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A clear challenge in the field of computer
simulation of biological systems is to develop
a simulation methodology that incorporates
the vast temporal and spatial scales observed
in living systems. At present, simulation
capabilities generally operate in either
microscopic or macroscopic regimes.
Microscopic molecular dynamics simulations
can examine systems up to the order of
100000 atoms on time scales of the order of
nanoseconds. This is still orders of magnitude

below the scales required to model complete
biological structures such as a living cell.
Continuum-based simulations, frequently
employed in mechanical engineering problems,
can model complete biological assemblies
but do not contain any explicit molecular
information. To fully capture the intricate
interplay between microscopic processes and
macroscopic events, a method of “information
transfer” between these two disparate time
and length scales is required. We present a
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new simulation methodology based on
fundamental aspects of statistical and
continuum mechanics that allows microscopic
fluctuations to propagate to macroscopic
scales and vice versa. A feedback mechanism
is developed in which microscopic-level
molecular dynamics simulations are coupled to
corresponding macro-scale continuum-level
simulations. The techniques of non-equilibrium
molecular dynamics are used to create the
micro-to-macro interface, where transport
coefficients that are required input at the
continuum level are calculated from detailed
microscopic models. We present results for a
model membrane in which the material is
modeled at both spatial and temporal levels.
The effect of non-elastic perturbations at the
molecular level on macroscopic material
properties is examined as a demonstration
of the viability of the technique.

1. Introduction
An ongoing challenge in the field of biological computer
simulation involves the treatment of disparate time and
length scales. Many bioassemblies (for example, the DNA
double helix) explicitly contain both microscopic and
macro-scale dimensions in their structure. The length
along the strand of the molecule extends to macroscopic
dimensions, while its width is microscopic. Thus, one can
think of the “width” of the DNA strand as existing in a
microscopic temporal/spatial regime, whereas the “length”
is macro-scale in nature. Other biostructures such as cell
membranes exhibit similar characteristics.

The characteristic of multiple, disparate time and
length scales in the biological structures of living systems
presents a clear barrier to their computational modeling.
To properly model trans-temporal and trans-spatial
structures involves crossing this microscopic/macroscopic
barrier to incorporate an adequate degree of information
transfer between these disparate scales.1

On one hand, simulations on the scale of millions of
atoms, taking months of computational time, do not begin
to approach the time scales required to examine the
temporal interplay between atomic- and cellular-level
processes. Even advanced simulation techniques employing
multiple time-step dynamics are still, at a fundamental
level, attempting to describe macroscopic-level phenomena
with microscopic-scale models. Conversely, the most

detailed nonlinear equation cannot explicitly model
molecular-level interactions if the information from such
interactions is not properly incorporated.

In the context of bio-assemblies and computer
simulation, the capability to interlink atomistic detail with
macroscopic events must involve a fundamental new
direction in simulation methodology. An intrinsic coupling
between these disparate length and time scales that retains
inherent nonlinear behavior but avoids the computational
trap of unrealistically large simulations is required.

Molecular dynamics simulations can model systems of
the order of 105 atoms for time scales of the order of
nanoseconds, which is still orders of magnitude below
continuum length scales and time scales, these in turn
being of the order of millimeters and milliseconds.
Continuum-level simulations operate in the latter regimes,
but do so at the expense of explicit molecular-level detail
and structure. Instead, the physical properties of the
material are contained within various transport coefficients
which appear in the constitutive relations that are a crucial
step in the formulation of the continuum-level dynamics.
Generally, these transport coefficients (which could
include shear or bulk viscosity, Young’s modulus, or
Poisson’s ratio, for example) are considered as initial
input to the simulation.

However, at some fundamental level, all transport
coefficients and equilibrium properties such as pressure
and internal energy are averages of complex microscopic-
scale interactions. Thus, one might already have deduced
that there is an obvious “link” between micro- and macro-
scale dynamics that is inherently embedded within the
transport coefficients themselves. If the relevant transport
coefficients required for a continuum-level simulation
are calculated from a detailed atomistic model, we can
essentially “jump” from the atomic spatial/temporal
regime to the macro scale.

