^L, W & patterns that appear in at least K
of the sequences in the set D.

Given the above definitions, we now provide a first,
informal description of our approach. It is composed of
two distinct phases: information gathering and searching:

● Information gathering: First, before any search is
performed, the underlying database D is mined. During
this step all of the significant ^L, W & patterns are

gathered, and each such pattern P is associated with
its offset list LD(P) (the particular criterion used for
deciding whether a pattern is significant is detailed in
the next section).

● Searching: The second step is the actual search. Given a
query sequence Q, we identify all of the patterns P (among
those collected in the first phase of the process) which
match the sequence Q. For every such P, we pair the
region(s) of Q which match P with the corresponding
regions of all database sequences that also match P
[these regions are easily accessible through the offset list
LD(P)]. Finally, the paired regions are extended and
aligned in both directions and scored by the use of a
(user-defined) mutation matrix, and the highest-scoring
matches are reported along with implied alignments.

It is worth pointing out here that the information-
gathering phase is a one-time computation over D. The
results obtained are stored in a file and used every time
a search session is performed over the database D. So
although it is a time-consuming process (it can take
several hours, depending on the size of D), it has to be
performed only once.

The usefulness of patterns in modeling biologically
important protein regions is based on the fact that such
regions are much less tolerant of mutations than regions
of a subordinate role. It is then reasonable to expect
that biologically related polypeptides can be identified
by discovering a) conserved positions in their primary
structure and b) an increased degree of reusability. In
our terminology, these properties correspond to patterns
with unexpectedly high support.

3. Methods
As already mentioned, the methodology we propose
comprises two phases: information gathering and
searching. The first of these is the more computationally
intense but has to be performed only once for every
database D of interest. It is also the more important,
because the success of the subsequent homology searches
over D depend crucially on the quality of the pattern set
collected during information gathering. In this section we
describe the implementation of both phases. To facilitate
the description, we discuss the two phases in reverse
order, starting with the search phase.

Searching
During this phase, query proteins Q are provided to the
system, and database sequences S [ D similar to Q are
identified and reported back to the user. The searching
phase utilizes a set P of patterns obtained (as explained
later) by mining the input database D. For the purposes of
this discussion, it is sufficient to assume that P is a set of
^L, W & patterns of the form described at the beginning of

1 A more detailed discussion of these parameters as well as the TEIRESIAS
algorithm can be found in [17, 18].
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Section 2. Each pattern P [ P is accompanied by its
offset list LD(P) and has support at least Kmin in D. The
numbers L, W, and Kmin are parameters of our method,
and the way in which they are set is described next.

Pattern matching
Initially, when a query sequence Q is provided to the
system, all P [ P that match Q are located. This can
be done very rapidly by using a hashing variation of a
technique presented in [20]. More specifically, for every

position within Q we generate W hash values, one for
every substring of length 2, 3, . . . , (W 1 1) starting at
that position. For every such substring, the corresponding
hash value depends only on the first and last characters
of the substring as well as on the number of residues
between those two characters. Figure 1 provides an
example of the process for a given query sequence.

The hash entry corresponding to a particular value h
contains all of the offsets p of the query sequence Q such
that a substring (of length at most W 1 1) starting at p
hashes to the value h. For example, Figure 2 shows a
snapshot of the hash table generated for a particular
query sequence.

To check whether a pattern P [ P matches Q, we use
an array of counters C[1PuQu] of size equal to the length
of Q. Initially, every entry of the array is set to 0.
Starting at offset 1 in P, we locate all offsets j within
P corresponding to a residue, excluding the offset
corresponding to the last residue. For every such j, let R
be the shortest substring of P starting at j and containing
exactly two residues. Let OL denote the list of offsets in
Q pointed to by the hash table entry corresponding to R.
If OL is not empty, then for every offset p [ OL the
counter C[ p 2 j 1 1] is incremented by one. If the
pattern P contains exactly n residues, then at the end of
this process the counter C[i] will have the value (n 2 1)
if and only if Q matches P at offset i. (An advantage of
this matching technique is that it typically requires time
which is sublinear to the size of the query sequence Q and
depends only on the number of residues in the pattern P.)

Chaining and scoring
Once a pattern P [ P is found to match a substring of Q
starting at offset i, we must correlate that substring of Q
with all of the database regions also matching P. This
is easily done by scanning the offset list LD(P), which
contains exactly those regions. More specifically, each
entry ( j, k) [ LD(P) indicates that the substring starting
at offset k of the jth database sequence Sj is an element
of G(P). The local similarity between the query sequence
Q and the database sequence Sj is then registered as
a quadruplet (i, j, k, l ), called a segment, which is
associated with Sj . The number l 5 uPu is the length
of the local similarity.

Sometimes two distinct patterns P and P9 matching both
Q and a database sequence Sj correspond to the same
local similarity between Q and Sj . An example of such
a situation is depicted in Figure 3. In such cases, the
individual segments corresponding to the two patterns
must be chained into one. In particular, two segments
(i, j, k, l ) and (i9, j, k9, l9) associated with Sj are
designated as compatible iff k # k9, k 1 l 1 w len . k9,
and k9 2 k 5 i9 2 i, where w len is an integer parameter
(defined by the user) that allows for the chaining of

Figure 1

Hash values generated for the W � 4 substrings starting at position 6
of the sequence Q. The hash value used for a substring s is

H(s)�[[av( first_char)–av(‘A’)]�[av(last_char)–av(‘A’)]*26]*W+gap,

where av(c) is the ASCII value of the character c, first_char and
last_char are, respectively, the first and last characters of s, and gap
is the number of residues between the first and last characters of s.
Notice that because of the < L, W> density restriction, gap is always
less than W.

KL (first_char = K, last_char = L, gap = 0) 1,184

KLP (first_char = K, last_char = P, gap = 1) 1,601

KLPN (first_char = K, last_char = N, gap = 2) 1,394

KLPNM (first_char = K, last_char = M, gap = 3) 1,291

Substring starting at position 6 Hash value

Q = AFGHIKLPNMKAMGH

W = 4, Position = 6

Figure 2

Snapshot of the hash table generated for the sequence Q �
AFGHIKLPNMKAMGH. Instead of using actual numeric hash values
to label the table entries, we use a pattern describing all of the strings
that hash to a particular hash value. Each hash entry points to a list of
offsets. Every offset in that list marks the beginning of a substring in
Q which hashes to the relevant hash entry.

Q � AFGHIKLPNMKAMGH
W � 4

AF

GH

G.I

A..H

1

3 14
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1 12

...

