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Evaluating protein
structure-prediction
schemes using
energy landscape
theory

Protein structure prediction is beginning to
be, at least partially, successful. Evaluating
predictions, however, has many elements of
subjectivity, making it difficult to determine the
nature and extent of improvements that are
most needed. We describe how the funnel-like
nature of energy functions used for protein
structure prediction determines their quality
and can be quantified using landscape theory
and multiple histogram sampling methods.
Prediction algorithms exhibit a “caldera”-like
landscape rather than a perfectly funneled
one. Estimates are made of the expected
number of effectively distinct structures
produced by a prediction algorithm.

1. Introduction
Protein folding has fascinated theorists and experimenters
for decades. This fascination has been driven not only by
the phenomenon, being the simplest act of biological self-
organization, but also by practical considerations relating
to the desire to compute protein structure from sequence
data. There are signs that the appropriate framework for
understanding biomolecular self-organization is emerging.
In considering folding theory versus structure-prediction
practice, cynics, however, are likely to paraphrase the old
saw “Thermodynamics owes more to the steam engine
than the steam engine owes to thermodynamics.”

In this paper, we initially review how folding theory
based on energy landscapes has already contributed to
progress on structure-prediction algorithms. We then
illustrate how the computational tools used in energy
landscape approaches to the study of folding kinetics
can help distinguish and evaluate different energy
functions used in structure prediction and how this
analysis helps to quantify where improvements are
most needed.

One major contribution of the last decade’s study of
folding to the practice of prediction is to give predictors
several additional reasons for optimism, a necessary
emotional stance for people to work in this field! A
decade ago most people quoted folding times as being
seconds to minutes. Indeed, several theories from the
1970s used these numbers as a procrustean bed for setting
parameters! This would make prediction by even slavishly
accurate molecular simulation, guaranteed to work by
Anfinsen’s experiment [1, 2], out of the question
economically. Deductions from theory and heroic
laboratory experiments have shown that a good deal of the
self-organization in folding occurs in microseconds. Thus,
if sufficiently accurate all-atom potentials are available,
the IBM “Blue Gene Project”1 should have a good chance

1 “IBM Announces $100 Million Research Initiative to Build World’s Fastest
Supercomputer,” press release on December 6, 1999; search for “Blue Gene” on
http://www.ibm.com for more information; see also the paper entitled “Blue Gene:
A Vision for Protein Science Using a Petaflop Supercomputer,” by F. Allen et al.,
concurrently being published in the IBM Systems Journal, Volume 40, No. 2, 2001.
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paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
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to succeed in that the plan is to simulate accurately the
laboratory situation.

The rapid folding without discrete traps observed
experimentally suggests that the free-energy landscape
(averaged over the solvent) of a protein is funnel-shaped
[3, 4]. According to landscape theory [5, 6], structurally
distinct traps emerge through inappropriate contacts
arising from the inconsistency or “frustration” of different
energy interaction terms. Evidence for the funnel point of
view comes not just from detailed kinetics experiments
[7–9], but also from the widespread anecdotal evidence
that protein structures are robust to most single-site
mutations. On a perfectly funneled landscape, barriers
to folding are largely entropic and could be overcome
by carrying out simulations at lower temperatures.
Unfortunately, one cannot do this in complete all-atom
models because there is frustration between solvent
hydrogen bonds and van der Waals contacts in the
protein. This leads to cold denaturation—the lowest
energy (as opposed to free energy) state of protein plus
solvent is actually an unfolded one. Thus, a “Cool Blue
Gene” simulation with all atoms should not work any
faster than a hot one. An important issue is whether
solvent-averaged potentials as crafted by theorists, still
with all atoms of the proteins represented, can then
achieve funnel-like surfaces. The situation would be even
better if reduced descriptions with less atomic detail could
be used. Here there is also good news when theory and
experiment are combined.

There are many indications that simplified energy
functions with funnel-like landscapes can describe protein
folding kinetics [10 –15]. The catch is that the beautiful
kinetics results require making the funnel approximation
as an extra assumption or filter in order to bring the
numerical predictions into conformity with experiment.
To predict protein structures from sequence data, one
needs simplified energy functions that do not impose this
constraint and therefore allow any possible contact. For
prediction we cannot a priori limit the model by assuming
native contacts to be overwhelmingly important. The
widespread failure of structure-prediction schemes until
recently, in fact, was prima facie evidence for these
schemes being based on rough, i.e., non-funneled, energy
landscapes—landscapes in which topologically distinct
structures can be found to lie within a few kBT of each
other near the folding temperature. Such states would
represent traps in laboratory folding kinetics. They also
lead to a lack of confidence about the result of a
prediction, since different simulation runs should give
each as a separate result. This situation is generically to
be expected for random sequences using any given energy
function. The trick is to find an energy function consistent
with the one used in evolution. A structure-prediction
scheme with a rugged non-funneled landscape for

naturally evolved protein sequences is effectively hardly
better than some random energy function. If proteins
evolved to have a funnel-like landscape, there is also
reason to believe that errors in potentials can be
tolerated. Bryngelson showed that if the landscape is
completely random, the potential must be known to an
accuracy that scales as 1/=N, making it nearly impossible
to predict structures of long proteins [16]. Using similar
methods, Pande et al. showed that for a funneled,
minimally frustrated landscape, the percent accuracy
needed did not scale with length. Using estimates of
natural protein landscape ruggedness derived from
experiment, they found that an accuracy of only 20 –30%
would be needed [17].

While a decade ago structure-prediction schemes
based on simplified protein representations were nearly
uniformly unsuccessful, some success can now be found.
Some of the success can be viewed as arising from the
development of schemes for emphasizing the funnel-like
aspects of landscapes. Some of the success was explicitly
motivated by the energy landscape paradigm, but
sometimes the connection is only implicit. Homology
modeling relies on using evolutionary information to
reduce the importance of non-native-like associations [18],
again assuming that evolution leads to minimal frustration.
Energetic approaches for sequence-structure matching as
a first step of modeling (“threading”) are improved by
varying parameters to distinguish “decoys” from native
structures [19 –24], again minimizing conflicts or
frustration. This improvement can be carried out
systematically using landscape-based algorithms. Averaging
over multiple sequences smoothes out asperities on the
landscape, again leading to a more globally funnel-like
landscape [25–28]. Associative memory Hamiltonians for
structure prediction using molecular dynamics as well as
more purely physically based Hamiltonians used in lattice
calculations have been improved by making explicit use of
the quantitative form of the minimal frustration principle
to optimize their parameters [29].

That some success has been achieved, while heartening
to those of us who are optimists, should not blind us to
the possibilities of further improvements. This requires
the development of quantitative evaluation methods for
assessing prediction algorithms. To do this efficiently, we
must go further than merely judging final results of our
own calculations. Setting up social schemes for avoiding
inevitably subjective comparisons is helpful but not
sufficient by itself. Both of these latter issues are well
addressed by the CASP experiments [30, 31]. One
approach to determining how to improve structure
prediction has been to exploit the same tools used for
studying folding kinetics to describe the landscapes
provided by potential energy functions used in structure
prediction. While we have so far done this for
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understanding our own algorithms, “in-house” as it were,
we believe the style of analysis can be used by others to
help improve their own algorithms. We also hope to show
in this paper how these schemes can be used to give an
idea of the probability of success in multiple attempts to
predict a structure using a stochastic algorithm.

The organization of the paper is as follows. In Section 2
we review the specific energy functions we use as well as
the optimization schemes for relevant parameters. We
then describe, in Section 3, sampling methods used to
examine landscape topography. In Section 4 we discuss the
resulting landscape for an ideal prediction scheme based
on knowing the exact contact map of a protein, and for
ab initio predictions, using associative memory energy
functions which assume no homology information.

2. Model
While the method of analysis presented in this paper is
generally applicable to any energy function, it is illustrated
for an associative memory Hamiltonian in particular. In
this section we describe the associative memory energy
function. First we discuss the form of the energy function,
and then we consider how the parameters in the energy
function are optimized using energy landscape theory.
Specific ab initio structure predictions from the energy
function outlined here are discussed by Hardin et al. [32].