The converse is also true. The parameters that define
a microscopic system are quantities such as density,
temperature, and pressure. These parameters, like the
transport coefficients in the continuum case, are usually
considered as initial input. Moreover, quantities such as
the density are inherently macroscopic in nature. Thus, if
the density for an atomistic-scale simulation is obtained
from the calculated density in a corresponding continuum-
level simulation, we have essentially performed the reverse
time/space “jump.”

The combination of these two input/output sets can
result in a closed feedback loop between micro-scale and
macro-scale temporal and spatial regimes. In many cases
the approximation that transport coefficients (inherently
microscopically determined quantities) are not altered
by continuum-level fluctuations in density is reasonable.
However, there are a number of systems in which this
approximation is not valid, and some form of feedback or

1The trend in the field of computer simulation of complex biological systems
is either to employ increasingly larger atomic-level simulations or to use
parameterized and phenomenological nonlinear differential equation models. In
the field of bioinformatics one can find several examples of “virtual” simulations
of living organisms, human organs, etc. These efforts are currently even
being commercialized (see, e.g., http://www.physiome.com/default.html and
http://www.entelos.com/).
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information transfer across these disparate time scales
is required to completely elucidate the dynamics of the
system. For example, highly non-elastic materials could
have density-dependent transport coefficients; that is,
the value of the required transport coefficient in the
constitutive relation will depend on the density of the
material at that region. In a situation such as this, a
method of calculating the density-dependent transport
coefficient at that region is required.

For this paper, we present a new interface between
microscopic- and macroscopic-level simulations. The
general idea, as previously mentioned, is to calculate the
transport coefficients required for a continuum-level
simulation from corresponding molecular dynamics
simulations. However, the interlink between the two
simulations allows the examination of the dynamic
feedback between microscopic and macro-scale time and
length regimes. The material to be studied is represented
both at the continuum and microscopic levels, and
selected information is transferred between the two levels.
The present study is restricted to biological membranes,
as these systems represent an interesting template for
the examination of trans-temporal and trans-spatial
phenomena. In their inherent nature, one direction (the
membrane width) exists in a microscopic domain, while in
perpendicular dimensions the length scales are effectively
macroscopic relative to the membrane thickness. It should
be noted that the technique, which is referred to as
“dynamic feedback,” is completely general and can be
applied to a wide array of systems.

The paper is divided into several sections. In Section 2
we discuss some general properties of real biological
membranes, and how they are commonly modeled with
computer simulation. We then present in Section 3 a brief
overview of the microscopic simulation technology that is
employed; non-equilibrium molecular dynamics (NEMD)
is used extensively as a means of calculating transport
coefficients from microscopic models. Aspects and details
of the continuum-based simulation technique, known as
the material point method, are discussed next, in Section
4. The dynamic feedback mechanism is described in
Section 5. Finally, we present results in Section 6 for the
dynamic feedback between the microscopic and continuum
levels for a spring-membrane experiment, along with the
future outlook for the method in Section 7. Concluding
remarks are given in the last section.

2. Biological membranes
The cell membrane of all living organisms defines the
boundary between the outside environment and the
biological inner system. Furthermore, it not only defines
the boundary of the system, but also regulates the flux of
materials entering and exiting the cell. The thickness of
the lipid membrane is microscopic; however, its surface

area extends to macroscopic dimensions relative to its
thickness. At an atomic level, the membrane is composed
of lipid molecules, which contain a hydrophilic (water-
attracting) group at one end, and then two hydrophobic
(water-repelling or “oily”) carbon chains. Thus, the
structure of the lipid molecule could be described
generally as elongated, much like an ellipsoid of
revolution or a spherocylinder, in which one end is
attracted to water and the rest is repelled by it. At specific
concentrations and temperatures, a lipid bilayer is formed.
In this phase, the lipid molecules arrange themselves side
by side such that their hydrophilic ends point outward to
the surrounding solvent. The membrane is composed of
two lipid layers, with the hydrophobic (oily) components
pointing inward and the hydrophilic ends in contact with
the solvent. Moreover, the lipid molecules themselves
diffuse within the plane defined by the membrane bilayers;
thus, the membrane is best described as a liquid crystal, or
gel, rather than a solid. The fluid-like nature of the lipids
within the plane of the membrane is absolutely critical for
cellular functions such as ion transport.

