S/390

MICroprocessor

design

by C.F. Webb

The technical, business, and market
requirements for large enterprise servers
(“mainframes”) strongly influence the design
of microprocessors for these systems.
Specific characteristics of the ESA/390 and
z/Architecture instruction set architectures
lead to different pipeline and branch prediction
strategies than are found in most other
microprocessors. The requirements for robust,
scalable performance across a wide range of
workloads, highly efficient logical partitioning,
and very high hardware reliability affect the
cache structure, internal code, and hardware
fault detection and recovery designs.

Introduction
At one level, all microprocessor designers face essentially
the same challenges of balancing performance, schedule,
and cost while conforming to the physical rules of the
silicon technology and to the logical requirements of the
instruction set architecture (ISA) for which the processor
is being designed. This commonality of constraints tends
to produce considerable similarity among microprocessor
designs across the industry. At another level, however,
unique requirements for the ISA, system applications, or a
targeted market can drive a particular microprocessor into
a somewhat different region of the design space.

Such is the case with S/390 microprocessor designs,
which face particular challenges on three fronts:

o Compatibility with existing software.
 Optimization for high-end server applications.

« Reliability, availability, and serviceability (RAS).

These requirements are all closely associated with the
S/390* “mainframe” system platform, and are essential to
the overall value of S/390 in the marketplace. While S/390
processors strive to be competitive across a wide range of
applications, and thus bear many of the characteristics
of processors designed for other platforms, these
requirements affect the design in a variety of ways.
Following a discussion of these market-based
requirements for S/390, we consider how these
requirements influence key design decisions in the
instruction processing pipeline, the handling of branch
operations, storage operand access, and cache
organization. We then consider the design implications
of complex instructions and special S/390 architectural
facilities, and close with a brief discussion of hardware
error detection and recovery in S/390 processors.
Throughout, our focus will be on those factors in the
market requirements and S/390 architectural definition
which exert particular, and in some cases unique, influence
on S/390 microprocessor design.

S/390 requirements

The most obvious unique requirement for $/390 is

the ESA/390 architecture [1] and its 64-bit successor,
z/Architecture [2]. These ISAs are direct descendants

of the S/360 architecture introduced in 1964. As new
implementations of this architecture have been introduced,
and as the ISA itself has evolved from S/360 to S/370* to
370/XA to ESA/390 to z/Architecture, compatibility of new
hardware with old software has been a persistent feature
of the platform. New functions and features are added in

©Copyright 2000 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/00/$5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

C. F. WEBB

899

900

an upwardly compatible way so that customers need not
modify or even recompile their programs to maintain
existing function. Furthermore, performance advances in
S/390 (and predecessor) processors have been optimized
toward running existing code well, so that mainframe
customers have been able to achieve steady growth in
system performance without having to change their
software when they change hardware.

This focus on upward compatibility is readily apparent
in the definition of z/Architecture, which provides support
for 64-bit real and virtual addressing and 64-bit operations
without requiring any modification to existing ESA/390
applications, allowing those applications to coexist with
new programs that fully exploit the new architectural
features. This leads, for example, to the requirement that
32-bit ESA/390 operations leave unchanged the high-order
32 bits of the 64-bit general-purpose registers on which
they operate, which in turn affects the implementation
of those registers and operations in the z900 (64-bit
successor to S/390) design. A further consequence of this
focus on compatibility and on a smooth transition to 64-
bit functionality is the requirement that programs achieve
the same high level of performance whether they are
written to a 32-bit ESA/390 model or fully exploit the
64-bit capabilities of z/Architecture.

