
by N. A. Baker
D. Sept
M. J. Holst
J. A. McCammon

The adaptive
multilevel
finite element
solution of the
Poisson–Boltzmann
equation on
massively
parallel
computers

By using new methods for the parallel solution
of elliptic partial differential equations, the
teraflops computing power of massively
parallel computers can be leveraged to
perform electrostatic calculations on large
biological systems. This paper describes the
adaptive multilevel finite element solution
of the Poisson–Boltzmann equation for a
microtubule on the NPACI Blue Horizon—
a massively parallel IBM RS/6000® SP with eight
POWER3 SMP nodes. The microtubule system
is 40 nm in length and 24 nm in diameter,
consists of roughly 600000 atoms, and has a
net charge of 21800 e. Poisson–Boltzmann
calculations are performed for several

processor configurations, and the algorithm
used shows excellent parallel scaling.

1. Introduction
Electrostatics plays a vital role in determining the
specificity, rate, and strength of interactions in a variety of
biomolecular processes [1, 2]. Accurate modeling of the
contributions of solvent, counter ions, and protein charges
to the electrostatic field can often be very difficult and
typically acts as the rate-limiting step for a variety of
numerical simulations. Rather than explicitly treating
the solvent and counter-ion effects in atomic detail,
continuum methods such as those based on the
Poisson–Boltzmann equation (PBE) are often used

rCopyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

427

to represent the effects of solvation on the electrostatic
properties of a biomolecule. Despite this simplification,
current methods for the calculation of electrostatic
properties from the PBE still require significant
computational effort and typically do not scale well
with increasing problem size [3].

This paper describes the investigation of a large
biomolecular system using the Adaptive Poisson–
Boltzmann Solver (APBS) software [4]. APBS is a new
Poisson–Boltzmann solver which uses adaptive multilevel
finite element techniques [3, 5, 6] to efficiently treat the
numerically difficult aspects of the PBE. APBS is built
on the Finite Element toolkit (FEtk) adaptive multilevel
finite element package [3, 5], which is used for most of the
numerically intensive aspects of the solution of the PBE.

Section 2 provides some of the background of the
Poisson–Boltzmann equation and its relation to
biomolecules. A brief overview of adaptive multilevel
finite element techniques and their parallelization is
presented in Section 3. Discussion of the implementation
of these methods in APBS and FEtk is presented in
Section 4, and the results of the solution of the PBE
for the electrostatic potential around a microtubule
structure are given in Section 5. Finally, conclusions
and future work are discussed in Section 6.

2. The Poisson–Boltzmann equation
The Poisson–Boltzmann equation is a second-order
elliptic partial differential equation which describes the
electrostatic potential around a fixed charge distribution
in an ionic solution. For more thorough reviews of
this equation and its role in biological electrostatics
calculations, see Davis and McCammon [1] and Sharp and
Honig [7]. There are three components of the solvated
biomolecular system that we must consider in order to
accurately model the electrostatic potential: the solute
molecule, the solvent, and the solvated ions. The solute
molecule is modeled as a dielectric continuum of low
polarizability embedded in a dielectric medium of high
polarizability which represents the solvent. Reflecting this
difference in polarizabilities, the interior of the molecule
is typically assigned a relative permittivity (or dielectric
constant) between 2 and 20, while the solvent is given a
much larger dielectric constant, generally near 80. In
most cases, the atomic charge distribution inside the
biomolecule is represented by a collection of delta
functions. Finally, the solvated ions surrounding the
biomolecule are also modeled as a continuum, distributed
according to a Boltzmann distribution. Combining
Poisson’s equation, used to describe the electrostatic
behavior of the point charges in the dielectric continuum,
with the Boltzmann charge distribution for the solvated
ions gives the nonlinear Poisson–Boltzmann equation
(NPBE),

2¹ z @e~ x!¹u~ x!# 1 k# 2~ x! sinh @u~ x!# 5 f~ x! u~`! 5 0,

(1)

or, after linearization of the hyperbolic sine term, the
linearized Poisson–Boltzmann equation (LPBE),

2¹ z @e~ x!¹u~ x!# 1 k# 2~ x!u~ x! 5 f~ x! u~`! 5 0, (2)

where the source term is a sum of delta functions,

f~ x! 5
4pec

2

kT O
i51

Nm

zid~ x 2 xi!. (3)

In Equations (1) and (2), the variable u(x) 5 ecf(x)/kT
represents a dimensionless electrostatic potential; e(x)
is the dielectric coefficient; k# 2 is the Debye–Hückel
screening parameter, which describes ion concentration
and accessibility; kT is the thermal energy; ec is the
electron charge; Nm is the number of protein charges; zi

is the partial charge of each protein atom; and xi is the
position of each atom. Figure 1 shows a schematic of a
solute (here taken to be a protein), ions, and solvent
system modeled by the Poisson–Boltzmann equation. The
dielectric coefficient e changes by nearly two orders of
magnitude across the “interior” protein–solvent boundary
(solid line in Figure 1), and the screening parameter jumps

Figure 1

Schematic of a model protein–solvent system. Charges within the
protein are depicted as plus and minus symbols. The first protein–
solvent boundary (solid line) represents discontinuities in the di-
electric coefficient �, while the second boundary (dashed line)
represents discontinuities in the screening parameter �2. The sol-
vated ions surrounding the protein are depicted by the circled plus
and minus symbols.

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

428

from zero to a positive value across the “exterior” boundary
(dashed line in Figure 1).

