Multiobjective
optimization of
combinatorial
libraries

by D. K. Agrafiotis

Combinatorial chemistry and high-throughput
screening have caused a fundamental shift in
the way chemists contemplate experiments.
Designing a combinatorial library is a
controversial art that involves a heterogeneous
mix of chemistry, mathematics, economics,
experience, and intuition. Although there
seems to be little agreement as to what
constitutes an ideal library, one thing is
certain: Only one property or measure seldom
defines the quality of the design. In most real-
world applications, a good experiment requires
the simultaneous optimization of several, often
conflicting, design objectives, some of which
may be vague and uncertain. In this paper,

we discuss a class of algorithms for

subset selection rooted in the principles of
multiobjective optimization. Our approach is
to employ an objective function that encodes
all of the desired selection criteria, and then
use a simulated annealing or evolutionary
approach to identify the optimal (or a nearly
optimal) subset from among the vast number
of possibilities. Many design criteria can be
accommodated, including diversity, similarity
to known actives, predicted activity and/or
selectivity determined by quantitative
structure-activity relationship (QSAR) models
or receptor binding models, enforcement of
certain property distributions, reagent cost

and availability, and many others. The method
is robust, convergent, and extensible, offers
the user full control over the relative
significance of the various objectives in the
final design, and permits the simultaneous
selection of compounds from multiple libraries
in full- or sparse-array format.

1. Introduction

Historically, drug discovery has been based on a serial and
systematic modification of chemical structure aimed at
producing compounds which can effectively and safely
alter the activity of biological targets associated with a
particular disease. This process involves four major steps
following the identification of a biological target: 1) hit
identification, 2) lead generation, 3) lead optimization,
and 4) target validation. The first part of this process is
carried out by screening large compound collections,
such as combinatorial libraries, natural product
collections, and corporate banks, in order to identify
compounds that interact with the target enzyme or
receptor. Once a hit has been identified, it is chemically
modified by iterative synthesis and testing of related
analogs to produce leads, i.e., compounds with improved
chemical characteristics that are more suitable as potential
drugs. Further chemical modification optimizes the
properties of these leads and converts them into drug
development candidates for further preclinical and
clinical development.
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Prior to the advent of combinatorial chemistry, this
process involved a simple prioritization of synthetic targets
based on pre-existing structure-activity data, synthetic
feasibility, experience, and intuition. This situation began
to change as advances in parallel synthesis and high-
throughput screening have enabled the simultaneous
synthesis and biological evaluation of large chemical
libraries containing hundreds to tens of thousands of
compounds [1]. Although throughput has increased
dramatically, the number of compounds that can be
created and tested in a reliable manner represents a tiny
fraction of all the molecules of potential pharmaceutical
interest, and the process is still fundamentally based on
trial and error. It is becoming increasingly apparent
that in order to maximize the probability of identifying
sustainable drug candidates, combinatorial experiments
must be carefully planned and take full advantage of
whatever information is available about the biological
target of interest. Whether it is used for lead discovery or
optimization, the design of a good combinatorial library
is a complex task that requires the simultaneous
optimization of several, often conflicting, design
objectives. In this paper, we present an overview of a
general methodology for designing combinatorial and
high-throughput screening experiments rooted in the
principles of multiobjective optimization.

Multiobjective (MO) optimization (also known as
multicriterion, vector, or Pareto optimization) extends
optimization theory by permitting several design objectives
to be optimized simultaneously. Although the basic
methods can be traced back to the work of Leibniz and
Euler, the principle of multiobjective optimization was
first formalized by Vilfredo Pareto, an Italian economist,
whose theories [2] are now considered the basis of modern
welfare economics exercised by socialist economic
scholars. He introduced the concept of the Pareto
optimum, a standard of judgment in which the optimum
allocation of the resources of a society is not attained as
long as it is possible to make at least one individual better
off in his own estimation while keeping others as well off
in their own estimation. In Pareto’s own words: “The
principal subject of our study is (economic) equilibrium.
This equilibrium results from the opposition between
men’s tastes and the obstacles to satisfying them. Our
study includes, then, three distinct parts: 1) the study of
tastes; 2) the study of obstacles; and 3) the study of the
way in which these two elements combine to reach
equilibrium.” Throughout the years, Pareto’s basic
theories have been extended [3] and applied to a wide
spectrum of optimization problems in economics,
management, engineering, and social sciences.

A multiobjective optimization problem is solved in a
manner similar to the conventional single-objective (SO)
problem. The goal is to find a set of values for the design
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variables that simultaneously optimize several objective
(or cost) functions. The solutions are often referred to

as Pareto optima, vector maxima, efficient points, or
nondominated solutions. In general, the solutions obtained
by individual optimization of each objective (i.e., SO
optimization) do not represent a feasible solution to the
multiobjective problem. Several methods have been
devised for constructing Pareto-optimal sets, including
hierarchical optimization, weighing objectives, distance
functions, goal programming, tradeoff or constraint
methods, min-max optimization, and many others [3].
These methods fall into two broad categories: 1) methods
which attempt to optimize each criterion in turn, subject
to constraints derived from the optimization of previously
optimized criteria; and 2) methods which attempt to
minimize a single objective function that combines the
design objectives in some prescribed functional form
(often referred to as a global criterion).

Unfortunately, the vast majority of multiobjective
optimization theory deals with continuous or
semicontinuous design variables and is not directly
applicable to discrete, combinatorial problems such
as the application at hand. In this paper, we review the
algorithmic details of a general methodology for designing
combinatorial libraries that combines the flexibility of
multiobjective fitness functions with the power of
simulated annealing for searching vast combinatorial state
spaces. The method allows traditional design objectives
such as molecular similarity or molecular diversity to be
combined with other selection criteria in order to enforce
certain druglike property distributions, contain the cost
of the experiment, minimize potential toxicological and
pharmacokinetic liabilities, etc.

Library design has evolved into a distinct subdiscipline
of computational chemistry standing on the crossroads of
organic synthesis, chemometrics, QSAR, and structure-
based design. Although it is not our intention to provide
an in-depth review of this field, the reader should be
aware that the approach described here is one of many
available methodologies for designing effective and well-
targeted combinatorial experiments, and one that has been
pursued independently by several groups. While some of
the underlying principles have their origin in the field of
statistical experimental design, the first reports dealing
specifically with combinatorial libraries were presented
in 1995 by five independent groups [4-8]. In what is
considered by many the pivotal computational work on
molecular diversity, Martin and coworkers reported a
rational method for selecting a set of monomers for a
peptoid combinatorial library based on D-optimal design
[4]. To ensure that the design would capture biologically
relevant information, the group employed a wide range
of molecular descriptors that captured lipophilicity,
shape and branching, chemical functionality, and
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receptor binding. Principal component analysis and
multidimensional scaling were employed to reduce the
dimensionality of the original data, and a D-optimal
design procedure was used to select a representative
subset of reagents to optimally explore the resulting
diversity space.

An alternative approach that is more closely related
to the one described herein was presented by groups
at Merck, Hoffman-La Roche, and Sterling Winthrop
Pharmaceuticals. Sheridan and Kearsley [6] employed
a genetic algorithm to generate N-substituted glycine
tripeptoids which maximized similarity to a known lead or
predicted activity according to a trend vector developed
from a series of active molecules. Weber et al. [7]
presented a similar genetic scheme using a fitness function
that was based on the results of an experimental enzyme
assay rather than QSAR modeling, and Singh et al. [§]
employed a similar methodology to optimize a set of
potent and selective hexapeptide stromelysin substrates.

