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as a measure

A current question of considerable interest to
both the medical and nonmedical communities
concerns the number of human transcription
units (which, for the purposes of this paper,
are “genes”) and proteins. Even with the
recent announcement of the completion of the
draft sequence of the human genome, it is still
extremely difficult to predict the number of
genes present in the genome. There are
several methods for gene prediction, all
involving computational tools. One way
to approach this question, involving both
computation and experiment, is to look at
copies of fragments of messenger ribonucleic
acid (mRNA) called expressed sequence tags
(ESTs). The mRNA comes only from a gene
being expressed, or translated, into RNA; by
clustering mRNA fragments, we can try to
reconstruct the expressed gene. While the
final result is a very rough representation of
the “true expressed transcript,” it is probably
within 20% of the real number. Here, we

review the issues involved in EST clustering
and present an estimate of the total number of
human genes. Our results to date indicate that
there are some 70000 transcription units, with
an average of 1.2 different transcripts per
transcription unit. Thus, we estimate the total
number of human proteins to be at least 85 000.
The total number of proteins will be higher
because of post-translational modification.

Introduction
A landmark in human knowledge was recently reached
with the announcement of the completion of the draft
sequence of the human genome. This represents the
opening of a completely new phase in understanding what
it is to be human and in the factors that influence many
human diseases. One key datum of great interest is the
number of human genes and proteins. Although the
question is simple enough to state, in practice it is very
hard to answer. Not least in difficulty is the issue of
carefully defining what one means by the term “gene.”
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Before doing that, we first present background
information, define our methodology, and then present
our estimate of the number of human genes and proteins.

A brief introduction to molecular biology
The central dogma of molecular biology states that
information flows from DNA to RNA to proteins. Every
cell has its entire complement of instructions encoded in
its deoxyribonucleic acid (DNA). DNA is made up of four
subunits, or bases, termed A, C, G, and T for adenine,
cytosine, guanine, and thymine. These subunits are
connected into very long chains called chromosomes. Most
chromosomes are linear, although bacteria (with some
exceptions) have circular chromosomes. Most species have
a different number of pairs of chromosomes, even those
that are genetically closely related. However, there is
enough similarity between regions (hundreds of thousands
to millions of base pairs) of any two species’ chromosomes
that one can usually find a correspondence. Such a
correspondence is called synteny. For instance, there is
enough synteny between human and bovine chromosomes
that one can use the human genetic map to locate a small
number of genes in the bovine genome.

Humans have 23 pairs of chromosomes, 22 autosomes
and two sex-determining chromosomes, the X and the Y.
They range in size from 50 to 263 million base pairs.1 The

total size of the human genome is known to be at least
three billion bases spread out across the 24 chromosomes.

A gene possesses a number of characteristics, as
diagrammed in Figure 1. It is the basic unit of heredity,
that which is passed from generation to generation. It
encodes a protein (or, in some cases, a structural RNA).
The gene is copied into a messenger ribonucleic acid
(mRNA) in a process called transcription. That mRNA is
then translated into a protein sequence by a very large
protein-RNA molecular machine called the ribosome.
Each gene has a nontranscribed region upstream and
downstream of the coding region involved in the
regulation of gene expression. Even the part that is
transcribed into mRNA has portions that are cut out
afterward (introns), leaving behind the instructions for
making the protein (exons). Furthermore, not all genes
are expressed (translated into protein) in all cells. Some
genes have a role in only one kind of tissue (e.g., the
lung) and would not be expressed in another tissue
(e.g., the skin).

These features of the gene—introns, exons, and
regulatory regions—are still relatively poorly understood.
The signals that distinguish one from the others are
subtle. Therefore, at present the best way to locate genes
is by experiment. Researchers isolate cells of interest
and extract the total RNA, a process called “library
construction.” The mRNAs are separated from the
structural RNAs, then copied into DNA with a special
enzyme. These pieces of DNA are called complementary
DNA (cDNA). During this process the RNA is frequently
partially degraded. The cDNA fragments are called
expressed sequence tags (ESTs). A particular gene may
not be expressed in a particular cell type, so it will not be
present in the library. Other genes may be very highly
expressed, so there will be many ESTs from those
genes. All cells have certain metabolic functions and
structural features that they must have to live, so those
“housekeeping” ESTs will be present in all cells.