The accurate pointwise evaluation of the dielectric and
screening parameter coefficients for a typical biomolecule
is a nontrivial task. APBS evaluates the dielectric
coefficient e by using the Lee and Richards [8] definition
of solvent accessibility. In short, the algorithm considers
the volume VSA defined by the union of the (infinite) set
of spheres with centers at all y [V such that i y 2 xii .

ri 1 s for all atoms i and positions xi . Given some point
y, the coefficient e(y) is assigned the solvent dielectric
constant if it is inside VSA; otherwise, it is assigned the
solute dielectric value. This definition of VSA is shown in
more detail in Figure 2 for a simplistic model of a protein
molecule (white circles). The molecular surface (black
line) is defined by the accessibility of the solvent probe
molecules (blue circles); points outside this surface are
assigned the solvent dielectric value (typically around 80),
while points inside are assigned the solute dielectric
(generally 2–20). The assignment of the screening
parameter values k# 2 is much simpler; points outside
a distance ri 1 s ion from all atoms i are assigned the
bulk screening parameter value, while points closer
than ri 1 s ion to any atom i are assigned a value of 0.

As described here, the PBE equation contains three
sources of discontinuities. Both the dielectric coefficient e

and the screening parameter k# 2 have jump discontinuities
(analogous to Heaviside step distribution functions) near
the protein–solvent interface. Additionally, the source
term f(x), which models the point charges at the protein
atoms, is represented by a sum of delta functions.
Although these jump and delta function discontinuities
of coefficients in the PBE can pose serious numerical
difficulties for traditional uniform or nonadaptive mesh
partial differential equation solvers, these features can be
efficiently described using the adaptive finite element
techniques described in Section 3 [3–5].

3. Parallel multilevel adaptive finite element
methods
This section briefly describes the theory behind the
parallel multilevel adaptive finite element scheme used
to solve the PBE for the electrostatic potential around
biomolecules. The first subsection describes basic finite
element techniques, and the second discusses the
incorporation of adaptivity into these methods. A very
short description of multilevel techniques is presented in
the third subsection, and the theory behind parallelization
of these methods is described in the fourth subsection.

Finite element discretization
To solve the PBE on a finite computational platform, it is
necessary to truncate and discretize the infinitely large
problem domain implicit in Equations (1) and (2).

Specifically, we solve the PBE equation inside a polygonal
domain V , R

3 subject to some Dirichlet boundary
condition

u~ x! 5 g(x) on ­V,

where ­V denotes the boundary of V. To discretize the
problem, we subdivide V by tessellation with tetrahedral
simplices. The resulting tetrahedral mesh forms the
structure over which we define Vh 5 span{v i}, as the
space spanned by the piecewise-polynomial basis functions
{v i}. APBS currently uses the piecewise-linear finite
element support provided by FEtk [5]. A representative
basis function is depicted (on a two-dimensional
triangular mesh) in Figure 3. The solution to the PBE
is approximated by a function uh [u# h 1 Vh constructed
by a linear combination of the basis functions

uh~ x! 5 O
i

N

aivi~ x!. (4)

The trace function u# h is not explicitly constructed, but is
assumed to satisfy the Dirichlet boundary conditions.

In order for the construction of uh from piecewise-linear
functions to be successful, we must restate the PBE
equations in their “weak” form. Clearly, the second

Figure 2

Representation of dielectric assignment based on solvent accessibility.
The molecular surface (heavy black line) is defined by the solvent
probes (blue circles) and the protein atoms (white circles). The gray
areas represent regions outside the atomic radii that are not accessible
to the solvent molecules and are therefore inside the molecular surface.

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

429

derivative [as required by Equations (1) and (2)] of a
piecewise-linear function is not well defined. This difficulty
can be overcome by integrating the PBE with a test
function ṽ,

E
V

@2¹ z e¹u 1 k# 2 sinh ~u!#ṽ dx 5E
V

f ṽ dx, (5)

and applying integration by parts to the second-order
differential term to give

E
V

@e¹u z ¹ṽ 1 k# 2 sinh ~u!ṽ# dx 5E
V

f ṽ dx. (6)

Equation (6) can also be written as

^F~u!, ṽ&L 2
~V!

5E
V

@e¹u z ¹ṽ 1 k# 2 sinh ~u!ṽ 2 f ṽ# dx 5 0,

(7)

where ^ z , z &L
2

(V) denotes the L 2(V) inner product and
F(u) is the weak form of the residual. This allows us to
restate the PBE in weak form:

Find uh [u# 1 Vh such that ^F~uh!, vi& 5 0 for all vi [Vh.

(8)

This form of the PBE requires only one order of
differentiation under an integral (with integration in the
Lesbegue sense) and is therefore a “weaker” formulation
of the PBE than the original second-order differential
equations [(1) and (2)]. Although the above discussion

pertained to the use of the NPBE, similar manipulations
can be performed for the LPBE to produce an expression
for the residual F(u) which is linear in u.

Given uh as a linear combination of the finite element
basis functions and the above weak form of the PBE
[Equation (8)], we have a discretization of the partial
differential equation suitable for numerical solution. In
the case in which F(u) is linear (LPBE), Equation (8)
explicitly defines a sparse-matrix equation that can be
solved using standard linear algebra methods or the
multilevel methods described in the subsection on
multilevel solution. However, when F(u) is nonlinear
(NPBE), we employ a damped inexact Newton iteration as
implemented by FEtk [5] to find uh [3, 9 –13]. In brief, this
method is used to solve the linear matrix equations in an
iterative fashion to determine improvements w to the
solution. When these improvements become sufficiently
small, the Newton iteration stops, and the resulting uh is
used as the solution. The linear systems used to find the
solution improvements are defined by the functional
(Gateaux) derivatives of the nonlinear residual,

^DF~u!w, v& 5E
V

@e¹w z ¹v 1 k# 2 cosh ~u!wv 2 fv# dx,

(9)

and the resulting linear equations for the improvements w
are as follows:

Find w such that ^DF~u!w, vi& 5 2^F~u!, vi& 1 r

for all vi [Vh, (10)

where r is a residual that allows for enhanced efficiency by
accounting for the possibly inexact solution of Equation (10).
The updated solution is then obtained by addition of the
improvement times a damping factor l that stabilizes the
algorithm,

u4 u 1 lw. (11)

For more detailed discussion of the finite element
method applied to the PBE, see Holst, Baker, and Wang
[3] and Baker, Holst, and Wang [4]. The texts by Axelsson
and Barker [14] and Braess [15] are good sources for
more general reviews of the finite element method.

