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Everest is an architecture for high-performance
cache coherence and message passing in
partitionable distributed shared-memory
systems that use commodity shared
multiprocessors (SMPs) as building blocks.
The Everest architecture is intended for use
in designing future IBM servers using either
PowerPC® or Intel® processors. Everest
provides high-throughput protocol handling in
three dimensions: multiple protocol engines,
split request-response handling, and pipelined
design. It employs an efficient directory
subsystem design that matches the directory-
access throughput requirement of high-
performance protocol engines. A new directory
design called the complete and concise
remote (CCR) directory, which contains
roughly the same amount of memory as a
sparse directory but retains the benefits of a
full-map directory, is used. Everest also
supports system partitioning and provides a
tightly integrated facility for secure, high-

performance communication between
partitions. Simulation results for both technical
and commercial applications exploring some
of the Everest design space are presented.
The results show that the features of the
Everest architecture can have significant
impact on the performance of distributed
shared-memory servers.

1. Introduction

Large shared-memory machines typically use smaller
commodity SMPs as building blocks to provide economy
of scale [1-3]. Two primary factors influence the use

of SMP nodes as building blocks as opposed to single-
processor nodes. First, the industry tends to build as
large an SMP as possible using a fast bus and avoiding
nonuniform memory latencies. Second, it is also
considered desirable to amortize coherence controller
and network interface costs as well as memory and I/O
controller costs over several processors. The use of larger
per-processor L2 caches and faster processor-memory
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buses has helped to alleviate the bus bandwidth problem
in connecting several very-high-speed processors in

an SMP. To connect these SMPs in order to build a
distributed shared-memory machine, high-speed network
designs have begun to appear [1, 3] that match the
bandwidth of the SMP bus.

It is imperative that the coherence controllers attached
to each SMP node (or to multiple SMP nodes) in such
machines also be designed to handle the high memory-
access traffic and the associated coherence transactions
that appear on the bus. Current IBM Intel**-based and
PowerPC*-based servers both incorporate SMP-based
scalable shared-memory architectures. These servers will
experience a bottleneck unless the coherence controllers
provide high-throughput protocol processing. The Everest
architecture was developed to provide high-throughput
protocol handling for this class of machines, using
parallelism in three dimensions: 1) multiple protocol
engines, 2) split request-response handling, and 3)
pipelined design, in addition to an efficient directory
subsystem design that matches the directory-access
throughput requirement of the high-performance protocol
engines (PEs).

The multiple protocol engines in the Everest
architecture are assigned to non-overlapping memory
regions to provide parallelism at the highest functionality
level. Each PE can be optionally pipelined and can have
up to two split request-response units, one of which
handles protocol request transactions while the other
handles protocol response transactions. The Everest
architecture uses a new directory design called the
complete and concise remote (CCR) directory, which
contains roughly the same amount of memory as a sparse
directory [4] but retains the benefits of a full-map
directory [5]. Because of its smaller size, the CCR
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directory can be designed using relatively faster memory
to provide lower directory-access latency. Average
directory-access time is further reduced significantly

by the use of directory caches [6].

With Everest, the SMP building blocks can be organized
into partitions, each of which is a complete shared-
memory multiprocessor with its own operating system.
The communication links between the partitions can
then be exploited for message passing. Everest includes an
interpartition communication facility (IPC) that provides
high-performance message passing between partitions. The
IPC supports secure, connection-oriented communication
for potentially thousands of user-space processes. Address-
translation support in the IPC allows user applications to
specify zero-copy transfers directly to or from their own
virtual address space.

This paper also presents the results of an empirical
investigation into coherence-controller throughput in the
context of the Everest architecture. The results show
that using parallelism in any of the three dimensions
or combinations of them has significant impact on the
performance of applications with high communication
requirements. The performance benefits of parallelism
become more prominent when the number of processors
handled by the coherence controller increases. The results
on relative performance gain while adding incremental
parallelism in one or more dimensions can be used by
designers to determine performance/complexity tradeoffs
on specific Everest implementations. We have presented
performance tradeoffs in high-throughput coherence
controllers in a recent paper [7].

The rest of the paper is organized as follows. Section 2
presents the Everest architecture. Simulation results are
discussed in Section 3, and Section 4 presents conclusions.

2. The Everest architecture

The Everest architecture is intended to meet varying
degrees of coherence-controller (CC) throughput
requirements in wide-ranging node designs for future IBM
servers employing distributed shared-memory systems.

It achieves high throughput by providing aggressive
parallelism in protocol processing. The amount of
parallelism actually implemented in a specific Everest
coherence controller, however, will depend on the
coherence throughput required by a particular design

and workload. The coherence throughput requirement

is primarily a function of the number of processors
connected to the CC and the processor and bus speeds.

A representative shared-memory system environment is
shown in Figure 1, with a typical SMP design shown

in part (a) and a typical shared-memory system using
Everest, each memory handling one or more SMPs, shown
in part (b). Contemporary commodity SMP nodes do not
scale well beyond four processors on a single bus because

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001



of loading and the speed limit of the bus. Each SMP has
a shared cache or a remote cache that is shared by all
processors in the SMP. Future shared-memory designs
will probably use one of these structures in an SMP node
because of their high-performance potential. In a shared-
cache configuration, both remote memory and local
memory lines are cached. (Local cache lines with respect
to a node are cache lines that belong to the main memory
of that node. Remote cache lines with respect to a node
are cache lines that belong to the main memory of
another node.) The remote cache caches only those
remote lines that are being used by the processors in the
SMP. In this paper we assume the presence of a large
remote cache in each SMP. One or more SMPs are
connected to Everest, which maintains coherence among
the SMPs connected to it as well as the remote SMPs
connected through a fast network. Multiple network
ports could be connected to the CC, depending on the
network speed.