There are various models for biological membranes
ranging from very detailed atomistic models of lipid
bilayer systems [1, 2] to greatly simplified models
(hard spherocylinders, ellipsoids of revolution) used
in liquid crystal studies [3, 4]. For this study we chose
an amorphous membrane model that can easily be
constructed and simulated. A snapshot of the microscopic
model of the membrane is shown in Figure 1. Basically,
the membrane is constructed from a random configuration
of spherical atoms that are bonded together by harmonic
spring bonds. The bonds between the atoms ensure that
the atoms remain bound within the membrane, and the
resulting material can be thought of as a toy “cross-linked
polymer.”

3. Non-equilibrium molecular dynamics
Classical equilibrium molecular dynamics (MD) typically
involves solving Newton’s equations of motion for a
relatively small number (usually N , 10 000) of atoms
and molecules. If Newton’s equations of motion for the
particles are solved, F 5 ma, where F is the force acting
on a particle, m is the mass, and a is the acceleration, the
total energy E of the system is conserved. However, quite
often one wishes to constrain the temperature T or the
pressure P to be constant. It is possible to generate
“synthetic” dynamics [5] in which the equations of motion
are extended such that the new dynamics conserve T or P
rather than E. In the large-system limit, where the
fluctuations in these quantities become infinitesimally
small, these synthetic equations of motion approach
Newton’s equations.

Molecular dynamics can also be further extended to the
non-equilibrium regime. With non-equilibrium molecular
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dynamics (NEMD), an external field, force, or flux is
imposed on the system [5–7]. The non-equilibrium state
produces heat because of the work being performed on
the system. The same synthetic dynamics used to maintain
constant temperature or pressure can be employed to
remove the excess heat. If the heat produced can be
removed, the system can, under some circumstances,
approach a non-equilibrium steady state. The subtle
aspects of the statistical mechanics of NEMD are
discussed in detail in Reference [5], and they are not
discussed here. For our purposes, NEMD is an efficient
and elegant method to calculate transport coefficients, in
which the transport coefficient of interest is calculated in
the limit that the non-equilibrium perturbation goes to
zero. The advantage of this approach over equilibrium
techniques for the calculation of transport coefficients is
that NEMD does not usually require either long or large
simulations. The efficiency of this approach for atomistic
membrane simulations is a key feature of this paper and
is an important part of the bridging strategy between the
micro- and macro-scales.

Cyclic compression NEMD
Cyclic compression NEMD has been used to calculate the
bulk viscosity of fluids, and has been very successful in
comparison with traditional methods (Chapman–Enskog)
[8, 9]. This method can be extended to viscoelastic solids,
as well as to materials with non-elastic properties. The
idea is to introduce an artificial volume oscillation and
then to correspondingly calculate the force required to
generate the oscillation. For example, if an elastic material
is compressed in some direction, the force required for
that compression occurs in the same direction, and the
material responds with a force in the opposite direction.
When the compression is in the x direction, a relationship
between the oscillation and the force required for its
generation (in the case of an elastic material) is

sx 5 Ee, (1)

where sx is the force per unit area in the x direction,
e 5 dx/L is the dimensionless dislocation, and E is the
modulus. If E is time-independent, the time derivative of
this equation relates how the force changes are related to
the oscillation changes,

ṡx 5 Eė, (2)

where ė 5 ­ux /­ x and ux is the flow field in the x
direction. In NEMD, it is convenient to use the pressure
tensor P rather than the external force per unit area s

5
,

where P 5 2s
5

; thus, the relationship between the time
derivative of the pressure component and the strain rate is

2Ṗxx 5 Eė. (3)

The modulus is calculated in the limit that the frequency
and amplitude of the oscillation approach zero. With
cyclic compression NEMD, we impose a dilation rate
given by ė 5 zv cos (vt), where z is the amplitude of
the oscillation (dimensionless), v 5 2p/l, and l is the
wavelength.

