
by R. B. Tremaine
P. A. Franaszek
J. T. Robinson
C. O. Schulz
T. B. Smith
M. E. Wazlowski
P. M. Bland

IBM Memory
Expansion
Technology
(MXT)

Several technologies are leveraged to
establish an architecture for a low-cost, high-
performance memory controller and memory
system that more than double the effective
size of the installed main memory without
significant added cost. This architecture
is the first of its kind to employ real-time
main-memory content compression at a
performance competitive with the best the
market has to offer. A large low-latency shared
cache exists between the processor bus and
a content-compressed main memory. High-
speed, low-latency hardware performs real-
time compression and decompression of data
traffic between the shared cache and the main
memory. Sophisticated memory management
hardware dynamically allocates main-memory
storage in small sectors to accommodate
storing the variable-sized compressed data
without the need for “garbage” collection or
significant wasted space due to fragmentation.
Though the main-memory compression ratio is
limited to the range 1:1–64:1, typical ratios
range between 2:1 and 6:1, as measured
in “real-world” system applications.

Introduction
Memory costs dominate both large memory servers and
expansive computation server environments such as those

employed in today’s “data centers” and “computer farms.”
These costs are both fiscal and physical (e.g., volume,
power, and performance associated with the memory
system implementation), and often aggregate to a
significant cost constraint that the information technology
(IT) professional must trade off against computing goals.

Data compression techniques are employed pervasively
throughout the computer industry to increase the overall
cost efficiency of storage and communication media.
However, despite some experimental work [1, 2], system
main-memory compression has not been exploited to its
potential. IBM Memory Expansion Technology (MXT*)
addresses the system memory cost issue with a new
memory system architecture that more than doubles the
effective capacity of the installed main memory without
significant added cost.

MXT is directly applicable to any computer system,
independent of processor architecture or memory device
technology. MXT first debuted in the Serverworks
“Pinnacle” chip, an Intel Pentium** III/Xeon** bus-
compatible, low-cost single-chip memory controller
(Northbridge) [3]. This unique chip is the first
commercially available memory controller to employ real-
time main-memory content compression at a performance
level competitive with those of the market’s best products.

Architecture
Conventional “commodity” computer systems typically
share a common architecture, in which a collection of
processors are connected to a common SDRAM-based

rCopyright 2001 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/01/$5.00 © 2001 IBM

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

271

main memory through a memory controller chip set. MXT
incorporates the two-level main-memory architecture
shown in Figure 1, consisting of a large shared cache
coupled with a typical main-memory array. The high-speed
cache, containing the frequently referenced processor
data, architecturally insulates the overall system
performance from access latency to the main memory,
thereby opening opportunities for trading off increased
memory-access latency for greater function. For example,
remote/distributed, very large and/or highly reliable
features may be incorporated without adverse effects
on overall system performance.

The shared cache, coupled with the recent advent
of high-density 0.25-mm and smaller-geometry
ASIC technology, is leveraged to incorporate a new
“compressed” main-memory architecture. Special logic-
intensive compressor and decompressor hardware engines
provide the means to simultaneously compress and
decompress data as it is moved between the shared cache
and the main memory. The compressor encodes data
blocks into as compact a result as the algorithm permits.
A sophisticated memory management architecture is
employed to permit storing the variable-sized compressed
data units in main memory, while mitigating fragmentation
effects and avoiding “garbage collection” schemes. This
new architecture serves to halve the cost of main memory
without any significant degradation in overall system
performance.

The internal structure for a typical single-chip memory
controller with an external cache memory and on-chip
cache directory is shown in Figure 2. Any processor or I/O
memory references are directed to the cache controller,

resulting in cache directory (dir) lookup to determine
whether the address is contained within the cache. Cached
references are serviced directly from the cache, while
cache read misses are “deferred,” and the least-recently-
used cache line is selected for replacement with the new
cache line that contains the requested address. The cache
controller issues a request for the new cache line from the
main-memory controller, while at the same time writing
the old cache line back to the writeback buffer (wtq) in
cases in which the old cache line contains modified data.

To service the new cache-line fetch, the memory
controller first reads a small address-translation table
entry from memory to determine the location of the
requested data. Then the memory controller reads the
requested data. Data is either streamed around the
decompressor (decomp) when uncompressed, or through
the decompressor when compressed. In either case, the
data is then streamed through the elastic buffer (rdq) to
the cache. The memory controller provides seven-cycle
advance notification of when the requested 32-byte (32B)
data will be in the critical word (cw) buffer. This enables
the processor bus controller to arbitrate for a deferred
read reply to the processor data bus, and deliver data
without delay.

Cache writeback activity is processed in parallel with
read activity. Once an entire cache line is queued in the
writeback buffer, the compression commences and runs
uninterrupted until it is complete, 256 cycles later. Then,
when a spatial advantage exists, the memory controller
stores the compressed data; otherwise, the memory
controller stores the uncompressed writeback data directly
from the writeback buffer. In either case, the memory
controller must first read the translation table entry for
the writeback address in order to allocate the appropriate
storage and update the entry accordingly before writing it
back to memory. The data itself is then written to memory
within the allocated sectors.

Shared-cache subsystem
The shared cache provides low-latency processor and I/O
subsystem access to frequently accessed uncompressed
data. The data-code–I/O unified cache content is always
uncompressed and is typically accessed at 32B granularity.
Write accesses smaller than 32B require the cache
controller to perform a read–modify–write operation for
the requesting agent. The cache is partitioned into a
quantity of lines, with each line an associative storage unit
equivalent in size to the 1KB uncompressed data block
size. A cache directory is used to keep track of real-
memory tag addresses which correspond to the cached
addresses that can be stored within the line, as well as any
relevant coherency management state associated with the
cache line.

Figure 1

System memory hierarchy.

...

Virtual addresses

Processor

Cache (L1)

Cache (L2)

Processor

Cache (L1)

Cache (L2)

Real
addresses

Physical
addresses

Shared
cache (L3) I/O

Main memory (L4)

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

272

The shared cache can be implemented in any of three
primary architectures, where performance can be traded
off with the cost of implementation:

1. The independent cache array scheme [4] provides the
greatest performance, but at the highest cost. The large
independent data-cache memory is implemented using
low-cost double-data-rate (DDR) SDRAM technology,
outside the memory controller chip, while the
associated cache directory is implemented on the chip.
The cache size is limited primarily by the size of the
cache directory that can fit on the die. For example, a
single-chip memory controller implemented in 0.25-mm
CMOS can support a 32MB cache, whereas a 64MB
cache can be supported in 0.18-mm CMOS, assuming
a 12-mm die. The additional hardware cost for this
type of implementation ranges between $50 and $60.
However, the performance is maximized because the
cache interface can be optimized for lowest-latency
access by the processor, and the main-memory interface
traffic is segregated from the cache interface.