To extract parallelism at the highest level of
functionality, the Everest architecture uses one or more
protocol engines (PEs) operating independently, as shown
in Figure 2. The study in [8] used one PE for handling
requests to locations resident on remote memory (RPE)
and another for handling requests to locations in the local
home memory (LPE). Everest goes a step further by
providing multiple local and remote engines. The amount
of parallelism in a particular implementation of the
Everest architecture can be expressed by the tuple
LnyP“Sv, meaning that there are x LPEs, y RPEs,

u stages in the pipeline of each PE, and v split
request-response units in each pipeline. The simplest
coherence controller includes one LPE (x = 1), no RPEs
(y = 0), one pipeline stage (v = 1), and one execution
unit (v = 1), and the LPE handles both remote and local
requests. Parallelism in any of the dimensions can be
added one element at a time or simultaneously depending
on the coherence throughput requirement of the system.
In this study we explore only that part of the design
space of the tuple LnyPuSv which seems feasible.

Everest uses a new coherency directory design called
the complete and concise remote (CCR) directory. The
CCR directory preserves the properties of a full-map
directory [1, 5] and is comparable in size to a sparse
directory [4]. The CCR directory design provides higher
bandwidth than conventional full-map directories without
losing the benefits of such directories. Everest provides an
independent directory cache [6] in each LPE to reduce the
average latency of directory lookups. The RPEs do not
have to access the directory.

The interpartition communication facility is tightly
coupled to the protocol engines, which provide it with
high-bandwidth, low-latency access to memory. User
applications in different system partitions can establish
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communication channels through a trusted kernel agent.
Once established, send/receive (send/recv) or remote
direct memory access (RDMA)-type transfers can be
initiated in user space. The user application creates lists of
instructions in its own address space and then signals the
IPC facility that it has work for the IPC to do. The IPC
facility fetches the instructions from memory, performs the
requested communication operations asynchronously, and
reports status back to the user when communication is
complete.

The tables used by the IPC for maintaining channel
state and an address translation cache are located in the
same memory as the CCR directory. Both the CCR and
the IPC tables demand high-bandwidth access to a
relatively large amount of memory, which may best be
provided by embedded on-chip DRAM. External double-
data-rate SDRAM is a practical alternative.

Multiple protocol engines

A protocol engine in Everest is a self-contained

protocol processing unit that handles protocol activities
independently of other PEs and shares as little resource
as possible with another PE. The RPEs do not access
the CCR directory. The LPEs may share the same CCR
directory, but each of them has associated with it a large
directory cache which minimizes the contention at the
CCR directory due to the LPEs. Each PE also has its own
exclusive pending buffer (PB), which is used as a scratch
pad for protocol operations in progress.
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Each of the multiple RPEs or multiple LPEs handles a
non-overlapping region of physical memory. The multiple
PEs can be assigned to interleaved memory regions by
using address bits at any position in the physical address.
However, low-order memory interleaving assignment
of the PEs intuitively results in less contention, as
consecutive memory accesses go to different PEs. The
simulation results presented here use low-order memory
interleaving. If there are two LPEs, for example, one of
them handles the odd memory lines and the other handles
the even memory lines.

Pipelined protocol handling

The operations that process a coherence transaction, such
as arbitration among incoming queues, pending buffer
and directory lookup, and directory updates, would take
several cycles if performed in a single pipeline stage.
Protocol processing operations can be broken into low-
latency pipeline stages to increase coherence-controller
throughput. The Everest pipeline consists of four stages,
as shown in Figure 3. In the first stage, a transaction

is fetched from an input queue and pre-decoded to
determine whether it is a coherence request or response.
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In the second stage, the directory and pending buffer

are read. If the transaction is a request, lookups are
performed in both the directory cache and the pending
buffer. However, if the transaction is a response, only the
pending buffer is read. In the third stage, the transaction
plus the results of the directory cache and pending buffer
lookup are presented to a protocol-handling unit for
execution (in the split request-response case, there are
multiple protocol-handling units in each protocol engine).
In the fourth stage, the pending buffer and directory
cache are updated, and one or more new transactions are
issued to the transport layer of the appropriate output
network port.

The directory cache plays a central role in this decision
space for the Everest architecture. The deeper the
pipeline and the smaller the directory cache, the higher
the controller clock rate. However, this is generally
achieved at the expense of lower directory cache hit rates
and longer transaction latencies. Directory cache capacity
and hit rates can be increased by increasing the cycle time,
but this increases the occupancy of the entire controller.
Consequently, we restrict our consideration to single-cycle
directory caches in Everest.

Split request-response handling
Within each PE, two independent protocol-handling units
can be used concurrently, one for protocol request
transactions and one for response transactions. The
motivation for separating request and response handling
arises from the observation that they access the pending
buffer differently. When a request is processed, an
associative lookup of the pending buffer is needed for
collision' detection, and a pending buffer® entry is
allocated if no collision is detected. The index of the
allocated pending buffer entry is assigned to all
downstream transactions generated as a result of
processing the request. The transient directory state is also
saved in the allocated pending buffer entry. Each response
carries a pending buffer index that is used to retrieve the
content of the corresponding pending buffer entry when
it arrives back at the coherence controller from which
the corresponding request was generated. No collision
detection is necessary in the case of responses, since any
possible collision would have been resolved when the
corresponding request first came in.

Noting this distinction, we separate the pending buffer into
associative and indexed halves, as illustrated in Figure 4.
The associative half (PBA, where A stands for address)

1 Collision occurs when an incoming request to a coherence controller is for a
cache line that has another request associated with it still in progress in the same
coherence controller.