The group at 3-Dimensional Pharmaceuticals was also
quick to recognize that biological data is the best guide
for the design of combinatorial and high-throughput
screening experiments, and that effective data
management and process integration were key for the
timely and cost-effective development of new therapeutic
agents. Contemporaneously with the aforementioned
publications, our group obtained the first of a series of
patents describing a new drug discovery paradigm that
integrates combinatorial, structural, and computational
chemistry under a unifying information management
system [4]. The system, known as DirectedDiversity**,
is an iterative optimization process that explores
combinatorial space through successive rounds of
selection, synthesis, and testing. Unlike traditional
combinatorial approaches, in which the entire library
is made and tested in a single conceptual step,
DirectedDiversity physically synthesizes, characterizes and
tests only a portion of that library at a time. The selection
of compounds is carried out by computational search
engines that combine optimal exploration of molecular
diversity with a directed search based on structure-activity
relationship (SAR) information accumulated from
previous iterations of the integrated machinery. The
original blueprint was based on an optimization scheme
that was in many respects similar to that described by the
previous authors, but emphasized more strongly the need
to adjust the selection criteria in the course of a discovery
program and to deal with the ambiguity that is inherent
in the biological response data.

In the following years, the above algorithms were
elaborated, calibrated, and applied to a wide range
of problems in library design. From an algorithmic
perspective, the most notable examples include the
independently developed simulated annealing
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implementations of Agrafiotis [9-12] and Hassan et al.
[13, 14], and their subsequent variations by Good and
Lewis [15] and Zheng et al. [16]; Brown and Martin’s
genetic scheme to generate libraries designed to minimize
the effort required to deconvolute biological hits by mass-
spectroscopic techniques [17]; the attempts by Gillet et al.
[18], Rassokhin and Agrafiotis [19], and Brown et al. [20] to
enforce certain property distributions on the final design;
and the latest use by Sheridan et al. [21] of genetic
algorithms for designing targeted libraries. These advances
were complemented by important validation studies, which
compared the ability of several popular sets of descriptors
to differentiate between active and inactive molecules
[22-27], as well as the relative merits of reagent- versus
product-based designs [28, 29]. They represent only a
small fraction of proposed library design methodologies,
which range from conventional experimental design

[4, 30, 31] to clustering [32] and cluster sampling [33],
conformational sampling [34], partitioning [35, 36],
Boolean logic [37-39], vector analysis [40], and some more
recent “greedy” algorithms for selecting combinatorial
arrays [41, 42]. For a more extensive account, the
interested reader is referred to several recently

published reviews [31, 43-45].

2. Methods

Architecture

In its prototypical form, the selection problem can be
stated as follows: Given a collection of n compounds and
a number k, find the “best” set of k compounds according
to some user-defined criteria. This problem is NP-
complete, and the cardinality of the search space

is enormous for even the most conservative cases
encountered in library design. The approach taken here

is to combine all of the selection criteria into a single
unifying function, and maximize (or minimize) that
function using an efficient optimization algorithm such as
simulated annealing or evolutionary programming in order
to identify the optimal (or a nearly optimal) set among the
vast number of possibilities. To simplify the description of
the algorithm, we define the following entities: collections
or libraries, which represent separate pools of chemical
compounds (combinatorial libraries and/or regular
collections) from which the selection is to be drawn;
subsets, which represent selections of compounds from a
particular compound collection; states or designs, which
represent a collection of subsets from one or more
chemical libraries; selection criteria, which encode the
individual design objectives; objective functions, which
combine one or more selection criteria in some arbitrary
functional form and provide the overall quality of a
particular design (state); and optimizers, which search
through the state space associated with the problem of
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Overall architecture of approach used for multiobjective compound
selection.

interest to identify the optimal (or a nearly optimal)
solution.

The overall architecture of the approach used is shown
in Figure 1. An optimizer (in this case a serial or parallel
implementation of simulated annealing) produces a state
(i.e., a collection of subsets from one or more chemical
libraries), which is evaluated against all of the desired
selection criteria. These are combined into a unifying
objective function, which measures the overall fitness of
that state—that is, its ability to collectively satisfy all of
the specified selection criteria. This fitness value is used
by the optimizer to produce a new set of compounds
(i.e., a new state), which is in turn evaluated against the
prescribed selection criteria in the manner outlined above.
The process continues until a predefined termination
criterion or time limit is met, and the best state identified
during the course of the simulation is reported. This
general scheme can be implemented in a serial or parallel
fashion; in the latter case, several states are evaluated in
parallel and are subsequently combined to produce a new
set of states for the next iteration (see below).

The major advantage of this approach is that the search
algorithm is completely independent of the performance
measure, and can be applied to a wide variety of selection
criteria and fitness functions. Unlike alternative algorithms
such as max-min [46], cluster analysis [22], binning [36],
and stepwise elimination [33], which are tailored to a
particular application, this approach is completely general,
programmatically simple, and easily extensible. The
remaining paragraphs describe in detail the various
elements of this approach, using a mixed terminology
borrowed from the simulated annealing and evolutionary
programming literature.
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States

A state or design represents a collection of subsets from
one or more chemical libraries. The system was designed
to allow the simultaneous selection of multiple subsets
from multiple collections, thus enabling the design of
experiments that span multiple chemistries and/or
corporate files. Depending on the nature of the parent
collection, three types of subsets can be defined: sparse
arrays (or singles), full arrays (or simply arrays), and plates.

Sparse arrays

A sparse array represents any conceivable subset of k
compounds from an n-membered collection. This is the
most general design and is not restricted by the nature or
location of the compounds, or by the types of reagents
required for their synthesis. The term array originates
from the literature of combinatorial chemistry, and

refers to a subset of compounds from a combinatorial
library that does not necessarily represent all possible
combinations of the selected building blocks. This type of
selection, illustrated in Figure 2(a), is formally defined as

SCC, S| =k, |C|=n, (1)

where C denotes the parent collection. The size of the
state space, i.e., the number of different k-membered
subsets of an n-membered set, is given by the binomial
coefficient

n n!
(k) e (2)

For example, the selection of 50 from a set of 1000
compounds involves 10% possibilities.

Full arrays

A full array is applicable only to combinatorial libraries
and refers to a subset of compounds that represent all

of the products derived by combining a given subset of
building blocks in all possible combinations prescribed by
the reaction scheme. Note that in this context, the term
full array does not necessarily refer to the physical layout
and execution of the experiment. A full array for a
hypothetical two-component library, illustrated in

Figure 2(b), is defined as

§=8 X8 X...x8,,8CR,|S| =k, [R|=n, (3)

where R, represents the pool of reagents at the ith
variation site of the combinatorial library, and n, and k,
are respectively the total and selected number of reagents
at that site.