2. The compressed main-memory cache partition scheme
[1] involves logically apportioning an uncompressed
cache memory region from the main memory. The
cache controller and the memory controller share the
same storage array via the same physical interface.
Data is shuttled back and forth between the
compressed main-memory region and the uncompressed
cache through the compression hardware during cache-
line replacement. An advantage to this scheme is that
the compressed cache size can be readily optimized
to specific system applications. The additional
hardware cost can range from $0 to $30, and is most
advantageous when the cache directory is stored in
a main memory partition as well. Performance is
particularly disadvantaged by contention for the main-
memory physical interface by the latency-sensitive cache
controller.

3. The managed number of uncompressed cache lines
within the compressed-memory scheme caches
uncompressed data implicitly. Rather than apportion a
specific uncompressed cache region from the main-
memory storage, the cache is distributed throughout
the compressed memory as a number of uncompressed
lines. Only the most-recently-used n lines are selected
to make up the cache. Data is shuttled in and out of
the compressed memory, changing the compressed state
as it is passed through the compression logic during
cache-line replacement. An advantage to this scheme is
that no separate cache directory is required, since the
compressed-memory sector translation table (STT)
serves in this capacity, thus permitting a much larger
cache. However, performance benefits can be obtained
from a small hardware STT cache to maintain rapid

access to the recently used STT entries pertaining to
cached blocks. Another advantage is that the effective
cache size may be dynamically optimized during system
operation by simply changing the maximum number (n)
of uncompressed lines. Performance is disadvantaged
by contention for the main-memory physical interface,
as well as a greater average access latency associated
with the cache directory references. Further, since the
cache lines are not directly mapped, as is the case in a
conventional cache structure, any on-chip directory
must include enough information to locate the cache
lines, rendering the directory less spatially efficient.

For any case, the relatively long cache line merits special
design consideration. For example, processor reference
bits are used to mitigate extraneous cache-coherency
snoop traffic on the processor bus. These bits are used to
indicate when any processor has referenced one or more
cache-line segments. When a cache line is evicted, only
“referenced” cache-line segments, instead of the entire
cache line, need be invalidated on the processor bus.

Shuttling the wide lines in and out of the cache during
cache-line replacement requires many system clock cycles,
typically at least 64 cycles for each writeback and line-fill
operation. To alleviate processor access stalls during the
lengthy cache-line replacement, the cache controller
permits two logical cache lines to coexist within one
physical cache line. This mechanism permits the cache

Figure 2

Typical control chip block diagram.

Processor bus controller

All-ways data switch
Dir

(8K �
76)

Cache
control

wtq (2K)

Comp

Decomp

rdq (1K) cw (32)

I/O link
0

I/O link
1

Main memory control

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

273

line to be written back, reloaded, and referenced
simultaneously during cache-line replacement.

During replacement, a state vector is maintained to
indicate an old, new, or invalid state for each of n
equal subcache-line units within the physical line. As
subcache lines are invalidated or moved from the cache
to the writeback buffer, they are marked invalid,
indicating that the associated new subcache-line data may be
written into the cache. Each time a new subcache line is
loaded, the associated state is marked new, indicating that
processor or I/O access is permitted to the new subcache-line
address. Further, processor and I/O accesses to the old

cache address are also permitted when the associated
subcache lines are marked old. Cache lines are always
optimally fetched and filled, so that the subcache-line
writeback follows the same subcache-line order to
maximize the number of valid cache lines at all times.

The cache supports at least two concurrent cache-line
replacements. Two independent 1KB writeback buffers
(wtq) facilitate a store-and-forward pipeline to the main
memory, and one 1KB elastic buffer (rdq) queues line-fill
data when the cache is unavailable for access. A writeback
buffer must contain the entire cache line before the main-
memory compressor may commence the compression
operation. Conversely, the line-fill data stream is delivered
directly to the cache as soon as a minimum subcache-line
unit of data is contained within the buffer. Two independent
32B critical word (CW) buffers are used to capture the data
associated with cache misses for direct processor bus access.

Main-memory subsystem
The main-memory subsystem stores and retrieves cache
lines in response to shared-cache writeback (write) and
line-fill (read) requests. Data is stored within the main-
memory array, which comprises industry-standard SDRAM
dual in-line memory modules (DIMMs). The memory
controller typically supports two separate DIMM
configurations for optimal application in both large and
small server applications. The direct-attach configuration
supports a few single/double-density DIMMs directly
connected to the memory controller chip(s) without any
“glue” logic. The large-memory configuration supports one
or more cards with some synchronous memory rebuffering
chips connected between the controller and the memory
array. In either configuration, the array is accessed via a
high-bandwidth interface with 32B–256B access granularity.
For minimal latency, uncompressed data references are
always retrieved with the critical granule first, and 256B
addresses wrapped as shown in Figure 3.

The main-memory subsystem may be configured to
operate with compression disabled, enabled for specific
address ranges, or completely enabled. When compression
is disabled, the physical memory address space is directly
mapped to the real address space in a manner equivalent
to conventional memory systems. Otherwise, the memory
controller provides real-to-physical address translation
to accommodate dynamic allocation of storage for the
variable-sized data associated with compressed 1KB lines.
The additional level of address translation is carried
out completely in hardware, using a translation table
apportioned from the main memory.

The physical memory is partitioned into two regions,
or optionally three when uncompressed memory is
configured. The memory comprises two primary data
structures: the sector translation table (STT) and the
sectored memory (Figure 4). The STT consists of an array

Figure 3

Critical read request data fetch order.

Byte 0 Byte
1023

Critical
data

256B 256B 256B 256B

Figure 4

Memory organization.

Control bit field Pointer 0 Pointer 1 Pointer 2 Pointer 3

CTRL PTR0 PTRn. . .

CTRL PTR0

256B sector

256B sector

PTRn. . .

...