Error estimation and mesh refinement
While the methods of the previous section can be used to
determine the solution on a given finite element mesh,
they do not provide information about the accuracy with
which the numerical solution uh represents the true
solution or indicate whether it can be improved. The
answers to these two questions lie within the domain of
error estimation and adaptive refinement techniques.
Again, we present only a cursory overview of this topic,
briefly discussing the a posteriori error estimation and

Figure 3

A representative basis function: piecewise-linear finite element func-
tion on a two-dimensional (triangular) mesh.

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

430

adaptive refinement techniques that are applied to the PBE
in the present work. For more detailed information about
the implementation of these methods in the solution of the
PBE, see Holst, Baker, and Wang [3]. A posteriori error
estimation has been the subject of several publications1

[5, 16 –19] which provide much more information about
the theory and implementation of these methods.

Adaptive refinement methods typically employ error-
estimation techniques to approximate the distance
between the numerical and true solution iu 2 uhiX

(using some norm i z iX) and determine the regions of
the problem domain where the error is above a certain
tolerance. The mesh is then refined in these regions of
excess error and the PBE equation is re-solved to provide
a more accurate finite element representation of the
solution. The error-based refinement of the mesh can
also be interpreted as the local enrichment of the finite
element basis set in regions where the true solution is not
adequately represented. In general, an a posteriori error
estimator is used to determine the error in each simplex.
Simpler a priori or geometry-based error estimators can
also be used, but the reduction of error in the solution
with each level of refinement is typically less efficient.

APBS employs the residual-based a posteriori error
estimation framework provided by FEtk which generates
a per-simplex error estimate hs in simplex s by using the
residual defined by the strong form [Equations (1) and
(2)] of the PBE [3, 18],

h s
2

5 hs
2i2¹ z e¹uh 1 k# 2 sinh ~uh! 2 f iL 2

~s!
2

1
1

2 O
f[s

hf i nf z e¹uh f iL 2
~ f !

2 , (12)

where hs denotes the size of the simplex, f [s denotes a
face of simplex s, hf is the size of the face f, ṽf denotes
the jump across the face f of some function ṽ, nf z e¹uh is
the component of e¹uh normal to simplex face f, and the
L 2 norm over a simplex or face is given by

iviL 2
~s or f !

2
5E

s or f

uvu 2 dx. (13)

Since each error estimate is defined over a simplex or
simplex face, the solution is linear over the entire domain
of the norm [Equation (12)], and the contribution from
the second-order term 2¹ z e¹uh is zero. In general,
the second (jump) term of the error estimator typically
dominates hs ; therefore, the first term is not implemented
in APBS. An estimate of the global error over the

problem domain is obtained as the root mean square of
the per-simplex estimates

hglobal 5
1

N S O
i

h s
2D 1/ 2

. (14)

Although this hglobal provides only an upper bound (within
a constant) of the true error in the solution, it offers a
practical measure for the reduction of error during
solution of the PBE.

Given a per-simplex error estimate, those simplices
with errors above a certain tolerance htol are marked for
subdivision. APBS employs the longest edge simplex
subdivision algorithm in FEtk [5] for adaptivity. This
subdivision method, along with other examples, is shown
in Figure 4. Subdivision of only the marked simplices
typically results in a nonconforming mesh, i.e., a mesh in
which the faces of some simplices intersect the vertices
of other simplices. This situation is depicted in Figure 4
where, without the subdivision depicted by the dotted line
in the left-hand scheme, the triangular mesh would be
nonconforming. Since nonconforming finite element
meshes pose a variety of numerical difficulties, adaptive
mesh refinement is carried out in an iterative fashion, via
a “queue-swapping” algorithm [3, 5]. This algorithm, as
implemented by the FEtk libraries [5], creates two empty
queues (Q1, Q2) and fills one (Q1) with the list of
simplices marked for refinement by the error estimator.
The simplices in Q1 are refined, and the resulting
nonconforming simplices (if any) are placed in Q2. After
all of the simplices in Q1 have been refined, the roles of
the queues are swapped (Q1 5 Q2, Q2 5 À) and the
algorithm is repeated. This loop continues until the entire
mesh is conforming, whereupon both queues are empty.

Multilevel solution
The time required to solve the linear algebra equations,
either within the Newton steps for NPBE or explicitly
defined by the LPBE, generally dominates the solution of
the PBE. Therefore, it is important to make these steps
as efficient as possible. Multilevel methods are well-
established techniques for efficiently solving such
equations through algebraic hierarchies [9, 20 –25]. Such
methods have been shown to give optimal (for uniformly
refined meshes [26]) or nearly optimal (for adaptively
refined meshes [6]) time and memory complexity for the
solution of the linear matrix equations.