The combinatorics of full and sparse arrays are vastly
different. For sparse arrays, the number of states that one
has to consider (the number of different k-subsets of an
n-set) is given by Equation (2), whereas for full arrays
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the number of possibilities (i.e., the number of
different k, X k, X ... X k, arrays derived from an
n, X n, X...X n, R-component combinatorial library) is

n |

[ (= ktk) “)

For a 10 X 10 two-component combinatorial library, there
are 107 different subsets of 25 compounds, and only

63504 different 5 X 5 arrays. For a 10 X 10 selection

from a 100 X 100 library, those numbers increase to 10
and 10* for sparse and full arrays, respectively. Thus, full
arrays are much simpler to design and easier to synthesize
on robotic hardware. In fact, most combinatorial libraries

241

are synthesized in (full) array format.

Plates

The final type of selection is a collection of plates. A
plate represents a set of compounds grouped together
according to their physical location or some other common
characteristic. The primary use of this class is to enable
the selection of plates from a large archive for replication
and screening against one or more biological targets. A
plate subset is defined as

SCG,|S|=k,|Gl=n, (5)

where G represents the collection of plates, and n and kp
are respectively the total and selected number of plates in
the collection. Note that the number of compounds in the
plates need not be the same; in this case the selection
criteria must be defined in a manner that does not favor
the selection of plates that contain either too few or too
many compounds, unless it is so desired.

Criteria

A selection criterion is a function that encodes the ability
of a given set of compounds to satisfy a particular design
objective such as maximum intrinsic diversity, similarity to
a set of known actives, enforcement of particular property
distributions, and many others. These functions are simple
numerical indices that can be combined into a single
objective function that measures the overall quality of

a candidate design, S:

£08) = FLAS), £,(8), -+, £,(9)]. (6)

The objective function f, can assume any desired
functional form, and by convention it is maximized to
produce the optimal set. The following paragraphs
describe the selection criteria that are most commonly
used in combinatorial library design. Note that many of
these functions can be defined in a multitude of ways, and
some alternative definitions are discussed in Section 4.
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(b)
Combinatorial subsets: (a) sparse arrays; (b) full arrays.

Similarity

The similarity of a given set of compounds, S, to a set of
leads is defined as a function of the average distance of a
compound to its nearest lead:

1 k
$($) = 3 flmin(d,)], )

j=

where k is the cardinality of S, / is the number of leads,
d, is the distance between the ith compound and the jth
lead in some molecular descriptor space, and f is a user-
defined function known as a kernel. The default kernel
is the identity function. Since a higher similarity score
typically indicates a collection of compounds that are
more distant and therefore less similar to the leads,
focused libraries are obtained by minimizing S.

Diversity
The intrinsic diversity of a set of compounds, S, is defined

as a function of the average nearest-neighbor distance
[43-45]:

1
D(S) = >, fImin(d)], (8)

where again k is the cardinality of §, d, is the Euclidean
distance between the ith and jth compounds in § in some
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molecular descriptor space, and f is a user-defined kernel.
The kernel is used to tailor the diversity of the design, and
defaults to the identity function. Since typically the value
of this function increases with spread, diverse libraries
are obtained by maximizing D. We have found that this
function is smoother than the more commonly used
minimum dissimilarity and can discriminate more
effectively among the various ensembles. Naively
implemented, Equation (8) requires k(k — 1)/2 distance
computations and scales adversely with the number of
compounds selected. To reduce the quadratic complexity
of the problem, D is computed using the k-d tree
algorithm presented in [12]. This algorithm achieves
computational efficiency by first organizing all of the
points in C in a k-dimensional tree and then performing
a nearest-neighbor search for each point using a branch-
and-bound approach. For a relatively small number of
dimensions, this algorithm exhibits k log k time complexity
and scales favorably with the number of compounds
selected. Other diversity functions are discussed in
Section 4.

Complementarity

This criterion is closely related to diversity and represents
the ability of a particular design to fill in the “diversity
voids” that exist in a pre-existing collection. Its definition
is similar to Equation (8):

1
D(S,§%) =D(SUS*) = 3 flmin(d)], ©)

]

where i and j are now used to index the compounds in the
combined set S U S*, and k = [S| + [S*|. Just as with
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Equation (8), complementary designs are obtained by
maximizing D. Complementarity represents the sum of the
intrinsic and extrinsic diversity of a set of compounds with
respect to a reference collection.

Confinement

This criterion measures the degree to which the properties
of a given set of compounds fit within prescribed limits;

it is defined as

1 , ,
P(S) = > > max(x" —x,x, —x", 0), (10)
[

n

where x,, is the jth property of the ith compound, and )cj"”'i
and xjmax are respectively the minimum and maximum
allowed limits of the jth property. Since the value of this
function increases as more and more compounds fall
outside the desired property range, constrained libraries
are obtained by minimizing P. When multiple properties
are used, they must be normalized to allow meaningful
comparisons. In the special case in which the properties
of interest must attain a particular target value (i.e., in
the case of a degenerate range), Equation (10) can be
rewritten as

1
PS) = >, >, abs(x, —x7), (11)

where xf represents the target value of the jth property.
The confinement criterion was introduced in Reference
[41].

Distribution
This criterion is used to create designs that obey certain
predefined molecular property distributions. It is based on
the Kolmogorov-Smirnov statistic, which measures how
well an experimental distribution is approximated by a
particular distribution function. It is applicable to
unbinned distributions that are functions of a single
independent variable, and is defined as the maximum
value of the absolute difference between two cumulative
distribution functions:
K* = max |P(x) — P*(x)|, (12)
—0< y<o
where P(x) is an estimator of the cumulative distribution
function of the actual probability distribution from which
it is drawn, and P*(x) is a known cumulative distribution
function. For a set of k points x,, i = 1, -+, k, P(x)
represents the fraction of data points to the left of a given
value x (inclusive). The method is illustrated in Figure 3.
Unlike the more commonly used x” test, the Kolmogorov—
Smirnov statistic does not require binning of the data,
which is arbitrary and leads to loss of information.
More significantly, the function can be computed rapidly,
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since it involves sorting the data in ascending order
followed by a linear scan to identify the maximum
difference from the user-defined cumulative distribution
function (or a simultaneous scan of two vectors in the
case of two cumulative distributions). Speed of computation
is particularly important in the application at hand, for
which the fitness function must be evaluated tens of
thousands of times in the course of the optimization.

The significance level of a particular value of K* is a
function of K* and the number of data points, k. This
function is relatively slow to compute, but when & is
constant, it is a monotonic function of K*. Since all we
want is to determine which experimental distribution is
closer to the “ideal” distribution P*(x), the significance
level need not be computed.

The Kolmogorov-Smirnov criterion as defined by
Equation (12) is a measure of dissimilarity and assumes
values in the interval [0, 1]. Alternatively, we can define
the similarity between two probability distributions, K:

K=1-K*. (13)

Thus, designs that obey a particular distribution function
are obtained by maximizing K. This criterion was
introduced by Rassokhin and Agrafiotis in Reference [19].

Activity

A common goal in combinatorial library design is to
produce arrays of compounds that are predicted to be
highly active against a predefined target according to some
quantitative structure-activity or receptor binding model.
This can easily be accomplished using the average
predicted activity of the selected compounds, S:

1
Q®=E2@, (14)

where a; is some measure of the predicted activity of the
ith compound in S. Since the value of O, increases as the
compounds become more active, focused libraries are
obtained by maximizing Q..