..
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segments which do not intersect as long as one begins
no more than w len positions after the end of the other.
The segment resulting from chaining (i, j, k, l ) and
(i9, j, k9, l9) together is [i, j, k, max(l, k9 2 k 1 l9)].

Chaining of compatible segments takes place every
time a new segment becomes associated with a database
sequence Sj , as the result of locating a pattern P [ P

matched by both Q and Sj . If there are segments already
associated with Sj which are compatible with the newly
arriving segment, the relevant pair comprising the new
segment and the existing segment is discarded and replaced
by the segment resulting from their chaining.

Having identified all of the local similarities between Q
and the database sequences, we are left with the task of
evaluating these similarities. This is done by assigning
a score (using a user-defined scoring matrix) to every
database sequence Sj that is associated with at least one
segment. Several options are available for the scoring
function. One approach is to score each segment of Sj

individually and assign to Sj the highest of these scores.
Scoring a segment (i, j, k, l ) can usually be done as
follows:

● No gaps allowed: In this case the score is computed from
the ungapped alignment implied by the segment, namely
the alignment of the regions Q[i, i 1 l 2 1] of the
query and Sj[k, k 1 l 2 1] of the sequence.
Furthermore, the user is given the option to extend the
alignment “around” the segment by setting the variable
extend; if this value is greater than 0, the score is
computed from the ungapped alignment of the
regions Q[i 2 extend, i 1 l 2 1 1 extend] and
Sj[k 2 extend, k 1 l 2 1 1 extend].

● Gaps allowed: This option is available only when
extend . 0; it permits a finer scoring of the area
around the segment by allowing for gaps in that area.

Other scoring options are also possible, taking into
account the relative order of the segments associated with
the database sequence Sj currently being scored. One
possibility, after scoring each segment individually as
described above, is to construct a directed, weighted
graph. The vertices of this graph are the segments
associated with Sj , and there is a directed line between the
segments (i, j, k, l ) and (i9, j, k9, l9) if i d i9 and k d k9.
Every vertex is assigned a weight equal to the score of
the corresponding segment, while every edge is weighted
on the basis of a) the proximity of the two segments
[i.e., the value of (i9 2 i 2 l )] and b) the regularity of
the displacement between the two segments [i.e., how
different (i9 2 i) is from (k9 2 k)]. The score of a path
within this graph is the sum of the weights of all of the
vertices and edges of the path. The path with the maximal
score is then computed, and that score is assigned to Sj .

Information gathering
During this phase TEIRESIAS is employed in order to
construct the set P of all of the significant ^L, W & patterns
found in the database D under consideration. This is, in
essence, a data-mining step in which D is exploited with
the intention of discovering hidden relationships among
the sequences of D. The approach involves focusing
on those relationships which are “unexpected” and by
virtue of that quality are also (it is hoped) of biological
relevance. For our purposes, the significance of a pattern
is described by its support within D. More specifically, we
seek to define a number Kmin (the minimum support) such
that every pattern with support at least Kmin can be shown
to be statistically important. All such patterns (along with
a few exceptions which do not abide by the minimum
support requirement) are included in the set P, the
input to the search phase.

As is perhaps evident by now, the quality of the results
obtained in the search phase of our method depends
crucially on the outcome of the information-gathering
phase, which, in turn, depends on the selection of the
parameters L, W, and Kmin. Setting the values of these
parameters involves the consideration of a number of
sometimes conflicting and interconnected factors. The
ratio L/W, for example, describes the amount of homology
allowed, during the search phase, between a query
sequence and the proteins in D. A small value of L/W will
permit the detection of weak similarities. Since several
value pairs (L, W) lead to the same ratio L/W, what

Figure 3

Each of the segments (i, j, k, l ) and (i', j, k', l' ) indicates a local
similarity between the query sequence Q and the database sequence
Sj. In the example shown here, the two segments are compatible, and
they can be chained together into the single segment (i, j, k, k'�k�l' ).

i'

k
k'

Q

Q

Regions in Q and Sj matching a pattern P; (i, j, k, l ) is the
corresponding segment.

Regions in Q and Sj matching a pattern P'; (i', j, k', l' ) is the
corresponding segment.

Result of chaining together the above two segments.

i

i

k

l
l'

k'�k�l'

Sj

Sj
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should the exact settings for L and W be? Opting for a
large value of L usually results in a long running time for
the information-gathering phase (unless L/W is close to 1).
Furthermore, selecting a large L ignores weak patterns
with only a few amino acids, which are among the ones
that are of interest (i.e., are usually missed by existing
similarity-searching tools).

To address these points in the context of our test
database, SwissProt (Release 34), we first cleaned up the
database (this process is necessary for the removal of
highly homologous sequences; details are given later in
this section) and then applied the following procedure
(from now on the cleaned-up version of SwissProt will be
referred to as CleanSP). First we computed the support
within CleanSP of every ^L, W & pattern with exactly L
residues (for the values of L, W shown in Figure 4).

The results were tabulated by creating one row for
each possible backbone: The ith column of the row
corresponding to a given backbone B indicates the number
of patterns (of that backbone structure) with support i
within CleanSP. Then random distributions were obtained
by following exactly the same approach for 2000 randomly
shuffled versions of CleanSP (each such version was
obtained by randomly permuting the amino acids within
every sequence of CleanSP). In this case, the row for a
given backbone B was obtained by averaging the rows
corresponding to B in all 2000 tables. As a result, the ith
column gives a relatively accurate estimate of the mean
number of patterns with backbone B that appear in
exactly i sequences within a random database having
the sequence/residue composition of CleanSP. Figure 4
shows CleanSP results of selected backbones against the

Figure 4

Distribution of patterns with given backbone structures in CleanSP ( ) and comparison with the random distribution (�) of the same backbones. A
point (X, Y ) in a curve indicates that there are Y patterns (of the given backbone structure) matched by X distinct sequences. From [21], reproduced
with permission.
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distribution of the means for the same backbones.
Although the results presented involve particular
backbones, there is no qualitative change if other
backbones are used.

As Figure 4 implies, we begin to distinguish the
compositional bias (in terms of patterns) in CleanSP
versus a random database only when the value of L
becomes 5 or larger. In general, the value of L depends
on the size of the underlying database D: The larger the
database, the higher this value should be. The results
presented below for SwissProt were obtained using the
value L 5 6. For W we chose the value 15, so that the
ratio L/W (corresponding roughly to the minimum allowed
homology) is 40%.