Associative memory energy function
The associative memory energy function discussed here
has been designed with the objective of making ab initio
predictions of protein structure. It was originally
developed in the context of structure prediction by
Friedrichs and Wolynes [33, 34], and is a reduced
description, with only Ca, Cb, and O atoms explicitly
represented. Search for low-energy states is carried out by
molecular dynamics simulations. The full energy function
is formally

E 5 Eback 1 Eamc , (1)

where Eback describes the protein backbone, and Eamc

comprises associative memory and contact terms, as
discussed further below. The backbone part of the energy
function is very similar to that used in previous studies
[34, 35], and we relegate discussion of it to Appendix A.

Before considering the form of Eamc, we wish to make a
comment regarding units. The unit of energy is denoted as
«, and is defined in terms of the native state energy
excluding backbone contributions, Eamc

N , via

« 5
uEamc

N u

4N
, (2)

where N is the number of residues of the protein being
considered. Temperatures are quoted in terms of the

reduced temperature T̃ 5 kBT/«. Distances, r, are in units
of angstroms, and r̃ is used to denote the dimensionless
r/(1 Å).

The interactions described by Eamc depend on the
sequence separation ui 2 ju between the residues i and j
involved. Specifically, they are divided into three proximity
classes x(ui 2 ju): x 5 short (ui 2 ju , 5), x 5 medium
(5 # ui 2 ju # 12), and x 5 long (ui 2 ju . 12). Thus,

Eamc 5 Eshort 1 Emed 1 Elong . (3)

Both the short- and medium-range interactions are treated
by an associative memory energy function,

EAM 5 Eshort 1 Emed

5 2
«

a O
m51

Nmem O
j212#i#j23

Hg [Pi , Pj , Pi9
m , Pj9

m , x~ui 2 ju!]

3 exp F2
~rij 2 ri9j9

m ! 2

2s ij
2 GJ . (4)

The sum over i and j runs over all unique pairs of atoms
(Ca–Ca, Ca–Cb, Cb–Ca, Cb–Cb) with sequence separation
between 3 and 12, and rij is the distance between atoms i
and j. The index m runs over all Nmem memory proteins
to which the protein has previously been aligned using a
sequence-structure threading algorithm [36] (i.e., each i–j
pair in the protein has an i9–j9 pair associated with it in
every memory protein; if, due to gaps in the alignment,
there is no i9–j9 pair associated with i–j for a particular
memory, this memory protein simply makes no
contribution to the interaction between residues i and j).
The interaction between Ca and Cb atoms is thus a sum
of Gaussian wells centered at the separations ri9j9

m of
the corresponding memory atoms. The widths of the
Gaussians are given by s ij 5 ui 2 ju 0.15 Å. The weights
given to each well are controlled by g[Pi , Pj , Pi9

m , Pj9
m ,

x(ui 2 ju)], which depends on the identities Pi9 and Pj9 of
the residues to which i and j are aligned, as well as the
identities Pi and Pj of i and j themselves. A reduced four-
letter (as opposed to 20-letter) code is used for the
identities: Pi 5 hydrophilic (i [ ala, gly, pro, ser, thr);
Pi 5 hydrophobic (i [ cys, ile, leu, met, phe, trp, tyr,
val); Pi 5 acidic (i [ asn, asp, gln, glu); and Pi 5 basic
(i [ arg, his, lys). Since g also depends on proximity class,
there are thus 44 3 2 5 512 different g parameters in the
associative memory term. These are optimized using energy
landscape ideas as discussed below. We finally note that
a is a dimensionless constant chosen so that Equation (2)
is satisfied.

The energy function in the long-range proximity class is
given by a three-well contact potential,
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Elong 5 2
«

a O
i,j212

O
k51

3

g~Pi, Pj, k!ck~N!U@rmin~k!, rmax~k!, rij#,

(5)

where i and j run only over all pairs of Cb atoms
separated by more than 12 residues. The sum over k is
over the three wells which are approximately square wells
between rmin(k) and rmax(k). Specifically,

U@rmin~k!, rmax~k!, rij# 5
1

4
$@1 1 tanh ~7@rij 2 rmin~k!#/Å!#

3 @1 1 tanh ~7@rmax~k! 2 rij#/Å!#}. ~6!

The parameters [rmin(k), rmax(k)] are (4.5 Å, 8.0 Å),
(8.0 Å, 10.0 Å), and (10.0 Å, 15.0 Å) for k 5 1, 2, and 3,
respectively. In order to approximately account for the
variation of the probability distribution of pair distances
with number of residues in the protein (N), a factor ck(N)
has been included in E long. It is given by c1 5 1.0,
c2 5 1.0/(0.0065N 1 0.87), and c3 5 1.0/(0.042N 1 0.13).
The individual wells are also weighted by g parameters
which depend on the identities of the amino acids
involved, using the four-letter code defined above. Since
we also enforce g(Pi , Pj , k) 5 g(Pj , Pi , k) for all i and j,
and there are three wells, the number of g parameters is
10 3 3 5 30 in addition to the 512 from the associative
memory part of the Hamiltonian.

Optimization
The 542 linear parameters, g, were optimized by training
them on a set of ten proteins, using an optimization
criterion explicitly based on energy landscape ideas. While
the Hamiltonian above is rather general, it was trained for
the specific task of making ab initio predictions for the
structures of small to medium-sized alpha-helical proteins
for which no structural homologs are known. Therefore,
the training proteins were all alpha-helical proteins
(ranging in size from 63 to 189 residues), as were the
36 memory proteins. Since our objective was to make
predictions where structural homologs are not available,
the memory proteins were also chosen to have a low
structural (and sequence) similarity to the training
proteins. Thus, it is a challenging problem to find the set
of parameters g that will give good “predictions” for the
training proteins; however, we may have some confidence
that having done so, the energy function will give good
results for true unknowns outside the training set. The
PDB codes of the training proteins and memories are
given in Appendix B.

Full details of the optimization procedure have been
presented most recently in Reference [32], and similar
schemes have been discussed elsewhere [22, 29, 36, 37];
here we simply outline the main points. The basic idea of

the approach is to find a g that maximizes the funneling in
the energy landscape of the training proteins. Specifically,
we maximize the stability gap averaged over the training
proteins, dEs(g). The stability gap of a single protein
dEs(g) is defined as the average energy gap (excluding
backbone terms) between its native state and a specified
set of collapsed non-native structures (these “globules” are
generated in the first instance by simply taking coordinates
from fragments of larger proteins). The maximization of
dEs(g) must be subject to at least one constraint. In the
simplest version of the scheme [22], this is achieved by
fixing the variance of the globule energies averaged over
the training set, DE 2(g). While this constraint effectively
just sets the energy scale in the optimization procedure,
the physical motivation is transparent: For a single
protein, dEs/=DE 2 is the ratio of the native bias to the
roughness of the landscape, i.e., a measure of the degree
of funneling. It has also been shown that for a random
energy model, maximization of this ratio is essentially
equivalent to maximization of the ratio of folding to
glass transition temperatures (Tf /Tg) [22].

In the current optimization procedure, the single
constraint on the roughness is replaced by three separate
constraints on the contribution to the roughness coming
from the three proximity classes. The motivation behind
this is to prevent the occurrence of a glass transition at
high temperature within an individual class. For example,
if the roughness in the short-range class were very large,
the local in-sequence structure of the protein could
become frozen (partially incorrectly), rendering the
protein rigid before longer-range interactions have
a chance to form. There are also three additional
constraints on the contribution to the globule energy
coming from the three classes. These give control over the
collapse transition temperature of the resulting energy
function, and also have the effect of giving a roughly even
distribution of energy between proximity classes (in both
native and globule states) in accordance with expectation
[38].

The optimization procedure is performed iteratively;
i.e., after solving for g, a new set of globules is generated
by molecular dynamics using E(g) as the energy function
(this is the most computationally intensive part of the
procedure). Reoptimization follows, and the process is
repeated until convergence is reached.