16 bytes

Physical address minimum

Physical address maximum

Sector translation table

Sectored memory region

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

274

of 16B entries in which each entry is directly mapped to a
corresponding 1KB real address. Therefore, the number of
STT entries is directly proportional (1/64) to the size of
the real address space1 declared for a given system. Each
entry describes the attributes for the data stored in the
physical memory and associated with the corresponding
1KB address. Data may occur in one of three conditions:

● Compressed to %120 bits.
● Compressed to .120 bits.
● Uncompressed.

When a 1KB data block is compressible to less than 121
bits, the data is stored directly into the STT entry with
appropriate flags, yielding a maximum compressibility of
64:1. Otherwise, the data is stored outside the entry in
one to four 256B sectors, with the sector pointers (PTR)
contained within the STT entry as shown in Table 1. For
the case in which the data block is uncompressed, four
sectors are used, and the STT entry control field indicates
the “uncompressed” attribute. In cases in which unused
“fragments” of sector memory exist within a 4KB real
page, any new storage activity within the same page can
share a partially used sector in increments of 32B. A
maximum of two 1KB blocks within a page may share a
sector. This simple two-way sharing scheme typically
improves the overall compression efficiency by 15%, with
nearly all of the potential gain attainable from combining
fragments with any degree of sharing [5].

The sectored memory consists of a “sea” of 256B
chunks of storage, or sectors, that are allocated from a
“heap” of free sectors available within the sectored
memory region. The heap is organized as a linked list of
unused sector addresses, with the list head maintained
within a hardware register. The list itself is stored within
the free sectors, so the utilization of sectors oscillates
between holding the free list and data. As shown in
Figure 5, each node of the free list contains pointers
to 63 free 256B sectors and one pointer to the next
256B node in the free list. Since the node is itself a
free or unused 256B sector, the free list effectively
requires no additional storage.

A small hardware cache contains the leading two nodes
(shaded in Figure 5) of the free list, for rapid access
during allocation and deallocation of sectors associated
with data storage requests.

Uncompressed memory regions are areas of the real
address space in a compressed memory in which the data
is never compressed. These regions are configurable as a
32KB-aligned 32KB–256MB range. They are apportioned
from the top of the sectored memory and are direct-
mapped as shown in Figure 6. The access latency to these
regions is minimized because data is directly addressable
without the intermediate step of referencing an STT entry.
Of course, the data is fetched with the requested 32B first,
as is always the case for uncompressed data.

1 The real address space is defined to the operating environment through a
hardware register. The BIOS firmware initializes the register with a value based
on the number and type of DIMMs installed in a system. When compression is
enabled, the BIOS doubles this value to indicate a real address space twice as
large as that populated with DIMMs.

Figure 5

Free list.

Free list head

Free sector pointer 0
Free sector pointer 1

Next node pointer
Free sector pointer 62

...

Free sector pointer 0
Free sector pointer 1

Next node pointer
Free sector pointer 62

...

Free sector pointer 0
Free sector pointer 1

Next node pointer
Free sector pointer 62

...

Free sector pointer 0
Free sector pointer 1

0
Free sector pointer 62

...

...

Table 1 Sector translation table (STT) entry encoding.

127–125 124 123–122 121–120 119 – 0

7 0 ,0, P. class,1:0. Compressed line code

size ,2:0. E reserved class,1:0. PTR4,37:8. PTR3,37:8. PTR2,37:8. PTR1,37:8.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

275

The regions within the STT that contain entries for
addresses within unsectored regions are never referenced.
Not to be wasted, these “holes” within the STT are
made available as additional sectored storage through
incorporation into the free list.

Additional storage efficiency can be obtained when the
shared-cache implementation employs an inclusive cache
policy whereby the cache levels closer to the CPU always
contain a subset of data contained in those further away.
This implies that any modified line within the shared
cache is more recent than the original copy located within
the compressed main memory. The memory sectors used
to store this “stale” data can be recovered and returned
to the free list for use in storing other information. This
recovery process requires the hardware to reference the
STT entry associated with the cache line, deallocate any
associated sectors, and then copy the updated STT entry
back to the memory. The process occurs when the shared-
cache controller notifies the memory controller that a
cache line has been placed in the modified state—for
example, when the cache is fetching a line from the main
memory to satisfy a write or read with intent to modify
(RWITM) cache access.

Page operations
A beneficial side effect of “virtualizing” the main memory
through a translation table is that simple alteration of a
table entry can be used to relocate and/or clear data
associated with the entry. We capitalized on this notion by
implementing a programmed control mechanism to enable
real memory page (4KB) manipulation, at speeds ranging
between 0.1 and 3.0 ms, depending on the amount of
processor bus coherency traffic required. We also provide
a means for programmed “tagging” of pages, using a class
field within the sector translation table entry reserved for
this purpose. Special hardware counters are employed to
count the allocated sectors by class. This scheme provides
a means for software to establish metrics for types or
classes to support algorithms for memory usage optimization.

Page operations are initiated atomically to the memory
controller; i.e., the controller will not accept a new page
request until all pending requests are completed. This
ensures coherency when more than one processor may be
attempting to request page operations. The page-request
mechanism requires a programmable page register with the
page address and command bits, and a page complement
register for specifying the second page address for
commands involving two separate pages. The following
page commands are supported by the architecture:

0000 No operation.
0001 Clear (invalidate) 4KB page from the system

memory hierarchy.
0010 Flush–invalidate 4KB page from memory

hierarchy above system memory.
0011 Transfer Class field to the address STT entry.
0100 Move to complement page and zero source.

Sequence: 1) Flush–invalidate the 4KB page
from the memory hierarchy above the physical
memory. 2) Invalidate the 4KB complement page
from the memory hierarchy above the physical
memory. 3) Swap the STT entry with the
complement page STT entry.

0101 Move to complement page and zero source
without coherency. Sequence: 1) Flush–
invalidate the 4KB page from the memory
hierarchy above the physical memory. 2) Invalidate
the 4KB complement page in physical memory
without regard to the memory hierarchy state.
3) Swap the STT entry with the complement page
STT entry.

0110 Swap with complement page. Sequence: 1)
Flush–invalidate the 4KB page from the memory
hierarchy above the physical memory. 2) Flush–
invalidate the 4KB complement page from the
memory hierarchy above the physical memory.
3) Swap the STT entry with the complement page
STT entry.

Figure 6

Unsectored memory organization.

Sectored region (n)

...

16 bytes

Physical address minimum

Physical address maximum

Sectored region (0)

Subregion (n)

Subregion (0)

Sector translation
table

Sectored region

Unsectored region

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

276

0111 Swap with complement page without coherency.
Sequence: 1) Flush–invalidate the 4KB page
from the memory hierarchy above the physical
memory. 2) Swap the STT entry with the
complement page STT entry.