By examining all of the ESTs available from cells in a
wide variety of tissues and developmental states, one can
get an idea of how many expressed genes there are.
Another complication is that a gene may produce more
than one transcript by including or excluding specific
exons or by altering the length of a specific exon. This
is known as “alternative splicing.” As mentioned above,
the number of ESTs does not correlate directly with the
number of genes because an mRNA may be broken
into many pieces during experimental manipulation.
Consequently, ESTs must be reassembled into intact
cDNAs in order to obtain an estimate of the number of
genes in the genome. Each gene may also have more than
one transcription product, or isoform, and each isoform
may be expressed in a specific tissue or developmental
stage. As a result, each gene may have several forms of1 See http://alces.med.umn.edu/tables/hum-chr.html.

Figure 1

Schematic view of some features of a eukaryotic transcription unit. The
top line represents the DNA; the bottom, the messenger RNA. The
region between “start of transcript” and “end of transcript” is copied
into mRNA. Then the internal noncoding regions (introns) are removed,
leaving the protein coding regions (exons) together with some upstream
sequence [the 5' untranslated region (UTR)] and downstream sequence
(3' UTR).
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transcripts. Capturing these transcripts in the form of
ESTs, and the subsequent reconstruction of the parent
gene sequence, is thus at best inexact. However, by
application of a set of assumptions, it may be possible
to bound an estimate that reflects the “true reality.”

EST analysis
A common way to assemble ESTs is by cluster analysis.
The goal of such a project is the construction of a gene
index in which ESTs and full-length transcripts are
partitioned into index classes (or clusters) such that they
are placed in the same index class if and only if they
represent the same gene. Accurate gene indexing
facilitates gene expression studies and reduces the cost of
gene discovery through the assembly of ESTs derived from
genes that have yet to be positionally cloned or obtained
directly through genomic sequencing. Also, effective gene
clustering serves as a starting point for the discovery of
new gene expression variants such as alternative splicing
forms. Torney et al. [1] have developed an algorithm
known as d2 that is used as the basis for a program
we have developed that we call d2_cluster. It is an
agglomerative algorithm specifically developed for rapidly
and accurately partitioning transcript databases into index
classes by clustering ESTs and full-length sequences
according to minimal linkage or “transitive closure”
rules.

Projects related to EST clustering and assembly
include UniGene [2] from the National Center for
Biotechnology Information; the TIGR Gene Index [3–5]
(http://www.tigr.org/tdb/hgi/hgi.html) from the Institute
for Genomic Research; the Sequence Tag Alignment
and Consensus Knowledgebase [6] (STACK;
http://ziggy.sanbi.ac.za/stack/stacksearch.htm); the
Merck/Washington University Gene Index [7]; and the
GenExpress project [8]. All of these projects perform
some type of cluster analysis in which sequence similarity
is used to form the clusters. A summary of gene clustering
project methods in the context of d2_cluster has been
published [9], as has a tutorial on the process [10]
(www.sanbi.ac.za).

The d2 algorithm
In 1989, Torney et al. presented an algorithm called d2 [1]
for comparing two gene sequences. Originally developed
for quickly locating repetitive sequences in DNA, it has
proven to have other uses as well. In this section we
compare and contrast d2 with sequence-searching
methods. Most sequence-comparison algorithms are
context-dependent; i.e., one can obtain a traditional
sequence alignment (Figure 2). A set of letters from one
sequence can be written over a set of letters from another
sequence and lines drawn between related or identical
letters. In other domains, this is called approximate string

Figure 2

Sequence alignment. A portion of a FASTA3 [11] comparison of the bacterial mobile DNA element IS1 from Escherichia coli with a distantly related
element, IS1�� (isois1), from Shigella dysenteriae.
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matching. In contrast, a context-independent, word-based
method such as d2 seeks to determine only whether the
substrings (words) of a particular size occur the same
number of times in both sequences, regardless of location
(Figure 3). The d2 algorithm is a member of a class of
algorithms known as statistical distances.

