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We present a novel practical algorithm for
Cholesky factorization when the matrix is
stored in packed format by combining
blocking and recursion. The algorithm
simultaneously obtains Level 3 performance,
conserves about half the storage, and avoids
the production of Level 3 BLAS for packed
format. We use recursive packed format,
which was first described by Andersen et al.
[1]. Our algorithm uses only DGEMMand Level 3
kernel routines; it first transforms standard
packed format to packed recursive lower row
format. Our new algorithm outperforms the
Level 3 LAPACK routine DPOTRFeven when we
include the cost of data transformation. (This
is true for three IBM platforms—the POWER3,
the POWER2, and the PowerPC 604e.) For
large matrices, blocking is not required for
acceptable Level 3 performance. However, for
small matrices the overhead of pure recursion
and/or data transformation is too high. We
analyze these costs analytically and provide

detailed cost estimates. We show that
blocking combined with recursion reduces all
overheads to a tiny, acceptable level. However,
a new problem of nonlinear addressing arises.
We use two-dimensional mappings (tables) or
data copying to overcome the high costs of
directly computing addresses that are
nonlinear functions of i and j.

1. Introduction
We present a novel practical algorithm for Cholesky
factorization by combining recursion and blocking. Our
aim is to conserve storage and to simultaneously obtain
Level 3 performance. Also, we want to avoid producing
Level 3 BLAS for packed format.

In [1] a new data format called recursive packed format
was used to produce a new algorithm for Cholesky
factorization. We use that format to produce a Level 3
performing code using only DGEMMand Level 3 kernel
routines. By so doing we achieve the algorithm alluded to
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in the first paragraph. Our algorithm requires that the
user’s matrix AP, input in lower packed format [2, 3], first
be transformed to packed recursive lower row format,
PRLF. Our new algorithm is then applied to PRLF, which
has overwritten the input matrix AP. Standard algorithms
for Cholesky factorization are given in Version 3 of
LAPACK. They are called DPPTRFand DPOTRF. The
PP algorithm accepts input in packed format AP, while
the POalgorithm requires input to be in full format,
which requires about twice the storage of packed
format. However, on many platforms, including RISC
workstations, the LAPACK POcodes perform about three
times faster. It is our view that most users prefer higher
performance, so they use twice the storage. However,
some applications can only run using half the storage,
and these applications must use the packed routines.

Our new algorithm outperforms the LAPACK Level 3
DPOTRFeven when we include the cost of the data
transformation from packed lower format to packed
recursive lower format. A slight drawback is that the data
transformation requires a temporary buffer of size 1

8
n 2 ,

which is allocated and then deallocated.
The new algorithm was implemented and tuned for

the ESSL library, in which only lower packed format is
supported. However, ESSL provides DPPF, which produces
both an LLT factorization (Cholesky) and an LDLT

factorization (Gauss). Additionally, like LAPACK, the
ESSL library provides routine DPPICD, which computes
the inverse matrix AP21 . We mention that we produced
new codes for LDLT and matrix inverse for data in packed
recursive lower row format. However, we describe only the
Cholesky factorization LLT in this paper.

For large matrices, blocking is not needed, because the
pure recursive algorithm for Cholesky gives acceptable
performance; see [1] for details. However, for small
matrices the overhead of recursion slows down the
performance to an unacceptable level for a high-
performance library such as ESSL. This paper examines
in detail the overheads related to pure recursion. We
introduce blocking and combine it with recursion to
overcome the losses due to the overhead by essentially
reducing the overhead to a tiny acceptable amount.
However, because the packed recursive formats do not
allow for any data expansion, we are faced with a new
problem: nonlinear addressing associated with packed
recursive storage format. We solve this problem by one
of two methods. The first is to use a two-dimensional
mapping (table) whose (i, j) entry is the location in PRLF
where a(i, j) is stored. The other method is to data-copy a
small submatrix A in PRLF to a buffer which stores A in
full format so that standard linear addressing can be used.
Additionally, our new algorithms require only that two
mappings be generated, which results in only a tiny
amount of additional storage. Also, since these mappings

are used many times by the algorithm, the cost of their
generation is amortized by their multiple reuse.