Having set the values of L and W, we must next decide
what the minimum support Kmin should be. We focus only
on patterns with exactly L residues, since every larger
pattern contains at least one subpattern with exactly that
many amino acids. One approach is to select Kmin so that
the probability of a pattern appearing in Kmin or more
distinct sequences is small. Similar significance criteria
have previously been proposed and used [22–24]. A closer
look at Figure 4(d), however, reveals that this approach
might be too strict. In particular, consider a support level
of K 5 15. The random distribution indicates that one
expects, by chance alone, one to two patterns with support
15. So, according to the aforementioned criterion, a
pattern with support 15 within SwissProt would be deemed
not important. However, the two distributions have a
striking difference at that support level. In particular,
while the mean of the random distribution at K 5 15
has a value of about 1.5, within the SwissProt database
there are about 180 patterns with support 15.

Thus, it seems that if one considers the probability of
a pattern in isolation, the result will be to discard many
patterns which, according to the above distribution, are
above the noise level. This observation prompts us to use
a different criterion for significance. In our approach,
instead of looking at individual patterns, we consider all
of the patterns of a particular backbone structure. More
specifically, for any given backbone B and an underlying
database D, let NB,K be the number of patterns with
backbone B which have support K within D, and let XB,K

be the random variable (defined over the space of all
shuffled versions of D) corresponding to NB,K . The
minimum support Kmin is then the smallest number K
for which the following inequality is true:

max
B

$Pr@XB,K $ NB,K#% # threshold, (1)

where threshold is a user-defined probability imposing a
level of confidence on the minimum support Kmin coming
out of the above inequality. A smaller threshold leads to a

larger value for Kmin and to a greater statistical importance
for the patterns that will eventually be selected.

Cleaning up the database
Several databases contain groups of highly homologous
sequences (e.g., the hemoglobin alpha-chain proteins).
Such groups not only slow down the pattern-discovery
process by introducing a huge number of patterns [18], but
can also spuriously elevate the significance of a pattern;
this occurs for patterns that appear many times within
a family of highly homologous sequences and only
occasionally outside it.

To address this situation, a database D must be
“cleaned up” before the pattern-discovery process begins.
The cleaning-up process involves identifying and grouping
together highly similar protein sequences. Two sequences
are placed in the same group if, after being optimally
aligned, the shorter one has X% of its positions (for the
results in this work we used X 5 50) identical to that of
the longer sequence. The resulting groups are designated
as redundant groups. The set D9 on which the information-
gathering process will operate comprises a) those
sequences in D which were not found to be sufficiently
homologous to other proteins and b) the longest sequence
from each of the redundant groups. Finally, each of the
redundant groups is separately processed by TEIRESIAS,
collecting patterns until all of the sequences of the group
match at least one of these patterns. This approach
guarantees that even groups representing multidomain
proteins are treated correctly, by generating at least one
pattern per domain.

It is worth pointing out that patterns resulting from
the processing of the redundant groups are usually quite
dense (the number of residues is much larger than the
number of don’t-care characters) and long. This is a
consequence of the high homology of the group
sequences. For such patterns, we allow approximate
matches during the search phase.

Low-complexity regions
It is well known [25] that many proteins contain regions of
low complexity, characterized by tandem repeats and/or
overrepresentation of particular amino acids. The
existence of such proteins within a database creates a
number of problems during the process of similarity
searching, because they can give rise to local homologies
which, although statistically important, can be attributed
to the compositional bias of the query and/or the database
sequences.

Several methodologies have been proposed for
identifying low-complexity regions [26, 27]. Either of them
can be used with our approach as well. One should be
aware, however, that an extensive masking of such regions
can sometimes lead to the loss of useful information. Such
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a situation is exemplified by the pattern “ALNAAP AAP A.”
Although it is of low complexity, this pattern forms a
highly specific signature for proteins involved in
chemotaxis.

Because of examples such as this, we have adopted in
this work a rather moderate approach in masking low-
complexity regions. At the level of information gathering,
this approach consists of a) not considering streaks of the
same amino acid of length L or more and b) disregarding,
when computing the offset list of a pattern, matches due
to overlapping substrings of a sequence. During the search
phase, two mechanisms are available for prohibiting the
association of two sequences along a potentially low-
complexity region. The first permits the use of only a
“linguistically rich” subset of the patterns discovered
during information gathering. In particular, for each
pattern P, we define its variability v(P) as

v~P! 5

maxR $number of times that the residue R appears in P%

total number of positions in P covered by residues
,

and allow the user access to a global parameter V which
dictates that a pattern P is employed in the search phase
only if v(P) , V.

The second mechanism allows the disregarding of local
similarities of low informational content. Assuming that
a pattern P matches a sequence (either the query or a
database sequence) at offset j, the match is considered
one of low complexity if there are X offsets left and right
of j approximately matching P. The number X as well as
the exact size of an approximate match are parameters
that can be set by the user.

4. Results
In this section we discuss the results of the proposed
methodology when applied to our test database, SwissProt
(Release 34). Next, we present a quantitative and
qualitative description of the patterns discovered in the
information-gathering phase. More specifically, we analyze

the coverage that these patterns achieve for the SwissProt
database, and we annotate the patterns that occur most
frequently. Subsequently, we present the results of the
search phase for a number of query sequences.

Information gathering
The treatment of the SwissProt database begins by
cleaning it up as described in the previous section.
The results of this process are detailed in Table 1.

When the cleaned-up database is available, all that is
required for TEIRESIAS to operate on it is to set the
values of the parameters L, W, and Kmin. As already
explained, we use the settings L 5 6 and W 5 15. In
order to decide the value of Kmin, a threshold must be
chosen and then used to solve inequality (1), a process
we describe in the next few paragraphs. Since we do not
have an analytical description for the distribution of the
random variables XB,K , we resort to standard sampling
techniques.

Using the experiments described in Section 3 with the
shuffled version of CleanSP, it is possible to compute
quite accurate point estimates for both the mean and the
deviation of XB,K . More specifically, for any B and K, let
mB,K and sB,K denote the sample mean and the sample
deviation of the random variable XB,K ; the values of
mB,K and sB,K are computed from the 2000 experiments
performed on the shuffled versions of CleanSP. Assuming
that mB,K and sB,K are the actual mean and deviation of
XB,K and using elementary statistics, we can deduce that,
with probability at least 0.95 (in the relations below,
n stands for the number of trials, i.e., n 5 2000),

sB,K #
sB,K

1 1
1.96

Î2n

;

mB,K # mB,K 1 1.96
sB,K

În
;

consequently, with probability no less than (0.95)2,

mB,K # mB,K 1 1.96
sB,K

În S1 1
1.96

Î2nD
.

Notice that there is no particular reason why we
selected a confidence level of 95%. Any other level would
be applicable (although more than n 5 2000 samples
would be required in order to achieve a higher confidence
level).