FASTA vs. d2

The earliest widely used sequence-searching program was
probably FASTA [11], which gains its speed by breaking
up the query and target sequences into overlapping pieces
of defined sizes (one or two for amino acid sequences, one
to six for nucleotide sequences). The lists are compared,
and when sets of contiguous words are found longer than
15 nucleotides (in the case of a nucleotide search) or six
amino acids (in the case of an amino acid search), they
are assembled into an alignment and presented to the user
(Figure 2). In contrast, d2 counts word multiplicities: Do

the same words occur the same number of times in both
sequences? Locality of reference is lost in such methods,
but sequences can be scrambled with respect to one
another, or contain deletions and insertions, and still be
judged similar by d2. (Recovering locality of reference is
discussed below.) The d2 algorithm is a distance measure,
so smaller scores represent better matching, in contrast
to FASTA, where larger scores denote better matches
(a similarity measure).

Parameters of the d2 algorithm
The d2 algorithm contains three main parameters: window
length (WL), window overlap (WO), specified as a
percentage of the WL, and word (or k-tuple) size
(Figure 4). Locality is recovered by breaking up a
sequence into a set of overlapping windows. Otherwise,
the program can show that two sequences contain similar
words, but not the locations of those words. This is the
chief distinction between a sequence-alignment program
(such as FASTA) and a sequence-comparison program
(such as d2). Typically, the word size is 8 for EST
clustering, with a window length of 100 nucleotides
and a window overlap of 20.

The algorithm
Equation (1) defines the d2 measure,

d 2
5 O

n51

u O
i51

4 ktup

@mD~wi! 2 mQ~wi!#
2, (1)

where n is the window number, u is the total number of
windows in a sequence, mD(wi) is the multiplicity of word
i of length ktup in the database sequence, and mQ(wi) is
the multiplicity of word wi in the query sequence. Note
that d 2 is 0 when the windows are identical. With this as
background, we now describe the d2_cluster algorithm
(first presented in Burke et al. [12]).

Description of the d2_cluster method
The d2_cluster method is agglomerative: Every sequence
begins in its own cluster, and the final clustering is
achieved through a series of mergers [13]. The d2_cluster
method can be described in terms of minimal linkage
(sometimes called single linkage or “transitive closure”
in the sequence analysis literature). The term “transitive
closure” refers to the property that any two sequences
with a given level of similarity will occupy the same
cluster. Hence, A and B are in the same cluster even if
they share no similarity when there exists a sequence C
with enough similarity to both A and B. The criterion for
joining clusters is the detection of two sequences, one
from each cluster, that share a window of 100 bases (for
most EST clustering; the variable is called Window_Size).

Figure 4

Graphic depiction of d2 core parameters: word size, window size, and 
window overlap.
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Figure 3

Idealized d2 sequence comparison. The core idea is that the same 
words occur the same number of times in both sequences. The blocks 
of color denote similar sequences as detected by d2. Note that there 
are four green blocks and one each of the purple, blue, and yellow 
blocks. Since the blocks are not in linear order between Sequence 1 
and Sequence 2, no alignment such as that shown in Figure 2 is 
possible.

Sequence 1

Sequence 2
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Those two sequences are joined only if they are at least
80% similar. This variable is referred to as the Stringency.
To detect the overlap criterion we use the d2 algorithm
and set parameters and threshold values as described
[1, 14, 15]. The initial and final states of the algorithm
constitute a partition of the input sequences in which each
sequence is in a cluster and no sequence appears in more
than one cluster.

For ease of notation, let the following conventions hold:

1. We signify the d2 distance between two sequences, say
A and B, as d2(A,B).

2. Given two clusters, say clusters i and j, the operation
MERGE(cluster i, cluster j), also denoted as
MERGE(cluster i 4 cluster j), means that all sequences
in cluster j are assigned to cluster i.

3. The database to be clustered contains N sequences that
are numbered 0 through (N21); let sequence (i) be
denoted Si or S(i).

4. The membership of sequence Si is denoted Ci.

The notation d2(A,B) is conveniently used, although d2( , )
is a function not only of A and B but also of various
parameters (as specified in [1, 14, 15]). The MERGE
operation can be expressed in terms of step 4 above.
For all sequences Sr such that Cr 5 j, Cr is reset to be Cr 5 i.
C-style pseudocode for the MERGE operation is given in
Figure 5(a), and for step I, 1 , i , N, in Figure 5(b).