Our paper is organized into five sections, including the
Introduction as Section 1. Section 2, called Algorithmic
considerations, contains six subsections. In the first, we
discuss the existing routines for doing Cholesky and LDLT

factorization on matrices stored in packed format. We give
our recursive formulation of the Cholesky factorization,
called CHOL, in the second subsection, together with
sketches of the conventional LAPACK algorithms. In
the third, a new data format is presented which enables
routines to make better use of high-performance DGEMM

routines. The fourth subsection shows how the DTRSM

and DSYRKroutines are affected by the recursive packed
format. We produce recursive algorithms TRSMand SYRK

and show proofs of correctness. In the fifth subsection, we
explain why one of the formats gives a better data access
pattern. Finally, in the sixth subsection, we provide an
outline of how to transform data in standard packed
format to recursive packed format. Section 3 is titled
Algorithmic components. In the first subsection, we
describe the problem of a large recursion tree; the second
describes our blocked version and how we overcome the
problem. We present block counterparts of CHOL, TRSM,
and SYRK, which we call BC, BT, and BS, and we briefly
develop a major theme of computer science—that an
algorithm is tied to its data structure when we apply this
theme to BC, BT, and BS. The third subsection describes
three types of kernel routines, two of which are the
mapping approach and the data entry approach described
briefly above. The third type, called the compiled code
approach, was not used.

We see in Section 4 that we obtain excellent Level 3
performance using recursive packed row format for
Cholesky factorization, especially for large n. The new
algorithm uses half the storage (an allocation of 1

8
n 2

elements is returned after the data transformation is
complete) and performs better than most Level 3
implementations. Also, the majority of the processing is
done in calls to DGEMMon submatrix blocks of variable
size. In the SMP environment, ESSL’s DGEMM

automatically uses the existing threads to obtain excellent
SMP performance. These two factors automatically make
our new recursive Cholesky implementation an SMP
parallel implementation.

In general, a negative feature of the recursive approach,
and for this data format in particular, is that the
addressing of the individual (i, j) elements in any triangle
becomes nonlinear. This drawback is inevitable: It is
ironic, however, that good data locality comes at the
cost of making its reference patterns nonlinear.

In Section 5, we give our conclusions, summarizing the
successful features of our new algorithm. We briefly
indicate why packed format should become more
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important, and the role recursion plays in its return to
prominence. Next, we discuss some other results of our
paper: why recursion is particularly suited to the Cholesky
algorithm, results not covered, and issues related to Level
2 and Level 3 packed BLAS. Finally, we explain why our
current algorithm is not the fastest-performing Cholesky
routine.

2. Algorithmic considerations
In this section, we show why routines using the packed
format have not displayed high performance. We show
how to overcome this by using a recursive data format.

● Preliminary remarks and rationale
Existing codes for Cholesky and LDLT factorization
use either full storage or packed storage data format.
In earlier times, when there was a uniform memory
hierarchy, packed format was usually the method of choice
because it conserved memory and performed about as well
as a full-storage implementation. See the LINPACK
User’s Guide [4] for more details.

ESSL [3] and LAPACK [2] support both data formats,
so a user can choose either for his application. Also, the
ESSL packed storage implementation has always been
Level 3, sometimes at great programming cost. On the
other hand, LAPACK and some other libraries do not
produce Level 3 implementations for packed data formats.

For portability and other reasons, mainly performance
and ease of programming, users today generally use the
full data format to represent their symmetric matrices.
Nonetheless, saving half the storage is an important
consideration, especially for those applications which will
run with packed storage and fail to run with full storage.

Another important user consideration is migration.
Many existing codes use one or the other or both of these
formats. Producing an algorithm such as Cholesky using a
new data format has little appeal, since existing massive
programs cannot use the new algorithm. Thus, the
approach we took in ESSL was to redo its packed
Cholesky and LDLT factorization codes but then instead
use the new recursive packed data structure.

The idea was simple: Given AP holding symmetric A
in lower packed storage mode, overwrite AP with A in
the recursive packed row format. To do so requires a
temporary array, which we allocate and then deallocate,
of size 1

8
n 2 . Next, we execute the new recursive Level 3

Cholesky algorithm using only the 1
2

n 2 original storage.
Even when one includes the cost of converting the data
from lower packed to recursive packed lower row format,
the performance, as we will see, is better than that of the
LAPACK Level 3 DPOTRF.

In summary, the users can now obtain full Level 3
performance using packed format and thereby save about
half of their storage.

● Recursive Cholesky factorization
Our recursive algorithm of the Cholesky factorization of
A uses a divide and conquer procedure, which gives rise
to a binary tree. At every non-leaf node, the identical
algorithm executes on one of the submatrices of A. In
Figure 1, a parent node and its two children depict this
situation.

Let a submatrix A of size n be associated with the
parent node. Since A is symmetric, we are dealing with
an isosceles right triangle of size n. Divide A into two
congruent triangles of size n/ 2 and a square between
them. The computation proceeds in the direction of the
arrows, and Equation (1), which constitutes Equations (2)
to (5) (see below), describes the computation that is done
at the parent node. Now we formally describe our
algorithm.