4. Continuum-level simulation and the material
point method
The material point method (MPM) is a numerical
technique for solving large-deformation problems in
continuum mechanics [10 –12]. In MPM, a fluid or solid
body is discretized using an unconnected set of material
points that are followed throughout the deformation
history. Details of the continuum-level equations can
be found in Reference [10]; here we describe only the
technique. The idea with MPM is that a material is
modeled at the macro-scale level by treating it as a
smooth, continuous system. There is no molecular-level
granularity whatsoever; however, for computational
purposes the material is divided into a number of material
“points” that have mass, velocity, location, and stress. The
material points move according to the forces acting on

Figure 1

Randomly chosen computer simulation snapshot of the actual “toy”
membrane used in the microscopic-level NEMD simulations. For this
system, we employed spherical molecules of diameter = 5 Å and
mass m = 15 amu, which were then connected by a random network
of harmonic spring bonds. This network constrains the atoms to
remain bound within the membrane and creates an elastic solid whose
constitutive relation can easily be defined. One can clearly see that the
dimensions of the system are on a microscopic length scale.

15.932 nm

�
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them, with the forces being determined by the collective
movements of the other material points, as well as any
external stresses.

The basic equation of motion solved via MPM is given by

¹ z s
5

1 rb 5 ra, (4)

where s
5

is the stress tensor, b is the specific body force,
r is the mass density, and a 5 v̇ is the acceleration. The
actual algorithm involves “mapping” quantities such as the
material point mass, the velocity, and the acceleration
from the material points themselves onto a lab-fixed
set of grid nodes. The grid nodes do not move. This
transformation from the material point representation
to the grid node representation is necessary in order to
calculate the forces acting on the material points. Because
the MPM method is completely general, it can essentially
model any material at the continuum level. In the case
of a biological membrane as previously described, solution
of these dynamics requires a constitutive relation such as
those given in Equation (2) and Equation (3). Once the
modulus is known, the value of sx or 2Pxx can be found
from ė, and then, in turn, the acceleration can be
calculated. The mapping of properties such as mass and
momenta from the material points to the lab-fixed grid
enables complete spatial freedom of material points. For
dense fluids, liquid crystals, or gels, this extension is
necessary, since a material point can essentially move
about the entire region.

5. Dynamic feedback between MD and MPM
The NEMD/MPM interface can be represented
diagrammatically as shown in Figure 2. Beginning with
the topmost image (1), the NEMD/MPM interface is
initialized with NEMD simulations of the membrane at
a microscopic level, where initial transport coefficients
(elastic moduli or viscosities) are calculated. With these
initial values, an MPM simulation of the membrane is
begun (2). As the MPM simulation evolves in macroscopic
time, new densities are computed and used as input in
a subsequent set of microscopic simulations. On the
microscopic scale, the system has now visited higher or
lower densities (3), and new NEMD calculations at these
new states are performed. New transport coefficients
are then fed back into a new MPM simulation (4). This
iterative process continues in a loop, and the inherent
nonlinear and complex behavior is ultimately incorporated.
Small instabilities at either the micro or macro level can
cross-propagate temporal regimes, resulting in membrane
deformation that could lead, for example, to membrane
rupture. At a deeper level, what in essence results from
this micro-to-macro feedback is that Equations (2) and
(3) explicitly contain E[r(r(t), t)], which is a nonlinear
equation in space and time (to be contrasted, for example,
to a perfect elastic solid).

At the microscopic level, as long as the temperature
and potential function are not altered, the modulus will
depend only on the density, i.e., E[r(r(t), t)]. Since the
value of E is unique to the density (as long as the model
and temperature at the microscopic level are not altered),
rescanning previously sampled densities with NEMD is
redundant. In this case, the iterative feedback loop as
previously described can be significantly simplified by
constructing a table of E versus r. This table can also be
constructed “on the fly”: After different densities have
been sampled by the MPM simulation, a series of
NEMD simulations are initiated, and new values of E
corresponding to the sampled densities are found. For
the system studied in this paper, the dynamic feedback
mechanism takes the form of a precalculated table of E
versus r, which is sufficient as long as the preliminary
set of NEMD simulations to determine the density
dependence of E spans the accessible densities sampled
by MPM.

6. Results

NEMD simulation
The model membrane for this study is as described in
Section 2. For this system, we employed “molecules” of

Figure 2

Diagrammatic representation of the NEMD/MPM interface.