After g is obtained, structure predictions are made by
searching for low-energy states by molecular dynamics.
An annealing schedule (temperature as a function of
simulation time) must be set. With a simple linear
reduction in T from T̃ 5 2.0 to T̃ 5 0.0 in 90 000 time
steps, very good predictions (by current standards) are
obtained for proteins outside the training set. This is
detailed in the paper by Hardin et al. [32].
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3. Sampling methods
Three principal cases have been investigated by the
sampling method described in this section. The prediction
Hamiltonian presented in the previous section has been
analyzed for two different alpha-helical proteins. The first,
phase 434 repressor (PDB code 1r69), is a member of the
training set, and the second, HDEA (PDB code 1bg8), is
neither a member of the training set nor does it have
significant structural homology with any of the memory
proteins. We emphasize again that the training proteins
also do not have significant structural homology with any
of the memory proteins. Thus, we do not expect there to
be a very significant difference between the quality of
the Hamiltonian for small to medium-sized alpha-helical
proteins outside and inside the training set. There is of
course the possibility of “over-learning” parameters in the
optimization procedure if the training set is too small.
While we do not attempt to address this issue in this
paper, since clearly many more than two examples
would be required, the techniques described below can
straightforwardly be used in a systematic investigation.
The main point in this paper is to quantitatively contrast
the ab initio prediction energy landscapes of proteins 1r69
and 1bg8 with that arising for an ideal prediction scheme
based on knowledge of the native structure. For this ideal
scheme we use a Go# model [39] with the native structure
of protein 1r69 designed to be its global energy minimum,
as described in Appendix C.

One of the key thermodynamic quantities desired from
simulation is the free energy as a function of temperature
and one or more order parameters, Q. Since a protein is
a finite-sized system, this could in principle be obtained
from one constant-temperature simulation run (using, for
example, the so-called single-histogram technique [40]).
However, despite the fact that this approach can be
successful in the context of protein folding (see, e.g.,
[41]), it is found to be inefficient for the off-lattice model
studied here because the form of the free energy as a
function of nativeness leads to only a very small region of
phase space being explored in a reasonable simulation
time. The method preferred here then is the multiple-
histogram technique [42, 43], which has found widespread
application in the protein folding field. As specified more
precisely below, many simulations are carried out with
different biasing potentials added to the Hamiltonian,
each acting to constrain the protein to a chosen region of
phase space. This allows efficient sampling of the funnel,
while the multiple-histogram technique provides the
prescription for extracting free energies (of the “bare”
Hamiltonian) from this data.

The sampling procedure adopted is as follows: Initially,
a temperature at which to sample must be chosen. The
choice here is T̃ 5 1, which is guided by a number
of considerations. First, this is close to the folding

temperature of the Go# model, which is found to be
T̃ 5 1.06. Second, it lies in the region T̃ 5 0.8–1.0,
where structures with the highest degree of nativeness are
typically found on annealing runs. Finally, at T̃ 5 1 the
protein kinetics are sufficiently facile that the length of
time between essentially independent samples is relatively
small. At lower temperatures, slowing in the kinetics leads
to a rapidly increasing computational burden for the
prediction Hamiltonian. At T̃ 5 1, ns 5 20 constant-
temperature simulations are then performed using the
energy functions

Ei 5 E 1 Vi~Q!. (7)

(E is replaced with EGo# for the Go# case, of course.) The
functions Vi(Q) (i 5 1, 2, . . . , ns) are well-shaped
potentials centered on different values of Q to give a good
sampling of phase space along all of the reaction coordinates
of interest, with care taken that “adjacent” simulations
have overlap in the regions sampled. The preferred choice
was Vi(Q) 5 Vi(Q) 5 105

«(Q 2 Qi)
4, with Qi 5 0,

0.05, 0.1, . . . , 0.95. The order parameter, Q, measures
similarity to the native state and involves a sum over all
(except nearest-neighbor) pairs of Ca atoms,

Q 5
2

~N 2 1!~N 2 2!
O

i,j21

exp F2
~rij 2 rij

N! 2

2s ij
2 G , (8)

where rij
N is the Ca–Ca distance between residues i and j in

the native state. Q runs between 0 (completely unfolded)
and 1 (native).

During each simulation, a total of Ni
obs 5 400 samples

of Q and E are performed at regularly spaced intervals
of 3000 time steps. The time interval such that successive
observations may be considered independent depends on
the Hamiltonian under consideration. At T̃ 5 1, it is
approximately 30 000 time steps in the case of 1r69 and
1bg8, and about 6000 time steps for the Go# model; the
dependence of this time on the biasing functions is weak.
Thus, the total number of essentially independent
samples is 20 3 400/10 5 800 for 1bg8a and 1r69, and
20 3 400/2 5 4000 for the Go# model. A histogram
Ni(E, Q) is created for each simulation, i, whence the
multiple-histogram approach gives the following for
the density of states, n(E, Q):

n~E, Q! 5 O
i

wi~E, Q!
Ni~E, Q!

Ni
obs

e biE1biVi~Q!Zi~bi!. (9)

Here b i 5 1/kBTi is the inverse temperature of simulation
i, and the weights wi(E, Q) that minimize the error in
n(E, Q) may be expressed as
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wi~E, Q! 5
Ai

22

O
j

A j
22

,

Ai
2~E, Q! 5 n~E, Q!~Ni

obs! 21e biE1biVi~Q!Zi~bi!.

(10)

The partition function, Zi , is as usual given by

Zi 5 O
E,Q

n~E, Q!e 2biE2biVi~Q! . (11)

Equation (9) for n(E, Q) and Equation (11) for Zi self-
consistently determine n(E, Q) to within a multiplicative
constant, and hence the free energy,

F~Q, T! 5 2kBT log F O
E,Q

n~E, Q!e 2E/kBTG , (12)

to within an additive constant. Knowledge of the density
of states allows straightforward calculation of the
canonical energy and entropy, as well as expectation
values of various observables, as a function of Q and T.
Our experience is that, with proteins of a size similar to
those analyzed here, the amount of sampling performed
here gives good quantitative results for an extrapolation in
temperature of up to roughly 10%. The temperature range
may of course be extended by performing additional
simulations at different temperatures.

In the case of protein 1r69, we perform an additional 20
simulations, as described above, but with the single difference
that the functions {Vi(Q)} are replaced with {Vi(Qt)},
where Qt measures the similarity to a local minimum
(“trap”) of the potential found from an annealing run.
Qt is defined as Q [Equation (8)], but with the coordinates
of the native state replaced by those of the trapped state.

In the results section, thermodynamic quantities are
principally displayed as a function of Q, but other order
parameters are investigated as well; the use of one
particular order parameter in the biasing functions does
not preclude calculation of free energies as a function of
another, as the multiple histogram equations above make
clear. Other order parameters we consider in the following
section include RMSD (the root mean square deviation
of the Ca carbons from their native positions) and a
“contact Q,” Qc. This is defined in a way similar to Q,
but with the difference that only Ca pairs that are closer
than a cutoff distance, rc, in the native structure are
included in the sum,

Qc 5

Oi,j21 u ~rc 2 rij
N! exp F2

~rij 2 rij
N! 2

2s ij
2 G

Oi,j21 u ~rc 2 rij
N!

. (13)

We chose rc 5 8 Å. Qc is thus more directly comparable
to the typical order parameter used in lattice model
studies (the fraction of native contacts) than is Q, which
includes all Ca pairs in its sum. It can therefore be useful
to examine the landscape using Qc as an order parameter
so that a better correspondence with lattice studies can
be achieved. Finally, we also define order parameters that
describe the amount of order by proximity class. These are
also defined analogously to Q, but with the sum restricted
to run over only the ui 2 ju appropriate to that class. For
example,

Qshort 5

Oj25,i,j21 exp F2
~rij 2 rij

N! 2

2s ij
2 G

Oj25,i,j21 1
. (14)

4. Results
To give a sense of the relationship between the order
parameter principally used in the thermodynamic profiles
below (Q) and the commonly used RMSD order
parameter, we show in Figure 1(a) the mean value of
RMSD for protein 1r69 at T̃ 5 1 obtained with the
prediction Hamiltonian, as a function of Q. The points on
the figure represent instantaneous values obtained during
the course of the simulation, and are included to indicate
the size of fluctuations around the mean. Similarly,
Figure 1(b) shows the dependence of the mean value
of the contact order parameter Qc as a function of Q.
Several features apparent in the figure are worth noting.
First, Qc and Q are strongly correlated over their entire
range. Note that ^Qc(Q)& . Q for all Q so that, for
example, an ensemble of structures at Q 5 0.4 (40% of
residue pairs at the correct distance) corresponds roughly to
one with Qc 5 0.6 (60% of contacts formed). On the other
hand, Q and RMSD are strongly correlated for only Q . 0.5
(roughly RMSD , 5 Å). For lower values of similarity
to the native state, there is a much wider spread of RMSD
found at a single value of Q. For example, at Q 5 0.4 the
RMSD ranges from 5 Å to 12 Å. This reflects the fact that
outside the immediate vicinity of the native state, motion
of (say) a protruding arm of the protein can cause little
change in the number of contacts while giving rise to large
fluctuations in RMSD; this is one reason that Q (or Qc)
is often preferred to RMSD as an order parameter until
only extremely good results are considered.