2 A pending buffer holds transient state and other information associated with a
request for a cache line to a coherence controller for as long as the request is
considered still in progress from the point of view of the coherence controller,
according to the cache coherence protocol.
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contains the address of the transaction in progress and a
valid bit. The indexed half (PBC, where C stands for
content) maintains the state of the pending transaction.
Supporting multiple ports on the non-associative PBC
portion is relatively easy and allows simultaneous accesses
by request and response handlers. The PBC is multi-
ported, with two read ports and two write ports: one
read-write pair for the request stream and another pair
for the response stream. The PBA is single-ported and
supports associative lookup for requests.

Figure 5 shows a local protocol engine with split
request-response handling. There are two request queues
on the input and two on the output of the protocol
engine. One is for transactions that travel for one
“hop” in the network and the first requests of two-hop
transactions. The other is for second requests of two-hop
transactions. Second-hop requests have priority over first-
hop requests in the case of multi-hop transactions. This
is done for the purpose of avoiding common deadlock
conditions that can arise if first-hop requests are allowed
to block second-hop requests. Note that the Everest
NUMA protocol assumes a network that provides a
minimum of three virtual channels, one for responses and
two for requests. Virtual channels use the same physical
network to emulate multiple separate networks, thus
preventing traffic on one virtual channel from blocking
traffic on other virtual channels indefinitely. These
channels correspond to the input and output queues
shown in Figure 5.

The fetch unit retrieves a request or a response and
dispatches it to the lookup unit. If it is a request, the
lookup unit launches reads to the PBA and the directory
cache. If there is a hit in the directory cache and no
collision in the pending buffer, the transaction is
forwarded to the request protocol-handling unit for
execution and an entry in the pending buffer is allocated.
If there is a collision in the pending buffer, the content of
the existing entry is forwarded to the request protocol-
handling unit to handle the collision.

If the directory cache misses (and there is no collision),
the content of the directory cache set that missed is
passed along to the directory cache controller, which
determines whether an eviction is required. If so, the
directory controller launches a writeback to the directory.
The request protocol-handling unit is notified of the
directory cache miss and responds by enqueuing the
transaction in the sleep queue. When the response
from the directory is received, the directory controller
reactivates the transaction in the sleep queue. The fetch
unit will eventually fetch the transaction from the sleep
queue and reprocess it. The request protocol-handling unit
processes the transaction and updates the pending buffer.
It also generates new request(s) and/or response(s), which
it inserts into the output queues.
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Response processing is somewhat less involved than
request processing. As noted, in the lookup phase the
PBC is read instead of the PBA. Since there is no
directory cache lookup, the transaction is passed
deterministically to the response protocol-handling unit
for execution. The response protocol-handling unit may
generate new responses, which it launches by inserting
them into output queues. It also updates the PBC on a
dedicated write port and schedules a directory cache
update, if applicable, through the directory controller.

Remote protocol engines (Figure 6) are very similar to
local protocol engines, except that they do not contain a
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directory cache or a sleep queue. Consequently, they
operate much more deterministically than local protocol
engines. Also, the coherence protocol is very different
for remote memory transactions and local memory
transactions. Therefore, separate local and remote
protocol engines not only increase the degree of
parallelism in the controller, but also simplify protocol
engine design.

CCR directory

The complete and concise remote (CCR) directory in
Everest maintains state information on the memory lines
belonging to the local home memory that are cached in
the remote nodes. This is done by keeping a shadow of
each shared-cache directory or remote-cache directory in
the system [except for the shared cache(s) in the local
node] in the CCR directory of the local node. As an
example, the CCR directory in a 64-way system built using
eight-way nodes per coherence controller consists of seven
shadow directories in each coherence controller. Figure 7
shows the organization of the CCR directory for this
configuration. The shared cache or the remote cache in
each SMP node is assumed to be 64MB, four-way set-
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associative with 64-byte lines. Each shared or remote
cache has 256K sets.

A shadow in the CCR directory also contains 256K sets,
each set containing state bits for four cache lines. Even
though a shadow has enough space to keep the state
information on all of the lines in the remote cache it
represents, it keeps the state information on only the lines
in the remote cache that belong to the local home memory.
For example, in Figure 7 the shadow directory C contains
the state bits for the lines belonging to home memory A
that are currently in remote cache C. However, the lines
in remote cache C belonging to memories C through H
are not represented in the shadow of C in the CCR
directory of node A.

In order to maintain an exact shadow of the remote
caches, the CCR directory requires the remote-cache
controller to inform the home-coherence controller
containing the shadow when the remote cache evicts a line
corresponding to the memory of that home node. Since
the degree of associativity of the shadow in the CCR
directory is the same as the degree of associativity of the
corresponding remote cache, and the CCR directory is
informed about the evictions from the remote cache, it is
guaranteed that a CCR set in the shadow will always have
a slot available when the remote cache has to allocate a
new line in that set. Therefore, a directory entry is never
evicted from the CCR unless the line is also being evicted
in the corresponding remote cache.

The division of the address fields for accessing a CCR
directory assuming a 40-bit system-wide physical address is
shown in Figure 7. Each entry in a shadow keeps a 14-bit
tag and two state bits. The presence bit P tells whether
the line is present in the corresponding remote cache, and
the modified bit M tells whether the line is modified in
that cache. The P bit in all of the CCR directory entries is
initialized to 0 at system reset. The states of a line in the
corresponding remote cache interpreted from the P and M
bits are shown in the table in Figure 7.

CCR directory vs. sparse and full-map directories

By keeping the information on the exact number of
remotely cached lines, the CCR directory provides a
dynamic full-map directory [5] of currently shared lines.
Consequently, the CCR directory offers all the advantages
of a full-map directory. In contrast, a sparse directory
keeps the state information on only a subset of the
memory lines that could have been remotely cached in
a full-map directory scheme, which leads to inferior
performance and a complex protocol compared to

a full-map directory.