Another aspect of the S/390 platform which drives the
processor design is the focus on the use of S/390 in large
configurations as a high-end server system. This usage
results in a large number of distinct tasks being run
in parallel on different processors, and in close time
proximity on the same processor; it also leads to a high
degree of concurrency of access to the same memory
locations by multiple processors. On S/390, the PR/SM*
hypervisor and the OS/390* operating system both exploit
the strong memory coherence definition in ESA/390 to
obtain maximum throughput from a multiprocessor
S/390 system. To support this highly efficient manner of
operation, an S/390 system design must provide high-
bandwidth, low-latency, cache-coherent access to all parts
of system memory, and must deal effectively with large
working sets at the cache block, page translation, and
address space levels. This has its greatest impact on the
memory hierarchy and multiprocessor interconnection
design [3, 4], but has implications for the microprocessor
as well, particularly in the cache design and address-
translation design.

A third distinct feature of S/390 is the emphasis on
reliability, availability, and serviceability (RAS). For
customers who rely on S/390 systems for their mission-
critical, enterprise-wide operations, this characteristic is
indispensable. System-level RAS is achieved via a rich
combination of hardware, Licensed Internal Code (LIC),
and system software, which together must detect, isolate,
contain, and recover from a wide range of possible

C. F. WEBB

hardware and software errors, with minimal impact on
customer operations [5].

Instruction set optimization

The ESA/390 ISA is a distinctively CISC (complex
instruction set computer), as opposed to RISC (reduced
instruction set computer) architecture. That is, it has
variable-length (2, 4, and 6 bytes) instructions, register-
to-storage and storage-to-storage operations, complex
operations requiring LIC execution, and a large set of
instructions. The relative merits of CISC and RISC
approaches have been widely debated, but in recent years
the distinctions have been blurred at the microprocessor
level, as RISC design techniques have been applied to
CISC designs. For S/390 the debate is moot, since efficient
execution of programs (including OS/390) written to the
existing ESA/390 ISA is a basic product requirement.
This requires relatively complex instruction fetching and
decoding logic to handle the different instruction lengths
and the large instruction set, as well as some form of
internal code to deal with operations too complex for
hard-wired execution logic. Beyond these features, the
instruction format and set of operations per se do not
necessarily require a unique design for an S/390
microprocessor, since the basic functions required

are essentially the same as for any other ISA.

On the other hand, achieving optimal performance on
programs written to the ESA/390 ISA requires that the
microprocessor design reflect the specifics of the ISA,
yielding in some cases quite different design decisions
than would be appropriate for a different ISA. Many such
decisions are implicit in S/390 processor designs, and are
reflected in the instruction pipelines and architectural
structures they employ [6-9]. In many cases the
differences between these designs and those of other
microprocessors are readily apparent; less obvious is
the connection between these differences and the
ESA/390 ISA.

Branch and condition code operations
Consider the handling of condition registers and branch
operations. In ESA/390 there is a single 2-bit condition
register known as the condition code (CC), which is
updated unconditionally by a large number of arithmetic
and logical operations. In contrast to ISAs which contain
multiple condition registers and which provide explicit
program control over which condition register (if any)

is set by any given instruction, the ESA/390 definition
affords relatively little opportunity to separate the setting
of the condition code from the testing of that code via a
conditional branch, since only instructions which do not
affect the condition code are allowed in this interval.

In many RISC microprocessors, conditional branch
instructions are isolated from other instructions very early

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

in the instruction pipeline and are resolved (executed)
immediately if the condition being tested has been
computed. This minimizes the delay associated with

an incorrect branch prediction, but it depends upon

some degree of separation in the program between the
instruction computing the condition (loading the condition
register) and the conditional branch (using the condition
register). If the condition-setting instruction immediately
precedes the branch instruction, resolution of that branch
will be delayed until the execution logic downstream in
the pipeline can process that instruction and communicate
the resulting condition information back to the branch
logic. If this is a common situation, as it is with ESA/390
programs, the advantage of early execution of conditional
branches may be lost.