Selectivity
A function similar to Equation (14) can be used to
measure the selectivity against a set of biological targets:

1
0,8) = 2 la, — max(a)], (15)

where a; is the predicted activity of the ith compound
against the jth target, and ¢ is the target against
which the molecules should be selective. Since the
value of Q_ increases as the compounds become

more selective, selective libraries are obtained by
maximizing Q..
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Overlap
This criterion measures the extent of overlap of a given
selection, S, to another set of compounds, S*,

1S 5*]

08, 8%) =1-———,
S

(16)
where |S| denotes the cardinality of S. Since the value of
O decreases with the number of duplicates, nonredundant
libraries are obtained by maximizing O. The most

typical use of this criterion is to enable the selection of
compounds in array or plate format that have not been
previously synthesized or screened, and for the selection
of multiple arrays from the same library (see below).

Optimization

As previously mentioned, the combinatorial nature of the
problem does not permit an exhaustive enumeration of
every possible combination in order to identify the optimal
solution. While for simple cost functions several very
effective greedy algorithms can be employed [41, 42],
arbitrary objective functions have unpredictable surfaces
with many local minima, and require a stochastic approach
that is in principle suitable for identifying global minima.
The method chosen here is based on simulated annealing.
Simulated annealing is a global, multivariate optimization
technique based on the Metropolis Monte Carlo search
algorithm. The method starts from an initial random state
and walks through the state space associated with the
problem of interest by means of small, stochastic steps.

In the problem at hand, a state is defined as a particular
selection of compounds (i.e., a list of subsets from one or
more virtual collections), and a step is defined as a small
change in the composition of that set (i.e., replacement
of a small fraction of the compounds comprising the set).
An objective function, f,, maps each state to a real value
which represents its energy or fitness. While downhill
transitions are always accepted, uphill transitions are
accepted with a probability that is inversely proportional
to the energy difference between the two states. This
probability is computed using the Metropolis acceptance
criterion,

p= e’AE/KBT’ (17)
or Felsentein’s function,

1

T (18)

p:1+e

The latter ensures that the transition probability never
exceeds 0.5, thus prohibiting the system from performing
random walks. Boltzmann’s constant, K, is used for
scaling purposes, and T is an artificial temperature factor
that controls the ability of the system to overcome energy
barriers. The temperature is systematically adjusted during
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the course of the simulation in a manner that gradually
reduces the probability of high-energy transitions. This
protocol results in two optimization phases: one in which
the system explores the state space relatively freely,

and one in which it equilibrates around a low-energy
minimum.

For simulated annealing to work, it is imperative that
the transition probability be properly controlled. The
difficulty with the problem at hand is that the cost
function is not known a priori and can vary dramatically
from problem to problem depending on the nature and
weights of the criteria involved. To circumvent the
problem of selecting an appropriate value for Boltzmann’s
constant, we use an adaptive approach in which K, is
not a true constant, but rather is continuously adjusted
during the course of simulation on the basis of a running
estimate of the mean transition energy. In particular, at
the end of each transition, the mean transition energy
is updated, and the value of K is adjusted so that the
acceptance probability for a mean uphill transition at
the final temperature is some predefined small number
(usually 0.1%). The temperature is reduced using a
Gaussian cooling schedule with a half-width of 5-10
deviation units. Other cooling schedules, such as linear,
exponential, and Cauchy, have also been tested; in
general, schedules that involve more extensive sampling at
lower temperatures seem to perform best, although it is
equally important that sufficient time be spent at higher
temperatures in order that the algorithm not become
trapped in local minima. The following sections provide
a formal description of the serial and parallel
implementations of this algorithm.

Serial implementation

Let S, denote the ith subset requested, C, the collection
from which it is drawn (or any subset thereof), ng the
total number of subsets in the design, T the vector of
temperatures in the cooling schedule, n. the number of
temperature cycles, n. the number of sampling steps per
temperature cycle, f (.) the multiobjective fitness function,
and AE the average uphill transition energy (fitness). Also,
let R be the pool of available building blocks at the jth
variation site if C, is a combinatorial library, S, the
selected building blocks at the jth variation site if S,

is a full array, and P, and n, be the set and number of
available plates in C, (if applicable). The serial annealing
algorithm involves the following steps:

1. Initialize each subset, S, i = 1, ---, ng, at random,
andset S = {S,i=1,---,ng}. If S, is a sparse
array and k is the requested number of compounds,
initialize S, with a random subset of k compounds
from C,. If §, is a full array and k/. is the requested
array size at the jth variation site, initialize each Sij
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with a random subset of k; reagents from R,. If §,
is a plate selection and k is the number of plates
requested, initialize S; with a random subset of k
plates from P,.

. Setf = f.(S), f... = £.(S), and AE = 0.

. Perform steps 4-9 for each ¢t = n..

. Set T = T[t].

. Perform steps 6-9 for each ¢ = n_.

. Select a random subset S,, i € [1, ng], mutate it, and
denote the resulting state as $*. If S, is a sparse array,
mutate it by replacing a small fraction of randomly
chosen compounds in §; with an equal number of
randomly chosen compounds in S, where S, denotes
the complement of S, (i.e., the compounds in C,
that are not in §,). If §, is a full array, mutate it by
selecting a variation site, j, at random, and replacing
a randomly chosen reagent in Si/' with a randomly
chosen reagent in S,.j. Finally, if S, is a plate subset,
mutate it by replacing a randomly chosen plate in
S, with a randomly chosen plate from ..

7. Set f* = f (§*) and AE = |f — f*|.

8. Update AE and set K, = (—AE/T In a), where a
is a predefined small number in the interval [0, 1].

9. If f* = forif f* > fand r < e ** where r
is a random number in the interval [0, 1], then
9.1. Set § = S* and f = f*.
92. Iff<f .,setf =fandS_ =S.

10. Output S . and f_

[ S I \]

in*

To avoid repeated and potentially expensive memory
allocation, § and S* are implemented as a single object
that is able to revert to its previous state after an
unfavorable mutation. Moreover, the mean uphill
transition energy AE is computed based on the last w
uphill transitions, where w is a preset window (usually
a few hundred steps).

Parallel implementation

The parallel algorithm described in this section is known
as synchronous annealing and is designed to keep
interprocess communication and thread synchronization
to a minimum. As in conventional annealing, the process
begins with a random initial state and proceeds through
the state space by a series of small stochastic steps.
However, during each temperature cycle each execution
thread is allowed to follow its own independent Monte
Carlo trajectory. The threads synchronize at the end of
each cycle, and the best among the last states visited by
each thread is recorded and used as the starting point for
the next iteration. Given sufficient simulation time, this
parallel algorithm produces results that are comparable to
those obtained with the traditional serial implementation
(see below). The algorithm proceeds as follows:
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1. Initialize each subset, S, i = 1, ---, ng, at random,
andset S = {S,i=1,---,ng}. If §, is a sparse
array and k is the requested number of compounds,
initialize S, with a random subset of k compounds
from C,. If §, is a full array and k/. is the requested
array size at the jth variation site, initialize each Sij
with a random subset of k; reagents from R,. If §,
is a plate selection and k is the number of plates
requested, initialize S; with a random subset of k
plates from P,.

. Setf=f.(S), f,., = f,(S), and AE = 0.

. Perform steps 4-12 for each ¢t = n..

. Set T = T[¢].

- Perform steps 6-11 for each p = n_, where n_
is the number of execution threads (processors).