It is theoretically possible to modify the original sparse
directory scheme to keep information equivalent to the
CCR directory. The enhanced sparse directory would also
receive evict information from the remote caches and
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would have sufficient space to shadow the remote caches.
In that case, the sparse directory would have to have an
associativity of n X w in a system with n remote caches
which are w-way set-associative, and would require a huge
multiplexor to obtain the presence-bit vector when there is
a hit. On the other hand, the CCR directory contains n
w-way shadows that would require only small muxes to
obtain the directory information. Gathering the presence-
bit information from the n possible hits is a simple logic
operation. Thus, the CCR directory would avoid the extra
latency penalty of a large mux of the enhanced sparse
directory. Figure 8 compares the two schemes for the
example system of Figure 7.

The amounts of memory required to implement various
directory schemes for the same example system as in
Figure 7 are compared in Table 1, which makes the
following assumptions. A conventional four-way sparse
directory would have to have 256K to 2M sets to obtain
a good hit rate. Each entry in the conventional sparse
directory or the enhanced sparse directory would require
about two bytes for tag and state and one byte for
presence vector (a total of three bytes per entry). Each of
the CCR directory entries would require two bytes for tag
and state. A full-map directory entry requires 1.25 bytes
to store the presence vector and state. For this example
configuration, the CCR directory is two orders of
magnitude smaller than the full-map directory and is
comparable in size to the conventional and enhanced
sparse directories.

Combining property of the CCR directory

Theoretically, a system can have only one CCR directory,
and to maintain coherence among all the nodes, every
single CCR directory has the same size as the total
remote-cache directory in the system. If there is only

one SMP (and hence one remote cache) per coherence
controller, the system will have as many CCR directories
as the number of remote caches. However, if there are
two SMPs per coherence controller, the number of
coherence controllers, and hence the number of CCR
directories, is half the number of remote caches. In other
words, a single CCR is capable of representing multiple
memory nodes at the home coherence controller. Thus, the
CCR directory size per SMP is inversely proportional to the
number of SMPs connected to the coherence controller.

Directory cache

Everest uses one directory cache per LPE to provide high-
throughput directory access. The use of a directory cache
has been studied in [6]. In this paper we present the
design of a directory cache specific to the CCR directory
design, which is not discussed in [6]. The state information
on a cache line in the directory cache is equivalent to the
state information on that cache line in the CCR directory,
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Table 1 Memory requirement for various directory
schemes.

Conventional Enhanced CCR  Full map
sparse sparse

Directory size 3-24 MB 24 MB 16 MB 2500 MB

but the formats of the state information are different in
each case. The directory cache keeps the state information
in a more compact form than the CCR. The directory
cache in each LPE has a one-cycle lookup time and is
as large as can be accommodated on the controller chip
without exceeding the one-cycle access time. Although we
do not use a second-level directory cache in our study, a
second-level directory cache may prove beneficial if there
is space on the controller chip. Figure 9 shows how an
incoming memory address is used to access a directory-
cache entry for 8K entries in a four-way set-associative
directory cache with two entries per directory-cache line.
An entry in the directory cache contains two sets of
presence vectors, two valid (V) bits, two modified (M)
bits, and two change (C) bits corresponding to the two
cache lines it represents. The seven presence bits
correspond to the seven remote caches. The V bit
determines whether the information on the corresponding
cache line in the directory cache is valid. The V bits of all
directory-cache entries are initialized to 0 at reset. The M
bit indicates whether the line is modified in one of the
remote caches. The C bit indicates whether the directory
entry has been changed since being cached in the
directory cache.
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Interpartition communication facility

The IPC facility in Everest is designed to support direct
user-space access to hardware in a secure manner, thus
providing low-latency communication. High bandwidth

is an independent goal, which is supported by the tight
coupling of the IPC to the coherence protocol engines.
The IPC supports a secure, connection-oriented type of
communication. A user establishes interpartition channels
through a trusted kernel agent. Once established,
send/recv-type transfers can be initiated in user space over
the channels on scatter/gather buffer lists. The IPC has an
address translation capability that provides the user with
a means of specifying buffer addresses in its own virtual
address space. Transfers are cache-coherent within each
partition. Delivery is reliable and in order. Failures do
not propagate between partitions.

The IPC supports multiple protected bidirectional
communication channels. Each channel consists of two
endpoints, and an endpoint consists of a pinned channel
buffer and a doorbell. A channel buffer is a memory area
that contains the data a user wishes to transfer, which can
be read or written by the IPC and the user process. The
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IPC also requires a pinned memory area for message
descriptors, through which a user describes the transfers
it wishes the IPC to perform on its behalf. The channel
buffers and descriptor area are typically not contiguous in
real address space. A doorbell is an address in memory-
mapped I/O space where the user signals the IPC that it
has work for it to do on a particular channel. Typically,
an IPC facility on a node is used to support a channel
with an endpoint associated with memory at that node.
However, this is only a performance optimization.

Channel buffers are specified to the IPC in a
pseudovirtual address form. This address form is
generated for the user by a trusted kernel agent that takes
as input a user-space address of a virtually contiguous
memory area. The kernel agent determines the
corresponding physical addresses of the associated
memory pages, then pins and maps them into a
translation-and-protection table (TPT) in main memory
accessible to the IPC. Each entry in the TPT maps one
page. The pseudovirtual address handed back to the user
consists of an index into the TPT and an offset in the
page mapped by a TPT entry. Multiple contiguous TPT
entries are used to map multi-page buffers.