An alternative design typically used in S/390
microprocessors is to resolve conditional branches later
in the pipeline, in the same stage (i.e., with the same
pipeline latency) as fixed-point instruction execution, using
a special branch unit in some designs and the general or
fixed-point execution logic in others. At this point in the
pipeline, the condition code is generally available, even
from the immediately preceding instruction. This avoids
the upstream control flow in the instruction pipeline
between condition code update and branch resolution,
eliminating the load-use latency for the condition code
and relieving the compiler or programmer of any need
to separate the setting of the CC from the conditional
branch. The downside of this design is that the penalty
for branch misprediction is increased, because branch
resolution (i.e., discovery of misprediction) is delayed until
the execution portion of the pipeline. Note, however, that
this penalty is incurred only for incorrectly predicted
branches, the frequency of which is greatly reduced by
the use of sophisticated branch prediction techniques
(see below).

A corollary benefit to the preference of S/390
microprocessors for execution-time branch resolution
is that a compiler for ESA/390 need not be concerned
about scheduling instructions between the setting of the
condition code and the corresponding conditional branch.
As noted above, this is difficult in any case given the
ESA/390 definition, but the design of IBM $/390 CMOS
microprocessors makes it irrelevant for performance, since
the branch incurs no additional delay by immediately
following the condition code update. Removing this
constraint frees a compiler to focus on other code
optimizations, some of which are more important for
S/390 than for other platforms.

Another distinctive feature of ESA/390 is its heavy
reliance on register-based branch target addresses.

This follows from the general form of S/390 operand
addressing, which uses a base general register, an offset
from that base, and in some cases an index general

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

Fetch address
Instruction
cache
Branch
predict l

Instruction
Decode address buffers

Y A

Branch prediction optimized for relative branches.

register. Although relative branch instructions, in which
the branch target is specified as an offset from the current
instruction address, have been added to ESA/390, these
are not yet in widespread use, and the vast majority of
the branches executed on S/390 computers use a general
register to specify the target address. (These are often
referred to as indirect branches.) A consequence of this is
that branch target-address generation requires access to
the general register file and must handle all of the usual
pipeline-register interlocks. This may be contrasted with

a design for an ISA in which indirect branches are the
exception rather than the rule; in the latter case, the
branch target address can generally be computed by
adding the specified offset to the current instruction
address, with no register file access required and no
interlock against prior instructions.

Where relative branches are dominant, dedicated
hardware is generally added to compute the branch target
immediately upon recognizing the branch instruction, in
some cases doing so prior to the normal instruction-
decode stage of the pipeline. When combined with a
relatively small and low-latency instruction cache, this
allows the target stream for a taken branch to be fetched
and made ready for decoding with little delay. This lessens
the need to predict branch target addresses ahead of
time, and is reflected in designs that emphasize elaborate
schemes for predicting branch direction but spend little or
no hardware predicting branch targets, or which confine
target prediction to indirect branches. This approach is
illustrated in Figure 1, with the direction-prediction
mechanism(s) being accessed at fetch and/or instruction

C. F. WEBB

901

902

Branch * +
target | Search address | | Fetch addressl Instruction
buffer cache
Predicted target i

Y
Target Instruction
queue buffers

l !

4 Decode \
Register

file

L
NS—

Branch prediction optimized for indirect branches.

. Cach
Load | I-buffer | Decode | Register | Address ache Putaway
access
Op using Load Decode | Register | <wait> | Execute | Putaway

Instruction pipeline with address calculation in execution stage,
showing cache access latency delay for dependent instruction.

decode time, and the target address being computed using
information in the instruction fetch buffer.