1000 Move page STT to a software-accessible STT-entry
hardware register.

1001 Invalidate 4KB page from the system memory
hierarchy and transfer Class field to the STT entry.

other Reserved.

Compression/decompression
The compression/decompression mechanism is the
cornerstone of MXT. Compression, as applied in the
main-memory data flow application, requires low latency
and high bandwidth in the read path, and of course it
must be lossless. Although a plethora of compression
algorithms exist, none met our architectural criteria. We
chose to leverage the recently available high-density
(0.25-mm) CMOS ASIC technology by implementing a
gate-intensive, parallelized derivative [6] of the popular
Ziv–Lempel (LZ77) “adaptive dictionary” approach. With
this new scheme, the unencoded data block is partitioned
into n equal parts, each operated on by an independent
compression engine, but with shared dictionaries. It has
been shown experimentally that parallel compressors with
cooperatively constructed dictionaries have compression
efficiency essentially equivalent to that of the sequential
LZ77 method [6].

Typically, four compression engines are employed, each
operating on 256 B (one quarter of the 1KB uncompressed
data block), at the rate of 1B/cycle, yielding a 4B/cycle (or
8B/cycle when double-clocked) aggregate compression
rate. Figure 7 shows the four compression engines, each
containing a history buffer or dictionary comprising a 255B
content-addressable memory (CAM) that functions as a
shift register. Attached to each dictionary are four 255B
comparators for locating the incoming reference byte within
the entire dictionary structure. During each clock cycle, one
byte from each 256B source data block (read from the
shared-cache writeback buffer) is simultaneously shifted into
a respective dictionary and compared to the accumulated
(valid) dictionary bytes. The longest match of two or more
bytes constitutes a working string, while the copy in the
dictionary is the reference string. Should a single byte match
or no match be found, as may be the case for random data,
the reference byte is a raw character.

Compression occurs when working strings within the
compare data stream are replaced with location and
length encoding to the reference strings within the
dictionary. However, it can be seen in Table 2 that the
raw-character encoding scheme may result in a 256B

uncompressed data stream actually expanding to 288 bytes
for a given engine. Therefore, special detection logic is
employed to detect the point at which the accumulated
aggregate compressed output exceeds 1 KB (or a programmed
threshold), causing compression to be aborted and the
uncompressed data block to be stored in memory.

Strings are detected by one of 255 detectors from any
one of the four dictionaries. Once an emerging string is
detected, future potential strings are ignored until the
end of the current string is detected. The string detector
calculates the length and position of a working string. At
the end, only the longest string, or that string starting
nearest to the beginning of the dictionary for multiple
strings with the same length, is selected. The length field
ranges from two to twelve bits to encode the number of

Table 2 Compression encoding.

Compressed
data type

Encoding

Raw character {0, data byte}
String {1, primary length, position, secondary length}

Figure 7

Compressor block diagram.

256B (1B/cy)
256B (1B/cy)
256B (1B/cy)
256H (1B/cy)

.
.

. .
.

. .
.

. .
.

. .
.

. .
.

. . .

CRC
generator

Merger
16B/cy to

main memory

4080 byte
comparators

String
detector

CAM array
(dictionary)

by
te

25
4

by
te

25
4

by
te

25
4

by
te

25
4

by
te

0
by

te
0

by
te

0
by

te
0

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

277

bytes in the working string, using a Huffman coding
scheme. The position field ranges from two to ten bits
to encode the starting address of the reference string.
Merge logic is responsible for packing the variable-
length bit stream into a word-addressable buffer.

Computer systems that employ hardware memory
compression may at times encounter significant processor
stall conditions due to compressor write-queue “full”
conditions. The MXT architecture provides a means to
abort a pending compression operation for the purpose of
writing the data directly to the main memory, bypassing
the compressor hardware during stall conditions. Memory
space (compressibility) is sacrificed for higher system
performance during these temporary writeback stall
events. A background memory scrub later detects and
recovers the “lost” compressibility by recycling the
uncompressed data back through the compressor during
idle periods.

The much simpler decompressor comprises four
engines, each decoding the encoded compressed data
block. Each engine can produce 2B/cycle, yielding an
aggregate 8B/cycle when 1X-clocked or 16B/cycle when
2X-clocked, as occurs in Pinnacle.

Power-down state
Computer system main-memory capacity is growing
significantly faster than the means to transfer the content
to nonvolatile (NV) storage (magnetic disk). This
relationship is particularly relevant when a system
encounters a power outage and there is insufficient
reserve power to permit the system to copy the modified
memory content to NV storage. An MXT architectural
extension provides a means to rely on an NV main
memory implementation in lieu of copying information
back to magnetic disk during power outages. A low-power
“sleep” state, in which only the SDRAM memory remains
powered by a backup power source, is adequate for nearly
all power outages. Even a limited NV memory system can
support extended outages (greater than 24 hours) by
providing time for remedial action to restore or provide
additional backup power.

A 2KB system state region is reserved between the
bottom (lowest-order address) of physical memory and the
STT region. This region is “shadowed” behind the real
address space, such that it is not “seen” by application or
operating system programs when not enabled, since it is
reserved for exclusive use by the machine’s built-in
operating system (BIOS) or system management program
software. A special programmable hardware control bit is
used to toggle the physical main-memory address space
between the shadowed system state memory and the
normal physical address space. When the system state
memory is enabled, the memory controller aliases all

memory references to the region (i.e., the system appears
to have a 2KB memory with compression disabled).

Upon detection of an impending power loss, software
can store the system hardware and software state in
this region after quieting the system and flushing the
cache hierarchy to the main memory. The system state
information will be retained through a power outage that
affects all hardware except the NV main memory. After
power is restored, the BIOS software reestablishes the
memory configuration for the memory controller and then
references this memory region to reinstate the remainder
of the system.

Reliability–availability–serviceability
The importance customers place on the RAS
characteristics of server-class computers compels server
manufacturers to attain the highest cost-effective RAS.
Main-memory compression adds a new facet to this
endeavor [7], with the primary goal of detecting any data
corruption within the system. Toward that end, MXT
includes many RAS-specific features with appropriate
logging and programmable interrupt control:

● Sector translation table entry parity checking.
● Sector free-list parity checking.
● Sector out-of-range checking.
● Sectored memory-overrun detection.
● Sectors-used threshold detection (2).
● Compressor/decompressor validity checking.
● Compressed-memory CRC protection.