A rough conversion between RMSD and Q can be
attempted for near-native structures, and Figure 1(a)
shows that Q 5 0.75 corresponds roughly to a 2-Å
RMSD, while Q 5 0.54 corresponds to an RMSD of
4 6 0.5 Å. While these values and the results of Figure 1
have been obtained for the particular case of protein 1r69
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at T̃ 5 1.0 with the prediction Hamiltonian, the situation
is found to be insensitive to temperature variation, and
very similar quantitatively for protein 1bg8. The case of
the Go# model, which is shown in Figure 2, is also broadly
similar, but there are some quantitative differences. Most
notably, a significant number of structures for which Q .

0.5 have a large RMSD. This is probably related to the
fact that, although in all cases studied here the proteins
remain mostly collapsed over the entire range of Q, the
fluctuations in the radius of gyration are larger in the Go#
model than the prediction Hamiltonian, as illustrated in
Figure 3. This stems from the fact that in the Go# situation
no non-native interactions exist to stabilize the more fully
collapsed states, and again points up the fact that when
judging the quality of a structure it is desirable to have
several measures available, and not rely only on the
RMSD parameter.

Before examining the free-energy profiles, it is helpful
to simply look at a few examples of the huge number of
structures encountered during the molecular dynamics
sampling. In Figure 4 we show simulation structures
for protein 1r69 with the prediction Hamiltonian at
Q 5 0.25, (top), Q 5 0.4, Q 5 0.55, and Q 5 1.0
(bottom). At Q 5 0.25 the structures are essentially
random, with hardly any well-defined secondary
structure; they are similar neither to each other
nor to the native state. At Q 5 0.4, helical secondary-
structure elements are clearly visible; the structure
to the right has some noticeable topological similarity
with the native state. By Q 5 0.55, however, the
resemblance to the native state is clear. Note that
while all other non-native structures were encountered
at T̃ 5 1 (and in the presence of a biasing potential),
the Q 5 0.4 structure to the left is in fact a local

Figure 1

Mean value of order parameters (a) RMSD and (b) Qc as a function of
Q for protein 1r69 at T � 1.0 (solid lines). The points represent
instantaneous values of the order parameters taken from the simula-
tion at widely spaced time intervals.
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Mean value of order parameters (a) RMSD and (b) Qc as a function of
Q for the Go model at T � 1.0 (solid lines). The points represent
instantaneous values of the order parameters taken from the simula-
tion at widely spaced time intervals.
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minimum of the (unbiased) energy function found
from an annealing run. This probably accounts for
the noticeable difference in helical content from
the other two Q 5 0.4 structures shown.

Figure 5 shows the free energy as a function of both Q
and Qc at two different temperatures (T̃ 5 1.06 and 0.9)
for the three different Hamiltonians investigated here
(Go# model, protein 1r69 with the prediction Hamiltonian,
and protein 1bg8 with the prediction Hamiltonian). The
behavior of the Go# model is seen to be in striking contrast
to that of the prediction Hamiltonian. In the Go# case at
T̃ 5 1.06 [Figure 5(a)], the free energy has a double-well
structure, with a small barrier of 3.2« (3.0kBT) separating
a disordered molten globule-like minimum at around
Q 5 0.33 (Qc 5 0.41) from a native-like minimum with
Q 5 0.76 (Qc 5 0.79). As the temperature is lowered,
the globule rises in free energy relative to the native
minimum (and in fact by T̃ 5 0.9 the globule minimum
has essentially been “washed away”), which in turn moves
to still higher Q (Q 5 0.87 or Qc 5 0.9 at T̃ 5 0.9) and
approaches Q 5 1 as the temperature is lowered further.
The free-energy minima in this case are controlled by
the exchange of energy for entropy. With regard to the
prediction Hamiltonian, however, only a single minimum
is seen over the same temperature range for proteins 1r69
and 1bg8. Measured by Q, this minimum lies roughly
at the same position as the Go# globule minimum, but
measured by Qc it is more native-like. Lowering T̃ from
1.06 to 0.9 does lead to a shift in the position of the

Figure 3

Mean value of radius of gyration (as a fraction of the native value) as
a function of Q at T � 1.0 for (a) the Go model, (b) lr69, and (c)
1bg8. The points represent instantaneous values taken from the
simulation at widely spaced time intervals.
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minima (for both proteins 1r69 and 1bg8) toward the
native state (measured by both Q and Qc); however, this
shift is modest in comparison to the Go# case, and a
further decrease in temperature is found not to move the
minimum significantly nearer the native state. This is an
indication that conflicts between different forms of energy,
in contrast to a simple tradeoff between energy and
entropy, are important; i.e., the prediction Hamiltonian
is more frustrated than the Go# Hamiltonian.

Knowledge of the form of F(Q, T) for proteins
in the training set has immediate practical benefits,
notwithstanding the insight it may give into improving
energy functions (which is discussed further below).
In particular, it aids in the design of an appropriate
annealing schedule, although for a full picture all proteins
in the training set, as well as kinetic issues, should be
considered. On the basis of analysis of protein 1r69, it
appears that search via MD efforts should be concentrated

Figure 5

Free energy [expressed in units �, as defined in Equation (2)] as a function of (i) Q and (ii) Qc at T � 1.06 (�) and T � 0.90 (�) for (a) the Go
model, (b) protein 1r69, and (c) protein 1bg8. Note that the curves have been shifted by a Q-independent constant so that their minima lie at F � 0,
to aid comparison.
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around T̃ 5 0.9. Not only does F(Q, T) indicate the
expected quality of a prediction at a given temperature,
but it also trivially allows an estimate to be made of the
expected sampling time required before a structure of
a desired quality is found. For example, at T̃ 5 1.06,

F(Q 5 0.55) ' 13« ' 12kBT, and so the number of
independent samples typically required to realize such a
structure will be roughly e 12 ' 105 at this temperature. At
T̃ 5 0.9, F(Q 5 0.55) ' 9« ' 10kBT, and the number of
independent samples required to see a Q 5 0.55 structure
is reduced to e 10 ' 104. For protein 1bg8 at T̃ 5 1.06,
F(Q 5 0.55) ' 18kBT, requiring roughly 108 independent
samples, a number which in fact increases slightly at the
lower temperature of T̃ 5 0.9, at which F(Q 5 0.55) '

20kBT.
In order to better understand the behavior of the free

energy, it is helpful to consider the energetic and entropic
components separately. These are illustrated in Figures 6
and 7 respectively as a function of Q (examining the
entropy and energy as functions of other order parameters
is of course possible and yields essentially the same
picture). Consider first the energy. In the case of the Go#
model, the energy decreases monotonically, almost linearly
as Q is raised from 0 to 1. Decreasing the temperature
does not affect this behavior, for which the energy
function provides a thermodynamic driving force for
increasing Q whatever the value of Q; i.e., the energy
function is funneled to the native state. In the case of
protein 1r69, it is found [Figure 6(b)] that at T̃ 5 1.06,
E(Q) is monotonically decreasing; i.e., the energy function
is funneled to the native state, although for Q . 0.4 the
slope is less pronounced. At T̃ 5 0.9, however, for Q . 0.4
the energy is essentially flat and is no longer funneled
to the native state. The energy landscape in this case
resembles a caldera more than a funnel. In the case
of protein 1bg8 the situation is similar, but more
pronounced: The landscape is funneled to Q ' 0.4, but a
further increase in Q is accompanied by an increase in
E(Q); lowering the temperature only acts to make this
bias away from the native more severe. In this light, the
behavior of the free energy is more understandable. For
example, since as stated above, E(Q) is funneled down
to Q 5 0.4 at T̃ 5 0.9, lowering the temperature below
T̃ 5 0.9 will not lead to a minimum in F(Q) that is more
native-like than at Q 5 0.4. Since the minimum in F(Q)
already lies close to Q 5 0.4 [Figure 5(b)], further
reduction in temperature is unlikely to significantly
improve F(Q) and could even lead to deterioration.