(1)

(2)

(3)

(4)
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diameter s 5 5 Å, mass m 5 15 amu, at a temperature of
T 5 298 K, which reasonably models an atomistic-level
membrane. Figure 1 is a snapshot of the system, in which
the random bonds between the atoms are clearly shown.
Briefly, the NEMD simulations were performed by first
running an equilibrium simulation of N 5 900 molecules
for a time of 100 ps, and then the system was subjected to

a series of 40 to 100 non-equilibrium cyclic volume
compressions in the x-direction of amplitude z and
frequency v.

The density dependence of the modulus E was found by
performing the series of NEMD cyclic compression runs at
five different mass densities: r 5 mN/V 5 0.096 amuÅ23,
0.087 amuÅ23, 0.080 amuÅ23, 0.049 amuÅ23, and
0.024 amuÅ23. (Note that r 5 0.12 amuÅ23 corresponds
to a simple cubic close-packed structure.) For each density,
two different cyclic compression amplitudes corresponding
to z 5 0.265 and 0.132, and five different frequencies
ranging from v 5 0.07 ps21 up to v 5 0.29 ps21, were used.
The magnitudes of the amplitudes were less than one
percent of the original cell size, and the shortest frequency
corresponded to a wavelength of 50 000dt, where
dt 5 0.001 ps is the time step used in the simulation.
For this system, this wavelength is almost an order of
magnitude longer than the typical time necessary for the
system to relax to equilibrium from an initial configuration.
In Figure 3 the modulus is plotted versus dilation frequency
for five different densities. Except for the most dense fluid
system at r 5 0.096 amuÅ23, E is basically independent of
the compression frequency, and the extrapolated value is
not significantly different from the non-equilibrium values.
At r 5 0.096 amuÅ23, a small increase in E is observed
for increased frequency. Results for two different
amplitudes are shown (solid and open squares), and the
extrapolated value of E is essentially independent of
amplitude.

As an alternative method of calculating E, and to check
whether or not there could be very low-frequency or low-
amplitude nonlinear behavior, an elastic expansion
NEMD simulation series at the highest density
(r 5 mN/V 5 0.096 amuÅ23) was performed. Very
briefly, the elastic expansion technique rigorously should
be applied only to elastic materials in which the stress
versus strain curve is linear. An external stress is imposed
on the system, and the system is allowed to expand in one
direction, until a new “steady state” dislocation is reached.
This amounts to stretching the material and calculating
the dimensionless displacement that results from the stretch.
With this technique we find excellent agreement with the
calculated value of the modulus at r 5 0.096 amuÅ23,
with E 5 1.126 3 105 kgm21s22.

The extrapolated values of E can be plotted versus
r 5 Nm/V. In Figure 4 the nonlinearity of E with respect
to density is clearly shown. At low densities, E remains
almost constant with r (the “harmonic regime”), while at
fluid densities with r . 0.07 amuÅ23, highly nonlinear
behavior is observed. The nonlinearity of E at fluid
densities arises from atoms being pushed together with
strong short-range repulsion interactions; thus, the
material rapidly becomes “stiffer” at densities beyond
r . 0.07 amuÅ23.

Figure 3

Frequency and amplitude dependence of E for five different mass
densities: � mN/V � 0.096 amuÅ�3, 0.087 amuÅ�3, 0.080 amuÅ�3,
0.049 amuÅ�3, and 0.024 amuÅ�3 (open squares) ( � 0.12 amuÅ�3

corresponds to simple cubic close-packed structures). For � mN/V
� 0.096 amuÅ�3, two different amplitudes corresponding to � �
0.265 (closed squares) and 0.132 (open squares) are shown.
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Figure 4

Density dependence of the modulus E. A fourth-order polynomial was
used to fit the data.

0 0.02 0.04 0.06 0.08 0.1
(amuÅ�3)

E
(k

Pa
�

10
�

4 )

15

10

5

0

�

G. S. D. AYTON ET AL. IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

422



MPM simulation
The results from Figure 4 (in which a fourth-order
polynomial was used to fit the data) were then employed
as initial input in an MPM simulation of the membrane.
Recall that in a traditional MPM simulation, the modulus
would be considered as initial input to the program,
independent of the density of the material. In this
simulation, the modulus as a function of the density is the
initial input, which has been uniquely determined for the
chosen membrane model, at a specified temperature.