6. SetS, =S,f =f S =S5,fr =fand AE = AE.

. Perform steps 8-11 for each ¢ = n_.

8. Select a random subset S,, i € [1, ng], mutate it, and
denote the resulting state as $*. If S, is a sparse array,
mutate it by replacing a small fraction of randomly
chosen compounds in §, with an equal number of
randomly chosen compounds in S_, If §, is a full array,
mutate it by selecting a variation site, j, at random,
and replacing a randomly chosen reagent in S,-/ with a
randomly chosen reagent in §,. Finally, if §, is a plate
subset, mutate it by replacing a randomly chosen plate
in §, with a randomly chosen plate from S_,

9. Set f* = f (§*) and AE = |fp - f*.

10. Update AE, and set Ky = (-AE /T In a), where a

is a predefined small number in the interval [0, 1].

LI f* = f orif f* > f and r < e %57 where r

is a random number in the interval [0, 1], then
11.1. Set §, = §* and f = f*.
12 I f < fr,setfr = f and S, =S .

12, Setf,,, = min, 7,8, '= S5 50 = S

f=min f and§ =S8 :S =S Vp#gq.

13. Output S . and f_

(AN OV I NS ]

2

Vp#q,

in*

The choice of simulated annealing was based on its
programmatic simplicity, the fact that the mutation
function (or step in annealing terminology) can be
designed in a way that guarantees the creation of valid
states (something that requires extra care with genetic
approaches), and in-house comparative studies which
demonstrated superior convergence compared to
evolutionary approaches.

Filters

Filters limit the selection to specific subsets of a particular
collection. These subsets can be specified as reagent lists,
product lists, or plate lists. For array selections, product
lists are deconvoluted to the respective reagents (note that
in this case, if the input list is a sparse array, it is possible
that some of the products in the final selection may not be
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Na(OAc),BH
0 10% acetic acid R2
25°C /12 hr -
+ RZ—N—R3 — " » e N
: |
R1 H R3

Synthetic sequence for the reductive amination library.

part of the specified list). Filters can be used for a variety
of purposes, such as restricting the selection to compounds
having a particular substructure, reagents that are
provided by reliable vendors, plates that have a good QC
score or contain compounds of a particular structural
class, etc.

Computational details

All programs were implemented in the C++ programming
language and are part of the DirectedDiversity [5]
software suite. They are based on the 3-Dimensional
Pharmaceuticals Mt++ class library' and are designed to
run on all POSIX**-compliant UNIX** and Microsoft
Windows** platforms. Parallel execution on systems with
multiple CPUs is supported through the multithreading
classes of Mt++. All calculations were carried out on a
Dell workstation equipped with two 800-MHz Intel
Pentium** III processors running Windows 2000
Professional. Selections were carried out in 30 temperature
cycles using a Gaussian cooling schedule and 1000 sampling
steps per temperature cycle. Boltzmann’s constant was
determined in an adaptive manner so that the acceptance
probability for a mean uphill transition at the final
temperature was 0.1%.

3. Datasets

Two datasets were used in this study. The first was a two-
component virtual combinatorial library based on the
reductive amination reaction, and the second was a subset
of the 3-Dimensional Pharmaceuticals probe library, a
collection of more than 250000 diverse compounds that
represent more than 30 different structural classes.

The two-component reductive amination library is part
of a synthetic strategy that exploits the pivotal imine
intermediate and is utilized for the construction of
structurally diverse druglike molecules with useful
pharmacological properties, particularly in the GPCR
superfamily [47]. The synthetic sequence is illustrated in
Figure 4. This library was used in a number of previous
studies and represents an internal standard for testing

1 Copyright © 3-Dimensional Pharmaceuticals, Inc., 1994-2000. 553
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Selection of 100 compounds from the reductive amination library
based on maximum diversity on the two-dimensional nonlinear map:
(a) sparse array selection; (b) full array (10 X 10) selection.

new library design methodologies. A set of 300 primary
and secondary amines with 300 aldehydes were selected at
random from the Available Chemicals Directory” and were
used to generate a virtual library of 90000 products using
the library enumeration classes of the DirectedDiversity
toolkit.” These classes take as input lists of reagents
supplied in SDF or Smiles format, and a reaction scheme
written in a proprietary language that is based on Smarts
and an extension of the scripting language Tcl. All
chemically feasible transformations are supported,
including multiple reactive functionalities, different

2 MDL Information Systems, Inc., 140 Catalina St., San Leandro, CA 94577.
3 Copyright © 3-Dimensional Pharmaceuticals, Inc., 1994-2000.

D. K. AGRAFIOTIS

stoichiometries, cleavage of protecting groups,
stereospecificity, and many others. The computational
and storage requirements of the algorithm are minimal
(even a billion-membered library can be generated in a
few seconds on a personal computer) and scale linearly
with the number of reagents.

Each compound in the 90000-member library was
characterized by a standard set of 117 topological
descriptors [48, 49] computed with the DirectedDiversity
toolkit. These descriptors include an established set
of topological indices with a long, successful history
in structure-activity correlation such as molecular
connectivity indices, kappa shape indices, subgraph counts,
information-theoretic indices, Bonchev-Trinajstic indices,
and topological state indices. It has previously been shown
that these descriptors exhibit proper “neighborhood
behavior” [24] and are thus well suited for diversity
analysis and similarity searching [22, 23, 25, 50].

The 117 molecular descriptors were subsequently
normalized and decorrelated using principal component
analysis. This process resulted in an orthogonal set of
23 latent variables, which accounted for 99% of the
total variance in the data. To simplify the analysis and
interpretation of results, this 23-dimensional dataset was
further reduced to a two-dimensional set using a very fast
nonlinear mapping algorithm developed by our group
[51-54]. The projection was carried out in such a way that
the pairwise distances between points in the 23-dimensional
principal component space were preserved as much as
possible on the two-dimensional map. The resulting map
had a Kruskal stress of 0.187 and was used to perform and
visualize the selections. The PCA preprocessing step was
necessary in order to eliminate duplication and redundancy
in the data, which is typical of graph-theoretic descriptors.

Finally, in addition to the 117 topological descriptors,
the octanol-water partition coefficient (logP) of each
compound was computed independently using the
Ghose-Crippen approach [55] as implemented in the
DirectedDiversity toolkit, and was used as the target
variable for property-based designs (see below). This
parameter was not included in the descriptor set used
for similarity and diversity assessment.

The second dataset was a subset 3-Dimensional
Pharmaceuticals probe library containing nearly 250000
compounds arranged in 96-well plate format containing 88
compounds each plate. This library was described using a
methodology similar to that used for the reductive
amination library.

4. Results and discussion
Diverse libraries

Molecular diversity represents the most common method
for designing combinatorial libraries [43-45]. Although
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there has been much controversy regarding the choice of
metrics and descriptors and their ability to discover novel
leads, it is generally accepted that a proper diversity
function should measure spread and be algorithmically
efficient so that it can be applied to the kinds of datasets
that are encountered in combinatorial library design.