Since the compression and decompression functions
effectively encode and decode the system data, any
malfunction during these processes can produce output
that is seemingly correct, yet corrupted. Further, the
hardware function implementation requires a prodigious
quantity (of the order of one million) of logic gates.
Although special fault-detection mechanisms are
incorporated within the compression/decompression
hardware, they cannot provide complete fault coverage.
Consequently, there is a reasonable probability that a
logic-upset-induced data corruption may survive undetected.
Therefore, we needed an improved method of data integrity
protection to minimize the potential for corrupted data to
persist in the system without detection.

We employed a standard 32-bit cyclic redundancy code
(CRC) computation over the uncompressed data block as
it streams into the compressor. When the compression is
complete, and the data is to be stored in the compressed
format (i.e., if the data is compressible, such that a spatial
advantage exists over storing the data in the uncompressed
format), the check code is appended to the end of the
compressed data block, and the associated block size is
increased by four bytes. Information that is stored in the

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

278

uncompressed format gains little benefit from the CRC
protection because it bypasses the compressor and
decompressor functions, and hence is not covered by the
CRC protection. Servicing a compressed-memory read
request results in the decompression of the compressed
block and concurrent recomputation of the CRC over the
uncompressed data stream from the decompressor. Upon
completion of the decompression, the appended CRC is
compared to the recomputed CRC. When the two are not
equal, an uncorrectable error is signaled within the system
to alert the operating system to the event. Retrying
the errant request may avoid the uncorrectable error
condition when the error is caused by a transient upset
within the decompressor. However, an error condition
is most likely caused by the compressor, and retrying the
request will have no beneficial effect in such a case.
Therefore, there is little compelling benefit for supporting
retry behavior.

Commodity duplex memory
Some system applications demand levels of RAS beyond
that typically available in commercial systems. The fault-
tolerant systems that are available are often cost-
prohibitive for applications, except for small specific-
application niches. The extra cost for such systems can be
attributed to the cost of replicating hardware to provide
redundancy for continued operation in the presence of a
hardware fault. An MXT architecture extension permits
fault-tolerant “duplex” or mirrored memory systems to
be constructed without the extra cost of duplicating the
memory devices, since the main-memory compression
more than compensates for the redundant storage. These
systems facilitate tolerating and repairing faults within
the main memory without interruption of application
or operating system software operation.

The architecture extends the memory controller to
support not only a single unified memory, but a dual-
redundant duplex memory capable of operating in the
presence of a hardware failure or maintenance outage.
The system structure, shown in Figure 8, incorporates the
necessary electrical isolation/rebuffer mechanism and
independent memory card power supplies to permit
operation as a conventional, or optionally as a duplex,
memory machine. Data errors are detected using the
conventional memory error-detection and -correction
hardware. When configured for duplex memory operation,
identical content is maintained within each memory bank,
such that any uncorrectable data error detected upon read
access to a given bank may be reread from the other bank
with the intent of receiving data without error. After a
memory bank is identified as faulty, the memory controller
can preclude further read access to the bank, permitting
replacement without interruption to the application or
operating system software.

Typically, each bank comprises a field-replaceable
memory circuit card, which contains a quantity of SDRAM
packaged as dual in-line memory modules (DIMMs). All
activity may be configured to occur concurrently in order
to maintain “lock-step” synchronization between the two
banks. Although memory read accesses always occur at
both banks, the electrical isolation mechanism, shown in
Figure 9, provides a means for the memory controller to
receive data selectively from only one of the two memory
banks, known as the primary bank, whereas the “ignored”
bank is known as the backup bank. However, write
accesses always occur at both banks.

The memory controller functions are designed with
special consideration for duplex memory operation. A
memory “scrub” controller mode, which immediately reads
and then writes back every location in memory, provides
a means for copying the content from the primary
bank to the backup memory bank. Further, the scrub

Figure 8

Mirrored memory block diagram.

. . .Processor Processor

Data bus

Address/control bus

Shared
memory

controller
Write queue

Compressor Decompressor

Main memory controller

D
at

a

D
at

a

D
at

a

A
dd

re
ss

/c
on

tr
ol

A
dd

re
ss

/c
on

tr
ol

A
dd

re
ss

/c
on

tr
ol

Po
w

er
sr

c

Po
w

er
sr

c

Main memory
(bank 0)

Main memory
(bank 1)

Isolation and rebuffer

Card present
detect

Card present
detectB

an
k

se
le

ct

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

279

controller alternates normal memory-scrub read access
between the two banks to ensure that the backup bank has
not accumulated any content errors. Finally, the memory
controller can be configured to “fail-over” to the backup
bank from the primary bank upon detection of an
uncorrectable error from the ECC in the data-read
path. The fail-over process involves swapping the bank
configuration (backup bank becomes primary bank and
vice versa), and reissuing the read operation to receive the
reply data from the new primary bank. Several “duplex”
modes exist, permitting manual selection, automatic fail-
over trip event, or automatic fail-over toggle event.

The memory controller may be configured to operate
in any one of six modes (defined below) for utilizing
the system memory banks. While all modes are user-
selectable, modes 4 – 6 permit control hardware
modification as well.

1. Normal operation Either one or both of the memory
cards can be addressed and accessed independently.
Bank “0” contains the low-order addressed memory,
and bank “1” contains the high-order addressed
memory. For a given read access, the bank select
signal state corresponds to the addressed bank.

2. Bank “1” mirrors bank “0” Read and write accesses
are presented to both cards simultaneously, but read
data is selected from bank “0” via the bank select

signal. This mode provides a means to logically ignore
bank “1”; bank “1” is thus permitted to be either in
or out of the system in support of repair and/or
replacement.

3. Bank “0” mirrors bank “1” Read and write accesses
are presented to both cards simultaneously, but read
data is selected from bank “1” via the bank select
signal. This mode provides a means to logically ignore
bank “0”; bank “0” is thus permitted to be either in
or out of the system in support of repair and/or
replacement.

4. Bank “1” mirrors bank “0” with automatic fail-over to
mode 3 Read and write accesses are presented to both
cards simultaneously, but read data is selected from
bank “0” via the bank select signal. Upon detecting an
uncorrectable error (UE) within a read reply, the
memory controller will reclassify the error as a
correctable error, reconfigure the memory bank
operation to mode 3, and retry the memory read
access. Any UE detection during a scrub operation
to bank “1” results in automatic reconfiguration
to mode 2.

