
Preface
Over the past decade, computer systems based largely on
commodity processors from manufacturers such as AMD,
Cyrix, and Intel, commodity operating systems such as
Linux, Novell, and Windows, and industry-standard I/O
protocols such as Ethernet, PCI, and SCSI, have rapidly
moved upmarket into many mission- and performance-
critical server applications. What were originally deployed
as personal systems a decade ago have matured into
oxymoron “PC servers” and are now being used for
electronic commerce, web, file, and e-mail serving,
enterprise resource planning, business intelligence,
databases, messaging, telecommunications, storage,
and a host of other server-class applications. The total
worldwide server customer revenue for the year 2000 for
32-bit Intel Architecture-based servers was $26 billion,
with an annual growth rate of 20%.

Penetrating this market has already required remarkable
advances in performance, robustness, and scalability.
Yet even higher levels of capability can and should be
delivered to our customers, especially in the areas of
performance, scalability, cost, and RAS. For example,
to continue to participate in the high-scalability SMP
server market, PC servers must go beyond their current
four- to eight-way SMP scalability limits, to support single
operating system images of 64 processors and more.
Furthermore, when such a large and expensive system
image is supporting a mission-critical application, the
reliability of the operating system, middleware, and
application software running on that image must be
improved relative to today’s levels.

In the e-commerce and web-serving customer base,
there is a quickly emerging requirement for improved
volumetric and power density for these massively parallel
applications. Many customers are encountering increasing
constraints on floor space and power dissipation, and must
furthermore cope with stunningly high workload variability
and growth rates. Current PC servers, when packed as
densely as possible into racks, are difficult to cool and
may not provide the most effective system partitioning. It
is possible that alternative packaging and partitioning
methods will become popular with these customers.

Finally, we are seeing the need for an increasing
number of appliances, or functionally specialized servers.
An appliance is a turnkey server that provides a single
function extremely well and requires minimal user setup
and maintenance; a good example is a web-serving
appliance. It is expected that worldwide appliance revenue
for web serving, proxy/caching/security, e-mail, workgroup,
and file/print and storage applications will grow from
$3 billion in 2001 to $12 billion in 2004, with an average
annual growth rate of 73%.

This issue of the IBM Journal of Research and
Development is devoted to advances in PC server

development; it contains selected papers that describe
potential breakthrough improvements in the central issues
of system performance, scalability, price/performance, and
software availability. We should note that the PC server
industry is an active area of intense innovation, and we
can hope to present only a small subset of the important
achievements in this industry in any limited space. Thus,
we begin with a few papers addressing performance and
scalability issues.

The paper by Hu et al. describes the Adaptive Fast Path
Architecture (AFPA) software design. AFPA is a software
system that substantially improves the performance of
web-serving and other applications by using an in-memory
cache to serve static content, and a reverse-proxy agent
to distribute requests for dynamic content to multiple
servers. System efficiency is enhanced by maximizing the
number of requests that are handled entirely within the
kernel, thus avoiding context-switching overhead whenever
possible. AFPA has been demonstrated to double a
server’s capacity for serving static web content, and it has
allowed IBM to establish a leadership position in web-
serving performance. It has been ported to Windows,
OS/390, AIX, and Linux, and would be a cornerstone
technology for a high-performance web-serving appliance.

The paper by Brock et al. describes the construction of
a cache-coherent nonuniform memory access (ccNUMA)
machine using Intel Standard High Volume (SHV)
building blocks, a prime objective of the work being to
develop a highly scalable Intel machine with minimal
investments in hardware and software. This group has
successfully assembled a 16-way ccNUMA system from
four 4-way SHV processors, ported a number of operating
systems to this machine, and extensively measured and
optimized the performance of several computation-
intensive workloads. The group used a combined
hardware/software approach to support application-level
performance tuning, in which a hardware-performance
counter card measures the frequency of remote-memory
accesses (a dominant source of performance overhead in a
NUMA machine) and a software resource set abstraction
allows application-level threads to improve performance
and scalability by specifying their execution and memory
affinity. This hybrid approach was demonstrated and
shown to be successful for some computation-intensive
workloads. An interesting conclusion from this work is
that, for the prototype, performance and scalability were
often limited by local-memory bandwidth rather than
by the effects of remote-memory access latency.

In the paper by Nanda, the Everest NUMA-protocol
controller architecture is described and evaluated. Everest
supports high-performance cache coherence and message-
passing protocols for partitionable distributed shared-
memory systems that use commodity SMPs as building
blocks. It performs high-throughput NUMA protocol

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 PREFACE

187

handling by using multiple parallel protocol engines, split
request–response handling, and a pipelined design. It also
has a novel directory structure that uses roughly the same
amount of memory as a sparse directory, but retains the
benefits of a full-map directory. Many customers purchase
highly scalable SMP or NUMA systems, and then want to
run multiple independent operating systems on partitions
of that machine for error containment, workload
consolidation, manageability, and other reasons. For
this reason the Everest design also enables partitioned
operation, in which each SMP building block supports
an independent, isolated operating system instance, and
provides hardware facilities for high-performance, secure
communications between partitions. The paper presents
performance simulation results that show that these
Everest features have a positive impact on system-level
performance.