In general, diversity metrics fall into three main
categories: distance-based methods, which express diversity
as a function of the pairwise molecular dissimilarities
defined through measurement or computation; cell-based
methods, which define it in terms of the occupancy of
a finite number of cells that represent disjoint regions
of chemical space; and variance-based methods, which
quantify diversity on the basis of the degree of correlation
between the molecules’ pertinent features. In their vast
majority, these metrics encode the ability of a given set
of compounds to sample chemical space in an even and
unbiased manner, and are used to produce space-filling
designs that minimize the size of unexplored regions
known as “diversity voids.” A thorough discussion of the
relative merits of the most commonly used diversity
functions can be found elsewhere [43-45].

The selection of 100 compounds from the reductive
amination library based on their average nearest-neighbor
Euclidean distance on the two-dimensional nonlinear map
[Equation (8)] is shown in Figure 5(a). The compounds,
which were selected as singles, are nicely distributed in
the data space occupied by the virtual library, and do not
exhibit any significant clustering that reflects the density
distribution of the parent collection. However, this
selection does suffer from one significant drawback:

It requires 69 amines and 70 aldehydes, i.e., a total of
139 reagents. Obviously, the physical synthesis of these
compounds would be extremely laborious, and this is

the primary reason why sparse arrays are rarely used in
combinatorial chemistry. This method is usually employed
in compound retrieval and acquisition, particularly when
automated, efficient cherry-picking techniques are
available. Thus, the remaining discussion is focused
primarily on full array selections.

Figure 5(b) shows the selection of an equivalent number
of compounds in the form of a 10 X 10 array using the
same distance function and diversity metric that was
employed in the previous selection. Although the array is
somewhat less diverse in terms of spread, it requires only
20 reagents as compared to the 139 reagents required by
the singles, and therefore it is much easier to synthesize
in practice. A look at the selected reagents (Figure 6)
confirms that the design is also diverse in terms of
chemical structure, since it consists of building blocks
containing a wide variety of atom types, connectivity
patterns, ring systems, and functional groups.

Some interesting aspects of the optimization algorithm
are illustrated in Figures 7 through 9. Figures 7 and 8
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Diversity score as a function of time for the selection in Figure 5(b).
“Best” and “Last” respectively represent the best and last state found
at the end of each temperature cycle. Since simulated annealing
allows uphill transitions, these two states are not always the same.

show the diversity score and the percentage of accepted
uphill transitions at the end of each temperature cycle for
a single annealing run. In Figure 7, green points indicate
the diversity of the last accepted state, and red points

the cost of the best state discovered at the end of each
temperature cycle. Within the first 15 cycles, the algorithm
is able to extract the gross features of the minimum and
recover most of the diversity that is accessible by this
array size. The final cycles are spent refining that
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Percentage of accepted uphill transitions at the end of each tempera-
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Mean and standard deviation of the diversity scores obtained by 50
independent selections of a maximally diverse 10 X 10 array from the
reductive amination library, using the serial and parallel simulated
annealing algorithms, plotted against the score of a randomly chosen
array as a reference.

minimum, with relatively minimal improvements in the
fitness function. The asymptotic convergence of the two
curves manifests the decreasing ability of the Metropolis
search algorithm to perform high-energy transitions,
which is also reflected in the fraction of accepted uphill
transitions in Figure 8. Indeed, at higher temperatures the
algorithm is able to overcome substantial energy barriers,
but this ability is diminished at lower temperatures, and
the system is eventually frozen around the 20th cycle. This
figure also shows that the adaptive determination of K
appears to work reasonably well. This parameter need not
be estimated by the user; rather, it is adjusted automatically
by the algorithm as the simulation progresses and as the
energy landscape is more thoroughly explored.
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The method is also very robust. Figure 9 shows the
mean and standard deviation of the diversity scores
obtained by 50 independent optimization runs carried out
with the two algorithms, plotted against the diversity of a
random array as a reference. The average scores obtained
with the serial and parallel implementations were 0.436
and 0.433, respectively, with a standard deviation of only
0.007 in both cases. Thus, although the algorithm does
converge to different local minima, depending on the
starting configuration and random seed, the solutions are
essentially equivalent in terms of quality, and more than
sufficient for the purpose of exploring the chemical space.
As for the parallel algorithm, it scales favorably with the
number of CPUs (the elapsed execution time showed a
nearly perfect linear relationship with respect to the
number of processors used) and produces results that
are virtually identical to those obtained with the serial
algorithm.

A point that is worth noting relates to the
computational advantages afforded by the use of the k-d
tree algorithm for computing the diversity function of
Equation (8) [12]. Figure 10 shows the ratio between CPU
time required by the naive and k-d tree algorithms in two
dimensions as a function of the array size (the naive
algorithm involves exhaustive enumeration of all pairwise
distances in the data sample). It is clear that while k-d
trees impose some trivial overhead for very low values
of k, they scale superbly with &, resulting in enormous
computational savings for large selections.

This margin, however, decreases in higher dimensions.
For example, the scaling factor (i.e., the increase in the
CPU time when the selection size is doubled) is 2.04 for
2D, 2.31 for 3D, 2.38 for 4D, and 2.98 for 10D, a trend
shown graphically in Figure 11. For low dimensions (=9),
the scaling factor is less than 2.5, which is consistent with
the reported theoretical value of n log n. However, for
ten dimensions the time complexity is somewhere between
linear and quadratic. This performance decline is likely to
continue with increasing dimensionality, and the algorithm
will eventually become quadratic, with the added overhead
of constructing and traversing the tree. Fortunately, our
experience has shown that most high-dimensional
descriptor spaces can be reduced to a relatively small
number of dimensions with minimal distortion through the
use of efficient nonlinear mapping techniques [52-54].

Nevertheless, there is a point at which the use of
the diversity function of Equation (8) does become
prohibitively expensive, no matter what algorithm is used
to compute the nearest neighbors. For large selections
containing thousands of compounds, alternative metrics
must be devised to enable a more expedient estimation
of molecular diversity. Recently we presented a novel
diversity function that captures the notion of spread,
is fast to compute, scales favorably with the number
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of compounds in the design, does not fall prey to
dimensionality, and can be used to compare collections of
different cardinality [56]. This approach is based on the
fundamental assumption that an optimally diverse sample
is one that is uniformly distributed in the property space it
is designed to explore. Diversity is quantified by estimating
the cumulative probability distribution of intermolecular
dissimilarities in the collection of interest, and then
measuring the deviation of that distribution from the
respective distribution of a uniform sample using the
Kolmogorov-Smirnov statistic described in Section 2.
Departure from uniformity induces sampling redundancy
and formation of clusters, and thus results in diminishing
diversity (see Figure 12). The distinct advantage of this
approach is that the cumulative distribution can easily be
estimated using probability sampling and does not require
exhaustive enumeration of all pairwise distances in the
design, resulting in an algorithm of virtually constant time
complexity. While some caution must be exercised in
determining the appropriate target distribution [56], the
function produces results that are consistent with our
notion of spread and can do so in a fraction of the time
required by alternative methodologies. The selection of a
10 X 10 array using our novel diversity function is shown
in Figure 13. While the selected compounds are not as
perfectly distributed in the input space, they show no
preference for any particular region of the map, nor are
they biased by the local density of the parent collection;
i.e., they are diverse.