The reason that the energy landscape for the prediction
Hamiltonian is caldera-like rather than funnel-like is of
course due to the existence of non-native structures that
lie lower in energy than the putative native structure.
In order to gauge the number of structures that are
energetically competitive with the native structure, it is
necessary to turn to the entropy curves. It is sobering first
to consider the Go# model. As noted above, this model has
a folding transition at T̃ 5 1.06, and the transition-state
ensemble [defined to be the maximum in F(Q)] lies just
below Q 5 0.5. Thus, defining all states with Q $ 0.5 to

Figure 6

Energy as a function of Q at T � 1.06 (�) and T � 0.90 (�) for (a)
the Go model, (b) protein 1r69, and (c) protein 1bg8. The caldera-like
nature of the prediction energy function is seen to contrast with the
strongly funneled character of the Go model.
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lie in the native basin and all other states to lie in the
globule minimum, we calculate the entropy difference
between the native and globule basins. At Tf this is
found to be 122kB [as may be approximately verified by
looking at the entropy difference in Figure 7(a) between
Q 5 0.33 and Q 5 0.76]. In other words, the globules
are entropically equivalent to e 122 ' 1053 native basins.
With regard to the size of a native basin, we note that
^RMSD(Q 5 0.76, T̃ 5 1.06)& 5 2.7 Å. Since 1053 ' 6329,
this corresponds to roughly 30 states of 2.7-Å resolution
per residue. Even though these numbers of states would
be reduced were the Go# model confined to be more tightly
collapsed, they clearly emphasize the entropic mountain
faced in structure prediction.

In the case of protein 1r69 with the prediction
Hamiltonian, the slope of S(Q) is smaller than for the Go#
Hamiltonian. As temperature is reduced, this slope is
reduced still further. This again reflects the presence of
non-native interactions; these naturally have more effect
at small to intermediate values of Q (at Q 5 1, of course,
they are absent by definition), where they stabilize a small
fraction of states which gain in thermodynamic weight as
the temperature is lowered. The situation for protein 1bg8
is seen to be similar to that for protein 1r69, but it is
more extreme: At T̃ 5 0.9, S(Q) becomes nearly flat
above Q 5 0.3, strongly suggesting that the system is
“running out of states” at this temperature; i.e., it is
approaching a glass transition [44 – 47]. To be more
quantitative, we pose the question “What is the (canonical)
entropy difference DS* between the two volumes
of phase space separated by the surface Q 5 Q*?”
Given that we do not know the actual basin size in
the prediction model, and that with this Hamiltonian the
desired native state may not even lie in a localized basin,
the choice of Q* is somewhat arbitrary. We make the
choice Q* 5 0.55, motivated by the fact that this
corresponds to an RMSD of slightly less than 4 Å on
average, which would currently be considered a very good
ab initio prediction. A quick estimate of DS* may be
obtained from locating the minimum in F(Q) (Figure 5),
then calculating the difference DS* 5 S(Qmin) 2 S(Q*)
from Figure 7. These differences are roughly
DS*(T̃ 5 1.06) ' 30kB and DS*(T̃ 5 0.9) ' 20kB

for protein 1r69, and DS*(T̃ 5 1.06) ' 20kB and
DS* (T̃ 5 0.9) ' 10kB for protein 1bg8. In other words,
the number of states thermally occupied in protein 1r69
decreases from 1013 4-Å basins at T̃ 5 1.06 to 108 4-Å
basins at T̃ 5 0.9. [Note that the difference between the
estimated number of thermally occupied states at T̃ 5 0.9
(108 Q 5 0.55 basins) and the above-estimated expected
number of states to search through at this temperature
before finding one with Q $ 0.55 (104) reflects the fact
that E(Q) is not precisely flat at this temperature, but
retains a small bias toward the native.] The corresponding

drop for protein 1bg8 is roughly 108–104 4-Å basins.
Unfortunately, accurate calculation of these numbers
beyond this temperature range is hampered by statistical
noise in the calculation of the energy. However, within the
range T̃ 5 1.1–0.9, the decrease in entropy is found to be

Figure 7

Entropy (divided by kB ) as a function of Q at T � 1.06 (�) and T �
0.90 (�) for (a) the Go model, (b) protein 1r69, and (c) protein 1bg8.
Note that both curves in each part of this figure have been shifted by
the same Q-independent constant so that the entropy appears to
approach zero at Q � 1.
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nearly linear, so a thermodynamic glass transition in the
region T̃ 5 0.6–0.8 appears likely.

Further investigation of the onset of glassy behavior is
facilitated by considering order parameters other than
those quantifying similarity to the native state. For

example, Figure 8 shows the probability distribution
P(q) of overlaps q obtained between members of the
equilibrium ensemble at two different temperatures for
the three Hamiltonians studied. Although, naturally, the
Go# model is the antithesis of glassy behavior, it is
nonetheless helpful to consider P(q) for this case first; see
Figure 8(a). At the Go# folding temperature (T̃ 5 1.06),
P(q) has two distinct peaks: one at q ' 0.31 corresponding
to the globule minimum, and one at q ' 0.66 corresponding
to the native basin (the structures with strong similarity
to a particular structure—in this case the native—are
also similar to one another). At the lower temperature
T̃ 5 0.9, only the native-like peak survives, and it
moves to higher q, since at this temperature the native
basin is more tightly focused on the native structure
[see Figure 5(a[i])] and the equilibrium structures are
consequently more similar to one another. This situation
contrasts sharply with that found for the prediction
Hamiltonian. Here, the maximum in P(q) moves only from
q 5 0.34 to q 5 0.41 (1r69) and q 5 0.36 to q 5 0.44
(1bg8a) between T̃ 5 1.06 and 0.9. This movement
reflects the loss in entropy of the ensemble as the
temperature is lowered; however, in this temperature
range there is no compelling evidence of the existence of
a small number of strongly localized basins (traps); i.e.,
there is no second peak at large values of q. There could
be several reasons for the absence of such a signal. Most
obviously, the temperature range investigated could still
be above the kinetic glass transition temperature (TA)
where distinct traps separated by free-energy barriers form
[44, 48]. Alternatively, the system could be below TA, but
with the globule basin still thermodynamically dominant
because of its larger entropy. Also, problems with
sampling can never be entirely ruled out: Free-energy
barriers may make some basins kinetically inaccessible
on the simulation time scale, or there could simply be so
many traps that the probability of return to any one is low
on the simulation time scale. In this regard, note that the
presence of a large number of dissimilar traps will also
reduce the expected magnitude of any second peak in
P(q), which is approximately inversely proportional to
the number of traps.

It is interesting to probe an individual trap in detail.
Figure 9 shows the free energy, energy, and entropy as
a function of similarity Qt to a local minimum of the
energy function found—as discussed in the previous
section—from an annealing run with the prediction
Hamiltonian for protein 1r69. Figure 9(a) indicates that
in the temperature range studied, there is only a single
minimum in F(Qt) (lying close to Qt 5 0.4). Thus, the
local minimum found from annealing is not the center of a
localized basin at T̃ 5 0.9. However, it is clear that at some
lower temperature this situation must change, since the
state is a local minimum of the energy function, but not

Figure 8

Equilibrium probability distribution, P(q), of observing a similarity q
between two independently selected structures at T � 1.06 (�) and
T � 0.90 (�) for (a) the Go model, (b) protein 1r69, and (c) protein
1bg8. P(q) is normalized such that 0

1 P(q)dq � 1.
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a unique one. There are some indications from Figure 9
that at a temperature not far below T̃ 5 0.9, F(Qt) will
develop a double-minimum structure. In particular,
in comparison with F(Q) [Figure 5(b[i])], F(Qt) is
significantly flatter in the region 0.6 , Qt , 0.8, and
becomes flatter with decreasing temperature. Furthermore,
E(Qt) [Figure 9(b)] remains funneled at T̃ 5 0.9,
indicating that below this temperature the trend in F is
continued (i.e., high-Qt states are reduced in free energy
relative to those at low Qt); and that a second minimum
may appear at high Qt. The trend in F suggests that this
occurs at roughly T̃ 5 0.7–0.8. Indeed, direct calculation
of F(Qt) at T̃ 5 0.7, although an extrapolation of 30% in
temperature and outside the range for which the multiple
histogram method is quantitatively reliable, does indeed
suggest a double-minimum structure for F(Qt), with a
second minimum occurring in the range Qt 5 0.7– 0.8.
Note that this implies a basin size somewhat smaller than
the Q 5 0.55 used to estimate the thermodynamic glass
transition temperature above; if it is typical, that
estimated temperature should be revised downward
a little. Of course, all traps will to some extent have
different F(Qt), and analysis of a single one does not
necessarily give the full picture. However, the main point
of our analysis here is to illustrate techniques that may be
used to investigate trapped states, rather than to provide
an exhaustive study of a single Hamiltonian.