In an S/390 processor, obtaining the branch target
stream requires that the branch instruction be decoded
(a more complex task than in most RISC ISAs), the base
(and possibly index) general register accessed (resolving
any interlocks with prior instructions), the effective
address computed, and the cache accessed. The resulting
latency for a taken branch, even if the direction is
correctly predicted at decode time, is significant. This
motivates a greater emphasis on predicting both the
direction and the target address of each branch
instruction, leading to a combined mechanism to predict
the action completely for each branch rather than separate
direction- and target-prediction mechanisms. This
approach, illustrated in Figure 2, has been used in several

C. F. WEBB

S/390 processor designs [6, 9]. Since target addresses
require more bits of storage than even the most complex
forms of direction-prediction information, such a
combined mechanism is somewhat larger than a direction-
only prediction structure with the same number of branch
entries. This size disadvantage is compensated somewhat
by the opportunity to predict the target addresses of
branches even while those branch instructions themselves
are still being fetched from the cache. This allows the
design to eliminate entirely the target-stream access
latency for correctly predicted branches without requiring
any special early decode or early address-generation logic.

Storage operand access

The handling of storage operands (as opposed to operands
contained in registers or in the instructions themselves)

is a distinguishing feature both among ISAs and among
microprocessors. RISC ISAs typically limit storage access
to a relatively small number of load and store instructions
which transfer data between registers and storage, relying
on separate register-to-register instructions to perform
operations on the data in the relatively large (at least 32
general registers) register set. ESA/390, as is typical of CISC
ISAs, includes a large set of register-to-storage, storage-
to-storage, and immediate-to-storage instructions, which
make use of operands taken directly from storage without
first loading them into registers. The ESA/390 approach in
many cases allows the same function to be performed with
fewer instructions than with a RISC ISA, provided that
these storage-operand instructions are used effectively. In
order to exploit this to a performance advantage, an S/390
microprocessor must process these instructions efficiently.
Among other things, this requires careful consideration

of the storage-operand access design.

There are as many approaches to storage-operand
access as there are microprocessor designs, but a key
distinction among the various approaches is the point at
which operand addresses are computed and operand
accesses are initiated in the instruction pipeline. One
method is to treat the operand address computation
in the same manner as any other arithmetic operation,
performing it in the normal execution stage, followed by
the operand access itself. This results in a gap between the
execution of a load instruction and the execution of an
instruction using the value loaded; this “load-use latency”
is a function of the time required to obtain data from
storage. This approach is illustrated in Figure 3, which
shows the core pipeline stages for a load instruction
followed by an instruction which uses the value loaded,;
note that this two-instruction sequence, typical in RISC
ISAs, is equivalent to a single register-storage instruction
in a CISC ISA such as ESA/390.

An alternate design is to accelerate storage-address
computations and storage-operand accesses in the pipeline

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

so as to eliminate the load-use latency by making storage
operands available to execution at the same point in the
pipeline as register operands (assuming that the storage

operands are found in the cache and encounter no delays).

The elimination of the load-use latency is offset by the
requirement that storage addresses be computed early in
the pipeline, which introduces a new pipeline delay if the
registers used to generate an address are being updated
by a recent instruction. This address-generation interlock
(AGI) applies whether the register is being updated by a
load instruction or by an arithmetic or logical operation,
and is a function of the distance in the pipeline between
the address-generation and -execution stages.

Although there is some analogy between these two
approaches and the CISC/RISC ISA debate, the two
issues are in fact distinct: A number of CISC processors
(including some for S/390) have been designed to perform
address calculation at the same stage as execution, and
RISC processors which follow this approach often include
significant hardware dedicated to reducing the load-use
penalty. Rather, the selection of one method or the other
is a function of the frequency of different pipeline latency
(interlock) conditions and the effective cost (in cycles) of
each occurrence. That cost is a function of the software,
the pipeline depth, the cache-access latency, and the
ability of the pipeline to hide latency via buffering,
prediction, out-of-order processing, special bypasses,
or other techniques.