The MPM simulation was set up to model a membrane-
spring mass experiment in which a macroscopic membrane
is anchored at one end and a weight attached to the other.
Under the force of gravity, the weight bounces. For this
experiment, a membrane of length 0.3 mm and cross-
sectional area 0.001 mm2 was chosen. Ten material points
and four grid nodes were placed on the membrane, and
the tenth material point (the one at the bottom) was given
a mass 10 000 times greater than the other material points
to model the weight attached to the end of the membrane.
The initial value of the modulus was 1.126 3 105 kgm21s22,
corresponding to a mass density of r 5 0.096 amuÅ23.
Further details are summarized in Table 1, and a diagram
of the continuum-level model is shown in Figure 5. This
particular model is presented here as a demonstration of
the NEMD/MPM feedback loop. Other, more realistic,
simulations can be constructed, but for the present
purposes this continuum problem is attractive in that it
has an analytic solution in the density-independent case.

Figure 6 presents the results for the dynamic feedback
interface of a microscopic-level simulation with the
continuum-level MPM model. The curves in the plot
track the displacement of the “heavy” material point over
time. Note that the spatial displacement is now given in
millimeters, while the time is in milliseconds. Recall that
the modulus was calculated using a microscopic-scale
simulation on a length scale of the order of nanometers
and time scales of the order of picoseconds. An
informative calculation is to determine the system size
and the computational time required to model this simple
spring experiment using a detailed microscopic model with
no bridging to the continuum-level MPM simulation. To
match the chosen dimensions of the MPM simulation, a
microscopic simulation of 1.9 3 1015 molecules running
for 1.0 3 1010 ps would be required. Present atomic-level

simulation capabilities are nowhere near being able to
handle such simulations. In contrast, with NEMD/MPM
feedback, the MPM calculation takes about a minute
on a workstation (SGI 02, R5000, 200 MHz), while
each NEMD modulus point takes about five minutes
to calculate.

In the present application, the actual implementation
of the dynamic feedback is contained within the MPM

Table 1 Initial parameters used for the MPM membrane-
spring simulation. The mass M corresponds to the mass of a
material point.

L
(mm)

A
(mm2)

E
(kgm21s22)

M
(mg)

g
[mm(ms)22]

0.30 0.001 1.126 3 105 4.78 3 1023 9.81 3 1023

Figure 5

Schematic representation of the continuum-level membrane.

Membrane

Different
material

0.3 mm

Figure 6

Dynamic feedback (solid curve) and constant E (dotted curve) results
for the spring-membrane experiment.
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algorithm, in which the density about each material point
is integrated in time. When the density at a specific
material point is updated in the time integration, the value
of E, as shown in Figure 4, is employed in the constitutive
relation

Ṗxx~t! 5 2E@r~t!#ė~t!. (5)

As the membrane extends, the density within it decreases,
and from Figure 4 it can be seen that E decreases with r

in the sampled density regime. Figure 6 shows that the
membrane extends slightly farther when dynamic feedback
is included (solid curve) than in the constant-E case
(dotted curve).2

7. Future applications to biological membranes
We have demonstrated that it is possible to interface
microscopic- and macroscopic-level simulations by
constructing a dynamic feedback loop within an
NEMD/MPM simulation. The key to the method lies
in identifying those microscopic quantities that must
be transferred to the macro scale and, also, which
macroscopic properties are propagated backward to the
microscopic regime. As a first demonstration of this
technique, we have chosen a simplified model that not
only demonstrates the basic algorithm but also clearly
elucidates the effects of including dynamic feedback.

For the future, there are a number of problems in
computational biology where our methodology will help
overcome the computational barrier to long time- and
length-scale simulations. In the context of membrane
simulations, extending our approach to study these
systems will involve basically two steps:

● Employing a more detailed microscopic model of the
lipid membrane as previously described in Section 2.

● Extending the MPM model to describe membranes in
more realistic geometries. For example, the MPM
simulation would model a membrane in a “drum”
geometry, or even a “bubble” geometry.