A common criticism of the diversity function of
Equation (8) is that it tends to favor the extremes of the
feature space and produce designs containing unusual
compounds of limited pharmaceutical interest. Although
in theory one can exclude “peculiar” reagents from the
selection through the use of appropriate filters (see
Section 2) or even from the virtual library itself, a “softer”
and more dynamic approach is to adjust the kernel
function. A simple way to control the volume of the
design without affecting its internal spread is to request
that the mean nearest-neighbor distance of the selected
compounds be equal to some preset value. Consider, for
example, the design of Figure 5(b). The score of this array
is 0.43, and represents the maximum possible nearest-
neighbor intermolecular dissimilarity for any design
carried out in a 10 X 10 format. Thus, by maximizing
the function

1
D(S) = > —abs [a - min (d,)], (19)

i J#I

where a is set to 0.25, one can design an array that
occupies roughly half of the volume of the original
selection yet is still internally diverse (Figure 14). The
user can choose alternative values of a to produce designs
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with lesser or greater spread. Incidentally, Figure 14

also illustrates a known disadvantage of Equation (8) as a
general measure of molecular diversity, and that is the fact
that it measures only the intracluster (nearest-neighbor)
distances and does not take into account the intercluster
separations. As a result, designs comprising two or more
internally diverse clusters cannot be easily distinguished,
regardless of their relative separation.

The diversity function outlined above can also be used
to design libraries that fill in the diversity voids of one or
more pre-existing collections. A common problem faced
by many pharmaceutical companies is the enhancement
of their corporate collection through the synthesis or
acquisition of chemical libraries that increase the diversity
of their existing archives. Equation (9) provides a simple
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and straightforward solution to this problem. By
maximizing the diversity of the combined set, we can
ensure that the design is both internally and externally
diverse. The selection of a second 10 X 10 array that
complements the diversity of the original selection in
Figure 5(b) is shown in Figure 15. The two arrays

have only one amine and two aldehydes (i.e., only two
products) in common. Note that in terms of scatter the
design is not “perfect”; this is due to the array constraint
rather than the diversity metric itself.

Druglike libraries

In all of the preceding examples, the selections were based
exclusively on molecular diversity, and no attention was

D. K. AGRAFIOTIS

paid to the druglike qualities of the resulting compounds.
Experience has shown that selecting compounds from a
virtual library solely on that basis, no matter what diversity
measure is used, often results in combinatorial libraries
with poor pharmacokinetic properties or other undesirable
characteristics. Recently there have been several attempts
to quantify druglike qualities and incorporate them
directly into the design process. Martin et al. [31]
presented a reagent selection algorithm based on
D-optimal design, wherein the candidate reagents were
assigned to categorical bins according to their properties,
and successive steps of D-optimal design were performed
to generate diverse substituent sets consistent with
required membership quotas from each bin. This
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Selection of a maximally diverse 10 X 10 array from the reductive
amination library based on the Kolmogorov-Smirnov measure of
molecular diversity, by means of the diversity function depicted in
Figure 12.

technique was later elaborated [57, 58], and a new
“parallel” sampling approach was proposed in order to
eliminate the order-dependence of the original algorithm.
Most recently, Koehler et al. [59] proposed a multipass
algorithm designed to facilitate the addition of compounds
to an existing chemical library. This method was intended
to prioritize compounds that are most similar to a
specified set of favorable target molecules, and, at the
same time, most dissimilar to the compounds that reside
in the library being augmented. The algorithm scores and
ranks each compound in the external library according to
the local density of similar compounds in the target and
internal libraries. Density arising from the target library
adds a positive contribution to the score, while density
arising from the internal library adds a negative
contribution. The highest-ranking compounds are then
included in the internal library and the process is repeated
until the specified number of compounds is selected.
Perhaps the simplest approach is to filter the candidate
designs using Lipinski’s “rule of 5,” a simple heuristic
which states that for compounds which are not substrates
of biological transporters, poor absorption and permeation
are more likely to occur when there are more than five
H-bond donors, more than ten H-bond acceptors, the
molecular weight is greater than 500, or the log P is
greater than 5 [60]. Consider, for example, a maximally
diverse 20 X 20 array from the reductive amination
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Selection of 100 compounds from the reductive amination library in
10 X 10 array format based on the kernel function of Equation (19).
The function is used to limit the volume of the design and avoid
sampling the extreme regions of the feature space.

Selection of a 10 X 10 array that complements the diversity of the
selection in Figure 5(b).

library shown in Figure 16. The molecular weight and
log P distributions of these compounds are shown in
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559



560

0.35
030 I Selection
0.25f I Drugs

0.20F
0.15F
0.10F
0.05F

Fraction of compounds

0 0 50 100 150200 250 300 350 400 450 500 550 600 650 700
Molecular weight
(b)
0.35
0.30F Il Selection
I Drugs

0.25F
0.20F
0.15f
0.10F
0.05}

Fraction of compounds

0 -
-5-4-3-2-10 1 2 3 4 5 6 7 8 9

log P

(©

Selection of a maximally diverse 20 X 20 array from the reductive
amination library: (a) nonlinear map; (b) molecular weight distribu-
tion; (c) log P distribution. In (b) and (c), the blue series shows the
respective distributions of known drugs. From [19], reproduced with
permission.

Figures 16(b) and 16(c), along with the respective
distributions of known drugs derived by analyzing

a subset of 7484 compounds from the World Drug Index,
which was generously provided to us in electronic format
by Dr. Christopher Lipinski of Pfizer, Inc. While the
distribution of molecular weights matches closely that

of the reference set, the log P distribution is shifted
upward by nearly three log P units, with 125 out of 400
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compounds (more than 30% of the selection) falling
outside the boundaries of the Lipinski box.

In our multiobjective paradigm, correcting this adverse
physicochemical profile can easily be accomplished in one
of two different ways. The first is to combine the diversity
criterion of Equation (8) with the confinement criterion of
Equation (10) in order to penalize compounds that fall
beyond the boundaries of the box. This can be achieved
with an objective function of the form

f,=D —5-10.01-P(mw) + P(log P)], (20)

where D represents the diversity of the ensemble, and
P(mw) and P(log P) are the values of the confinement
criterion for molecular weight and log P, respectively. As
with most problems of this type, the most difficult task is
to assign a meaningful set of coefficients used to represent
the weights of the individual objectives. In our case, the
coefficients were determined empirically based on the
maximum value that each criterion could assume
independently for any given array size. In the case at
hand, the coefficients were chosen on the basis of the
relative scale of molecular weight and log P, and the
value of the mean nearest-neighbor distance, D, of the
maximally diverse 20 X 20 array. As shown in Figure 17,
the resulting design is fully contained within the Lipinski
box, while remaining sufficiently diverse.

However, given the probabilistic nature of the problem,
perhaps a better approach would be to compare the actual
distributions themselves, and penalize designs whose
molecular weight and log P distributions depart from
those of known drugs. As a numerical measure of the
dissimilarity between two property distributions, we used the
Kolmogorov-Smirnov criterion of Equation (13). Unlike the
more commonly used x” test, the Kolmogorov—-Smirnov
statistic does not require binning of the data [18],
which is arbitrary and leads to loss of information. The
distributions of known drugs are essentially normal, with a
mean and sigma of 314.3 and 108.3 for molecular weight,
and 1.04 and 1.78 for log P, respectively.