The above inequalities for mB,K and sB,K can be used
in conjunction with Chebyshev’s inequality in order to
provide upper bounds for the probabilities Pr[XB,K $ NB,K]

Table 1 The cleanup process on SwissProt (Release 34)
generates 9165 redundant groups of highly similar sequences.
The cleaned-up database (the one on which the information-
gathering phase operates) is formed by removing the highly
similar sequences from the original input and then
augmenting the resulting set by adding to it the longest
sequence from each redundant group. From [21], with
permission.

No. of sequences/
No. of amino acids
in original database

No. of highly similar
sequences/groups

No. of sequences/
No. of amino acids

in cleaned-up database

59,021/21,210,388 40,407/9,165 27,779/10,596,414

A. FLORATOS ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

462



used in inequality (1). In particular, given any value NB,K ,
we define the number C as

NB,K 5 1mB,K 1 1.96
sB,K

În S1 1
1.96

Î2nD2
1 C

sB,K

1 1
1.96

Î2n

.

The above equation can be solved directly for C. We
can then use the value 1/C 2 as an upper bound for the
probability Pr[XB,K $ NB,K]:

Pr@XB,K $ NB,K# 5

Pr3XB,K $ 1mB,K 1 1.96
sB,K

În S1 1
1.96

Î2nD2
1 C

sB,K

1 1
1.96

Î2n
4

# Pr@XB,K $ mB,K 1 CsB,K#

# 1/C 2.

Subsequently, solving inequality (1) is a straightforward
task: We just compute the appropriate constant C for
every value NB,K of interest and then plug the values 1/C 2

into inequality (1). Doing that for CleanSP and using a
threshold value of 10211, we obtain Kmin 5 15. Examining
the results of TEIRESIAS, we find that the number of
^6, 15& patterns with support 15 or higher is 534 185.

Actually, in selecting the particular value of threshold to
use, we did a little reverse engineering: The value of 10211

is chosen so that, for each backbone B, no more than 1.5
B-patterns were expected by chance. There is a tradeoff
at play here: We are willing to allow a small number of
pattern-induced local homologies which can be the result
of chance (the 1.5 patterns above) in order to be able to
capture the many more statistically important similarities
implied by the other patterns at that same support level
present within SwissProt.

Mining the cleaned-up database is only the first step of
the information-gathering phase. It is also necessary to

apply the pattern-discovery process on the 9165 redundant
groups. Again we use TEIRESIAS to treat each such
group, collecting enough ^6, 15& patterns to make sure that
each sequence in the group is matched by at least one
pattern. These patterns are then added to the 534 185
patterns obtained from CleanSP in order to form the final
set of patterns P which will be used by the search phase.
Table 2 provides information regarding the coverage
achieved by these patterns over the entire SwissProt
Release 34, while Figure 5 shows distributions for
characteristics of the patterns.

As exemplified by Table 2, one of the key goals for the
success of the search phase to follow (good coverage of
SwissProt) has been achieved. The question that remains
is whether the patterns discovered are of biological
relevance. In an effort to address this concern, we have
analyzed the most frequently occurring among these
patterns. The results obtained for the 100 patterns with
the highest support are summarized in Table 3. It is
evident from the table (at least for the patterns which
were examined) that the pattern-discovery process
identifies sequence features that are biologically
important.

Figure 5

Distributions for (a) number of residues per pattern and (b) lengths of
the SwissProt (Release 34) patterns.

No. of residues in a pattern
(a)

Length
(b)
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Table 2 Coverage of the entire SwissProt (Release 34)
database by the patterns generated in the information-
gathering phase. The database regions covered by a pattern
are exactly those substrings matching the pattern. Notice
that for dense and long patterns (arising mostly from the
processing of the redundant groups) we have allowed for
approximate matches, in which “most” of the pattern
(specifically, 80% of the pattern’s residues) matches a region.
It is worth pointing out that most of the uncovered sequences
are fragments. More specifically, only 231 have size greater
than 50.

Total no.
of patterns

No. of proteins
covered

No. of amino
acids covered

Average percentage
of protein length

covered

565,432 57,983 12,567,345 58.1%
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It should be noted that not all of the discovered
patterns exhibit such clear-cut functional specificity.
Several of them correspond to regions (e.g., loops, coiled

coils, transmembrane) which are traditionally considered
uninteresting, at least for the purposes of functionally
annotating a protein. Sometimes, though, even such

Table 3 The 100 patterns with the highest support. Wherever possible, the patterns within a category were aligned with respect
to one another. The lowercase italics were used for convenience and are placeholders for the following bracketed expressions:
a: [STGDAR], b: [STGDK], c: [STGDKY], d: [STGK], e: [GASMDL], f: [GISETV], g: [LIVMFY], h: [LIVMF], i: [LIVMA],
j: [LIVMC], k: [LIVMF], l: [ILVMF], m: [QKCS], n: [KRQA], o: [IVTNF], p: [QKCASN], q: [QKIAGN], r: [RKAHQN],
s: [KRQNE], t: [KRQMN], u: [LFYIMS], and v: [AGSPE]. A bracket indicates a position that can be occupied by any one of
the residues in the bracket.

ATP/GTP-binding P-loop variations

G..G.GKST L.G....GKST I.G....GKS.L
G..G.GK aTL G...SGKST G....GKT.LL
G..G.GKTT G....GK dTLL L.G..G.G.T.L
G..G.GKS.L G.GKTT....L G....GKTT.L
G..G.GKT.L G..G.GKT..A GP...GKT.L

L.G..G.GK bT G..GSGKT G.SG.G.ST
L.G..G.GKT V...G..G.GKT G..G.G.S.LL
L.G..G.GK..L G....GKTTL L.G....GKS.L

G..GSGKS I.G..G.GKT G.GKT..A...A
GP.G.GKT G....GKST.L I.G.SG.GK
G..GSGKcT I...G..G.GKT G.GKT.....LA
G....GKSTL G.GKTTL L. eP.G.GKT