We now consider how to identify where in the energy
function improvements might be made. In this regard, it
is often useful to consider the contribution of different
components of the energy to the slope of the funnel. A
natural first step is to consider separately the associative
memory and backbone contributions. In Figure 10 the
backbone energy is shown as a function of Q for two
different temperatures for the three Hamiltonians
considered here, and in addition it is shown as a function
of similarity to the trapped state just discussed. For the
case of protein 1r69 [Figure 10(b)], the backbone provides
a significant contribution to the funneling, roughly 35«

between Q 5 0.3 and Q 5 0.8 at T̃ 5 1.06, and 25« at
T̃ 5 0.9. Unsurprisingly, this is similar to the amount
of backbone funneling provided in the Go# case
[Figure 10(a)]. The slope in the case of protein 1bg8a
is less marked, and almost disappears at T̃ 5 0.9. Further
analysis (not illustrated) shows that the major contribution
to the variation of Eback with Q is from the Ramachandran
potential. Figure 10 thus immediately implies that an
increase in the weight of the Ramachandran potential will
lead to a shift in the minimum of F(Q) toward the native
state for protein 1r69. Increasing the weight of this
term will lead to a depopulation of those levels with
unfavorable f–c angles, which lie at intermediate values
of Q; i.e., the entropy of the globule basin will be
reduced. There is naturally a limit beyond which further

increase of the Ramachandran weight will not improve
prediction results, as would be indicated by a flattening
out of a plot of Ramachandran energy against Q (much
as seen for protein 1bg8 at T̃ 5 0.9). Further increase of
the weight of an unbiased Ramachandran energy in the

Figure 9

(a) Free energy, (b) energy, and (c) entropy vs. similarity to a low-
energy non-native “trapped” state (Qt ), at T � 1.06 (�) and T � 0.90 (�).
In (a), the free energy is also shown at T � 0.7, where a double-minimum
structure is apparent.
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Hamiltonian will lead to emphasized glassy behavior with
basins centered on relatively few states with near-perfect
f–c angles. [It is worth noting that the trapped state
found with the current Hamiltonian already has a
slightly more funneled Eback(Q) plot than the native; see
Figure 10(d).] Therefore, the weight of the backbone
should be changed cautiously, after considering all of
the proteins in the training set as well as any kinetic
consequences of such a change. The use of secondary-
structure predictions to produce a Ramachandran potential
biased to predicted secondary structure could also help.

Figure 11 shows the combined contribution of
associative memory and contact (i.e., non-backbone) terms
to the energy as a function of Q. The behavior of Eamc(Q)
largely mirrors that of E(Q) shown in Figure 6. In
particular, Eamc(Q) is funneled to the native state in the
Go# case, and also, though less strongly, for protein 1r69 at
T̃ 5 1.06, while at T̃ 5 0.9, Eamc(Q) is flat beyond about
Q 5 0.4 for protein 1r69, and slopes away from the native
state for protein 1bg8a in the temperature range shown.
Thus, at T̃ 5 0.9, the weak residual funneling beyond
Q 5 0.4, apparent in E(Q) for protein 1r69 [Figure 6(b)],
arises entirely from the backbone contribution (Figure 10)
as opposed to Eamc. Note also that the difference between
Eamc as a function of similarity to the native and Eamc

as a function of similarity to the trapped state is a late
funneling worth about 20« between Qt 5 0.5 and 0.9
[compare Figures 11(b) and 11(d)]. This is much greater
than the corresponding difference arising from backbone
contributions, indicating that the trapped state is largely
stabilized by associative memory or contact contributions.

It would naturally be desirable to improve the quality
of the non-backbone terms. To investigate them in more
detail, we break up their contributions according to
sequence separation. Specifically, Eamc is separated into
three terms {Ex} for which x 5 short, medium, or long,
corresponding to the three proximity classes of the
Hamiltonian. These are shown as a function of Q in
Figure 12. The individual components of Eamc are found to
follow trends similar to those of Eamc (or even the total
energy E). For example, all components {Ex} contribute
similarly to the funneling in the Go# model, which is
funneled down to the native state [Figure 12(a)], while in
the prediction case the funneling is weaker or absent after
a certain value of Q [Figures 12(b, c)]. However, it is
more profitable to focus on the difference between the
different classes of interaction. For example, Figure 12(b)
shows that the contribution to the funneling for protein
1r69 above Q 5 0.4 comes almost entirely from the short-
range interactions at T̃ 5 1.06; at T̃ 5 0.9, there remains
weak funneling in this class of interactions, while the
other two classes give a small funneling away from the
native state [leading to a flat total Eamc(Q . 0.4); see
Figure 11(b)]. This situation is essentially repeated for

Figure 10

Backbone contribution to the energy as a function of similarity to the
native state at T � 1.06 (�) and T � 0.90 (�) for (a) the Go model, (b)
protein 1r69, and (c) protein 1bg8. In (d) the backbone energy is shown
for protein 1r69 as a function of similarity to a trapped state.
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protein 1bg8a, with the contribution to funneling being
largest for Eshort, followed by that for Emedium. This implies
that a reweighting of the overall contributions of short-,
medium-, and long-range interactions to increase the
weight of short-range ones will move the minimum in
F(Q) toward the native state (at least in the temperature
range of Figure 12). The balance among short-, medium-,
and long-range interactions is optimal when all three
curves level off at the same temperature.

While Figure 12 aids assessment of the balance among
the various terms, it is difficult to use it alone to assess
the relative merits of the energy function used in the three
classes. The additional information required is a measure
of the amount of ordering by class, i.e., a knowledge of
the thermodynamics as a function of {Qx}. For example,
the main difference between {Ex} as a function of Q and
as a function of Qt is an additional funneling that occurs
near the trapped state in the short- and medium-range
classes of interactions. This does not imply that there is a
flaw in these particular classes, especially given that the
trap has Qshort 5 0.8, Qmedium 5 0.56, but Q long 5 0.29.
A more plausible explanation is that improvement in the
long-range potential would help discriminate more against
such traps. Another example for which {Qx} information
is required is shown in Figure 12(b[i]). Here, the caldera-
like nature of the long- and medium-range classes
compared to the funneled short-range energy could in
principle be explained by a scenario in which the medium-
to-long-range potential is so good that Qmedium and Q long

are close to unity for all structures encountered in the
simulation. That this is not in fact the case can be seen in
Figure 13 [part (b[i]) in particular], in which the total free
energy of the proteins is shown as a function of Qx . The
minimum of F(Qx) for protein 1r69 at T̃ 5 1.06 lies at
0.62 (short), 0.44 (medium), and 0.27 (long). Thus, not
only is the contribution of the short-range potential to
the overall funnel largest in this case, but the short-range
native order is at the same time greater than that in the
other two classes. When the temperature is reduced to
T̃ 5 0.9, the minima in F(Qshort) move further toward the
native state than in the other two classes. Protein 1bg8a
shows behavior similar to that of 1r69 (and there is also
no significant difference using similarity to the trapped
state by class as order parameters). The short-range
native order for protein 1r69 is comparable to that of Go#
[compare Figures 13(b[ii]) and (a[ii])], while the native
order in the medium-range class is considerably less than
that in the Go# folded minimum, but is more than in the
Go# globules. The order in the long-range class is similar
to that in the Go# globules.