In our recursive algorithm, the Cholesky factorization of
a positive definite symmetric n 3 n matrix A,

A 5 SA11 A 21
T

A21 A22
D 5 LL T

5 SL11 0
L21 L22

DSL 11
T L 21

T

0 T22
D , (1)

is initiated by a recursive Cholesky factorization of the
upper left square matrix A11 of order n1 5 n/ 2; i.e.,

A11 5 L11L 11
T . (2)

The lower left matrix A21 is then transformed into L21 by
the multiple solving of n2 5 n/ 2 triangular systems of
equations (each of size n1 5 n/ 2),

L21 L 11
T

5 A21 . (3)

Then, the lower right square matrix of order n2 is
symmetrically rank-k updated by L21; i.e.,

Ã22 5 A22 2 L21 L 21
T . (4)

Finally, the matrix Ã22 is recursively factored,

Ã22 5 L22 L 22
T . (5)

Generic node of the Cholesky factorization.

Figure 1

(1)

(3)

(4)

(5)(2)
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The recursion in Equations (2) and (5) stops when the
matrices to be factored A11 , A22 have small order or, if full
recursion is used, have order 1.

Proof of correctness Our method of proof is mathematical
induction. The recursion takes place on the order n

of A. We want to prove correctness for n 5 1, 2, . . . .
However, recursion breaks the problem into two nearly
equal parts, n1 5 n/ 2 and n2 5 n/ 2 5 n 2 n1 .
On the basis of this observation, we use mathematical
induction on k 5 log2 n, k 5 0, 1, . . . .

Suppose that the result is true for 0 , n # 2 k . Then
we establish the result for all j, 2 k , j # 2 k11 . Initially
we need to establish the result for n 5 1.

Now we give the proof: For n 5 1, we compute l11 5 =a11.
Since A is positive definite, we know all principal minors
are positive, so l11 exists. Now suppose that the result
is true for 0 , j # 2 k . Let 2 k , j # 2 k11 , j1 5 j/ 2
and j2 5 j 2 j1 . Since j . 1, we do the computations
indicated by Equations (2), (3), (4), and (5) in that order.

Equation (2) is satisfied by the induction hypothesis.
Equation (3) is a calculation. It can be performed since
the triangular matrix L11 has nonzero diagonal elements
(in fact, they are positive). Equation (4) is also a
calculation. Finally, Equation (5) is satisfied by the
induction hypothesis. Using Equations (2)–(5), we want to
show that Equation (1) is true. However, this is trivially
true because all that is needed is to follow the rules of
2 3 2 block multiplication where the partitioning of A is
j 5 j1 1 j2 . The conditions that the block elements of
L11 , L21 , L22 must satisfy are exactly those of Equations
(2)–(5), which we have shown to be true. h

Figure 2 gives the details of the recursive algorithm
CHOL(n). We assume that A is an n 3 n positive
definite symmetric matrix. The algorithm will detect that A is
not positive definite symmetric in the if clause when and only
when it finds aii # 0 for some i. In the else clause there
are two recursive calls, one on matrix A(1:n1 , 1:n1), the
other on matrix A( j1:n, j1:n); the two computations solve
XA(1:n1, 1:n1)

T 5 A( j1:n, 1:n1) and update A( j1:n, j1:n)
5 A( j1:n, j1:n) 2 A( j1:n, 1:n1) z A( j1:n, 1:n1)T . Here
we use colon notation; see page 19 of [5] for a definition.
The two computations consist mostly of calls to DGEMM

[actually, the first computation is DTRSM(multiple
triangular solve) and the second is DSYRK(rank-k update
of a symmetric matrix); however, both DTRSMand DSYRK

consist mostly of calls to DGEMM]. The correctness of the
algorithm CHOLfollows immediately from our induction
proof.

Figures 3 and 4 give annotated descriptions of the
algorithms DPOTRFand DPPTRF. These two routines are
the LAPACK Level 3 and Level 2 versions of Cholesky
factorization, with uplo 5 'L ' . The former uses full
storage and runs about three times faster than the latter,
which uses packed storage.

The algorithm in Figure 3 is a block nb left-looking
algorithm. The algorithm in Figure 4 is a Level 2 right-
looking algorithm. In earlier versions of LAPACK, the
algorithm DPOTRFwas right-looking; i.e., it was the
Level 3 block analog of Figure 4.

Figure 2

Algorithm for the subroutine.