L.G..G.GKS G.GKS.L...L GP...GKT..A
G..G.GKS..L G....GKS.LL V.I.G..G.GK

L..G..G.GKT L.G....GKT.L TGSGKT
G.GKST....L GSGKST I.G....GKTT

G.SG.GKS G..GSG.ST G...SGKS..L
I.G..G.GKS I.G....GKST G.SGSG.S

G.GKSTL V.L.G..G.GK G. f KSTL...L
G.GKST....L L.G....GKTT

Protein kinase active site Collagen, P/G repeats ABC transporter signature

HRDgK..N.L G.PG..G.PG LSGG...R...A
HRDhKP.N G..G.PG..G.P

H.D i KP.N.L
HRDL...N.L

G.PG..G..G.0
G..GP.GP.G

ATP-binding/downstream box

RDj KP.N.L G.PG.PG..G L.LDE....LD
I.HRD l K..N PG..G.PG..G L.LDE.T..L

HRDkK..NI G..G.PG.PG

I.H.D l K..N.L
HRDLK..N

GP.G..G.PG
PG.PG..G.P

Protein kinases

IHRD....N.L
H.DL.P.N.L

G.PG.PG....P
PG.PG....PG

GT..Y.APE

G..G..GAPG Nuclear hormone receptors

Zinc finger, transcription
Homeobox DNA-binding motif CRu.KC...GM

C. vC..FFRRH.R.H.GE sP
WFQN.R.KH...HTGE t P

H.R.HT.E.P WF mNRR.K
R.H.G.KP..C WFQNRR

WFQN.R.n.K

ATP-binding protein kinase V. oWFpNRR
QV.oWFqNR

LG.G.FG.V
LSGG.....A.A
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weak similarities can provide useful hints for the
characterization of protein regions. We have implemented
two mechanisms that allow the exploitation of this
potential. First, the user is provided with the list of all of
the patterns which match the query sequence. An expert
user will, in most cases, be able to identify which patterns
are of biological importance. Selection of a particular
pattern leads to a refinement of the scoring, focusing
only on the areas of the database covered by this
pattern. Second, when the underlying database includes
annotations of the various database sequence regions, this
annotation is used in conjunction with the patterns for the
extraction of useful information. Examples of the use of
these two mechanisms are given in the next subsection.

Searching
To showcase the searching phase (and to explain how it
should be used) we have selected two query sequences.
The first is a well-studied and annotated core histone 3
protein (SwissProt ID: H31 HUMAN), while the second
is a not-yet-characterized ORF (SwissProt ID:
YZ28 METJA) from Methanococcus jannaschii.

H31 HUMAN
Core histones have been the object of extensive study
because of their central role in the packaging of DNA
within a cell. These small proteins are rich in positively
charged amino acids that help them bind to the negatively
charged DNA double helix [28]. The four core histones
(H2A, H2B, H3, and H4) bind together into an octameric
construct (reminiscent of a cylindrical wedge) that
provides the substrate for 146-bps-long DNA segments

to wrap around, thus creating the nucleosome complexes
within the cell chromatin.

The SwissProt database (Release 34) contains 33
sequences which are annotated as histones 3. The protein
H31 HUMAN (the core histone 3 protein found in
humans) is one of them. The top-scoring results of
searching this sequence with our homology-detection tool
are listed in Table 4. The scores shown were obtained
using the PAM 130 matrix [10], and every matching
sequence from the database is assigned the score of its
highest-scoring segment.

All of the 33 core histones 3 of SwissProt Release 34
were correctly identified as homologous to H31 HUMAN.
Furthermore, several other proteins (YB21 CAEEL,
CENA HUMAN, CSE4 YEAST, YL82 CAEEL,
CENA BOVIN, YMH3 CAEEL) were found to have
extensive local similarities to H31 HUMAN. Inspection of
the annotation for these proteins indicated that they are
known histone-3-like proteins. As a final note, H3 NARPS
(a known histone 3) appears within Release 34 of the
SwissProt database only as a fragment and for that reason
has been scored lowest in the list of results. Figure 6
shows a selected view (both high- and low-scoring) of
the alignments generated for the query sequence
H31 HUMAN.

YZ28 METJA
H31 HUMAN is in a sense an easy test case because its
database contains several sequences which are highly
homologous to it. An interesting question to ask is how
our methodology fares when presented with “borderline”

Table 4 High-scoring homologies between H31 HUMAN and the SwissProt sequences. Next to each sequence is given the
similarity score (using the scoring table PAM 130) of the highest-scoring local alignment between that sequence and H31 HUMAN.

H31 HUMAN (302) H3 DROME
(302)

H32 BOVIN (302) H3 STRPU (300) H3 PSAMI
(300)

H32 XENLA (298) H3 ACRFO
(297)

H3 CAEEL (291) H3 VOLCA (289) H32 MEDSA
(288)

H3 ENCAL (288) H3 CHLRE
(287)

H31 SCHPO (286) H3 PEA (284) H3 MAIZE
(284)

H33 CAEEL (284) H33 HUMAN
(284)

H33 SCHPO (277) H31 TETPY (274) H34 CAIMO
(272)

H3 EMENI (271) H3 NEUCR
(271)

H3 YEAST (269) H32 ORYSA (269) YB21 CAEEL
(232)

H3 HORVU (221) H34 MOUSE
(204)

H3 ENTHI (179) H32 TETAM (177) H32 TETPY
(176)

H33 TETTH (168) H32 TETBO
(153)

H3 LEIIN (110) CENA HUMAN (100) CSE4 YEAST
(96)

YL82 CAEEL (86) CENA BOVIN
(84)

YMH3 CAEEL (79) H3 NARPS (64)
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sequences, i.e., sequences for which no known homology
exists. In an effort to address this question, the system
was presented with the not-yet-annotated sequence
YZ28 METJA, an open reading frame with 1272
residues from the genome of M. jannaschii.

The top-scoring alignments produced by our system
when presented with this query sequence are depicted in
Figure 7. For the purposes of functional annotation of
YZ28 METJA, the results are not very enlightening
because the database hits include quite diverse protein
sequences: the first two (NTNO HUMAN, NTNO BOVIN)
correspond to sodium-dependent noradrenaline
transporters, while the last one (KAPL APLCA)
corresponds to a kinase.

With these questions in mind, we proceeded to a closer
examination of the similarities between YZ28 METJA and
the database sequences. For this analysis, every pattern
matching YZ28 METJA was scrutinized individually. As
mentioned at the end of the preceding subsection, the
search phase allows the user to select any of the patterns
matching the query sequence at hand and focus on the
local alignments induced by that particular pattern,
disregarding all of the other patterns. This feature
was employed for each of the patterns matched by
YZ28 METJA. The intention was to discover whether
any such pattern was specific to one particular protein
family, thus giving clues about the functionality of
YZ28 METJA.

Figure 6

Local alignments of H31_ HUMAN with a highly similar (H3_YEAST ) and a moderately similar (CENA_ HUMAN ) protein. For every sequence, a
number of local similarities are indicated. For every such similarity, the relevant query (“Query”) and the database sequence (“Seq”) regions are
listed one under the other, having between them the resulting consensus regions. The character + is used to indicate chemically similar amino acids.