In Table 1 we describe the progression of the d2_cluster
algorithm inductively in that we first detail what happens
in the first two iterations (I1 and I2) and then describe
how one performs iteration (i11) given that iteration (i)
has been completed. Technically speaking, it is sufficient
to state only the first step and then to give the instructions
for steps (i) to (i11), but we detail the first two steps for
clarity. The clustering is finished when N iterations are
completed. Transitive closure is obtained because clusters
are joined if they contain any sequences with sufficient
identity.

The d2_cluster method as described above can be
mapped to the minimal linkage algorithm commonly seen
in statistics and engineering texts. Define a discrete
distance, d0, on sequences to be

d0(A,B) 5 0, if d2(A,B) , THRESHOLD

and

d0(A,B) 5 1, if d2(A,B) .5 THRESHOLD.

Linkage methods are usually presented in terms
of distance matrices. Since there are initially N

Figure 5

C-style pseudocode for (a) the merge operation and (b) step I (1 < i < N) of
d2_cluster.

(a)

MERGE( cluster Ci, cluster Cj) {

For(r�0;r<N;r��)
if( Cr��Cj )

Cr�Ci
}.

(b)

STEP I {
Select Si;
For( j�(i�1); j<N;j��)
{

if( d2(Si,Sj)<THRESHOLD
{

if(Ci < Cj)
MERGE( cluster Ci cluster Cj )

if(Ci > Cj)
MERGE( cluster Cj cluster Ci )

if(Ci��Cj)
(do nothing);

}
}

}

Table 1 The d2_cluster algorithm.

The initial state (I0): Each sequence is in its own cluster (i.e., Si is in cluster i or Ci 5 i).

The first iteration (I1): The first sequence in the database, S0, is selected as a query. For each sequence in Si(1di,N),
MERGE(cluster C0 4 cluster Ci) if d2(S0,Si),THRESHOLD.

The second iteration (I2): The second sequence in the database (S1) is now selected as a query. Note that C1 5 1 unless sequence 1
was merged into cluster 0 during step I1. For all seqs, Si (2di,N), MERGE(cluster C1 4 cluster Ci) if d2(S1,Si),THRESHOLD.

The (k)th iteration I(k): Suppose we have completed (k21) iterations. We select sequence Sk as a query. For all seqs,
Si(k11di,N), if d2(Sk,Si),THRESHOLD, then merge clusters Ck and Ci according to the following schedule:

If Ci,Cj, then MERGE(cluster Ci 4 cluster Cj);
If Ci.Cj, then MERGE(cluster Cj 4 cluster Ci);
If Ci5Cj, then do nothing.

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 D. B. DAVISON AND J. F. BURKE

443



sequences/clusters, let D 5 {d0(i,j)} be the N by N matrix
of discrete distances. In agglomerative clustering, the
dimensionality of D is reduced as sequences are clustered,
and in minimal linkage the distance between two clusters
X and Y is

d0(X,Y) 5 min{d0(Si,Sj): all Si in X, all Sj in Y}.

Table 2 describes the d2_cluster algorithm in terms of
minimal linkage. When the clustering is completed, the
matrix D will have as many rows and columns as there
are distinct clusters.

Screening expressed sequence tags
Before sequence can be input to the program, a variety
of troublesome details must be considered. Biological
sequence is not clean; it can contain a wide variety of
contaminants that must be removed for the clustering to
proceed optimally. These contaminants fall into several
classes. First, there can be vector sequence, left over from
the original cloning of the cDNAs. Vector can be readily
identified because only a small number of sequence types
are used as vector. There are more important challenges,
however. Genomic sequence from all organisms contains
repetitive sequences. These can be long or short, and may
be highly variable in sequence. Independent databases of
repetitive sequence are available [16]. When clustering
ESTs, looking for novel genes, one will not wish to
rediscover standard housekeeping genes again and again.
These, too, will be screened out. In all cases, we use the
Cross_match program2 from P. Green of the University of

Washington. Screened-out sequence is replaced by Xs,
and we require at least 100 bases of non-X sequence in
an EST to admit it to the clustering step.