Figure 10 illustrates how the doorbell mechanism works.
Each channel endpoint created by the kernel agent for a
user process consumes one OS page table entry (i.e., one
page of virtual address space). This ensures that one user
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will never be able to ring another user’s doorbell. To
simplify the task of identifying a memory-mapped I/O
(MMIO) to a doorbell, the pages are restricted to a
contiguous physical address range. A simple range check is
then adequate. Once the MMIO is identified as a doorbell
ring, both the doorbell address and the data are stored

in a doorbell queue if space is available. The address is
interpreted by the IPC as a channel handle and the data
fields as a message descriptor handle. If the queue is full
when software issues a write to a doorbell, the command
will not be enqueued, and software must explicitly retry
the write. To ascertain whether the command was
accepted into the command queue, software reads the
doorbell location after the write. The read returns the last
descriptor handle enqueued in the doorbell queue. If the
handle returned does not match the one written, software
assumes that it was not accepted into the doorbell queue.
The IPC drops the command if the queue is full or if the
write that submitted the command is followed by any
doorbell access other than a read to the same doorbell
address. In this case, an invalid descriptor handle is
returned.

When the IPC fetches a doorbell from the queue, it
uses the channel handle to locate a channel descriptor in
a channel attribute table (CHAT). To locate a channel
descriptor in the channel attribute table, the IPC
substitutes the upper bits of the CHAT base address
for the upper bits of the doorbell address, as shown in
Figure 10. A channel descriptor contains the base address
and length of an address translation table (tpt_base/len)
associated with the channel, a memory protection tag
(tpt_ptag) that facilitates secure sharing of TPT tables by
multiple channels, a channel protection tag (chan_ptag)
that facilitates secure sharing of a single destination-
channel endpoint by multiple source-channel endpoints,
a descriptor handle that points to the head of a list of
descriptors associated with the channel, and a chaining
pointer (next_ch) used to chain channels with pending
work into an active channel list. The active channel
list is used by the IPC to allocate network bandwidth to
channels. Each channel is given a quantum of bandwidth
on the network, as the IPC traverses the active channel
list. When all of the transfers specified in the message
descriptor list of a channel are complete, the channel is
deleted from the active list.

Once the IPC has a copy of the channel descriptor, it
can locate the address translation table and the message
descriptor list associated with the doorbell ring. For this,
the IPC uses the message descriptor handle provided
in the doorbell ring or from the channel descriptor
(head_mdh). When processing a doorbell, the IPC first
checks to see whether the channel is already in the active
list. If it is, the channel descriptor need not be enqueued
there, and the IPC uses the head message descriptor
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handle from the channel descriptor to locate the first
message descriptor in the list. If the channel descriptor is
not in the active list, the IPC inserts it there and uses the
message descriptor handle from the doorbell to locate the
head of the message descriptor list. If, when the channel’s
bandwidth quantum is consumed, there are still pending
message descriptors in the list, the next one to be
processed on the next pass around the active channel list
is recorded in the channel descriptor (head_mdh) as the
new head of the descriptor list.

Figure 11 illustrates how the IPC identifies the location
of a message descriptor and its associated channel buffer
in memory. A message descriptor handle consists of two
parts. The first part (descr_index) is an index into the TPT
table. This gives the location of the physical memory page
where the message descriptor is located. The second part
(descr_offset) indicates where in that page the descriptor
is located. A message descriptor specifies the remote
partition (remote_pid), the channel endpoint in the
remote partition (remote_ch), transfer status (status),

a scatter/gather list of data segments (data_seg), and a
chaining pointer (next_mdh) that the user uses to create
message descriptor lists. The remote-channel endpoint
field is used by the kernel agent to connect channel
endpoints in two different partitions to form a connection-
oriented channel. The status field is used by the IPC

to report status back to the user on completion of the
transfer requested in the message descriptor. The number
of data segments in a descriptor varies by channel, but is
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fixed within a channel. A data segment consists of three
parts: an index into the TPT (tpt_index) indicating the
physical memory page where the start of the channel
buffer is located, the offset in that page of the start of
the channel buffer, and the size of the segment (xfer_len).
Multiple contiguous TPT entries (up to one page) may be
indicated to span the transfer length of any given segment.
A TPT entry consists of two parts: a protection tag (ptag)
and the physical memory page address (page_addr). For
each memory reference, the memory protection tag
(tpt_tag) in the channel descriptor is compared against
the one in the TPT entry. If they do not match, an

error is reported and the transfer is aborted.

To summarize: A send operation on an established
channel begins with a user process creating a list of
descriptors in a preregistered memory area. The user
then rings his channel doorbell (i.e., an MMIO write to
the location associated with the channel). The IPC ascertains
the location of the corresponding channel descriptor in
IPC memory, which indicates the location in main memory
of an address translation table (TPT) and possibly the
head of a message descriptor list. The IPC translates
the channel buffer addresses specified in the message
descriptors, performs a direct memory access (DMA)
to obtain their content from memory, packages it into
network packets, and transmits the packets to the remote
channel endpoint specified in the message descriptor
(remote_pid, remote_ch). The channel protection tag
(chan_ptag) is sent along in each packet and checked
against the channel protection tag registered at the remote
endpoint. A protection tag violation aborts the transfer.
When all of the packets associated with a message have
been successfully received, the remote-channel endpoint
sends a notification back to the sender. When the sending
endpoint receives this notification, it reports status back

A. K. NANDA ET AL.

to the user in the corresponding message descriptor. Not
shown are controls in the message descriptor that can be
set by the user to request an interrupt upon completion.
Completion interrupts can be specified at either channel
endpoint.

Figure 11 illustrates send-side processing. An analogous
process is performed for receive-side processing. The
remote channel ID and channel protection tag are sent in
message packets to the destination node and are used by
the IPC there to perform secure CHAT lookups. From
that point, the procedure for identifying receive DMA
descriptors and TPT entries is the same as for send-side
processing, except that it is performed on the CHAT
and TPT in the remote partition.

Note that only send/recv-style communication is
supported by the IPC. Remote DMA (RDMA) is a
desirable and rather straightforward extension. Essentially,
an RDMA message descriptor type must be defined with
data segments that specify both local- and remote-channel
buffers (i.e., local and remote tpt_index and offset). These
are sent along in the message packets and are used by the
remote IPC to locate the channel buffer, rather than
looking up a receive-message descriptor.