After weighing all of these factors, S/390 processor
design tends to favor accelerating address calculation and
operand access. One element of this preference is the
need to execute storage-operand instructions well.
Instruction pipelines, even those supporting out-of-
sequence operation, run most efficiently when all common
operations take the same amount of time, since variable
latencies and durations complicate the scheduling of work
for various resources. If storage-operand instructions
are being executed frequently, requiring these to take
significantly more cycles than register-operand instructions
would disrupt the flow of instructions, affecting
performance. For some compute-intensive benchmarks
and workloads, the frequency of storage-operand
instructions is low enough that optimizing for these
instructions is not indicated, and may even be
counterindicated if this optimization yields a deeper
nominal pipeline in addition to the AGI penalties. More
typical of the high-end server environment, however, are
workloads in which relatively little computation is done on
each operand fetched from storage. In this case, the load-
use latency can dominate CPU performance, and the
optimal design will be one which minimizes (or even
eliminates) this penalty [10]. The pipeline shown in
Figure 4, used in the current S/390 CMOS processors,

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

AGI bypass for Load

AGI bypass
for Load Address

)

I-buffer | Decode | Address | OpFetch | OpData

OpBuffer | Execute | Putaway

Address generation
interlock

Instruction pipeline showing AGI interlock and AGI bypass paths.

reflects this optimization, with a load-use latency of zero
cycles but an AGI penalty of up to four cycles. The AGI
penalty can be mitigated via bypass logic and data paths
for special cases, for example when the register value is
being generated by a Load instruction (with no further
computation) or by a Load Address instruction. This
penalty can also be reduced by optimizing the code
generated for S/390 to distinguish between address and
other computations, and to schedule nondependent
instructions in the AGI interval.

Cache design

The focus on the high-end commercial server market
influences the cache design as well. S/390 systems typically
operate at a very high degree of multiprogramming,

with many tasks being managed at once by the OS/390
operating system. Furthermore, commercial transaction-
processing and database programs tend to operate on a
relatively large working set of data. Since the performance
of any processor falls off rapidly when the operand data
needed are not in the local cache, or when the virtual-to-
real address translations needed are not in the translation
lookaside buffer (TLB), S/390 processors place a high
priority on minimizing the cache and TLB miss rates, even
at the expense of more complex access logic. Not only
does this imply a relatively large TLB and first-level (L1)
cache, it also favors a set-associative rather than a direct-
mapped design for both structures, greatly increasing the
comparison logic required and coupling the output of

this logic to the last stage of cache data selection.

This complexity is justified, at least for S/390, by the
tremendous reduction in TLB and cache miss rates, as
illustrated in Figure 5.

C. F. WEBB

903

904

—8— 04 KB
—o— 128KB
—&— 256 KB

1-way 2-way 4-way 8-way

Effect of associativity on L1 cache performance.

One negative effect of such a cache design is that it
yields a longer nominal access time for the hit case. This
is further aggravated in S/390 by support for the arbitrary
alignment of operands in storage, which adds more logic
in the data path for these operands. These effects put
upward pressure on the load-use penalty and help to tilt
the balance in favor of the accelerated storage-operand
access design described above. Similar effects in the
instruction fetch path increase the latency there as well,
adding to the value of predicting branch target addresses
well ahead of branch-instruction decode, as noted earlier.

The cache design is also affected in fundamental ways
by the combination of the ESA/390 storage architecture,
the high-end server focus, and the RAS requirements.
ESA/390 requires, among other things, that fetches and
stores by all processors in a multiprocessor system appear
to all processors to happen in the same order. In a large
multiprocessor system, this argues for a write-back cache
management scheme, in which cache blocks can be held
in an L1 cache with “exclusive” rights, preventing other
processors from accessing locations that are in the process
of being updated without at the same time adding delay
to every store operation. A simple write-back scheme,
however, results in changed data being held in the L1
cache for an indefinite period of time. This creates a
reliability problem, since if a processor fails while holding
changed data, those updates are lost, possibly resulting in
a system crash. Furthermore, cache arrays are especially
prone to intermittent (“soft”) single-bit errors; to prevent
one of these errors from causing a system failure, error-
correcting code of some form would be required in the L1
cache, increasing both the size and complexity of the L1

C. F. WEBB

cache design. These RAS liabilities are avoided by using a
write-through strategy, forwarding all stores immediately
to the next level of cache, while managing the cache as if
it were write-back [11].