There are currently two problems of immediate interest
that will inherently require some sort of micro-to-macro
feedback to completely model the full scope of their
behavior:

1. Osmotic effects in black membranes
Experimentally, synthetic lipid bilayers, or black
membranes, are used as a model system for real cell
membranes. Black membranes can be formed by creating
a small hole (;0.8 mm) on a Teflon barrier that is
immersed in water. The membrane is formed by

introducing the lipid molecules at the small hole between
the two aqueous compartments on either side of the
barrier. The inherent selectivity of biological membranes
gives rise to osmotic pressure effects: If a solution of
water and a substance impermeable to the membrane are
placed in one compartment and pure water is in the other,
a flux of water from the pure side to the solution side
is observed. On a microscopic scale, water molecules
percolate through the lipid membrane, driven by the
chemical potential gradient. On a macroscopic scale, the
membrane is subject to a pressure head directed from the
solvent to the solution. The flux of water through the
membrane results in a deformation of the membrane
across the pore, and the deformation, manifested
microscopically as a local change in lipid density, affects
the flux. At some critical value of the osmotic pressure
gradient, the flux will become too great, and the
membrane will rupture.

To study this problem with NEMD/MPM feedback
requires the extension of the MPM membrane simulation
to model a two-dimensional membrane “disc” or “drum.”
With the extension of MPM, a concurrent extension to
the NEMD component is also required. For this model
membrane two moduli are required: the shear and the
bulk elastic moduli (or viscosities).

2. Nonlinear effects of biologically relevant biomolecules in
cell membranes
The presence of nonlipid biomolecules such as cholesterol
in cell membranes should alter the membrane’s
macroscopic material properties. This perturbed
mechanical state should then feed back to the microscopic
regime. There is already evidence from detailed
microscopic-level simulations that the presence of nonlipid
molecules can alter the local material properties of a
membrane [1, 2]. That is, if a cholesterol “density”
is present, the membrane generally becomes stiffer.
However, from this result, without some sort of micro-to-
macro interface, there is no way of resolving how these
small changes in material properties will alter macro
time- and length-scale dynamics.

The treatment of this problem will require incorporating
more detailed and realistic potentials to model the lipid
bilayer and the foreign “agent.” Systems of the scale of
di-palmitoylphosphatidylcholine, or DPPC [1, 2], can
be implemented, and the inclusion of more complex
structures within the membrane, such as membrane-bound
proteins, ion channels, and receptor sites [13, 14], can be
incorporated to enrich the model within the NEMD/MPM
framework. One possible scenario involves the inclusion
of an ion channel within the lipid membrane. The
NEMD/MPM feedback allows the inherent nonlinear
aspects of the problem to be captured. If an unstable, or
statistically improbable, state point is sampled at the

2For reference, the analytic solution for a massless spring with the same geometry
and E has a maximum displacement of 0.025 mm. This is consistent with the idea
that the membrane becomes softer as it extends.
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continuum level, this information is transferred to the
microscopic simulation. As the feedback continues, this
nonlinear fluctuation has the ability to propagate in the
macroscopic dynamics.

The present NEMD technique of cyclic compression can
also be used in nonhomogeneous systems such as lipid
bilayers. However, since this is a boundary-condition
algorithm (that is, the non-equilibrium perturbation is
introduced by altering the shape of the periodic lattice),
all molecules within the system are inherently subject to
the perturbation. Alternative methods analogous to the
sinusoidal transverse force method [15] employ synthetic
external fields, rather than altered boundary conditions, to
drive the system from equilibrium. With these techniques,
the external field acts on only those molecules of interest;
thus, the mechanical properties of a lipid bilayer can be
found even if the membrane is surrounded by a solvent.
When NEMD is combined with hydrodynamic methods
for evaluating the pressure tensor [16], its flexibility in
highly inhomogeneous systems is greatly extended.

8. Conclusion
In this paper we have described a simulation methodology
in which the computational barriers of disparate time
and length scales that occur in many biological systems
can be overcome. The method is general and relies on
interlinking microscopic and continuum-level mechanics.
In the context of biological structures, we have performed
a series of computer experiments in which a membrane
model is simulated in both the microscopic and
continuum-level regimes. The necessary quantities
required by the continuum-level simulations were
calculated from the microscopic simulations, and in return
the conditions for the microscopic simulations were
defined by the continuum dynamics. The results from
these computer experiments indicate that there may be
subtle aspects of biological dynamics in which a dynamic
information transfer between the atomic and the
continuum level is necessary in order to fully model
the behavior of the system.
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