Figure 3

Algorithm for the subroutine.

Figure 4
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In Section 4 we compare the performance of DPOTRF

and DPPTRFversus our new algorithm BC, which is the
blocked form of the algorithm CHOL.

● Packed recursive format
In the previous subsection we gave the recursive Cholesky
algorithm and proved its correctness for data assumed to
be stored in full lower format. In this section we describe
the new recursive packed formats. These data formats are
modeled in the same way as the recursive blocked row and
column formats of a triangle (see [6] for details). This
modeling was first described by Andersen, Gustavson, and
Waśniewski in [1]. It turns out that the recursive Cholesky
algorithm will work on all four instances of this new data
structure, referred to as column lower, column upper,
row lower, and row upper (Figure 5). In each case, the
algorithm and its proof are similar to the proof of the
preceding subsection; hence, they are not repeated.

These packed recursive data formats are hybrid
triangular formats consisting of (n 2 1) full-format
rectangles of varying sizes and n triangles of size 1 3 1 on
the diagonal. They use the same amount of data storage
as the ordinary packed triangular format, i.e., 5 n(n 1 1)/2.
Because the rectangles (square submatrices) are in full

format, it is possible to use high-performance Level 3
BLAS on the square submatrices. The difference between
the formats is shown in Figure 5 for the special case n 5 7.

Notice (as in Figure 6, shown later) that each of the
original triangles is split into two triangles of sizes n1 5 n/2
and n2 5 n 2 n1 and a rectangle of size n2 3 n1 for
lower format and n1 3 n2 for upper format. The elements
in the upper left triangle are stored first, the elements in
the rectangle follow, and the elements in the lower right
triangle are stored last. The order of the elements in each
triangle is again determined by the recursive scheme of
dividing the sides n1 and n2 by 2 and ordering these sets
of points in the order triangle, square, triangle. The
elements in the rectangle are stored in full format, either
by row or by column.

Notice that we can store the elements of a rectangle
in two different ways. The first is by column (standard
Fortran order), and the second is by row (standard
C order). Assume that A is in lower recursive packed
format; then the rectangle is size n2 3 n1 , n1 # n2 .
Suppose we store A by row; then lda 5 n1 , and the
local address of the element a(i, j) with respect to
the beginning of the matrix A is

Figure 5
Six ways of storing the elements of an isosceles triangle of size 7: (a) Packed lower; (b) packed upper; (c) packed recursive column lower;
(d) packed recursive column upper; (e) packed recursive row lower; (f) packed recursive row upper.
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loc@a~i, j!# 5 j 1 n1i. (6)

Suppose we store A by column. Then lda 5 n2 , and

loc@a~i, j!# 5 i 1 n2 j. (7)

Next assume that A is in upper recursive packed format.
Then the rectangle is size n1 3 n2 , n1 # n2 . Suppose we
store A by row. Then lda 5 n2 , and

loc@a~i, j!# 5 j 1 n2 i. (8)

Suppose we store A by column. Then lda 5 n1 , and

loc@a~i, j!# 5 i 1 n1 j. (9)

Now, the storage layout for the matrix in L format is
identical to the storage layout of the transpose matrix in
U format. This can be seen by noting that (8) and (9)
(for AT) become

loc@at~i, j!# 5 i 1 n2 j (10)

and

loc@at~i, j!# 5 j 1 n1i. (11)

We can now state a relationship among the four storage
layouts of the lower and upper recursive data formats.

Theorem 1 The storage layout of the recursive lower
packed row (column) data format is identical to the
storage layout of the recursive upper packed column (row)
data format.

Proof The algorithms for U and for L have the diagonal
in common and hence define the diagonal elements in the
same way. Alternatively, we can prove this by induction.
Thus, the storage layout is identical for the two formats.
Now consider the off-diagonal elements. We use induction.
The induction hypothesis is for k 5 log2 n, k 5 0, 1, . . . .

Assume that the result is true for 0 , j # 2 k . Let
2 k , j # 2 k11 . The induction hypothesis states that
the layouts of T1 and T3 and of T2 and T4 are identical
[Figures 6(a) and 6(b)]. Now S1 and S2 start at the same
location. By using Equations (6) and (11) we see that
the row layout of S1 is identical to the column layout
of S2 , and by using Equations (7) and (10) we see
that the column layout of S1 is identical to the row
layout of S2 . h

We have just seen that recursive row storage of L
is identical to recursive column storage of U and that
recursive column storage of L is identical to recursive row
storage of U. We next examine an interesting consequence
of this result.