Complex instruction execution

In addition to the moderately complex storage-operand
instructions, the ESA/390 ISA includes a large number of
instructions which perform significant program control or
logical functions. Since such instructions cannot practically
be implemented with hard-wired controls, some sort of
internal code is required. In the past, high-performance
S/390 designs have included a special-purpose execution
engine (often VLIW-like in structure) for these functions.
More recently, the drive to attain faster machine cycle
times has led to a form of vertical internal code known as
millicode [7]. This allows the complex ESA/390 functions
to be executed with the same instruction pipeline as

the simpler, hard-wired instructions. It carries with it,
however, the requirement for additional registers for
millicode use, and the need for quick transitions between
ESA/390 and millicode modes of operation. Millicode
also requires access to the full range of system control
registers, tending toward a design in which these are
mapped into a regular structure accessed by a small
number of instructions rather than being scattered about
the processor and accessed with ad hoc special functions.
The use of millicode also adds another class of software
for which the design must be optimized, since some
commercial transaction processing workloads spend 10%
or more of their time in millicode mode.

Pervasive functions

A different dimension of the “complex” part of the
ESA/390 CISC ISA is found in the definitions of control
functions which span the instruction set. Program event
recording (PER), for example, requires that instruction,
branch-target, and operand-store addresses be compared
to a program-specified range, which favors the use of
separate dataflow elements dedicated to address handling.
More generally, ESA/390 requires that all program
exceptions be indicated by precise interruptions, with
strictly defined bounds on what the processor may do in
the presence of exceptional conditions. This mandates a
comprehensive mechanism for suppressing updates to the
processor state in those circumstances, which argues

for at least one control point in the pipeline which is
downstream from all exception checking and upstream
from all persistent state updates. Here again, the
acceleration of storage accesses in the pipeline proves
advantageous, as this facilitates checking of all operand-
access exceptions prior to the start of execution for a
given instruction, even in the case of instructions with long
storage operands, without adding to the overall instruction

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

latency. An ESA/390 processor is also required to handle
precisely any operand stores into the instruction stream,
which requires that store-address and instruction-fetch
addresses be compared and store/I-fetch conflicts resolved,
even when the store is into the location of the instruction
immediately following. This affects the structure of the
instruction buffer and of the pipeline instruction queue,
and the execution of store instructions. In none of these
cases is ESA/390 unique, and in each one design solutions
are known for a wide variety of microarchitectures; taken
in combination, however, these often prove to be the
deciding factors in choosing among alternate designs for
specific functions and hardware units.

One requirement which is unique to S/390 is support for
interpretive execution. This facility is the basis for both
the VM/ESA* operating system and the PR/SM logical
partitioning facility. PR/SM allows multiple workloads to
be consolidated efficiently on a single S/390 system, greatly
enhancing the customer value of these systems; VM/ESA
is a key part of many S/390 customers’ overall operations,
allowing great flexibility in the number and type of
operating system images. Performance in interpretive
execution mode, including the performance of VM/ESA
running in a PR/SM logical partition, is therefore crucial
to the position of S/390 in the high-end server market.
This dictates that support for interpretive execution be
designed into the processor from the start, including
multiple copies of the control state (control registers,
timing facilities, etc.) for different levels of emulation,
support for multiple levels of address translation, and
integration of emulation-specific special-condition
checking into the normal instruction controls. While this
adds to the overall complexity of the control structures in
an S/390 processor, and thus implicitly affects the cost of
implementing some microarchitectural features, it enables
a level of efficiency at the system level for virtual machine
and logically partitioned operation which is unmatched by
any other platform.

An example of the utility of this feature of S/390 can be
seen in the implementation of support for the open-source
Linux operating system on S/390. By providing a means
to present an architecturally complete “virtual machine”
image, the combination of PR/SM and VM/ESA allows for
multiple (even many) copies of (for example) Linux and
0S/390 to share the same S/390 system, each with the
appearance of executing on its own machine, architecturally
protected from one another, and yet able flexibly to
exploit the full power of the underlying hardware.