Score = 269
*********************************************************************
Local Alignment(s) with the sequence H3_YEAST
Query 0

ARTKQTARKSTGGKAPRKQLATKAARKS
ARTKQTARKSTGGKAPRKQLA+KAARKS
ARTKQTARKSTGGKAPRKQLASKAARKS

Seq 0
---------------------------------------------------------------------------
Query 33

GVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQ
GVKKPHRY+PGTVALREIRR+QKSTELLIRKLPFQRLVREIAQDFKTDLRFQ
GVKKPHRYKPGTVALREIRRFQKSTELLIRKLPFQRLVREIAQDFKTDLRFQ

Seq 33
---------------------------------------------------------------------------
Query 96

EAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA
EAYLV LFEDTNL AIHAKRVTI KDI LARR+RGER
EAYLVSLFEDTNLAAIHAKRVTIQKKDIKLARRLRGERS

Seq 96
---------------------------------------------------------------------------

Score = 100
*********************************************************************
Local Alignment(s) with the sequence CENA_HUMAN
Query 45

VALREIRRYQKSTELLIRKLPFQRLVR
L+EIR+ QKST LLIRKLPF RL R

GWLKEIRKLQKSTHLLIRKLPFSRLAR
Seq 45
---------------------------------------------------------------------------
Query 77

FKTDLRFQSSAVMALQEACEAYLVGLFEDTNLCAIHAK
D Q A++ALQEA EA+LV LFED L +HA

RGVDFNWQAQALLALQEAAEAFLVHLFEDAYLLTLHAG
Seq 79
---------------------------------------------------------------------------
Query 111

IHAKRVTIMPKDIQLARRIRGERA
+HA RVT+ PKD+QLARRIRG
LHAGRVTLFPKDVQLARRIRGLEE

Seq 113
---------------------------------------------------------------------------

A. FLORATOS ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

466



As it turned out, there exist three patterns
(“Y..S..I...DLK,” “NIL......IKL,” and “I.H.DLK......D”)
which are very specific for the kinase family. Figure 8
describes several of the top-scoring alignments produced
for the first pattern, while Table 5 contains a complete
listing of all of the SwissProt database sequences
containing that particular pattern. Tables 6 and 7 contain
the corresponding listings for the remaining two patterns.
Figure 9(a) depicts the distribution of all of the patterns
matched by YZ28 METJA; Figure 9(b) shows the regions
covered by the three kinase-specific patterns.

The pattern “Y..S..I...DLK” generates 24 hits within
the SwissProt database. All of these proteins (with
the exception of NABA RAT, a sodium/bile acid
cotransporter) are annotated as protein kinases (two of
them, KD82 SCHPO and KKK1 YEAST, are characterized
as putative/probable kinases), with the majority belonging
or showing similarity to the serine/threonine kinase family.

Furthermore, “Y..S..I...DLK” not only belongs to the
kinase domain of these proteins but actually contains
the active site (amino acid D) of that domain.

Similar results (Table 6) are obtained for
“NIL......IKL,” the second of the three patterns. In this
case there are 34 database hits, and all of them (excluding
two unannotated ORFs from Yeast and Mycoplasma
hominis) are known (or probable) protein kinases.

Finally, the third pattern, “I.H.DLK......D,” generates
30 hits, all of them known or putative protein kinases.
Furthermore, as in the case of the first of the three
patterns, the pattern “I.H.DLK......D” includes the
active site of the kinase domain.

It is interesting to note that all three of these patterns
are specific instances of (parts of) the general pattern

[LIVMFYC].[HY].D[LIVMFY]KPN[LIVMFYCT]

[LIVMFYCT][LIVMFYCT],

Figure 7

Top-scoring alignments for the query sequence YZ28_METJA. The mutation matrix used was PAM130. From [21], reproduced with permission.

Score = 51
*********************************************************************
Local Alignment(s) with the sequence NTNO_HUMAN

Query 196
VEKDILPHKVAFTGGGLRFILYPERPILEE

E + VA G+GL FILYPE
HEHKVNIEDVATEGAGLVFILYPEAISTLS

Seq 369
----------------------------------------------------------------------------

Score = 51
*********************************************************************
Local Alignment(s) with the sequence NTNO_BOVIN

Query 196
VEKDILPHKVAFTGGGLRFILYPERPILEE

E + VA G+GL FILYPE
HEHKVNIEDVATEGAGLVFILYPEAISTLS

Seq 367
----------------------------------------------------------------------------

Score = 49
*********************************************************************
Local Alignment(s) with the sequence KAPL_APLCA

Query 816
NAMIEMFKENYKLLKEYLETDIEVLKELDKNYK

A +F E K LKEYLE+ +E L
MAHNQVFPESQKWLKEYLESSLEQFENLFNKNV

Seq 0
----------------------------------------------------------------------------
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where the notation [XYZ] indicates a position which can
be occupied by any of the residues X, Y, Z. This more
general pattern is the PROSITE database [14] entry with
accession number PS00108, namely the signature of the
serine/threonine protein kinase active site. Note that this
PROSITE signature is too specific for detecting a kinase
catalytic site in the areas of YZ28 METJA covered by the

three patterns examined above. This situation (known in
the language of artificial intelligence as overrepresentation
of the training set) is typical of learning systems trained by
a finite number of positive examples: There is always the
danger that the set of positive examples (in this case, the
specific set of known serine/threonine kinases used by
PROSITE) is biased. Consequently, the features learned

Table 5 SwissProt (Release 34) sequences containing the pattern “Y..S..I...DLK.” All of them are annotated as protein kinases
or probable/putative protein kinases (almost exclusively of the serine/threonine variety). The only exception is the protein NABA RAT,
which is annotated as a sodium/bile acid cotransporter.

MP38 MOUSE MKK2 DROME MP38 XENLA KRAF CAEEL DAPK HUMAN

PKX1 HUMAN KAPC YEAST KAPA YEAST ASK2 ARATH KCC1 YEAST

CC28 YEAST KD82 SCHPO SPK1 YEAST SGK RAT GCN2 YEAST

FUSE DROME NABA RAT KAPC ASCSU KKK1 YEAST KGPA BOVIN

KGPB HUMAN KGP3 DROME KGP2 DROME KDC2 DROME

Figure 8

Several of the top-scoring local alignments for the query sequence YZ28_ METJA, induced by the pattern “Y..S..I…DLK.” The mutation matrix used
was PAM130. From [21], reproduced with permission.