In order to enforce these distributions in the final design,
we combined molecular diversity with the Kolmogorov—
Smirnov statistic into the following objective function:

f,=D +0.2-K(log P) + 0.2 K(mw), (21)

where D is the diversity criterion defined in Equation (14),
and K(log P) and K(mw) are the Kolmogorov—Smirnov
similarities between the log P and molecular weight
distributions of the selected compounds and the reference
World Drug Index set, respectively. Again, the coefficients
were determined on the basis of the maximum values of
the respective criteria, which were 0.18, 0.9, and 0.9 for
diversity, and the molecular weight and log P distributions,
respectively. These values suggested that for the three
criteria to be placed on an equal footing, the value of K

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001



100 200 300 400 500
(b)

Selection of a maximally diverse 20 X 20 array that is confined
within the boundaries of the Lipinski box: (a) nonlinear map; (b)
Lipinski profile.

had to be scaled down by approximately a factor of 5. In
pathological cases for which the energy landscapes (i.e.,
the distributions of scores) of the individual criteria

are very different, alternative, more complex objective
functions can be devised. As shown in Figure 18, when the
selection is carried out using Equation (21), the molecular
weight and log P distributions of the selected compounds
approximate very nicely the respective distributions of
known drugs, and this occurs without a significant impact
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Selection of a maximally diverse 20 X 20 array that exhibits a drug-
like molecular weight and log P distribution: (a) nonlinear map; (b)
molecular weight distribution; (c) log P distribution. In (b) and (c),
the blue series shows the respective distributions of known drugs.
From [19], reproduced with permission.

on the diversity of the design [Figure 18(a)]. Note that
just as in any problem of this kind, there is a point at
which the various objectives begin to oppose one another:
A step toward improving one of the objectives, increasing
molecular diversity, is a step away from improving the
other, increasing their druglike qualities.

The methodology outlined above is, of course, not
limited to virtual collections. A common problem faced by
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many pharmaceutical companies is the selection of a small
number of compounds from their chemical banks for
screening against a new biological assay. Compounds
synthesized by combinatorial methods are usually stored
as dimethyl sulfoxide (DMSO) solutions in 96-well plates.
Extraction of individual samples from these plates can be
laborious and time-consuming, and it is often much more

D. K. AGRAFIOTIS

Lead compound used for similarity selections from the reductive
amination library.

efficient to replicate and screen the entire plate containing
the compounds of interest. This, however, is a rather
simplistic approach; as we demonstrated before, the
quality of a particular design is determined by the
collective properties of all of its constituent compounds,
and the design can be vastly improved if the physical
location or grouping of these compounds is taken into
consideration. This is illustrated in the selection of ten
plates from a subset of the 3-Dimensional Pharmaceuticals
probe library, a collection of ~250000 diverse compounds
representing more than 30 distinct structural classes.
These compounds are stored in nearly 3000 96-well plates,
containing 88 compounds each. The selection of ten plates
containing 880 diverse, druglike compounds using an
objective function similar to the one employed in the
previous example is illustrated in Figure 19. Note that the
requirement that these compounds exhibit a normal
molecular weight distribution centered around 315 causes
a noticeable shift of the selection to the right of the
nonlinear map, which represents molecules of smaller
molecular weight (size is a dominant factor in determining
molecular similarity and therefore has a significant impact
on the shape of the nonlinear map).

Focused libraries

Molecular diversity is typically employed in the design

of exploratory combinatorial libraries for use in general
screening. Once a promising hit has been identified and
confirmed, subsequent iterations are used in an attempt to
explore the structure-activity space around that compound
and refine its pharmacological profile. This process
involves two phases: The first is based on very sparse
information and is guided primarily by molecular
similarity, whereas the second involves the use of more
rigorous structure-activity models which are derived from
an active series with a broad dynamic range of biological
activities. This task can easily be accomplished with the
similarity, activity, and selectivity criteria described in
Section 2. For reasons of brevity, the remaining discussion
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Selection of 100 compounds in 10 X 10 array format based on
maximum similarity to the “lead” compound in Figure 20.

is focused on molecular similarity; the extension of these
principles to QSAR should be straightforward.

Consider, again, the two-component amination library
and a randomly chosen member of that library (Figure 20)
as a lead. The distribution of the compounds in the 10 X 10
array that are maximally similar to that compound is
illustrated in Figure 21, and their respective reagents in
Figure 22. These reagents consist predominantly of di-
substituted anilines bearing a nitro substituent, and
di- and tri-substituted benzaldehydes containing three
oxygen atoms in their substituents. This result demonstrates
not only the ability of the algorithm to produce highly
focused designs, but also that this particular set of
descriptors is fully consistent with our general perception
of molecular similarity.

Finally, we turn our attention to the issue of
redundancy. Mining a virtual library is an iterative process
that involves successive rounds of selection, synthesis, and
testing. Since chemical synthesis and biological testing may
be time-consuming and costly, it is imperative that the
number of duplicates (i.e., compounds that have
previously been screened) be kept to a minimum. While
this is trivial in the case of sparse arrays, it becomes
more problematic with full arrays, particularly when the
requested size is relatively large. The problem stems from
the fact that eliminating the possibility of duplication
often results in the design of mediocre experiments that
are far removed from their principal objective. Thus,

IBM J. RES. & DEV. VOL. 45 NO. 3/4 MAY/JULY 2001

= + —
\O* N N l)‘/ 0
N o
&
=N \
" St hpy O O
/ / e .
N N =0
N 0 o)
0 o} 0
0 N 0
o 4 X Y O_Q_//
(0] (0] /I G
o o o o g R
o
0
Vi o o)
0 O—N* A ),
/ o /O
y 0 -
Nt_0~ o0=N" o
U o (0] o= o-

Amine and aldehyde reagents comprising the selection in Figure 21.

Selection of 100 compounds in 10 X 10 array format based on maximum
similarity to the “lead” compound in Figure 20, and minimum overlap
with the selection in Figure 21.

a more practical approach is to use duplication as a
selection criterion whose influence can be tailored by the
medicinal chemist on a case-by-case basis. Figure 23
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illustrates how this principle can be used to design a
second focused array around the putative lead in Figure
20, in a way that minimizes the overlap with the original
selection (Figure 21). The selection was carried out using
the objective function

f,=0-5, (22)

where O is the overlap criterion of Equation (16). As
shown in Figure 24, the two arrays share seven aromatic
amines but contain no aldehydes (and therefore no
products) in common. To achieve this goal, one oxygen
atom is sacrificed from the benzaldehyde group, but
except for this change, the products remain closely related
to the original lead. Note that in the absence of this
criterion, the second selection would have been identical
to the first.

5. Concluding remarks

In this paper, we have discussed a general and flexible
methodology for compound selection and combinatorial
series design. The method permits the selection of
multiple subsets from multiple compound collections
using multiple selection criteria, in sparse array, full
array, and plate format. It is rooted in the principles of
multiobjective optimization, and is best viewed as a Pareto
optimal process seeking a consensus in which many
objectives are balanced so that the improvement of any
single objective will result in a negative impact on at least
one other objective. The method can accommodate a wide

D. K. AGRAFIOTIS

variety of selection criteria, and can be employed for the
design of both exploratory and focused combinatorial
libraries. Although the method is stochastic in nature
and requires the evaluation of a relatively large number
of candidate designs, typical selections are carried out
in a few seconds to a few minutes on a modern personal
computer.
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