Error detection and recovery

The use of S/390 systems for enterprise-scale mission-
critical applications places a premium on all aspects of
system reliability, availability, and serviceability. This
drives a wide range of design decisions at all levels of

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

system design, as has been described in [5]. In the realm
of microprocessor design, the most crucial aspect of this is
that all hardware errors must be detected before they have
led to any unrecoverable loss of data. The requirement
of recoverability—that is, the capability to continue
processing after a fault has been detected with no
customer impact—greatly narrows the range of design
options for error detection. The requirement for high-
performance (and therefore high-frequency) operation
further constrains this space, because maximum
performance implies minimal margins in cycle time and
circuit parameters, leaving little room for the overhead of
checking circuits. These considerations have led to an S/390
microprocessor design [7-9] in which the units requiring
complex dataflow are duplicated for error detection, with
all operations being performed twice in parallel and all
resulting updates to the processor state being checked.
This provides complete fault coverage in these units
without incurring any overhead for parity prediction or
similar schemes. The area overhead from such a design is
kept at much less than 100% by using more conventional
parity checking in those units (such as caches) in which
the dataflow is predominantly byte-coherent, so that
minimal parity-generation logic is needed.

Recoverability implies that errors are detected at a
point in time when operation can still be resumed from a
state that is known to be error-free. For comprehensive
RAS, this must generally be done at multiple levels within
the overall system, including hardware, LIC, system
software, and application programs, in each case detecting
and recovering from errors in that level. In some cases
errors occurring at one level must be passed to another
level for resolution (e.g., using LIC or system software
to recover from hardware failures); doing so, however,
inevitably increases the complexity and reduces the
effectiveness of recovery, with a corresponding negative
impact on system RAS. For S/390 microprocessor designs,
therefore, the goal is to detect and handle hardware
faults at the lowest practical level (i.e., hardware, then
LIC, then system software). To this end, the S/390 CMOS
microprocessors since G4 have maintained a complete set
of processor-state data in a structure that is protected by
error-correcting code (ECC). Updates to this state
structure are made only when the updates have been
checked for correctness (by comparing the versions
generated by the two copies of execution hardware). Data
paths are provided by which the state can be propagated
systematically to all parts of the microprocessor via a
hardware-controlled refresh operation. When a fault is
detected in the hardware, all operations which have not
been completed and validated are discarded along with all
buffer contents (including the cache), the processor state
is refreshed from the known good state, and operation is
resumed at that point. If the hardware fault does not

C. F. WEBB

905

906

persist, normal operation continues as if no fault had
occurred. Since the protected and refreshed state includes
that of all internal and LIC architectural facilities, this
sequence allows for full recovery even within millicode
routines. In the event of a persistent fault, in which it is
not possible to continue normal operation, this design
allows for the state from the failing processor to be
extracted via a service processor and injected into a spare
processor in the same system; the spare processor assumes
the role of the failed processor and continues from the
extracted state, transparently to software and (in most
cases) to millicode as well.

The need for serviceability influences the
microprocessor design as well, in that this motivates a
design in which LIC (specifically, millicode) has broad
capabilities for taking on additional functions. The S/390
CMOS designs provide millicode with both read and
update access to the processor state structure used
for recovery, allowing millicode to perform almost
any function imaginable within the scope of the
microprocessor. Besides providing a convenient way to
implement newly defined functions on an existing design,
this enables a powerful class of “work-arounds” for any
design errors discovered after the hardware has been
manufactured, and even after the product has been
shipped to customers. When combined with hardware
controls which can force specific operations or sets of
operations to be performed by millicode rather than
hardware (which controls are themselves included in the
millicode-accessible processor state), this design enables
effective fixes to be deployed without having to change
any hardware.