Protocol RAM

The Everest architecture employs a flexible, high-
throughput implementation of the protocol finite-state
machine (FSM) using a programmable protocol RAM.
The operation of the protocol RAM spans three pipeline
stages, as shown in Figure 12. The first stage involves a
lookup in the request-response-encode RAM modules,
which occurs in the PB/DC lookup stage of the Everest
pipeline. These lookups produce an index. In the second
stage, the index produced in the first stage is used for
lookup in the main protocol RAM, resulting in a vector of
encoded protocol outputs, such as outgoing messages and
changes in state. In the third stage, the outgoing message
component of the protocol output is decoded, using the
outgoing-message-decode RAM, into messages compatible
with the CC interfaces.

All three types of programmable protocol RAM—
request-response encode, protocol, and outgoing-message
decode—are direct-mapped with one-cycle access time. A
typical size for the request-response-encode RAM and the
outgoing-message-decode RAM is 32 entries with 8 bits
each. The size of the main protocol RAM is dependent on
the number of index bits used for accessing it. A typical
range for the index size is 10-12 bits, resulting in protocol
RAM size of 1-4K entries. Each entry is typically 40 bits,
representing an encoding of protocol actions.

In comparison to fully hardwired protocol FSM,
the presented implementation offers flexibility for
postproduction changes to the coherence protocol
without sacrificing performance, since the occupancy
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Table 2 Benchmark types and datasets.

Application Type Problem size
FFT FFT computation 256K complex doubles
Water-Nsq Study of forces and potentials of 512 molecules

water molecules in a 3D grid
TPC-C Benchmark of on-line transaction 500MB database

processing workload

of the protocol FSM remains at one cycle, with negligible
(if any) increase in latency. In comparison to protocol
processors, the presented implementation offers substantial
advantages in performance, with an order-of-magnitude
improvement in occupancy and latency without
sacrificing flexibility.

3. Simulation results

In this section we present simulation results of the effect
on system performance of three of the main features of
the Everest architecture. The three throughput-enhancing
features are multiple PEs, split request-response PEs,
and pipelining. We investigate the synergy among these
architectural features and their effect on CC performance.

Base system parameters

The base simulated system includes eight (four for
commercial applications) 150-MHz CCs connected through
a fast switch with 90-ns no-contention latency [7]. Attached
to each CC is an SMP that includes four 600-MHz
PowerPC processors with 32KB L1 and 1MB L2 four-
way set-associative LRU caches with 64B cache lines,

a 16MB remote cache, interleaved main memory, and a
150-MHz pipelined, split-transaction SMP bus. The base
architecture includes a CC without any of the features
under study. We use its performance as a comparison
point for the performance of other configurations with
more features. In our experiments we vary the number of
SMP nodes connected to each CC and the total number
of CCs in the system (while keeping the total number

of processors fixed) to vary the load on the CCs.

Experimental methodology
We use execution-driven simulation based on a PowerPC
version of the Augmint simulation tool kit [9]. Our
simulator includes detailed contention models for SMP
buses, memory controllers, interleaved memory banks,
protocol engine pipelines, directory memory, and external
point contention for the interconnection network.

We use both commercial and scientific benchmarks in
the performance experiments. We select three applications
out of the eight that we evaluated in our paper on high-
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throughput coherence controllers [7]: a commercial
workload, a communication-intensive scientific application,
and a computation-intensive scientific application. The
commercial workload is a trace of 400 million instructions
of TPC-C** [10] running on IBM DB2* [11] using 500MB
memory-resident databases running on 32-processor
systems. We collected the commercial trace using the
COMPASS [12] environment. The scientific benchmarks
are FFT and Water-Nsq from the SPLASH-2 suite [13] of
parallel applications running on 64-processor systems. The
dataset sizes we use for the SPLASH-2 applications are

as given in Table 2. All benchmarks are written in C and
compiled using the IBM XLC C compiler with optimization
level O2. All experimental results reported in this paper
are for the parallel phase only of these applications.

Performance results

To capture the effect of each feature on system
performance, we ran experiments on the base system
configuration and then added the throughput-enhancing
features to the CCs to investigate their effect on system
performance.

Figures 13, 14, and 15 show the performance impact of
the features under study on various system configurations.
In these experiments we keep the total number of
processors in the system constant and vary the number of
SMPs connected to each CC. For the FFT and Water-Nsq
we use configurations of four CCs with four SMPs each,
eight CCs with two SMPs each, and sixteen CCs with
one SMP each. For the commercial workload we use a
configuration of two CCs with four SMPs each, four
CCs with two SMPs each, and eight CCs with one SMP
each. In all of these cases, each SMP includes four
Processors.

Figure 13 shows the improvement in execution time
of FFT for systems with various combinations of CC
architectural features over a system without any features.
The leftmost group of seven bars shows the improvement
on a system with one SMP connected to each CC. The
three leftmost bars of this group show the improvement
when one of the three throughput-enhancing features is
applied to the CCs. The execution time is reduced on
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average by 10%. The next set of three bars shows the
improvement in execution time when two of three features
are used in the CCs. The rightmost bar shows the
improvement when all three features are utilized in the
CCs. Even though FFT is a communication-intensive
application, applying two or three of the features does not
offer significantly better improvement over the CCs with a
single feature, because there is not much contention at the
CCs for the configuration with one SMP per CC.