The above suggests that improvements should be
directed at the long-range (contact) potential, which does
not appear to provide sufficient discrimination. This is also
indicated by Figure 14, in which the components of the

Figure 11

Total associative memory and contact contribution to the energy as a func-
tion of similarity to the native state at T � 1.06 (�) and T � 0.90 (�) for (a)
the Go model, (b) protein 1r69, and (c) protein 1bg8. In (d) the AMC energy
is shown for protein 1r69 as a function of similarity to a trapped state.
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Figure 12

Components of the AMC contribution to the energy Ex [for x � short (�), medium (�), and long (*)] as a function of similarity to the native state at
(i) T � 1.06 and (ii) T � 0.90. The plots are for (a) the Go model, (b) protein 1r69, and (c) protein 1bg8. In (d) the same components of the AMC
energy are shown for protein 1r69 as a function of similarity to a trapped state.
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Figure 13

Free energy as a function of the sequence-dependent native similarity parameters Qx [for x � short (+), medium (�), and long (*)] at (i) T � 1.06
and (ii) T = 0.90. The plots are for (a) the Go model, (b) protein 1r69, and (c) protein 1bg8. In (d) the free energy is shown analogously for protein
1r69 as a function of similarity to a trapped state Q t.
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Figure 14

Components of the AMC contribution to the energy [for x � short (�), medium (�), and long (*)] as a function of the corresponding component of
similarity to the native state (Qx) at (i) T � 1.06 and (ii) T � 0.90. The plots are for (a) the Go model, (b) protein 1r69, and (c) protein 1bg8. In (d),
the same components of the AMC energy are shown for protein 1r69 as a function of similarity to a trapped state.
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energy, Ex , are plotted as functions of their corresponding
Qx values. This method of displaying the data is probably
the clearest way of comparing the quality of different
terms, although, as discussed above, that used in Figure 12
makes possible a more ready assessment of the balance
among terms. It is immediately apparent from Figure 14(b)
that the funneling in the short-range class is excellent
(to Qshort 5 1), while in the medium range it is good
(to Qmedium 5 0.7 at T̃ 5 1.06 and to Qmedium 5 0.55 at
T̃ 5 0.9); however, in the long-range class it is poor
(weakly to Q long 5 0.4 at T̃ 5 1.06, and not beyond
Q long 5 0.2 at T̃ 5 0.9). The situation with regard to the
long-range class is somewhat better for protein 1bg8, but
the discrimination in this class is clearly worse than in the
other two classes. This is not very surprising, since there
exist good local signals for secondary structure, so design
of good potentials is easier in the short-range (local) as
opposed to long-range classes. The discrimination
achieved in the medium-range class is probably
responsible for the relative success of the prediction
Hamiltonian.

Although we have concentrated on describing how
changes of the potential affect free-energy profiles and
funnel characteristics, free-energy profiling can be used to
investigate other aspects of prediction schemes. We end
with an example using a consensus sequence scheme. One
might argue that fluctuations in sequence away from a
consensus are tolerated and are either evolutionally
neutral or represent adaptations for function. Thus, a
consensus sequence might have a more pronounced
funnel. To study this we prepared a consensus sequence
for the training protein 1r69. This was done by identifying
the 14 most similar sequences via a BLAST search [49],
and then identifying the most common class of residue at
each position in the sequence after performing a multiple-
sequence alignment. This is a simplified version of the
multiple-sequence averaging scheme of Keasar et al.
[25, 26]. In our four-letter code (H 5 hydrophobic,
P 5 hydrophilic, A 5 acidic, B 5 basic), the actual protein
1r69 sequence and the consensus sequence are, respectively,
PHPPBHBPBBHAHPHAAPAHPABHPPPAAPHAA-
HAAPBPBBPBHHPAHPPPHPHPHAHHHAPP and PHP-
ABHBABBPAHPHPAPAHPABHPHPAAPHAAHAAPBP-
BPPBHHHAHPPPHPHPPAHHHAPP. The eight positions
where the sequences differ are shown in bold. The free
energy and the energy of the consensus sequence were
calculated in the key range Q 5 0.2 to Q 5 0.6 and are
compared to the results for protein 1r69 in Figures 15(a)
and 15(b), respectively. There is a clear but modest shift
in the position of the free-energy minimum from Q 5 0.36 to
Q 5 0.39. This is accompanied by a greater funneling in the
medium-Q range (Q 5 0.3–0.5). There is also evidence that
the energy function in the long-range proximity class, in
particular, has better discrimination when the consensus

sequence is used; see Figure 15(c). This is despite the fact
that it was the protein 1r69 sequence, and not the consensus
sequence, that was used in the optimization procedure.
Thus, while the caldera picture still applies and the
resolution of predictions is limited, using the consensus

Figure 15

Thermodynamic profiles of the consensus sequence (�) compared to
the actual protein 1r69 sequence (�) at T � 0.9. Part (a) shows the
free energy as a function of Q; part (b) shows the total energy as a
function of Q; part (c) shows the long-range (contact) energy as a
function of the corresponding order parameter Qlong.
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sequence is seen to have a small beneficial effect in
smoothing out the energy landscape. More sophisticated
ways of using multiple sequence information such as that
described by Keasar et al. may have a greater effect.

5. Concluding remarks
The protein structure prediction problem is essentially
one of finding an energy function with a funnel-shaped
landscape for naturally occurring protein sequences.
Additionally, to make the problem computationally
feasible it is naturally desirable that the energy function
be as simple as possible; i.e., that a reduced description of
the protein be used, omitting explicit solvent molecules
and possibly some side-chain atoms, and containing few
expensive many-body interactions. It is not obvious that
such a reduced description can in fact produce a funnel-
shaped landscape in the absence of homology information,
even for a limited subset of proteins (such as alpha-helical
proteins). However, while current ab initio prediction
schemes are far from perfect, the best are certainly better
than random, indicating that their landscapes are funneled
to some extent.

In this paper, we have shown, using well-known
methods, how the shape of the energy landscape may be
quantified for a structure-prediction Hamiltonian. While
the method was illustrated for an associative-memory
Hamiltonian with no homology information, it is generally
applicable to other energy functions. There are two main
reasons to analyze an energy function as described here.
First is the wealth of information obtainable from such an
analysis, allowing the quality of the energy function to be
objectively quantified according to a number of measures.
For example, knowledge of F(Q, T) trivially allows
estimation of the amount of sampling time required to
find a structure of a specified quality; by measuring the
free energy as a function of similarity to trapped states,
estimates of the kinetic glass transition temperature and
basin size can be made. Knowledge of S(Q, T) gives
the total number of thermally occupied states as
a function of temperature, and leads to an estimate of the
thermodynamic glass transition temperature. Perhaps most
significantly, E(Q, T) gives a direct and quantitative
measure of the shape of the landscape. For an ideal
energy function, E(Q, T) is funneled down to the native
state at all temperatures, and so the position of the global
free-energy minimum is controlled by the exchange of
energy for entropy: At low enough temperature, a good
“prediction” will be obtained. For the prediction energy
function, E(Q, T) is funneled to the native state at high
temperature (where folding is entropically prevented), but
when the temperature is reduced, the slope in the funnel
decreases until a situation is reached in which the energy
landscape resembles a caldera; i.e., it is only funneled up
to a certain value of nativeness, beyond which it is flat.

This reflects the presence of competing (non-native)
interactions; i.e., folding is energetically prevented by
the presence of low-energy non-native structures (traps).

The information from thermodynamic analysis appears
to come at a large computational cost: For the example
studied here, the analysis requires 30 times the computing
time of a single prediction. This cost may be reduced by
focusing on a smaller region of phase space, dictated in
part by expectations for the energy function; if, for
example, a prediction of nativeness of Q 5 0.55 is
required, there is much to be learned just from studying
the thermodynamics in the range Q 5 0.3 to Q 5 0.55.
Additionally, the comparison of computing time with that
of a single prediction is not a fair one, since for a partially
funneled landscape the quality of predictions will vary
between individual annealing runs, and several are
required to gauge the quality of the energy function.
While the thermodynamic analysis can never completely
replace judging the quality of the predictions as a means
of evaluation (the predictions are, after all, the “final
product”), there is a second key reason to perform it. That
is, analysis of the thermodynamics as a function of various
order parameters points the way to where improvements
can and should be made to the prediction scheme. On
a straightforward level, it can guide the design of an
annealing schedule. Examining components of the energy
as a function of overall nativeness allows the balance
between various terms to be assessed and gives an
indication how they should be reweighted. Examining
components of the energy as a function of the
corresponding nativeness [e.g., Eshort(Qshort)], gives a better
indication of which components individually require
improvement. Once the optimum parameterization
has been obtained for a given energy function, further
improvement requires refining the form of the energy
function. Thermodynamic knowledge can in principle be
used to help design two-stage prediction schemes in which
a reduced description is used to quickly narrow the search
problem to a relatively small basin, after which more
detail (e.g., extra atoms or many-body interactions) can
be “switched on” to narrow the ensemble of predicted
structures still further.