Local alignments of sequence ----> YZ28_METJA along the pattern Y..S..I...DLK

Local alignment with the sequence ---> MP38_MOUSE
Score = 27
Query 24

DKYQINVSGIYNISDDILESDLKLHIAQLLFLI
YQI Y S DI+ DLK +

LIYQILRGLKYIHSADIIHRDLKPSNLAVNEDC
Seq 129
----------------------------------------------------------------------------

Local alignment with the sequence ---> MKK2_DROME
Score = 22
Query 24

DKYQINVSGIYNISDDILESDLKLHIAQLLFLI
I Y S DI DLK

IMHEICAAVDYLHSRDIAHRDLKPENLLYTTTQ
Seq 121
----------------------------------------------------------------------------

Local alignment with the sequence ---> MP38_XENLA
Score = 22
Query 24

DKYQINVSGIYNISDDILESDLKLHIAQLLFLI
YQI Y S I+ DLK +

LIYQILRGLKYIHSAGIIHRDLKPSNLAVNEDC
Seq 130
----------------------------------------------------------------------------

Local alignment with the sequence ---> KRAF_CAEEL
Score = 20
Query 24

DKYQINVSGIYNISDDILESDLKLHIAQLLFLI
Q+ + Y S I+ DLK L+ +

ILKQVSLGMNYLHSKNIIHRDLKTNNIFLMDDM
Seq 581
----------------------------------------------------------------------------
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(here, the kinase signature), while explaining the
observations, are not general enough to extrapolate
efficiently to new instances of the family under
consideration (i.e., there are false negatives). The cure for
this difficulty is to use as large a training set as possible;
this is the crux of the approach we propose here. Of
course, it is also possible that our methodology creates the
reverse problem, that of underrepresentation, in which
case the patterns discovered explain too liberally the
observed data and introduce false positives. However,
until a definite answer is obtained from the appropriate
laboratory tests, we offer the statistical significance and
the functional specificity of the patterns examined above
as indications that they do correctly model kinase activity.

Using existing annotation
Of the 410 patterns matched by YZ28 METJA, only the
three patterns analyzed above exhibit such clear-cut
functional specificity. This does not mean that the
remaining 407 are useless. As discussed in the preceding
subsection, the kind of biological inference that can be
drawn from a local similarity between two sequences is not
always of a functional nature. Sometimes the homology
indicates preservation of structure, and at other times it
might correspond to functional units of a supporting role
(e.g., DNA-binding domains) in the overall function of the
sequences compared. In an effort to explore such weaker
similarities, we have used the method described next to

exploit the annotation available in the underlying
database. We use the SwissProt annotation format.

Figure 9

Distribution of the 410 patterns (among those discovered in the informa-
tion-gathering phase) matched by YZ28_METJA is depicted in (a). A
pattern “covers” a residue position if it starts before (or at) that position
and ends after (or at) that position. Shown, for each residue position
(x-axis), are the number of patterns ( y-axis) that cover that position. With
regard to (b), the three kinase patterns discussed in the text match se-
quence regions that start at offsets 35 (pattern “Y..S..I…DLK ”), 112 (pat-
tern “NIL……IKL”) and 1052 (pattern “I.H.DLK……D”). These offsets
are depicted in (b) relative to the spikes of the pattern distribution in (a).
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Table 6 SwissProt (Release 34) sequences containing the pattern “NIL......IKL.” All (except those from the nonannotated
YFH8 YEAST and YL11 MYCHO) are protein kinases (known or probable). Again, serine/threonine kinases are the majority.

CC7 SCHPO CDK2 ENTHI CDK6 HUMAN IPL1 YEAST JKK1 HUMAN

JKK1 MOUSE KG1Z YEAST KKIA HUMAN KNQ1 YEAST KPBG MOUSE

KPBG RABIT KPBG RAT KS61 MOUSE KS62 HUMAN KS62 MOUSE

KS6A CHICK KS6A XENLA KS6B XENLA MKK2 YEAST MPK1 HUMAN

MPK1 MOUSE MPK1 RABIT MPK1 RAT MPK1 XENLA MPK2 HUMAN

MPK2 RAT MPK2 XENLA PAK1 SCHPO PK3 DICDI PKD1 DICDI

PKX1 HUMAN ST20 YEAST YFH8 YEAST YL11 MYCHO

Table 7 SwissProt (Release 34) sequences containing the pattern “I.H.DLK......D.” All of these sequences are known or
probable protein kinases.

ASK1 ARATH ASK2 ARATH CC2C DROME CC2 DICDI CC2 SCHPO

CDK7 CARAU CDK7 HUMAN CDK7 MOUSE CDK7 RAT CDK7 XENLA

CTR1 ARATH FUSE DROME GCN2 YEAST KCC4 YEAST KD82 SCHPO

KEMK MOUSE KFD3 YEAST KKK1 YEAST KP78 HUMAN KPBG MOUSE

KPBG RABIT KPBG RAT KPBH HUMAN KPBH RAT KPK1 ARATH

KPSC HUMAN SNF1 CANAL SNF1 YEAST SRK6 BRAOL YNA3 CAEEL
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The SwissProt database associates with most of its
sequences annotations of sequence regions (the FT lines
[19]). In a typical region description,

FT DOMAIN 528 779 PROTEIN KINASE

the keyword “FT” denotes it as a region description line,
and the remaining characters describe the region by giving
its starting and ending positions (from residue 528 up
to and including residue 779 of the relevant database
sequence) and its annotation (a protein kinase domain).

When presented with a pattern P, we can use the offset
list LD(P) to locate all of the sequences in the database
that match P. Assuming that S is such a sequence and that
P matches the substring of S starting at offset j, if P
happens to fall in an annotated region of S (either
entirely or in part), we can associate this region with P.
Performing this process for every sequence S that P
matches gives rise to a set RSD(P) of regions associated
with P. Figure 10 provides an example of part of the
output produced by our system for one of the three kinase
patterns described above.

Now, given a pattern P matching a subsequence A of a
query sequence Q, the question is how to use RSD(P) in
an effort to characterize A. A number of approaches can
be used. For example, if RSD(P) is large enough and the
majority of its members agree in their functionality, it
can be inferred that A is quite likely to have the same
functionality. Another consideration is the relative lengths
of the pattern P and the regions described by the FT lines.
If, for example, a pattern P has an extent of 15 residues
while an annotated sequence region containing P has a
length of 300 amino acids, one might not wish to transfer
the annotation of that region to P. In conclusion, the end
user is expected to apply his/her expertise in deciding how
to best exploit the information provided by the system.

Figure 11 shows two ways to use the sets RSD(P) for
annotating regions of YZ28 METJA, thus extending
part (b) of Figure 9. The first approach, depicted in
part (c) of Figure 11, assigns an annotation X (e.g.,
X 5 transmembrane region) to a pattern P if 1) the
size of RSD(P) is at least 15; 2) the majority (80%)
of the regions in RSD(P) are annotated as X; and 3)

Figure 10

Example of part of the output produced using sequences matching the pattern “I.H.DLK……D.” For every such sequence, the ID and DE lines are
reported, giving the SwissProt name of the sequence and a short description of its functionality (for details, see the SwissProt user manual). Next
follows the offset within the sequence where the match originates. Finally, there are the FT lines for all of the annotated regions having an
intersection with the region covered by the pattern. From [21], reproduced with permission.