Redundancy of symmetric-type algorithms leads to faster
algorithms and less coding effort
Theorem 1 states that we have two essentially different
formats for storing a symmetric matrix. Let us arbitrarily
choose recursive packed lower column storage and
recursive packed upper column storage as the two
different formats. Next, note that most mathematical
libraries, such as LAPACK, LINPACK, and ESSL, provide
symmetric algorithms supporting both data formats.
Because of symmetry, both algorithms perform exactly
the same computation; the only difference between the
algorithms is the way in which they access storage. Before
continuing, consider running a symmetric algorithm in C
instead of Fortran. Since C stores matrices by row instead
of by column, the L algorithm of C becomes the U
algorithm of Fortran, and vice versa. (We mention without
proof that a theorem similar to Theorem 1 holds for full-
format storage and hence in the Fortran and C
programming languages.) Now we pose an interesting
question: Of the two data formats, which one gives the
faster execution for the symmetric algorithm? Several
answers are possible, and the answer is dependent on the
symmetric algorithm. However, the most natural answer is
that the algorithms perform about the same for both data
formats. Now, for definiteness, assume that the algorithm
is the Cholesky factorization algorithm. In that case, we
argue that one should always choose recursive row storage
of L even if the input data for L is given in recursive
lower column storage. The reason follows from the fact
that computations done stride 1 are almost always
faster than computations done stride n. Also, Cholesky
factorization is a Level 3 computation, while matrix
transposition is a Level 2 computation. Finally, if one
expresses L in recursive lower row storage, the majority of
Cholesky factorization will be done with stride 1 instead of
stride n. The gain is multiplied by the Level 3/Level 2
ratio.

Correlation of the (a) L and (b) U formats of a symmetric matrix A.

Figure 6

n2

n2

n1

n1

S1

S2T1

T2

T3

T4

(a) (b)
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● DTRSMand DSYRKusing recursive packed format
We now discuss adapting DTRSMand DSYRKto the new
data structure. We examine a triangle T of size n spanning
nt consecutive storage locations, where

nt 5
n~n 1 1!

2
.

Without loss of generality, we can let T be lower triangular
and occupy memory starting at 0 and ending at nt 2 1.
In global A, T starts at ist and ends at ist 1 nt 2 1.
Let n 5 n1 1 n2 , where n1 5 n/ 2. By definition, T
consists of two triangles T1 and T2 and a “square” S1 of
size n2 3 n1 [Figure 6(a)]. Hence, let T1 , T2 , and S1 have
“local” addresses in the space 0 to nt 2 1. This means
that T1 has addresses 0 to nt1 2 1, S1 has addresses 0
to n2n1 2 1, and T2 has addresses 0 to nt2 2 1, where

nt1 5
n1~n1 1 1!

2

and

nt2 5
n2~n2 1 1!

2
.

In terms of T coordinates, T1 starts at 0, S1 starts at nt1 ,
and T2 starts at

nt1 1 n2 n1 5
n1~n 1 n2 1 1!

2
.

It is clear from Figure 6(a) that T1 and T2 are stored
recursively, whereas S1 is stored in full format.

In order to use Level 3 BLAS DTRSMand DSYRK, we
must have both the triangle (either T1 or T2) and the
rectangle (S1) in full format. In our case the triangle is
not in full format. However, T1 and T2 consist respectively
of (n1 2 1) and (n2 2 1) squares, and their total areas
are respectively nt1 2 n1 and nt2 2 n2 .

We propose that DTRSMand DSYRKbe expressed
recursively according to the recursive data layout of T1

and T2 . Take DTRSMfirst. It requires T1 and S as its
operands. Now divide T1 into T11 , S1 , and T12 according
to its recursive definition. Let A 5 T1 and B 5 S. The
relation between Figure 6(a) and Figure 7 is that n2 5 m
and n1 5 k. Now the computation B 5 B z A2T becomes

XA T
5 B, (12)

or

m{(
k1

X1

k2

X2 )SA 11
T A 21

T

0 A 22
T D 5 m{(

k1

B1

k2

B2 ) 5 B.

If we break (12) into its component pieces, we obtain

X1 A 11
T

5 B1 , (13)

B̃2 5 B2 2 X1 A 21
T , (14)

X2 A 22
T

5 B̃2 . (15)

Note that (14) is a DGEMMcomputation on matrices
( A21 , B2 , B1), which are stored in full format.
Computations (13) and (15) are smaller instances of the
original problem, i.e., a DTRSMcomputation where the
triangle is stored recursively and the rectangle is stored in
full format. It now follows that we can define DTRSMin
our recursive data structure, and it comprises only calls to
DGEMMand the Level 1 routine DSCAL. We now state the
proof of the recursive DTRSMand give the full algorithm.