5. Bank “1” mirrors bank “0” with automatic fail-over to
mode 6.

6. Bank “0” mirrors bank “1” with automatic fail-over to
mode 5.
Modes 5 and 6 permit the memory system to tolerate
multiple faults across the two banks, as long as the
faults do not exist at the same addresses. This is
accomplished by toggling between modes 5 and 6
each time a UE is detected within a read reply. Upon
detecting a UE, the memory controller will reclassify
the error as a correctable error, reconfigure the memory
bank operation to the alternate mode, and retry the
memory read access. These modes serve to extend the
mean time to repair (MTTR) of a system memory fault,
but at the expense of losing some on-line maintainability
when both cards have accumulated a UE. A replacement
memory card can be initialized only with the content of the
existing card, which in this case is contaminated with a UE.

Another register is used to provide user control of new
and special functions of the memory scrub hardware
within the memory controller. These functions are unique
and necessary to the operation of duplex memory
operation:

1. Scrub immediate Read and write successive blocks
over the entire memory range without regard to a slow-
paced “background” interval. When used in conjunction
with mode 2 or mode 3, this function provides a means
to read all of the content of the primary memory bank,
validate the data integrity through EDC circuits, and
rewrite the data back to both banks, for the purpose of

Figure 9

Isolation and rebuffer block diagram.

C
lo

ck

D
at

a

D
at

a
ou

tp
ut

en
ab

le

B
an

k
re

ad
se

le
ct

A
dd

re
ss

/c
on

tr
ol

B
an

k
0

se
le

ct

B
an

k
0

cl
oc

k(
s)

B
an

k
1

cl
oc

k(
s)

B
an

k
0

ad
dr

es
s/

co
nt

ro
l

B
an

k
1

ad
dr

es
s/

co
nt

ro
l

B
an

k
0

se
le

ct

B
an

k
1

se
le

ct

B
an

k
0

da
ta

B
an

k
1

da
ta

B
an

k
1

se
le

ct

B
an

k
0

en
ab

le

B
an

k
1

en
ab

le

B
an

k
ou

tp
ut

en
ab

le

PLL

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

280

reinitializing the content of the backup bank from that
of the primary bank, thus permitting a newly installed
“empty” memory to be initialized while the system is
in continuous use.

2. Scrub background Read (and write-only on correctable-
error) successive blocks over the entire memory range
with regard to a slow-paced “background” interval.
This typical scrub operation is enhanced to support
duplex operation by alternating entire memory scrubs
between primary bank and backup banks when modes
4 – 6 are selected. This prevents the backup bank from
accumulating “soft errors,” since data is never actually
received from the backup bank during normal read
references.

Operating system software
All commercial computer operating system (OS) software
environments manage the hardware memory as a shared
resource to multiple processes. In cases in which the
memory resource becomes limited (i.e., processes request
more memory than is physically available within the
machine), the OS can take steps for continued system
operation. Typically, the OS migrates under-utilized
memory pages (4KB) to disk, and then reallocates the
memory to the requesting processes. In this manner, the
main memory is used like a cache that is backed by a
large disk-based storage. This scheme works quite well
because the absolute amount of memory is known to the
OS. This algorithm applies to MXT-based systems as well.

Although current “shrink wrap” OS software can be
used on an MXT machine, the software cannot yet
distinguish an MXT-based machine from a conventional
memory hardware environment. This poses a problem,
since the amount of memory “known” to the OS is twice
what actually exists within an MXT machine. Further,
the OS is not aware of the notion of compression ratio.
Therefore, the OS cannot detect conditions in which the
physical memory may be over-utilized (i.e., there are too
few unused or free sectors left in the sectored memory),
and therefore may not invoke the paging management
software to handle the situation, possibly leading to a
system failure. This condition can occur when the OS
has fully allocated the available memory and the
overall compression ratio has fallen below 2:1.

Fortunately, minor changes in the OS kernel virtual
memory manager are sufficient to make the OS “MXT-
aware” [8]. Further, the same objective can also be
accomplished outside the kernel, for example in a
device driver or service, albeit less efficiently.

Performance
MXT compression performance fundamentally ranges
between 1:0.98 (1:1) and 64:1, including translation table
memory overhead. Figure 10 shows a representative

sampling of the many memory-content compressibility
measurements we have taken from several types of
machines. We can take measurements by direct
measurement on an MXT machine, by indirect
measurement via a monitor program running on a non-
MXT machine, and of course by post-analysis of memory
dumps. Compressibility drops below 2:1 only in the rare
case in which the majority of the system memory contains
random or precompressed data.

We have observed that the compression ratio of a given
machine tends to remain relatively constant throughout
the operation of the application set. For example,
monitoring the IBM Internet on-line-ordering web server2

over a period of ten hours indicated a compression ratio
of 2.15:1 6 1%. Further, it can be seen in Figure 11 that
the distribution of compressibility is normal. Each bar of
the histogram represents the degree of compressibility,
with the rightmost bar incompressible (1:1) and the
leftmost bar maximally compressed (64:1). The lower
curve represents the degree of change in compressibility
over the measurement period.

MXT system performance evaluation can be considered
from two primary perspectives: intrinsic performance,
such as that measured on any conventional system, and
cost/performance in memory-starved applications. Much
has been written about the performance benefit additional
memory can provide for memory-intensive applications.
As one might expect, this is where MXT systems really
stand out, so much so that we typically see customers

2 Specific shadow servers 9q, 9w for website http://www.pc.ibm.com/ibm_us/.

Figure 10

Memory compressibility.

0

1

2

3

4

5

6

7

C
om

pr
es

si
on

ra
tio

(X
:1

)

C
us

to
m

er
1

C
us

to
m

er
2

T
PC

-C

V
er

ilo
g

si
m

.

SW
de

v.

D
B

st
ar

tu
p

D
B

ru
n

C
at

ia

L
og

ic
si

m
.,

L
i

V
er

ilo
g,

N
T

W
eb

sr
vr

,N
T

AS/400

RS/6000

S/390

PC

Workload

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

281

experiencing 50 –100% improvement in system throughput.
For example, one customer operating a computer farm

with several thousand dual-processor servers, each
containing 1 GB of memory, was able to run one job
per unit time on each machine. When an equivalent
(dual-processor and 1GB memory) MXT-based machine
was used in the environment, two jobs could be run
concurrently over the same period of time, because
the 1 GB was effectively doubled to 2 GB through MXT
expansion. Similar memory-dependent performance
is observed with the behavior of the well-known
SPECweb99** benchmark. For this case (Figure 12),
increasing memory from 256 MB to 512 MB yields a
45% performance improvement (but beyond 512 MB
the benefit diminishes).