APBS employs the multilevel finite element solver
technology in FEtk [5] to form an algebraic hierarchy of
problems based on the refinement of the mesh [3, 5, 27].
Specifically, a prolongation operator Pk is constructed
which relates basis functions on refinement levels k and
k 1 1 of the finite element mesh. Given operator Ak on
level k of the mesh, the prolongation operator Pk can be

1 M. Holst and D. Bernstein, “Adaptive Finite Element Solution of the Initial-
Value Problem in General Relativity: Theory and Algorithms,” Commun. Math.
Phys., submitted.

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

431

used to reconstruct the problems Ak11 from coarser levels
of the mesh by applying Pk to the current problem Ak

via Ak11 5 Pk
TAkPk . By using this prolongation-based

reconstruction, the problem can then be solved in a
multilevel fashion, employing a direct solver for the
problem on the coarsest level.

Parallel finite element methods
By using the parallel refinement techniques of Bank and
Holst [28], the methods described in the previous sections
can be performed in a parallel fashion. In the parallel
implementation, each of the P 5 2 p processors is given
the same initial mesh. Using the techniques described
earlier in the subsection on error estimation and mesh
refinement, each processor solves the problem on this
coarse mesh and generates an a posteriori error estimate
for every simplex in the mesh. This error estimate is
then used to weight a spectral bisection method which
partitions the mesh into P pieces of approximately equal
error. Finally, each of these mesh partitions Mi is assigned
to a different processor i. After partitioning, the usual
solution and adaptive refinement methods of the previous
sections are performed with only a small modification:
When the per-simplex error estimates are calculated on
processor i, only simplices within the local partition Mi

and a boundary region of size s surrounding Mi are given
nonzero error estimates. The simplices with errors greater
than a specified tolerance are marked for refinement, and
these marked simplices (which are located only in Mi

and the overlap) are subdivided. The queue-swapping
algorithm then proceeds as usual, with simplices from any
partition being refined to ensure fully conforming mesh.
The initial error-based partitioning step acts as the load-

balancing mechanism for this algorithm; the number of
simplices in an error-based adaptive refinement is related
to the total error in the mesh region it is refining. By
partitioning the mesh such that all processors have roughly
the same amount of error, this algorithm provides a
reasonable amount of a priori load balancing.

The overlap region surrounding each mesh partition is
implemented by APBS in a simple fashion. Let xi be the
center of geometry of partition Mi , and let Ri be the
radius of the sphere circumscribing Mi . The parameter
s $ 1 is the desired relative size of the overlap region
with respect to Ri . APBS then enforces parallel refinement
with partition overlap by allowing only error-based simplex
marking (on processor i) of simplices within a distance
sRi of the center xi of partition Mi .

A two-dimensional example of this method applied
to a four-processor system is shown in Figure 5. In this
example, all simplices within s 5 1.2 times the radius of
the green partition were assigned the same error (which
was chosen to be greater than the error-based marking
tolerance). The resulting refinement over the partition of
the green processor and the overlap region is evident, as
is the additional refinement outside the radius sRi

required for conformity.
As noted by Bank and Holst [28], this error-decoupling

parallel algorithm essentially trades computation for
communication. Whereas the algorithm requires little or
no communication between processors, it compensates
by duplicating the computational effort spent in some
portions of the solution algorithm. Specifically,
partitioning steps of the mesh and computations
on the solution in overlap regions are duplicated across
processors. Although the overlap region can be neglected

Figure 4

Simplex subdivision schemes. The schemes on the left show simplex subdivision of a mesh in two dimensions (upper) via quadrasection (lower left)
and longest-edge bisection (lower right). The dotted lines in the lower schemes show the additional subdivisions that must be performed to ensure a
conforming mesh. The schemes on the right show subdivision of a single simplex in three dimensions (upper) via octasection (lower left) and
longest-edge bisection (lower right).

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

432

for some problems [28], a nonzero overlap region
proportional to the size of Mi must generally be
implemented to satisfy the requirements underlying
the decoupled error estimates [28, 29].

4. Implementation
The APBS program provides parallel and sequential
implementations of the multilevel adaptive finite element
techniques described in Section 3 to solve the linear and
nonlinear versions of the PBE around biomolecules in
ionic solutions. APBS makes extensive use of FEtk [5]
for a variety of tasks, including the implementation of
finite element mesh structures, refinement algorithms and
data structures, assembly and solution of the linear and
nonlinear equations, spectral bisection mesh partitioning,
and residual-based error estimation. Because of the
underlying hardware abstraction design of FEtk, the APBS
code is designed for portability and can be used, with no
modifications, on both single-processor workstations and
massively parallel supercomputers. Parallel communication
is currently provided via vendor implementations of the
MPI 1.1 standard; however, future plans include support
for OpenMP protocols to better leverage the capabilities of
shared memory platforms. APBS is currently in beta testing
phase, but is scheduled for release in open-source form
pending the addition of OpenMP support and other features.
Information about obtaining FEtk [5] and related tools is
available at http://www.scicomp.ucsd.edu/;mholst.

The sequence of operations followed by APBS during
a typical solution of the PBE is outlined in Algorithm 1.

Algorithm 1: APBS program execution

1. Initialize P processors; all subsequent steps are carried out
by each processor.

2. Read in the very coarse initial mesh (pre-mesh) and
molecule systems.

3. For each molecule (or molecular system):
(a) Assign atomic, dielectric, and ionic strength data.
(b) Map atomic charges to mesh simplices.
(c) Construct nonlinear and/or linear algebra structures

for each molecular system.
End for.