The recursive algorithm for the triangular solution
resembles the Cholesky factorization algorithm. Assume
that A is a nonsingular triangular matrix of size k and B is
a rectangular matrix of size m 3 k. Then the recursion
starts by solving for X1 using the upper left triangle A11 of
order k1 5 k/ 2; see (13). The lower matrix B2 of order
k2 5 k/ 2 is transformed into B̃2 by subtracting the
product of the solved X1 and lower left matrix A21; see
(14). Finally, we can recursively solve for X2; see (15).

The recursion in (13) and (15) stops when the matrices
to be solved, X1 and X2 , have a small number of rows or,
if full recursion is used, one row.

Proof of correctness Once again mathematical induction
is used. The recursion takes place on the order k of A.
We want to prove correctness for k 5 1, 2, . . . . Since
recursion breaks the problem into two nearly equal
parts, k1 5 k/ 2 and k2 5 k/ 2 5 k 2 k1 , we use
mathematical induction on i 5 log2 k, i 5 0, 1, . . . .

Suppose that the result is true for 0 , k # 2 i . Then we
establish the results for all j, 2 i , j # 2 i11 . As a base for
our induction, we need to establish the result for k 5 1.

For k 5 1, we scale the row X 5 B z a11
21 . Since A is

nonsingular, a11 Þ 0, so X exists. Assume that the result is

Block partitioning of the computation.

Figure 7

m m
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k2
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true for 0 , k # 2 i . Let 2 i , j # 2 i11 , j1 5  j/ 2, and
j2 5 j 2 j1 . Since j . 1, the computations described
in (13), (14), and (15) are performed in that order.

Equation (13) is satisfied by the induction hypothesis.
Equation (14) is a calculation (matrix multiply), and

finally, Equation (15) is also satisfied by the induction
hypothesis. Now we want to show that Equation (12) is
true by using Equations (13)–(15). This is trivially true as
we follow the rules of 2 3 2 block multiplication, where
the partitioning of A is k 5 k1 1 k2 . The conditions that
the block elements of X1 and X2 must satisfy are exactly
those of Equations (13)–(15), which we have shown to
be true. In Figure 8 we give the details of recursive
algorithms TRSM(k).

Now we express DSYRKrecursively. Since the procedure
is very similar to that presented for DTRSM, we just state
the algorithm and prove its correctness. First we define
some notation. DSYRKrequires S [S1 in Figure 6(a)] and
T2 as operands. Divide T2 into T21 , S2 , and T22 according
to its recursive definition. Now, let C 5 T2 and A 5 S;
see Figure 9. The relation between Figure 6(a) and
Figure 9 is again n2 5 m and n1 5 k. The algorithm is
shown in Figure 10.

The correctness of SYRKfollows by mathematical
induction; its proof is omitted, since it is similar to the
DTRSMproof.

● Cholesky algorithm applied to recursive lower row storage
produces stride 1 storage access throughout
Having established the content of the preceding
subsection, we may now turn to demonstrating why
transposing recursive lower column storage leads to stride 1
performance throughout. This is true for Cholesky
factorization and many other symmetric algorithms.
Assume that we use full recursion. Then the factor part of
the code becomes n square root calculations. The rest of
the code consists of calls to RTRSMand RSYRK. However,
both RTRSMand RSYRKare recursive, and when used with
full recursion they always consist of calls to DGEMMand
Level 1 calls to DSCALand DDOT. Now take a DGEMMcall
from RTRSM. Note that C 5 C 2 A z BT is computed, where
C is m 3 n, A is m 3 k, and B is n 3 k. Similarly, a DGEMM

call from RSYRKhas the same form, C 5 C 2 A z BT .
Now transpose this generic DGEMMcomputation to obtain
CT 5 CT 2 B z AT and assume that L is stored in
recursive lower row-wise storage. Since storing a full
matrix row-wise is identical to storing its transpose
column-wise, we see that CT 5 CT 2 B z AT becomes
D 5 D 2 ET

z F, where D 5 CT , E 5 BT , and A 5 FT .
Note that each computation problem for C and D consists
of doing mn dot products each of size k. The form C 5

C 2 A z BT computes dot products stride lda, ldb, while
the form D 5 D 2 ET

z F computes dot products stride 1.
Before continuing, we use the above results to state a

possible result about symmetric full storage. Assume that
the answer to the question as to which data format gives
faster execution for the symmetric algorithm is that the U
format algorithm is faster by a sufficient amount. Then
two things occur: 1) better performance using the single

Block partitioning of the computation.