############################################################
ID ASK1_ARATH STANDARD; PRT; 363 AA.
DE SERINE/THREONINE-PROTEIN KINASE ASK2 (EC 2.7.1.-).
--------> I.H.DLK......D: Matching at offset 119
FT DOMAIN 4 260 PROTEIN KINASE.
FT ACT_SITE 123 123 BY SIMILARITY.
############################################################
ID ASK2_ARATH STANDARD; PRT; 353 AA.
DE SERINE/THREONINE-PROTEIN KINASE ASK2 (EC 2.7.1.-).
--------> I.H.DLK......D: Matching at offset 119
FT DOMAIN 4 260 PROTEIN KINASE.
FT ACT_SITE 123 123 BY SIMILARITY.
############################################################
ID CC2C_DROME STANDARD; PRT; 314 AA.
DE CELL DIVISION CONTROL PROTEIN 2 COGNATE (EC 2.7.1.-).
--------> I.H.DLK......D: Matching at offset 126
FT DOMAIN 8 287 PROTEIN KINASE.
FT ACT_SITE 130 130 BY SIMILARITY.
############################################################
ID CC2_DICDI STANDARD; PRT; 296 AA.
DE CELL DIVISION CONTROL PROTEIN 2 HOMOLOG (EC 2.7.1.-) (P34 PROTEIN
DE KINASE).
--------> I.H.DLK......D: Matching at offset 125
FT DOMAIN 10 288 PROTEIN KINASE.
FT ACT_SITE 129 129 BY SIMILARITY.
############################################################
ID CC2_SCHPO STANDARD; PRT; 297 AA.
DE CELL DIVISION CONTROL PROTEIN 2 (EC 2.7.1.-) (P34 PROTEIN KINASE).
--------> I.H.DLK......D: Matching at offset 130
FT DOMAIN 4 293 PROTEIN KINASE.
FT ACT_SITE 134 134 BY SIMILARITY.

A. FLORATOS ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

470



at least 50% of every region of RSD(P) annotated as X is
covered by P. The second approach, depicted in part (d)
of Figure 11, shares the first two requirements and relaxes
the third by allowing the percentage of the annotated
region covered by the pattern to be 30% or more.

Performance
The running time of a homology search for a query
sequence Q depends on the size of the set of patterns
P used and on the actual number of local similarities
(induced by the patterns matching Q) between Q and
the database sequences. For the case of the SwissProt
(Release 34) database used here, typical searches for
query proteins about a thousand residues in size take
4 – 6 seconds on a Pentium** 266-MHz computer with
256 MB of memory capacity. It should be mentioned
that the running time reported above is achieved by
keeping all of the program data (patterns and their
offset lists) in memory. For the SwissProt database,
this data occupies around 200 MB.

However, from preliminary work [29] with the
nonredundant protein database from the National Center
for Biotechnology Information (NCBI), it seems that
although the search-time components mentioned above
are related to the size of the underlying database, this
dependence is sublinear. In a sense, real protein databases
induce a saturation of sorts on the size of P after a
certain point; introducing new sequences in the database
does not result in the generation of many new patterns.
As a result, we expect that even as the size of the
database used becomes larger, the performance of the
search phase (both running time per search and memory
used) will increase at a much slower rate.

5. Concluding remarks
We have described a method, DELPHI, for performing
sequence similarity searches based on the discovery of
patterns over an underlying database D of proteins
and the use of these patterns for the identification of
homologies between a query sequence and the proteins
of the database. The crucial step for the success of the
method is the collection of a set of patterns which is
characteristic of the database D. We have described a way
to define this set precisely using statistical arguments and
have discussed how patterns provide more sensitivity in
identifying significant homologies by introducing memory
into the statistical computations. We have shown how
TEIRESIAS, a powerful pattern-discovery algorithm, can
be used for obtaining the desired set of patterns. We have
described the utility of DELPHI by using the SwissProt
(Release 34) database as a test bed and showing how it
can be used for annotating query sequences. Finally, in
this context we have discussed the potential of exploiting
the discovered patterns in conjunction with the annotation

of the underlying database toward characterizing even
weak similarities between the query and the database
sequences.

The DELPHI approach differs from other pattern-based
tools for homology detection (e.g., BLOCKS [15]) in the
completeness of the set of patterns used. The patterns are
learned in an unsupervised way from a very large training
set, that of all of the proteins within the underlying
database D. There are no bias-creating prior assumptions
on which sequences “should” be considered as members
of the same family. As a result, the patterns discovered
are expected to be more sensitive. Furthermore, by
considering together sequences of distinct functionalities,
the method facilitates the discovery of weak similarities
that span family boundaries (e.g., patterns that describe
transmembrane regions). Such similarities, although not
sufficient for the inference of functional annotations,
nevertheless provide useful information regarding the
role of different parts of the query sequence under
examination.

Another advantage of the DELPHI approach pertains
to the running times for homology searches. The speedup
afforded by using patterns rather than scanning the entire
database for every search can become a factor as the
size of genomic databases increases ever more rapidly

Figure 11

Characterization of various segments of YZ28_METJA from the
annotation of the patterns matching these segments. The annotation of
the patterns is obtained by exploiting the information available for the
various regions of the database sequences also matched by these
patterns. The segments are again shown relative to the spikes of the
distribution of patterns over the entire YZ28_METJA.
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(especially for users who wish to run in-house tests rather
than use public servers).

On the downside, the use of patterns may not make it
possible to find all existing local homologies, as can be
done with methods such as BLAST or FASTA. If there
exists within the database a sequence S which is a
singleton, in the sense that it has homologous regions
with none or only a few other database proteins, a query
sequence Q homologous to S will go uncharacterized
because there will be no patterns to associate it with S.
It is expected, however, that such situations will become
increasingly rare as the size of the database used becomes
larger.

We intend to extend our work to a large-scale validation
of the proposed methodology. To achieve that, we plan to
use as queries members of a sizable and well-annotated
sequence database (e.g., Pfam [30], SCOP [31]). For each
query we plan to quantify the success of the annotation
produced by DELPHI. Methodologies for doing so have
already been proposed ([32]). Aggregating the results of
this annotation experiment should provide us with a more
precise idea about the overall effectiveness of DELPHI.
We have already begun that work and expect to report
our results in a forthcoming publication.

**Trademark or registered trademark of Intel Corporation.
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