4. Uniformly refine the mesh to contain no less than cP
simplices (where c is usually 10 –100).

5. Solve the PBE and estimate the error for a reference
molecular system.

6. Partition the mesh into P pieces and assign each piece to
a processor.

7. While the size of simplices on the molecule–solvent
boundaries is too big:
(a) Mark those simplices in the local partition and

overlap region (see the subsection on parallel finite
element methods) which contain a point charge or lie

on the boundary between the solvent and the interior
of any molecule.

(b) Refine marked simplices; refine the mesh to
conformity.

End while.
8. While the global error estimate is too big:

(a) Solve the weak form of the PBE for each molecular
system.

(b) Estimate the per-simplex error using the residual-
based error estimator.

(c) Mark simplices on the local partition or overlap
region with errors greater than some tolerance.

(d) Refine marked simplices; refine the mesh to
conformity.

End while.

The details of implementation for the particular steps
of this algorithm have been mostly covered in previous
sections. In summary, after initialization of the problem,
partitioning of the mesh, and initial a priori refinement,
APBS carries out the adaptive solve– estimate–refine
procedure outlined in the subsection on error estimation
and mesh refinement until a target accuracy has been
reached.

Figure 5

Overlapping refinement on a partitioned mesh. All simplices within �
1.2 times the radius of the green partition were assigned the same
error (greater than the simplex marking tolerance). Longest-edge
bisection was performed via the queue-swapping algorithm (see
Section 3) until the mesh was conformal. The checkerboard pattern
within the refined region is an artifact of the image, a Moiré pattern
due to the high density of simplex edges.

�

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

433

Appropriate a priori refinement of the initial mesh can
provide acceleration in convergence of the expensive
solve– estimate–refine steps (Step 8 in Algorithm 1). The
first step in the procedure is the reading of a very coarse
“pre-mesh” (Step 2 in Algorithm 1) which completely
encapsulates the desired problem domain. In general, this
coarse mesh can be of any polyhedral shape; in practice
it is typically a simple rectangular prism comprising six
tetrahedra. To allow for the accurate representation of
boundary conditions by an analytical Green’s function
model, the outer boundary of the pre-mesh should be at
least twice the radius of the sphere which circumscribes
the molecular complex. After the pre-mesh is read, it
must be uniformly refined to a desired number (cP)
of simplices for partitioning (Step 4, Algorithm 1). In
general, a suitable number of simplices for partitioning is
roughly 10 –100 times the target number of partitions. This
number of initial simplices not only provides a reasonable
error estimate for error-weighted partitioning of the mesh,
but also provides adequate flexibility for the spectral
bisection partitioning algorithm. Although uniform

refinement is not a requirement, the errors on the very
coarse pre-mesh are typically so large that error-based
refinement schemes lead to uniform marking and
subdivision. Following error-weighted partitioning of the
mesh, geometry-based refinement near point charges and
molecular surfaces is carried out on the local partition
and overlap region until the specified mesh resolution is
reached (Step 7 in Algorithm 1). This process is essentially
an a priori estimate of the problematic features of the
system that will be refined by subsequent a posteriori
estimate–refine steps. By subdividing simplices (on the
local partition and overlap region of each processor)
which lie across the dielectric or ionic strength boundaries
or contain charges, the a priori refinement scheme is
attempting to resolve some of the overall structure of the
discontinuous problem coefficients prior to the more costly
solve– estimate–refine loop.

5. Application to biomolecular systems
One of the advantages of using adaptive methods to solve
the PBE is the ability to study large biomolecular systems
that are not manageable with uniform mesh techniques.
One such system of interest is the cytoskeleton, the
complex array of filaments and proteins within every
eukaryotic cell. The largest cytoskeletal component, the
microtubule, is a hollow cylindrical filament (see Figure 6)
assembled from the long protofilaments composed of
tubulin subunits [30, 31]. The microtubule cylinders are
25 nm in diameter and, depending on function, can have
lengths from nanometers to several millimeters. While
microtubules are the most rigid structures in the cell and
play an important structural role, they are also involved in
a variety of other functions, including cellular transport,
motility, and division. Many of these more dynamic
functions involve interactions with other proteins or
filaments in the cell, often through electrostatic
interactions. For this reason, the ability to calculate the
electrostatic properties of a microtubule can provide
important insight into many cellular processes. It is
the large size of microtubules that poses tremendous
computational challenges; for example, the atomically
detailed solution of the PBE for a 1-mm-long microtubule
requires more than 21 million delta functions in the
source term of the PBE to model the charge distribution
to full atomic detail.

APBS was used to solve the LPBE for a 40-nm-long
microtubule consisting of 605 205 atoms with a net charge
of 21800 e. The microtubule structure was assembled by
one of us (D. Sept) using microtubule structures derived
from the work of Nogales, Whittaker, Milligan, and
Downing [32]. The biomolecule was assigned an internal
dielectric constant of 2 and surrounded by a solvent of
dielectric 78.54 and ionic strength of 150 mM. The
molecular volume was defined with 0.14-nm-radius solvent

Figure 6

The amino acid backbone atoms of a microtubule. This structure is

25 nm in diameter and 40 nm in length, contains 901083 atoms, and

has a charge of 23000 e.

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

434

probes, and the ion accessibility was calculated using
0.20-nm probes. The pre-mesh was a six-tetrahedron
cubic box with 90-nm sides. For each P-processor
calculation, the pre-mesh was uniformly refined to over
100P simplices and partitioned by error-weighted spectral
bisection. In order to ensure the best possible load
balancing, no a priori adaptive refinement was performed.
Instead, each partition in the mesh was subjected to the
solve– estimate–refine adaptive refinement loop using the
residual-based a posteriori error estimator until each
processor had the target number of vertices (40 000).
These calculations were performed on one, two, four,
eight, sixteen, and thirty-two processors of the NPACI2

Blue Horizon supercomputer—a massively parallel IBM
RS/6000* SP with eight POWER3 SMP nodes. Because
of the low communication costs, each job was submitted
to the IP space queues. Jobs requiring less than 32
processors were run with all eight processors per node,
giving each processor roughly 400 MB of heap memory.
However, to provide adequate memory for the initial mesh
refinement and partitioning steps, the 32-processor job was
run with four processors per node, allowing approximately
800 MB of memory per processor.