Although we have not discussed it here, the use of
sampled structures with a range of nativeness, combined
with a knowledge of the E(Q) and F(Q) in that range,
also opens up the possibility of alternative optimization
criteria. A simple example is to maximize the stability gap
between molten globule structures and an ensemble of
structures constrained to lie within, say, 4 Å RMSD of the
native state (rather than the native state itself), with the
objective of increasing the funneled character of the
landscape in the region where it is most needed. Such
schemes could potentially be enhanced if combined with
the histogram analysis, which allows calculation of energy
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and free energy as a function of the parameters in the
energy function without additional molecular dynamics
simulations. We hope to return to these issues in the near
future.

Appendix A: Backbone Hamiltonian
The same backbone Hamiltonian as used here, with
minor differences, has been discussed more expansively
elsewhere; see for example [35]. For completeness, the
main points of the backbone energy function used in this
paper are summarized below. Eback is composed of several
terms:

Eback 5 ESHAKE 1 Eev 1 Echain 1 Echi 1 Erama . (A1)

Each term depends only on the positions of Ca, Cb, and
backbone O atoms (all assumed to have unit mass), which
are thus the only atoms to enter the dynamics. It aids
visualization, however, to express some of the forces
between these atoms in terms of the variables

rNi
5 0.483rC i21

a 1 0.703rC i
a 2 0.186rOi21

(A2)

and

rC9i
5 0.444rC i

a 1 0.235rC i11
a 2 0.321rOi

, (A3)

where, in an obvious notation, rNi
and rC9i

are the positions
the nitrogen and C9 carbons of the protein backbone
would respectively assume, given ideal amino acid
geometry.

The chain connectivity is maintained by the SHAKE
algorithm [50], which constrains the neighboring Ca–Ca

distance, as well as the Ca–Cb bond and distances from
the oxygens to the neighboring two Ca atoms at their ideal
values. Excluded volume effects are included via a
harmonic interaction between Ca–Ca, Ca–Cb, Cb–Cb,
and O–O pairs of atoms separated by less than rev:

Eev 5 «l ev
C O

x,y

O
i,j

u@r ev
C ~ j 2 i! 2 rC i

x
C j

y#@r ev
C ~ j 2 i! 2 rC i

x
C j

y# 2

1«l ev
O O

i,j

u ~r ev
O

2 rOiOj
!~r ev

O
2 rOiOj

! 2 , (A4)

where x and y can each take the values a and b. Note
that rev

C has a sequence dependence; its actual values are
given below. The remaining terms act to maintain chain
geometry close to that of an ideal peptide chain (with
some flexibility). First, the correct bond angles at Ca are
maintained by a combination of the SHAKE algorithm
and harmonic potentials of the form

Echain 5 «lchain O
i

$~ r̃NiC i
b 2 2.46! 2

1 ~r̃C9i C i
b 2 2.51! 2

1 ~r̃NiC9i
2 2.45! 2%.

(A5)

Second, chirality at the Ca atoms is maintained using the
potential

Echi 5 «lchi O
i

~xi 2 x0!
2 , (A6)

where

xi 5 ~r̃C9i C i
b 3 r̃C i

a
Ni
! z r̃C i

a
C i

b (A7)

and x0 5 20.83. Finally, there is a term designed to
produce a distribution of dihedral (f, c) angles roughly
reflecting that found in real proteins, and commonly
displayed in the form of Ramachandran plots,

Erama 5 2«lrama O
i52

N21

1.3149e 215.398$@cos~f12.051!21# 21@cos~c22.138!21# 2%

11.17016e 2100.521$@cos~f11.353!21# 21@cos~c22.4!21# 2%

11.29264e 249.0954$@cos~f11.265!21# 21@cos~c10.218!21# 2%

11.78596e 2419.123$@cos~f11.265!21# 21@cos~c10.929!21# 2%.

This term has been somewhat modified from that given in
Reference [35] to better fit the backbone torsional angles
observed in the standard Ramachandran map for non-
glycine residues [51]. Nevertheless, the Ramachandran
potential used here is similar to that used previously
in that barriers between the minima are deliberately
constructed to be lower than in reality in order to
promote more facile chain dynamics.

The parameters chosen are lEV
C 5 15.0, lEV

O 5 15.0,
lchain 5 30.0, lrama 5 1.0, lchi 5 20.0, rev

C( j 2 i , 5) 5 3.5 Å,
rev

C( j 2 i $ 5) 5 4.5 Å, and rev
O 5 3.5 Å.

Finally, we note that while the backbone given above
was used in generating structures for the optimization
procedure outlined in Section 2, the backbone used in the
thermodynamic analysis described in the results section
in addition included a term dependent on the radius
of gyration of the protein, Rg (calculated from Ca

positions). This is given by a quadratic well centered
at Rg

pred(N) 5 2.2N 0.38 (which is an estimate of the radius
of gyration of single-domain proteins [52]). Specifically,

Eradius 5 «lradius~R̃g 2 R̃g
pred! 2 , (A8)

for 0.75 , Rg/Rg
pred , 1.5, and Eradius is constant outside

this range. We take lradius 5 10.0. This term has little
effect on the thermodynamics for the prediction
Hamiltonian, and is not required for collapse in this
case. It is merely included to facilitate collapse in the
case of the Go# model, which otherwise does not
collapse before folding.
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Appendix B: Training proteins and memories
The PDB codes of the ten training proteins are 1r69, 1utg,
3icb, 256b, 4cpv, 1ccr, 2mhr, 1mba, 2fha, and 1rgp. The 36
memory proteins are 1jhg, 256b, 1bgf, 5icb, 1ah7, 2a0b,
1tx4, 1avs, 1c3d, 1a28, 1ak0, 2abk, 1ail, 1lis, 1b4f, 1pbv,
1huw, 1lki, 2lbd, 1vin, 1aa7, 1bja, 1nsg, 1beo, 1au1, 1rcb,
1e2a, 1b10, 1hiw, 1col, 1szt, 1hul, 1a17, 1axd, 1baj, and
1kxu. For training protein 3icb, memory proteins 5icb and
1avs are replaced with 1cf7 and 1aep; for training protein
1rgp, memory protein 1tx4 is replaced with 1cf7. This
ensures that Q for training proteins aligned with memories
is Q , 0.4 in all cases, and typically Q ' 0.2. Similarly
for protein 1bg8, examined in this paper as an “unknown”
protein outside the training set, memories 1a28 and 1a17
are replaced by 1cf7 and 1aep.

Appendix C: Go# Hamiltonian
The Go# model used in this paper is defined by

EGo# 5 EGo#
AM

1 Eback . (A9)

The backbone part, Eback, is identical to that used in the
prediction Hamiltonian and described in Appendix A.
The other term is an associative memory term with its
minimum at the native structure of protein 1r69,

EGo#
AM

5 2
«

aGo#
O

i#j23

gGo# @ x~ui 2 ju!# exp F2
~rij 2 rij

N! 2

2s ij
2 G .

(A10)

The sum over i and j runs over all unique pairs of atoms
(Ca–Ca, Ca–Cb, Cb–Ca, Cb–Cb) with sequence separation
of at least three residues. The interaction between Ca(i)
and Cb( j) atoms is thus a Gaussian well centered at
their native separation rij

N . The well widths are given by
the same formula as in the prediction Hamiltonian,
s ij 5 ui 2 ju 0.15 Å. The weights gGo# ( x) given to interactions
in each proximity class are in the ratio 4.9:1.35:1.0 (short:
medium:long). This is chosen so that energy is evenly
distributed among the three proximity classes, as
was also the case for the prediction Hamiltonian. The
dimensionless constant aGo# is chosen so that Equation (2)
is satisfied, which ensures that the energy difference
between the PDB structure and a completely unfolded
structure is the same for the Go# model and the prediction
Hamiltonian for protein 1r69.
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