The collection of bars in the center of Figure 13 shows
the improvement in execution time as we halve the
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number of CCs in the system by connecting two SMPs to
each CC. The leftmost bar shows that the execution time
of the system with no throughput-enhancing features
underperforms the base system with one SMP per CC,
because there are fewer CCs in the system for the same
number of concurrent coherence transactions. For high-
communication applications such as FFT, even though the
portion of local data is greater in the systems with fewer
CCs, the high contention at the CCs negates any benefit
of the extra data locality. However, applying any of the
parallel features allows the system to maintain its
performance, but with fewer CCs. For instance, the
second, third, and fourth bars show that when one of the
three features is applied, the reduction in execution time
is even better than for the configurations with one SMP
per CC and one throughput-enhancing feature per CC.
The fifth, sixth, and seventh bars show that the execution
time can be further reduced by using two throughput-
enhancing features, because contention is higher in the
configurations with two SMPs per CC than in those with
one SMP per CC. The last bar shows that using all three
features does not offer any significant reduction in
execution time because much of the contention is
already greatly reduced with only two features.

The rightmost group of bars in Figure 13 shows
the impact of the three features on performance in
configurations with the number of CCs a quarter of the
base configuration. The first bar shows that when no
features are used, the significant contention at the CC
reduces the performance to about half that of the base
configuration. When a single feature is added to the CCs,
the second to fourth bars show that the performance is
comparable to that of the base configuration, even with a
quarter of the number of CCs in the system. The next
three bars show that when two features are used in the
CCs, the execution time is reduced by about 27%. The last
bar indicates that using all three features continues to
provide benefits.

Figure 14 illustrates the impact of the three
architectural features on Water-Nsq, which is a low-
communication application. The left group of bars shows
that applying a single feature to the CCs offers little
improvement in execution time. Execution time for
the pipelined PE can grow if there are not enough
overlapping coherence transactions at the CCs to offset
the extra latency of the pipelined PE (three cycles for
pipelined vs. two cycles for non-pipelined). The second,
fourth, sixth, and seventh bars illustrate the negative effect
of pipelining on execution times for low-communication
applications.

The second and third groups of bars show that, even
with more SMPs per CC, there are not enough concurrent
coherence activities to increase the contention at the CCs
to a level that can negate the benefit of data locality. As
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shown in the first bar of each of the two groups, the
execution times of Water-Nsq actually improve over those
of the base case because there are fewer accesses to
remote nodes as the number of CCs is reduced. In fact,
many requests are satisfied by caches on one of the two
buses connected to the local CC or by the local memory
module. The rest of the bars indicate that adding more
features does not offer further benefit after the
incorporation of one feature in the CCs, because
contention at the CC is no longer significant.

Figure 15 shows the impact of the throughput-enhancing
features on the performance of TPC-C. The chart shows a
trend similar to that of Figure 14, although the degree of
reduction in execution time is greater for TPC-C because
it has higher-coherence traffic than Water-Nsq.

4. Related work

Everest provides the capability to process multiple
requests and responses per coherence-controller cycle.
In this section we discuss the throughput capabilities of
other systems.

The Magic coherence controller of the Stanford FLASH
[14] system uses a custom protocol processor to process
protocol handlers. Each handler typically takes tens of
cycles. Since each Magic chip contains only one protocol-
processor core, it can process only one request or
response at a time and can employ neither aggressive
pipelining nor parallelism between requests and responses.
Accordingly, Magic throughput cannot exceed one handler
in tens of cycles.

The Sequent Sting [2] and Sun s3,mp [15] systems
employ two microsequencers for processing protocol
handlers. Each handler takes tens of cycles. Even
after doubling throughput at best by employing two
microsequencers, the throughput of these systems is one
protocol handler in tens of cycles.

Systems that employ off-chip protocol processors such
as Typhoon [16] can achieve only significantly lower
throughput, even when employing multiple protocol
processors.

Hardware-based coherence controllers in systems
such as Dash [5] and Alewife [17] can achieve better
performance than the above-mentioned system, but not
close to that of Everest, since they do not employ any
kind of parallelism.

5. Conclusions

In this paper we describe the Everest architecture. Everest
achieves high-throughput protocol processing by providing
parallelism in three dimensions—parallel protocol engines,
pipelined execution, and split request-response handling.
Everest uses a new directory design called the complete
and concise remote (CCR) directory, which uses roughly
the same amount of memory as a sparse directory but
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retains the benefits of a full-map directory. Everest also
supports system partitioning and provides a tightly
integrated facility for secure, high-performance
communication between partitions.

The Everest design space was explored using both
technical and commercial workloads. The results show that
using parallelism in any of the three dimensions provides
similar benefits. For high-communication applications such
as FFT, combinations of the three dimensions provide
additional improvements. However, applying more
aggressive parallelism yields diminishing returns when
the throughput of the CC is more than adequate.

We also examine the effect of multiple SMPs connected
to each CC. The performance benefits become more
prominent as the number of processors handled by the
coherence controller increases. Using combinations
of the three dimensions continues to bring significant
performance gain for high-communication applications.
With multiple SMPs sharing a single CC, the numbers of
CC nodes in the system and the interconnection network
are smaller. This can reduce the cost of the system, with a
small increase in CC complexity as multiple PEs, pipeline,
and split request-response handling are employed. The
results on relative performance gain while adding
incremental parallelism in one or more dimensions can be
used by designers to determine performance/complexity
tradeoffs on specific Everest implementations.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intel Corporation or
Transaction Processing Performance Council. 241

A. K. NANDA ET AL.



242

References

1.

10.

11.

12.

13.

14.

15.

J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA
Highly Scalable Server,” Proceedings of the 24th Annual
International Symposium on Computer Architecture, 1997,
pp. 241-251.

. T. Lovett and R. Clapp, “STING: A CC-NUMA

Computer System for the Commercial Marketplace,”
Proceedings of the 23rd Annual International Symposium
on Computer Architecture, May 1996, pp. 308-317.

. W.-D. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki,

and W. Wilcke, “The Mercury Interconnect Architecture:
A Cost-Effective Infrastructure for High-Performance
Servers,” Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997, pp. 98-107.