The parallel scaling results for these calculations are
shown in Figure 7. Although it was anticipated that each
calculation would take roughly the same amount of
execution time with the various processor configurations,
the actual runs showed a decrease in the execution time
with an increasing number of processors. The execution times
fit the polynomial t1P 1 t0 with a correlation coefficient
r 2 5 0.91, a slope of t1 5 (2140 6 20) s/processor, and
an intercept of t0 5 (14 800 6 300) s. The solid curve in
Figure 7 shows the global number of simplices in the mesh
L(P) (the sum of the number of simplices from each
partition) as a function of the number of processors. This
function was fit to a straight line L(P) 5 l1P 1 l0 with
correlation coefficient r2 5 0.999, slope l1 5 (2.05 6 0.03)
3 105 simplices per processor, and intercept l0 5 (1.7 6 0.6)
3 105 simplices. Finally, the parallel efficiency was
defined as

E~P! 5
L~P!

PL~1!
(15)

and plotted as the dotted curve on Figure 7. The
efficiency was also fit to a linear polynomial
E(P) 5 e1P 1 e0 with correlation coefficient r 2 5 0.61,
slope e1 5 (7 6 3) 3 1023 per processor, and intercept
e0 5 (1.08 6 0.05). The mean efficiency of the six runs
was #E 5 1.0 6 0.1.

As shown in Figure 7, APBS exhibits excellent scaling
behavior for up to 32 processors. The parallel efficiency is
very high for all processor configurations and shows only

a slight decrease for larger (16 and 32) calculations. The
“superlinear” scaling [E(2) 5 1.9 and E(4) 5 1.08] of the
two- and four-processor configurations can be considered
an artifact of the parallel efficiency definition. Since it is
very difficult to refine mesh partitions to an exact number
of simplices, the solve– estimate–refine loop can only be
constrained to refine the partition to contain more than a
specified number of simplices, therefore not providing an
exact cutoff for each partition and processor configuration.
The resulting scatter in L(1) and L(P) leads to parallel
efficiencies that can deviate, both positively and
negatively, from their “ideal” values.

Because of the large size of the resulting electrostatic
potential datasets, it was not possible to visualize the
results of the parallel calculations shown in Figure 7.
However, a much lower-resolution calculation was
performed on a slightly larger (60 nm long, 901 083 atoms,
23000 e charge) microtubule to generate the electrostatic
potential contours shown in Figure 8. As expected, the
highly charged microtubule shows mostly negative
electrostatic potential near the molecular surface
(Figure 8, red contour). However, several regions
of positive potential are visible, especially near the
ends of the microtubule. Such localized variations
in electrostatic potential often play important roles
in molecular recognition and binding and suggest
interesting modes of microtubule assembly and stability.

6. Conclusions
By using new methods for the parallel solution of elliptic
partial differential equations, it is possible to leverage the2National Partnership for Advanced Computational Infrastructure.

Figure 7

Parallel scaling of electrostatics calculations for a microtubule using
APBS on the NPACI Blue Horizon supercomputer, a massively paral-
lel IBM RS/6000 SP with eight POWER3 SMP nodes. The solid curve
shows the number of simplices in the global mesh, and the dotted curve
depicts the parallel efficiency.

7

6

5

4

3

2

1

0

1.2

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20 25 30 35

No. of processors

N
o.

of
si

m
pl

ic
es

(m
ill

io
ns

)

Pa
ra

lle
le

ff
ic

ie
nc

y

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

435

teraflops computing power of massively parallel computers
to perform electrostatic calculations on biological systems
at scales approaching the cellular level. Using the APBS and
FEtk software on the NPACI Blue Horizon supercomputer,
it was possible to solve the Poisson–Boltzmann equation
for the electrostatic potential around a microtubule
containing more than 600 000 atoms. The code showed
excellent parallel scaling, providing incentive to attempt
further calculations to probe the structure and function
of even larger macromolecules.

Future work is aimed at the inclusion of OpenMP
extensions into APBS to take better advantage of shared-
memory machines and reduce the memory overhead
associated with the duplicated storage of biomolecular
atomic information. Work is also in progress to utilize
more of the Blue Horizon’s parallel capabilities and
investigate much larger biomolecular systems involving
calculations on millions of atoms. By enabling such

research through the use of parallel computing,
theoreticians should be able to move from computational
chemistry at molecular scales to computational biology at
the cellular level.

Acknowledgments
N. Baker’s work was supported by predoctoral fellowships
from the Howard Hughes Medical Institute and the
Burroughs–Wellcome La Jolla Interfaces in Science
program. M. Holst’s work was supported in part by a
UCSD Hellman Fellowship, and in part by NSF CAREER
Award No. 9875856. J. A. McCammon’s work was
supported in part by grants from NIH and NSF. N. Baker
is indebted to Amit Majumdar, Giridhar Chukkapalli, and
Greg Johnson at the San Diego Supercomputer Center for
help with technical issues on the NPACI Blue Horizon
supercomputer and visualization of the large datasets.
N. Baker would also like to thank Dr. Adrian Elcock

Figure 8

Electrostatic potential of a 605 205-atom microtubule fragment at 150 mM ionic strength. Potential contours are shown at �0.5 kT/e (blue) and
�0.5 kT/e (red). Each image represents a different view of the macromolecule. The upper images show the electrostatic complementarity at ends
of the microtubule, while the lower images show the varying positive and negative regions of the potential on its exterior and interior.