IBM has recently announced and made available to the
industry Memory Expansion Technology (MXT), an on-
the-fly data-compression technology which promises to
transform the price/performance equation for PC servers
by expanding a system’s apparent memory size by a factor
of 2 for most applications, at very little additional cost.
The next five papers describe various aspects of MXT.
We begin with two papers that describe the theory and
algorithms that underlie IBM’s implementation of on-the-
fly memory compression, and follow with three papers that
describe a commercial implementation of MXT, assess its
software support and performance impact, and describe
its competitive implications in the marketplace.

The first paper, by Franaszek et al., provides an
overview of algorithms and data structures for
compressing and decompressing data as it flows into and
out of memory. These algorithms are unique in that they
work effectively on the relatively small fixed-size cache
lines favored by processors, and are suitable for high-
speed hardware implementation in a processor-memory
cache hierarchy. Furthermore, as variable-sized
compressed data flows into memory, the data blocks are
stored in such a manner as to minimize overheads due to
directory size and storage fragmentation. Compressed data
is by its nature variable in size, so totality of the data
stored in main memory with MXT will vary over time. To
make the most of the additional resources provided by
MXT, a system should include facilities and services to
efficiently manage this variability. The requirements and
opportunities of such management are discussed in the
paper.

The second paper, by Franaszek and Robinson,
discusses research on compressed-memory algorithms and
architecture that was performed before and during the
design of the MXT architecture. This work is fundamental
to the design of the MXT compressed-memory organization,
which is described in the papers that follow. The paper

discusses and analyzes three problems that arise
in the design of compressed-memory systems:
allocating and managing storage for variable-sized
compressed blocks, choosing a static versus a dynamic
directory structure, and selecting a smaller versus a larger
block size. This paper quantitatively analyzes these
tradeoffs and makes design recommendations using
analytical methods and simulations.

The next three MXT papers describe an implementation
of data compression in a commercial Intel-compatible
chipset, the software support and performance impact of
data compression, and its possible competitive impact. The
first paper, by Tremaine et al., describes the architecture
and implementation of a memory-controller chip that
supports a four-way Pentium III SMP. This chip supports
a large L3 cache to hide the latency of decompression,
and contains high-speed data compression and
decompression circuitry that implements the algorithms
described in the previous papers. The chipset also
incorporates memory-management hardware that
dynamically allocates main-memory storage in small
sectors to accommodate storing the variable-sized
compressed data without the need for garbage collection
or significant fragmentation. This chip is the first
commercially available memory controller to employ real-
time memory data compression. This “Pinnacle” chipset
was developed jointly with Serverworks, a division of
Broadcom Inc., and will be available to the industry
through them.

The next paper, by Abali et al., describes the MXT
memory resource management services which have been
developed to support the Microsoft Windows 2000 and
Linux 2.2 and 2.4 operating systems. Specifically, the
dynamic compressibility of the data stored in memory is
monitored, and the amount of real memory available to
the operating system is adjusted to permit as many pages
of memory as possible to remain in memory, given the
compressibility of those pages. The paper also provides an
empirical measurement of the performance impact of data
compression, and shows that under the SPEC CPU 2000
workload, there is negligible performance degradation.
The paper concludes with empirical measurements of
the compressibility of memory for the SPEC CPU 2000,
Synopsis, Photoshop, MSDN Install, and the contents
of certain well-known web sites, and shows that a
compression ratio of 2:1 is routinely achievable.

The last MXT paper, by Smith et al., quantifies the
impact of memory compression on price/performance.
Assuming a 2:1 compression ratio, for “price twins”
(i.e., two systems having the same price, one with data
compression and one without), MXT can be used to
double the amount of apparent memory and thus achieve
a performance improvement. For “performance twins”
(i.e., two systems having the same amount of apparent

PREFACE IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

188

memory, one with data compression and one without)
MXT can provide an equivalent amount of apparent
memory at half the memory price. Depending on which
approach is taken and on the workload, MXT is shown
to improve price/performance by 25% to 70%. In the
PC server market, this can be equivalent to the entire
gross margin for many of these machines.

Our final paper, by Castelli et al., describes an approach
for improving software availability, when one cannot
improve the quality of the underlying code, by proactive
detection and management of software aging. Essentially,
if a system exhibits software aging and can tolerate
periodic restarts or “rejuvenations,” judicious rejuvenation
can substantially improve system availability, especially
in a high-availability cluster environment. The authors
describe the general problem of software aging, present
an analytical model for software aging and rejuvenation,
and describe a software product that is designed to detect
software aging and proactively perform rejuvenations. The
analytical results indicate that the probability that the
cluster is unavailable due to software-aging-induced
outages can be reduced by 25% to 90%, depending
on the rejuvenation policy.

We would like to thank the many authors from the IBM
Thomas J. Watson Research Center and the IBM xSeries
Division who have taken the time to prepare these
excellent papers. Thanks are also due the reviewers, who
contributed substantially to the quality of the papers.

Richard E. Harper

Guest Editor

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001 PREFACE

189