Figure 9

k

A1 m1

A2 m2

C11

C22

C21

Algorithm for recursive triangular solve, B B . A�T. A is lower
triangular, stored in packed recursive row format. B is stored in
row major format.

Figure 8

Algorithm for recursive symmetric rank k update, C C � A . AT.
C is lower triangular, stored in packed recursive row format. A is
stored in row major format.

Figure 10
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code, and 2) instead of having to write two codes, the
uplo 5 'L ' code disappears. In its place one need only
invoke an existing in-place square transpose code twice,
at the beginning and at the end. Moving twice the data
twice is necessary for migration purposes.

● Data transformation
In order for the recursive algorithm to use the recursive
packed data format, the user’s packed data must be
transformed to recursive packed format. In the Cholesky
case, the user’s symmetric matrix is in lower packed
format, which is overwritten with the matrix in recursive
packed upper format, as described in the two preceding
subsections. The recursive packed upper format is chosen
so that the DGEMMoperation will be ATB; i.e., the A and B
matrices are accessed with stride 1.

The in-place data transformation of a lower packed
triangle of size n to recursive packed upper format is done
in eight steps; see Figure 11 and Table 1. These steps are
listed below. Now we overview the algorithm. First we do
an in-place data transformation of the first n/ 2 columns
of the packed array. This figure is a trapezoid and a
rectangle of size n/ 2 by n/2. The lower triangle is
moved out of place to reside in the auxiliary buffer in
recursive upper packed format. Next the rectangle is
moved in place to full (column major order) format to
reside in its final position of the trapezoid. Finally, the
contents of the auxiliary buffer are copied to the triangle
part of the trapezoid. These three steps are described in
steps 1 to 6 below. The second major step is described in
steps 7 and 8 below.

1. The first left triangle of size n/ 2 of the packed lower
triangle is stored in packed recursive row lower format
[see Figure 6(a)] in the auxiliary buffer at the first
position (0) to position

n/ 2 z ~n/ 2 1 1!

2
2 1.

This is done using an out-of-place data transformation
subroutine. Notice that the upper left triangle is not
stored contiguously in the packed format, so this copy
to buffer is a gather operation. That is, all of the
vectors in the original matrix, stored in packed format,
are now stored recursively in the contiguous memory
of the buffer. See Table 1, Step 1, where the vectors
containing elements 11–31, 22–32, and 33 of the packed
triangular array of size 7 are stored as one vector of
length 6 in the auxiliary buffer.

2. It is easy to do an in-place transpose of a square, but
almost impossible to do an in-place transpose of a
rectangle. A transpose of a nonsquare rectangle is very
hard to do in place, so if n is odd, the first row of the

rectangle, which is of size n/ 2 3 n/ 2, is also stored
contiguously in the transfer buffer at position

n/ 2 z ~n/ 2 1 1!

2

to

n/ 2 z ~n/ 2 1 3!

2
2 1.

In Table 1, Step 2, the elements 41, 42, and 43 (that is,
the row directly above the lower left 3 3 3 square in
the 7 3 7 triangle) are stored contiguously as a vector
of length 3 in the auxiliary buffer, following directly
after the triangle that was created in Step 1.

3. The gap between the columns in the remaining lower
left square is removed by moving column i,
0 # i , n/ 2, from positions

iS2n 2 i 2 1

2 D 1 n/ 2

to

iS2n 2 i 2 1

2 D 1 n 2 1

to positions

n/ 2S2i 1 2n/ 2 2 n/ 2 1 1

2 D

The eight steps of data transformation: (1) The upper left triangle of
the packed lower triangle is stored in packed recursive row lower
format in the auxiliary buffer; (2) if n is odd, the first row of the
rectangle is also stored contiguously in the auxiliary buffer; (3) the
gap between the columns in the remaining lower left square is
removed by moving the columns; this is done in place, moving the
columns one by one, right to left; (4) the lower left square is now
contiguous in the packed array; this square matrix is now trans-
posed in place; (5) if n is odd, the row stored in step 2 is now copied
back to the packed array; (6) the triangle stored in step 1 is copied
back to the packed array; (7) the lower right triangle is stored in
packed recursive row lower format in the auxiliary buffer; (8) the
triangle stored from step 7 is copied back to the packed array.

Figure 11

(1) (2) (3) (4)

(5) (6) (7) (8)
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Table 1 Data transformation for n 5 7. Compare with Figures 5 and 11.