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

436

(University of California at San Diego, Department of
Chemistry and Biochemistry) for helpful explanations of
the various solvent- and ion-accessible volume definitions
used in PBE solvers.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. M. E. Davis and J. A. McCammon, “Electrostatics in

Biomolecular Structure and Dynamics,” Chem. Rev. 94,
7684 –7692 (1990).

2. B. Honig and A. Nicholls, “Classical Electrostatics in
Biology and Chemistry,” Science 268, 1144 –1149 (1995).

3. M. Holst, N. Baker, and F. Wang, “Adaptive Multilevel
Finite Element Solution of the Poisson–Boltzmann
Equation; I: Algorithms and Examples,” J. Comput.
Chem. 21, 1319 –1342 (2000).

4. N. Baker, M. Holst, and F. Wang, “Adaptive
Multilevel Finite Element Solution of the Poisson–
Boltzmann Equation; II: Refinement at Solvent Accessible
Surfaces in Biomolecular Systems,” J. Comput. Chem. 21,
1343–1352 (2000).

5. M. Holst, Adaptive Multilevel Finite Element Methods
on Manifolds and Their Implementation in FEtk (in
preparation; currently available as a technical report and
User’s Guide to the FEtk software).

6. R. E. Bank, T. F. Dupont, and H. Yserentant, “The
Hierarchical Basis Multigrid Method,” Numer. Math. 52,
427– 458 (1988).

7. K. A. Sharp and B. Honig, “Calculating Total
Electrostatic Energies with the Nonlinear
Poisson–Boltzmann Equation,” J. Phys. Chem. 94,
7684 –7692 (1990).

8. B. Lee and F. M. Richards, “The Interpretation of
Protein Structures: Estimation of Static Accessibility,”
J. Mol. Biol. 55, 379 – 400 (1971).

9. M. Holst and F. Saied, “Numerical Solution of the
Nonlinear Poisson–Boltzmann Equation: Developing More
Robust and Efficient Methods,” J. Comput. Chem. 16,
337–364 (1995).

10. R. E. Bank and R. K. Smith, “Parameter Selection for
Newton-Like Methods Applicable to Nonlinear Partial
Differential Equations,” SIAM J. Numer. Anal. 17,
806 – 822 (1980).

11. R. E. Bank and R. K. Smith, “Global Approximate
Newton Methods,” Numer. Math. 37, 279 –295 (1981).

12. R. E. Bank and R. K. Smith, “Analysis of a Multilevel
Iterative Method for Nonlinear Finite Element
Equations,” Math. Comp. 39, 453– 465 (1982).

13. R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact
Newton Methods,” SIAM J. Numer. Anal. 19, 400–408 (1982).

14. O. Axelsson and V. A. Barker, Finite Element Solution
of Boundary Value Problems. Theory and Computation,
Academic Press, Inc., San Diego, 1984.

15. D. Braess, Finite Elements. Theory, Fast Solvers, and
Applications in Solid Mechanics, Cambridge University
Press, New York, 1997.

16. I. Babus̆ka and W. C. Rheinboldt, “Error Estimates for
Adaptive Finite Element Computations,” SIAM J. Numer.
Anal. 15, 736 –754 (1978).

17. I. Babus̆ka and W. C. Rheinboldt, “A Posteriori Error
Estimates for the Finite Element Method,” Int. J. Numer.
Meth. Eng. 12, 1597–1615 (1978).

18. R. Verfürth, “A Posteriori Error Estimates for Nonlinear
Problems. Finite Element Discretization of Elliptic
Equations,” Math. Comp. 62, 445– 475 (1994).

19. R. Verfürth, A Review of A Posteriori Error Estimation and
Adaptive Mesh-Refinement Techniques, John Wiley, New
York, 1996.

20. R. E. Bank and J. Xu, “The Hierarchical Basis Multigrid
Method and Incomplete LU Decomposition,” Proceedings
of the Seventh International Symposium on Domain
Decomposition Methods for Partial Differential Equations,
D. Keyes and J. Xu, Eds., AMS, 1994, pp. 163–173.

21. A. Brandt, “Algebraic Multigrid Theory: The Symmetric
Case,” Appl. Math. Comp. 19, 23–56 (1986).

22. A. Brandt, S. McCormick, and J. Ruge, “Algebraic
Multigrid (AMG) for Sparse Matrix Equations,” Sparsity
and Its Applications, D. J. Evans, Ed., Cambridge
University Press, New York, 1984.

23. M. Holst and F. Saied, “Multigrid Solution of the
Poisson–Boltzmann Equation,” J. Comput. Chem. 14,
105–113 (1993).

24. J. W. Ruge and K. Stüben, “Algebraic Multigrid (AMG),”
Multigrid Methods, S. F. McCormick, Ed., Volume 3 of
Frontiers in Applied Mathematics, SIAM, Philadelphia,
1987, pp. 73–130.

25. W. Hackbusch, Multi-Grid Methods and Applications,
Springer-Verlag, Berlin, 1985.

26. J. Xu, “Iterative Methods by Space Decomposition and
Subspace Correction,” SIAM Rev. 34, 581– 613 (1992).

27. M. Holst and S. Vandewalle, “Schwarz Methods: To
Symmetrize or Not to Symmetrize,” SIAM J. Numer. Anal.
34, 699 –722 (1997).