Clustering
The sequences input to the d2_cluster algorithm are
compared to one another: n(n 2 1)/ 2 comparisons.
Large-scale clustering of 5 000 000 sequences can take
about 72 hours on four SGI Origin 2000 processors for
screening and clustering (approximately 1.25 3 1013

comparisons). After these comparisons are generated,
clusters are computed; then each cluster is assembled
using the PHRAP program2 from P. Green of the
University of Washington. The assembly step can take
several weeks on four to eight Origin 2000 CPUs. Output
comprises a number of clusters and singletons (single
sequences that do not cluster with any other sequences;
they are also called singleton clusters). Each cluster may
have one or more subclusters, and a subcluster may be a
singleton subcluster. A singleton subcluster is a single EST
that is similar to other sequences in the cluster but does
not assemble into a contiguous stretch of DNA with the
other members of the cluster.

Clustering public ESTs
We can now turn to the results of clustering human ESTs.
We used ESTs available in the public domain as of
February 11, 2000. There were 1 373 183 ESTs in the input
file. The DoubleTwist, Inc. Clustering and Alignment
Tools, Version 3.53 were used to screen, cluster, and

2 Unpublished; see www.phrap.org. 3 http://www.doubletwist.com.

Table 2 Description of the d2_cluster algorithm in terms of minimal linkage.

1. Initially all N clusters contain one sequence. D is an N by N matrix.

2. Search distance matrix for smallest distances between clusters (or, equivalently, take the first zero distance; search in any order).

3. When a zero distance is found at, say, row i column j (i , j), delete rows i and j and columns i and j. Replace them with a new
row and column specifying the distance, d0 (again 1 or 0 as defined above), from the merged cluster to other clusters.

4. Repeat steps 2 and 3 (N 2 1) times until joining information exists for all clusters. Stop when there exist no additional zero
entries in the distance matrix.

Table 3 Determination of the average number of alternative splices per cluster.

Stringency
(%)

Subclusters Clusters Ratio Singletons

80 82,657 67,499 1.2 149,510
85 82,113 66,654 1.2 141,345
90 82,907 67,410 1.2 145,263
99 81,858 70,852 1.2 234,436

D. B. DAVISON AND J. F. BURKE IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

444



assemble the data on four processors of an eight-processor
Silicon Graphics Origin 2000 with 3 GB of RAM. The
standard screening files supplied by DoubleTwist were
used. Standard input parameters were used except
for the stringency of d2 comparison, the variable called
set_d2_string. We used values of 0.8, 0.85, 0.9, and 0.99,
corresponding respectively to an identity of 80%, 85%,
90%, and 99%. These values caused the program to be
increasingly stringent in its clustering. Sequences must
have at least set_d2_string identity to be joined into a
cluster, as described above. Table 3 summarizes the results
of these clusterings. At a stringency of 80%, there are
82 657 subclusters (of any type) in 67 499 clusters, or 1.2
transcripts per cluster. This result places a loose lower
bound on the estimate of the number of genes for this
stringency. There must be about this many transcripts in
the dataset. If we assume that each cluster is a unique
transcript, this stringency implies that there are about
67 500 parent transcripts. For several reasons, however,
this is underestimated. First, the public data do not reflect
transcripts from all possible tissue types, disease types,
and developmental states. Additionally, technical details of
the generation of ESTs limit the number of ESTs that can
be obtained from a particular tissue. Very rare transcripts
(for example, those occurring less than ten times in a
tissue) are not likely to be represented. Therefore,
estimating the number of genes, transcripts, and
proteins involves some guesswork as to the level of
underrepresented genes and transcripts in the publicly
available data. We do not attempt to estimate the number
of genes included in this category. Thus, from the data
given above, we estimate that there is an average of 1.2
transcripts per gene, giving a total of some 81 000 different
transcripts in the human genome. This means that there
are at least 81 000 different proteins before post-
translational modification.

Another notable feature of the table is that as the
stringency of clustering increases, the number of
singletons also increases, except at 85% stringency
(Table 3). This is what one would intuitively expect—
if there are fewer clusters, there should be more singletons.
When 85% similarity is required, there are fewer clusters,
subclusters, and singletons. This apparent conundrum is
resolved by noting that these clusters and subclusters
contain more ESTs than at other stringencies. This
situation will be investigated further.