Conclusion

We have described the manner in which a number of
specific requirements have influenced the design of S/390
microprocessors in IBM, particularly as reflected in the
S/390 CMOS processors starting with G4. While not

one of these requirements is strictly unique to S/390,

and while many designs are possible which satisfy these
requirements, their importance in the S/390 space has

led to a microprocessor design point which in many
particulars differs from that chosen for other products and
platforms. As the art of microprocessor design progresses,
and as market and technical requirements for both S/390
and other platforms change, the differences apparent now
between S/390 and others can be expected to change as
well. The challenge for each design team, regardless

of platform, will be to meet all of these changing
requirements in each new design while maximizing
performance and minimizing both cost and design time.

*Trademark or registered trademark of International Business
Machines Corporation.

C. F. WEBB

References

1. IBM, Enterprise Systems Architecture/390 Principles of
Operation, Order No. SA22-7201-03, September 1996;
available through IBM branch offices.

. IBM, z/Architecture Principles of Operation, in press.

. P. Mak, M. A. Blake, C. C. Jones, G. E. Strait, and P. R.
Turgeon, “Shared-Cache Clusters in a System with a Fully
Shared Memory,” IBM J. Res. Develop. 41, No. 4/5,
429-448 (1997).

4. P. R. Turgeon, P. Mak, M. A. Blake, M. F. Fee, C. B.
Ford III, P. J. Meaney, R. Siegler, and W. W. Shen, “The
S/390 G5/G6 Binodal Cache,” IBM J. Res. Develop. 43,
No. 5/6, 661-670 (1999).

5. L. Spainhower and T. Gregg, “IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective,” IBM J. Res. Develop. 43, No. 5/6, 863-874
(1999).

6. J. S. Liptay, “Design of the IBM Enterprise System/9000
High-End Processor,” IBM J. Res. Develop. 36, No. 4,
713-731 (1992).

7. C. F. Webb and J. S. Liptay, “A High-Frequency Custom
CMOS S/390 Microprocessor,” IBM J. Res. Develop. 41,
No. 4/5, 463-473 (1997).

8. T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei,
B. W. Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay,

J. D. McDougall, T. J. McPherson, J. A. Navarro, E. M.
Schwarz, K. Shum, and C. F. Webb, “IBM’s S/390 G5
Microprocessor Design,” IEEE Micro 19, No. 2, 12-23
(1999).

9. M. A. Check and T. J. Slegel, “Custom S/390 G5 and G6
Microprocessors,” IBM J. Res. Develop. 43, No. 5/6,
671-680 (1999).

10. T. Horel and G. Lauterbach, “UltraSPARC-III: Designing
Third-Generation 64-Bit Performance,” IEEE Micro 19,
No. 3, 73-85 (1999).

11. K. M. Jackson and K. N. Langston, “IBM S/390 Storage
Hierarchy—GS5 and G6 Performance Considerations,”
IBM J. Res. Develop. 43, No. 5/6, 847-854 (1999).

[SSI]

Received February 15, 2000; accepted for publication
November 8, 2000

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

Charles F. Webb IBM Server Group, 2455 South Road,
Poughkeepsie, New York 12601 (cfw@us.ibm.com). Mr. Webb
is a Distinguished Engineer in z-Series processor design in
Server Group development. He received his B.S. degree in
1982 and his M.Eng. degree in 1983, both from Rensselaer
Polytechnic Institute. He joined IBM in 1983 at the Product
Development Laboratory in Poughkeepsie, where he has
remained since. Mr. Webb has worked on the ES/9000
processor, the S/390 G4 and G5 CMOS processors, and the
*eServer® z900 processor in the areas of performance analysis,
architecture, and design. He has received thirteen IBM
Invention Achievement Awards, three IBM Outstanding
Innovation Awards, and an IBM Corporate Award. He is a
member of the IBM Academy of Technology and the IEEE
Computer Society.

907

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 C. F. WEBB