28. R. Bank and M. Holst, “A New Paradigm for Parallel
Adaptive Meshing Algorithms,” SIAM J. Sci. Comput., in
press.

29. Jinchao Xu and Aihui Zhou, “Local and Parallel Finite
Element Algorithms Based on Two-Grid Discretizations,”
Math. Comp. 69, 881–909 (2000).

30. P. Dustin, Microtubules, Springer-Verlag, Berlin, 1984.
31. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and

J. D. Watson, Molecular Biology of the Cell, Garland
Publishing, New York, 1994.

32. E. Nogales, M. Whittaker, R. A. Milligan, and K. H.
Downing, “High-Resolution Model of the Microtubule,”
Cell 96, 79 – 88 (1999).

Received August 2, 2000; accepted for publication
October 5, 2000

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001 N. A. BAKER ET AL.

437

Nathan A. Baker Departments of Chemistry and
Biochemistry and of Mathematics, University of California at
San Diego, 9500 Gilman Drive, Mail Code 0365, La Jolla,
California 92093 (nbaker@wasabi.ucsd.edu). Mr. Baker is a
graduate researcher in the Department of Chemistry and
Biochemistry and the Department of Mathematics at the
University of California at San Diego. He has been awarded
predoctoral fellowships by the National Science Foundation,
the Howard Hughes Medical Institute, and the Burroughs–
Wellcome La Jolla Interfaces in Science program. He received
a B.S. degree in chemistry with honors from the University of
Iowa in 1997 and is currently pursuing a Ph.D. in chemistry
with thesis work in theoretical chemistry and scientific
computing, supervised by Professors J. Andrew McCammon
and Michael J. Holst.

David Sept Department of Biomedical Engineering,
Washington University, Campus Box 1097, One Brookings Drive,
St. Louis, Missouri 63130 (dsept@biomed.wustl.edu). Dr. Sept
is an Assistant Professor in the Department of Biomedical
Engineering at Washington University. He received his Ph.D.
degree in theoretical physics from the University of Alberta in
1997 and subsequently joined Dr. J. Andrew McCammon’s
computational chemistry group at the University of San Diego
as a Postdoctoral Fellow. The majority of his work has been
the modeling and simulation of cytoskeletal proteins,
in particular actin filaments and microtubules.

Michael J. Holst Department of Mathematics, University of
California at San Diego, 9500 Gilman Drive, Mail Code 0112,
La Jolla, California 92093 (mholst@math.ucsd.edu). Dr. Holst
is a tenured Associate Professor in Mathematics at the
University of California at San Diego (UCSD). He received
his Ph.D. degree in numerical analysis in 1993 from the
University of Illinois at Urbana–Champaign (UIUC) under
Professor Faisal Saied; he was awarded a Caltech Prize
Fellowship in 1993 to continue this work as a Postdoctoral
Fellow in the Applied Mathematics group at Caltech. Dr.
Holst was subsequently awarded Caltech’s von Karman
Instructorship (1995–1996 and 1996 –1997) and accepted a
tenure-track assistant professorship in the mathematics
department at UC Irvine in Fall 1997. After one year at UC
Irvine, he was recruited to join the mathematics department
at UC San Diego, home to one of the top numerical analysis
groups in the world. Dr. Holst was awarded UCSD’s
competitive one-year Hellman Fellowship in Fall 1998 to
support his research, and in Spring 1999 he won a prestigious
NSF CAREER Award. He was subsequently promoted to
tenured associate professor at UCSD this past year, and sits
on the steering committee of the La Jolla Interfaces in
Science Program at the San Diego Supercomputer Center
(SDSC). In support of his work, Dr. Holst has given invited
lectures at Cambridge University (DAMPT) in the UK, the
Max-Planck Institute in Berlin (physics), ETH in Zurich
(mathematics), Oberwolfach in Germany, MSRI, the Courant
Institute (mathematics), Columbia University (biophysics),
Caltech (applied mathematics, physics), the University of
Houston (mathematics), UCLA (mathematics), UCSD
(mathematics), USC (mathematics), Penn State University
(mathematics and physics), and a number of other world-
renowned institutions.

J. Andrew McCammon Departments of Chemistry and
Biochemistry and of Pharmacology, University of California at
San Diego, 9500 Gilman Drive, La Jolla, California 92093
(jmccammon@ucsd.edu). Dr. McCammon is an Investigator of
the Howard Hughes Medical Institute. He is the Joseph E.
Mayer Chair of Theoretical Chemistry, and is Professor of
Pharmacology at UCSD. He is also a Fellow of the San Diego
Supercomputer Center at UCSD. He received a B.A. degree
in chemistry from Pomona College in 1969, an M.A. degree in
physics from Harvard in 1970, and a Ph.D. degree in chemical
physics from Harvard in 1976. He was a Research Associate
at Harvard from 1976 to 1978, when he conducted the initial
molecular dynamics simulations of proteins with Martin
Karplus. He joined the faculty of the University of Houston
in 1978 and was named to the M. D. Anderson Chair of
Chemistry there in 1981. He moved to UCSD in 1995. Dr.
McCammon is the author with Stephen Harvey of Dynamics
of Proteins and Nucleic Acids (Cambridge University Press),
and is the author or co-author of 350 papers on a variety of
subjects in theoretical chemistry and theoretical biochemistry.
He received the first George Herbert Hitchings Award for
Innovative Methods in Drug Design from the Burroughs–
Wellcome Fund in 1987. In 1995, he received the Computerworld
Smithsonian Information Technology Leadership Award
for Breakthrough Computational Science. Dr. McCammon
is an elected Fellow of the American Association for the
Advancement of Science, the American Physical Society,
and the Biophysical Society.

N. A. BAKER ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

438