We began this project with the primary goal of gaining
the benefit of doubling the system memory at a negligible
cost, but without degrading system performance. To that
end, MXT-based memory controller performance is based
on the intrinsic hardware implementation reaction time, as
well as the shared-cache hit rate. When an MXT memory
controller employs an independent shared cache, such
as that used in the Pinnacle chip [3], the average read
latency can be plotted as a function of the cache miss rate,
as shown in Figure 13. The region to the left of the “best
design” represents the average read latency for the MXT-
based memory controller. The region between the “best
design” and “worst design” points reflects the average
read latency for contemporary conventional “cacheless”
memory controllers available in the marketplace.

The shared-cache hit rate is application-dependent, but
we typically measure the cache hit rate at roughly 98% on
most applications. However, the cache hit rate for large
database applications such as TPC-C**, SAP**, and
particularly Lotus Notes** can range as low as 94%, as

Figure 11

IBM website compression distribution.

Figure 12

Dependence of SPECweb99 performance (number of simultaneous
connections) on available system memory.

256 512 512 1G 1G 2G 2G 4G

Memory quantity (bytes)

0

10

20

30

40

50

R
at

e
of

im
pr

ov
em

en
t

(%
)

Figure 13

Cache miss rate vs. system memory performance.

Best
design

Worst
design

0

5

10

15

20

M
is

se
s/

ac
ce

ss
(%

)

7 9 11 13 15 17 19 21
Average memory read latency (133-MHz bus clock cycles)

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

282

measured by quad-processor trace-driven performance
models. These applications tend to reference some
database records infrequently, resulting in a prefetch
advantage with the long cache line but little reuse of the
data within the line.

Our comparison of MXT system performance with that
of a high-performance contemporary system showed the
two systems having essentially equivalent (within one
point) performance for the SPECint2000** benchmark.
Both machines were IBM 1U commercial servers with
512 MB and Intel 733-MHz PIII processors, executing
program code from the same disk drive. The two systems
differ only in the type of memory controller used. While
the MXT system used the ServerWorks Pinnacle chip, the
other system used the ServerWorks CNB30LE chip.

MXT provides a system cost leverage not seen since the
invention of DRAM. Figure 14 illustrates the degree of
this leverage with a case in point. The graph shows how
the cost/performance metric for a family of conventional
machines (dashed curve) is dramatically improved when
the benefits of MXT are factored in (solid curve). For a
representative product, we configured a ProLiant DL360
commercial server on the COMPAQ Computer Corporation
Internet website3 for retail equipment sales. This server
was priced at $9759. Using the same site to configure
a hypothetical MXT equivalent system, with half the
memory and an estimated $150 MXT cost premium,
yielded nearly 30% savings at $6904. Viewed another
way, a hypothetically “more capable” MXT system can
be configured at a cost ($9702) commensurate with
that of the reference machine. Either way, an MXT
system cost/performance metric compares quite
favorably with that of any conventional system.

MXT is a logical step in the evolution of compression
technologies, and is a proven technology that empowers
customers to efficiently utilize their memory investment.
Information technology professionals can routinely achieve
significant savings on systems ranging from high-density
servers to large memory enterprise servers. We expect
MXT to expand its presence into other processor memory
controllers and memory-intensive system applications,
including disk storage controllers, laptop computers,
and information appliances.

Acknowledgments
The MXT architecture involved contributions from several
other individuals. We especially thank Philip Heidelberger,
Vittorio Castelli, and Caroline Benveniste for their work
on the compression efficiency and performance analysis;
Dan Poff, Rob Saccone, and Bulent Abali for operating

system and performance measurement work; and Michel
Hack for his work on storage data structures.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation,
Standard Performance Evaluation Corporation, Transaction
Processing Performance Council, SAP AG, or Lotus
Development Corporation.

References
1. D. A. Luick, J. D. Brown, K. H. Haselhorst, S. W.

Kerchberger, and W. P. Hovis, “Compression Architecture
for System Memory Applications,” U.S. Patent 5,812,817,
September 22, 1998.

2. M. Kjelso, M. Gooch, and S. Jones, “Design and
Performance of a Main Memory Hardware Data
Compressor,” Proceedings of the 22nd EUROMICRO
Conference, IEEE, 1996, pp. 423– 430.

3. R. B. Tremaine, T. B. Smith, M. Wazlowski, D. Har,
K. Mak, and S. Arramreddy, “Pinnacle: IBM MXT in a
Memory Controller Chip,” IEEE Micro 22, No. 2, 56 – 68
(March/April 2001).

4. M. Abbott, D. Har, L. Herger, M. Kauffmann, K. Mak,
J. Murdock, C. Schulz, T. B. Smith, B. Tremaine, D. Yeh,
and L. Wong, “Durable Memory RS/6000 System Design,”
Proceedings of the 24th Annual International Symposium
on Fault-Tolerant Computing, IEEE, 1994, pp. 414 – 423.

5. P. A. Franaszek and J. Robinson, “On Internal
Organizations in Compressed Random Access Memories,”
Research Report RC-21146, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, April
1998.

6. P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel
Compression with Cooperative Dictionary Construction,”
Proceedings of the Data Compression Conference, DCC ’96,
IEEE, 1996, pp. 200 –209.

7. C. L. Chen, D. Har, K. Mak, C. Schulz, B. Tremaine, and
M. Wazlowski, “Reliability–Availability–Serviceability
of a Compressed Memory System,” Proceedings of the

3 Referenced on November 29, 2000, at website http:
//www5.compaq.com/products/servers/platforms.

Figure 14

System cost comparison.

Sy
st

em
pe

rf
or

m
an

ce

With MXT

$7,103

1792 MB effective memory
(896 physical)

One 550-MHz PIII,
100-MHz bus

One 9.1GB SCSI drive
Two 10/100 Ethernet ports

$13,001

2304 MB effective memory
(1152 physical)

Two 800-MHz PIIIs,
133-MHz bus

Two 9.1GB SCSI drives
Two 10/100 Ethernet ports
One Gigabit Ethernet port

$13,081

1664 MB memory
One 550-MHz PIII,

100-MHz bus
One 9.1GB SCSI drive
Two 10/100 Ethernet ports

Without MXT

System cost

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

283

International Symposium on Dependable Systems and
Networks, IEEE, 2000, pp. 163–168.