. W.-D. Weber, “Scalable Directories for Cache-Coherent

Shared Memory Multiprocessors,” Ph.D. Thesis, Stanford
University, CA, 1993.

. D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,

A. Gupta, J. Hennessy, M. Horowitz, and M. Lam, “The
Stanford DASH Multiprocessor,” IEEE Computer 25,
63-79 (March 1992).

. M. M. Michael and A. Nanda, “Design and Performance

of Directory Caches for Scalable Shared Memory
Multiprocessors,” Proceedings of the Fifth International
Symposium on High Performance Computer Architecture,
HPCA-5, IEEE, 1999, pp. 142-151.

. A. K. Nanda, A.-T. Nguyen, M. M. Michael, and D. J.

Joseph, “High-Throughput Coherence Controllers,”
Proceedings of the Sixth International Symposium on High
Performance Computer Architecture, HPCA-6, IEEE, 2000,
pp. 284-289.

. M. M. Michael, A. K. Nanda, B.-H. Lim, and M. Scott,

“Coherence Controller Architectures for SMP-Based
CC-NUMA Multiprocessors,” Proceedings of the 24th
Annual International Symposium on Computer Architecture,
1997, pp. 219-228.

. A.-T. Nguyen, M. M. Michael, A. Sharma, and J.

Torrellas, “The Augmint Multiprocessor Simulation
Toolkit for Intel x86 Architectures,” Proceedings of the
International Conference on Computer Design, October
1996, pp. 486-490.

Transaction Processing Performance Council, TPC
Benchmark D and TPC Benchmark C: Standard
Specifications; http://www.tpc.org.

IBM Corporation, DATABASE 2 Information and
Concepts Guide for Common Servers Version 2, Order No.
S20H-4664-00, May 1995.

A. K. Nanda, Y. Hu, M. Ohara, C. Benveniste,

M. Giampapa, and M. M. Michael, “The Design of
COMPASS: An Execution Driven Simulator for
Commercial Applications Running on Shared Memory
Multiprocessors,” Proceedings of the First Merged
International Parallel Processing Symposium and
Symposium on Parallel and Distributed Processing, 1998,
pp- 503-509.

S. C. Woo, M. Ohara, E. Torri, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proceedings of the 22nd
International Symposium on Computer Architecture, June
1995, pp. 24-36.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy,
“The Stanford FLASH multiprocessor,” Proceedings of
the 21st Annual International Symposium on Computer
Architecture, April 1994, pp. 302-313.

A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, M. Parkin,
B. Radke, and S. Vishi, “The S3.mp Scalable Shared
Memory Multiprocessor,” Proceedings of the 1995
International Conference on Parallel Processing, Vol. 1,
August 1995, pp. 1-10.

A. K. NANDA ET AL.

16. Steven K. Reinhardt, James R. Larus, and David A.

Wood, “Tempest and Typhoon: User-Level Shared
Memory,” Proceedings of the 21st Annual International
Symposium on Computer Architecture, April 1994, pp.
325-336.

17. A. Agarwal, R. Binchini, D. Chaiken, K. Johnson,

D. Kranz, J. Kubiatowicz, B. Lim, K. Mackenzie, and

D. Yeung, “The MIT Alewife Machine: Architecture and
Performance,” Proceedings of the 22nd International
Symposium on Computer Architecture, May 1995, pp. 2-13.

Received September 18, 2000; accepted for publication
February 11, 2001

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001



Ashwini K. Nanda IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (ashwini@us.ibm.com). Dr. Nanda is a Research
Staff Member at the IBM Thomas J. Watson Research Center
in Yorktown Heights, New York, where he also manages the
Scalable Server Architecture group. Dr. Nanda’s research
interests include computer architecture and shared-memory
system design and performance, with an emphasis on
commercial applications. He is currently involved in several
research projects at IBM, including MemorIES (Memory
Instrumentation and Emulation System), High Throughput
Coherence Controllers, and the Watson Commercial Server
Performance Laboratory. He is also a member of the
architecture and design team for IBM’s next-generation
NUMA-Q machines.

Anthony-Trung Nguyen University of Illinois,
Urbana—-Champaign, 1304 West Springfield Avenue, Urbana,
[llinois 61801 (anguyen@cs.uiuc.edu). Mr. Nguyen is a Ph.D.
candidate in the Computer Science Department at UIUC. He
previously had a two-year assignment with the Scalable
Systems Group at the IBM Thomas J. Watson Research
Center, where he worked on coherence controller
architectures for scalable servers. His research interests are
computer architecture and performance analysis. Mr. Nguyen
received an S.B. degree from the Massachusetts Institute of
Technology and an M.Eng. degree from Cornell University.

Maged M. Michael IBM Research Division, Thomas

J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (magedm @us.ibm.com). Dr. Michael received
the Ph.D. degree in computer science from the University

of Rochester in 1997. He is currently a Research Staff
Member at the IBM Thomas J. Watson Research Center in
Yorktown Heights, New York. His research interests include
multiprocessor architecture, cache coherence, theory of
distributed computing, concurrent algorithms, multiprocessor
synchronization, and multiprocessor simulation.

Douglas J. Joseph IBM Research Division, Thomas

J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (djoseph@us.ibm.com). Dr. Joseph received

a Ph.D. degree in computer science from the University

of Colorado in 1997. He is currently at the IBM Thomas

J. Watson Research Center, where he is involved in high-end
scalable architecture. His interests include scalable cache
coherence controller and high-performance SAN architectures
for next-generation I/O and cluster messaging, communication
library and operating system support for next-generation
SANSs, and dynamic partitioning.

IBM J. RES. & DEV. VOL. 45 NO. 2 MARCH 2001

A. K. NANDA ET AL.

243