Carrying a similar analysis through for 85%, 90%, and
99% clustering gives the results presented in Table 4.
The estimate remains remarkably consistent. This
is either a reflection of an artifact of the d2_cluster
method, or the data, or it reflects the underlying
number of genes and transcripts in the human
genome.

The number of human genes and proteins
On the basis of the data presented above, we believe that
there are between 1.2 and 1.5 transcripts per transcription
unit in the human genome. Our clustering suggests to us
that there are about 70 000 transcription units in the
human genome. This implies that there are up to 84 000
different proteins produced in a human cell before post-
translational modification, such as the attachment of
phosphate, adenylate, lipids, or sugar groups. This is
obviously an extremely coarse estimate.

What are the sources of error in this estimate? First, we
note that the d2_cluster algorithm does not perform well
with sequences less than 80% similar (by the nature of its
context-independent measure). In a previous paper [9] we
attempted to gauge absolute upper bounds for the error
rates of the d2_cluster algorithm’s actual type I and type
II errors. The method is described in detail in that paper.
Those results indicate that the type II error is bounded
above by 0.8%. The probability of not joining sequences
that belong together (type I error bounds) is less than
0.4%. Thus, the sensitivity and selectivity of the d2_cluster
algorithm is at least 99%. If there is a problem with this
estimate, it is likely to be in the underlying assumptions
about the data. Another complicating factor is that similar
exons exist in gene families, so it is very difficult to state
that a cluster is a true transcript if a 100-base-pair exon
of at least 80% identity was used in order to estimate
accurately the true number of genes/clusters.

EST-based estimates of gene number have included
counting the number of 59-complete EST clusters [17], the
number that are near CpG islands and are 59-complete
(Incyte Genomics). CpG islands are regions of DNA
known to be near expressed genes that have a high
content of the nucleotides G and C. The TIGR Human
Gene Index4 estimates 100 000 genes, while Incyte
Genomics5 estimates 140 000 genes derived from a
different clustering approach using their proprietary data
in combination with the public data. We have not included

4 http://www.tigr.org/tdb/hgi/index.html.
5 http://www.incyte.com/company/news/1999/genes.shtml; see also
http://www.incyte.com/company/news/webcast/slides/sld007.html.

Table 4 Estimates of transcription units under varying
levels of stringency.

Stringency
(%)

Clusters Total transcription
units (rounded)

80 67,500 81,000
85 66,654 79,984
90 67,410 80,892
99 70,852 85,722
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such analyses here. It is clear from other data available to
us that the publicly available sequences do not fully reflect
the full depth of the human genome. It is almost certain
that as additional EST data become available, the EST-
based estimate of the number of genes will change. The
estimate of the number of transcripts per transcription
unit will also increase.

A number of recent publications contain non-EST-based
estimates of the number of human genes. One estimate,
based upon gene density in completely sequenced
chromosomes 21 and 22 and sampling theory, is that there
are some 35 000 genes in the human genome [18]. Crollius
et al. [19] present a very different survey based on pufferfish
sequences and estimate 28 000 –34 000 genes. In a recent
survey of gene number estimates, Aparicio [20] concluded
that EST-based estimates are high, and sampling theory,
computational gene modeling, and other approaches are
likely to be more accurate.

We recognize that a good check of the reliability of
EST clustering would be to compare clusters generated
by this program (or any EST clustering program) against
predicted proteins from chromosomes 21 and 22. These
calculations are in progress. This is not an ideal check,
because gene-modeling programs have their own biases.
In particular, they do not recognize 59-most and 39-most
exons well. Also, their overall accuracy is not clear. In
particular, they cannot model genes that have not been
identified. Nevertheless, comparing EST clustering results
to sequenced chromosomes will provide useful insights
into both types of programs.

It is reasonably clear that methods based on EST
clustering appear to estimate some 70 000 –140 000
transcription units. Methods based on other criteria offer
considerably different estimates. The key assumption
in our estimate is that a cluster corresponds to a
transcription unit, which corresponds to the classical
“gene” of human genetics. In the coming years, it will be
fascinating to learn which assumptions and approaches
turn out to reflect biology.
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