8. B. Abali and H. Franke, “Operating System Support for
Fast Hardware Compression of Main Memory Contents,”
Proceedings of the Memory Wall Workshop, held in
conjunction with the 27th International Symposium on
Computer Architecture (ISCA-2000), Vancouver, BC, June
2000.

Received November 1, 2000; accepted for publication
January 26, 2001

R. Brett Tremaine IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (afton@us.ibm.com). Mr. Tremaine is a Senior
Technical Staff Member at the IBM Thomas J. Watson
Research Center, where he is responsible for commercial
server and memory hierarchy architecture, design, and ASIC
implementation. Before joining the Research Division in
1989, he had worked for the IBM Federal Systems Division
in Owego, New York, since 1982. He has led several
server architecture and ASIC design projects, many with
interdivisional relationships, and has received two IBM
Outstanding Technical Achievement Awards and several
division awards for his contributions. Mr. Tremaine received
an M.S. degree in computer engineering from Syracuse
University in 1988, and a B.S. degree in electrical engineering
from Michigan Technological University in 1982. He has
eleven patents pending and several publications, and he is a
member of the IEEE.

Peter A. Franaszek IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (paf@us.ibm.com). Dr. Franaszek received
the Ph.D. degree in electrical engineering from Princeton
University in 1965. From 1965 to 1968, he was employed by
Bell Laboratories. He joined the IBM Research Division in
1968. During the academic year 1973–1974, he was on
sabbatical leave at Stanford University as Consulting
Associate Professor of Computer Science and Electrical
Engineering. He is currently Manager of Systems Theory and
Analysis. His interests are in the general area of information
representation and management, and computer system
organization. Dr. Franaszek has received two IBM Corporate
Awards for his work on codes for magnetic recording, an IBM
Corporate Patent Portfolio award for his contribution to the
ESCON architecture, and Outstanding Innovation Awards
for fragmentation-reduction algorithms, network theory,
concurrency-control algorithms, run-length-limited codes,
and the code used in ESCON, Fiber Channel, and Gigabit
Ethernet. He is a member of the IBM Academy of
Technology and a Master Inventor. He is a Fellow of the
IEEE, and received the 1989 Emmanuel R. Piore Award from
the IEEE for his contributions to the theory and practice of
constrained channel coding in digital recording. Dr. Franaszek
holds thirty-six patents and has published more than forty
technical papers.

John T. Robinson IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (robnson@us.ibm.com;
http://www.research.ibm.com/people/r/robnson/). Dr. Robinson
received the B.S. degree in mathematics from Stanford
University in 1974, and the Ph.D. degree in computer science
from Carnegie Mellon University in 1982. Since 1981, he has
been with the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York. His research interests include
database systems, operating systems, parallel and distributed
processing, design and analysis of algorithms, and hardware
design and verification. He is a member of the ACM and the
IEEE Computer Society.

Charles O. Schulz IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (cschulz@watson.ibm.com). Mr. Schulz is a
manager at the IBM Thomas J. Watson Research Center,
where he is responsible for advanced memory and systems

R. B. TREMAINE ET AL. IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

284

architectures supporting the IBM xSeries products. He
received his B.S. and M.S. degrees in electrical and electronic
engineering from North Dakota State University in 1971 and
1972, respectively. Prior to joining IBM in 1990, he held
engineering and management positions at various aerospace
and computer companies. Mr. Schulz has extensive experience
in high-reliability and fault-tolerant computer design as well
as computer design for real-time control of aircraft and
critical aircraft systems. His current research interests include
computer architecture for high-performance scalable and
partitioned servers. He has one issued patent and fifteen
pending, as well as various technical publications on computer
architecture and design.

T. Basil Smith IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (tbsmith@us.ibm.com). Since 1986 Dr. Smith has
been a Research Staff Member at the IBM Thomas J.
Watson Research Center, where he is now a Senior Manager
responsible for research into exploitation of high-leverage
server innovations, and manages the Open Server Technology
Department. His work has been on memory hierarchy
architecture, reliability, durability, and storage efficiency
enhancements in advanced servers. He has received both IBM
Outstanding Innovation Awards and Outstanding Technical
Achievement Awards for his contributions in these fields at
IBM. Before joining IBM in 1986, he worked at United
Technologies Mostek Corporation in Dallas, Texas, and
at the Charles Stark Draper Laboratory in Cambridge,
Massachusetts. Dr. Smith holds more than 20 patents in
computer architecture and reliable machine design. He
received his Ph.D. degree in computer systems, and his S.M.
and S.B. degrees, from MIT. He is an IEEE Fellow and a
member of the IEEE Computer Society Technical Committee
on Fault-Tolerant Computing, and is active in that
community. Most recently he was General Chair of the
Dependable Systems and Networks Conference (DSN-2000)
held in New York City in June 2000.

Michael E. Wazlowski IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (mew@us.ibm.com). Since 1995 Dr. Wazlowski
has been a Research Staff Member at the IBM Thomas J.
Watson Research Center, where he is responsible for high-
performance memory system architecture and design. He
received a B.S. degree in computer engineering from the
University of Massachusetts at Amherst in 1990 and M.S. and
Ph.D. degrees in electrical sciences from Brown University in
1992 and 1996, respectively. He is a co-inventor on several
MXT patents. Dr. Wazlowski’s research interests include
computer architecture, memory systems, and ASIC design;
he is currently leading the verification effort for a 1.5-million-
gate ASIC. He is a member of the IEEE.

P. Maurice Bland IBM Server Group, 3039 Cornwallis
Road, Research Triangle Park, North Carolina 27709
(pmbland@us.ibm.com). Mr. Bland is a Senior Technical
Staff Member in the eServer xSeries system development
organization, where he is responsible for high-end Intel-based
server system design and architecture. Since joining IBM in
1979, he has designed many PC-based products, ranging from
laptops to servers. Mr. Bland has reached an 11th invention
achievement plateau, having received more than 25 patents
in I/O bus bridging, systems power management, memory
subsystem design, and fault-tolerant system design. He
received a B.S. degree in electrical engineering from the
University of Kentucky in 1978.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 R. B. TREMAINE ET AL.

285