Operation Storage Auxiliary buffer

1 2 3 4 5 1 2 3 4 5

Initial 0 11 21 31 41 51 0 — — — — —
values 5 61 71 22 32 42 5 — — — — —
(packed 10 52 62 72 33 43
lower) 15 53 63 73 44 54

20 64 74 55 65 75
25 66 76 77

(1) 0 (11) (21) (31) 0 [11] [21] [31] [22] [32]
Copy/ 5 (22) (32) 5 [33]
transform 10 (33)
triangle 15
to buffer 20
(gather) 25

(2) 0 (41) 0
Copy 5 (42) 5 [41] [42] [43]
rectangle 10 (43)
row 15
(gather) 20

25

(3) 0 4(51) 0
Move 5 4(61) 4(71) [51]4 5
square 10 [3(52)61]4 [2(62)71]4 [1(72)52]3 [62]2 [72]1

columns 15 {53} {63} {73}
20
25

(4) 0 0
Transpose 5 51 5
square 10 52 53 61 62 63
in-place 15 71 72 73

20
25

(5) 0 0
Copy 5 [41] [42] [43] 5 (41) (42) (43)
saved row 10
back 15

20
25

(6) 0 [11] [21] [31] [22] [32] 0 (11) (21) (31) (22) (32)
Copy triangle 5 [33] 5 (33)
back 10

15
20
25

(7) 0 0 [44] [54] [55] [64] [65]
Copy/ 5 5 [74] [75] [66] [76] [77]
transform 10
lower right 15 (44) (54)
triangle 20 (64) (74) (55) (65) (75)
(gather) 25 (66) (76) (77)

(continued)
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to

n/ 2S2i 1 2n/ 2 2 n/ 2 1 3

2 D 2 1.

This is done in place, starting with the rightmost
column, by n/ 2 2 1 calls to DCOPY. Notice that when
i 5 n/ 2 2 1, the rightmost column is already in its
final place.

4. The square lower part of the rectangle is transposed,
since we want the resulting matrix to be in recursive
packed column upper format (which is equivalent to
recursive packed row lower format). The lower left
square of size n/ 2 3 n/ 2 is contiguous in memory
at positions

n/ 2S2n/ 2 2 n/ 2 1 1

2 D
to

n/ 2S2n 2 n/ 2 1 1

2 D 2 1.

This square is transposed in place by a call to the ESSL
routine DGETMI.

5. If n is odd, the row stored in step 2 is now copied to
positions

n/ 2~n/ 2 1 1!

2

to

n/ 2~n/ 2 1 3!

2
2 1.

Compare with Table 1, Step 5. Since this is a
contiguous vector, DCOPYis used.

6. The triangle stored in Step 1 is copied back. At this
time, the trapezoid consisting of the entire left part of
the triangle is in packed recursive row lower transposed
format, with the upper left triangle in the recursive
packed lower format and the rectangle in row-major
order.

7. Now, the lower right triangle of size n/ 2 is stored in
packed recursive row lower format in the auxiliary
buffer.

8. The triangle stored from Step 7 is copied back to the
packed triangle.

In Table 1, explicit details for the illustrative example where
n 5 7 is given. This example contains the salient feature
of the in-place data transformation algorithm for a general n.
In Table 1, the notation (ij) in position p means that a(i, j) is
read from memory location p. The notation [ij] in position
p means that a(i, j) is written into memory location p.
The notation [t(ij)kl]u in position p means that the
element a(i, j) is read from memory location p at time t
and that the same memory location p is overwritten with
element a(k, l ) at time u. Steps 1 and 2 of Table 1 are
self-explanatory. Step (3) is more complex. The general
idea is to move data in place so that data written at time t
does not overwrite any data that will be read at time u . t.
In step 3, column 2 [i.e., elements a(5 :7, 2) of AP] is
moved from locations 11, 12, 13 to locations 13, 14, 15.
Since these storage locations overlap, we move this data
in a backward manner; i.e., at time step 1, a(7, 2) is read
from location 13 and written into location 15; at time

Table 1 Continued

Operation Storage Auxiliary buffer

1 2 3 4 5 1 2 3 4 5

(8) 0 0 (44) (54) (55) (64) (65)
Copy 5 5 (74) (75) (66) (76) (77)
triangle 10
back 15 [44] [54]
triangle 20 [55] [64] [65] [74] [75]
(gather) 25 [66] [76] [77]

Final 0 11 21 31 22 32 0
result 5 33 41 42 43 51 5
(recursive 10 52 53 61 62 63
lower 15 71 72 73 44 54
row 20 55 64 65 74 75
format) 25 66 76 77

Legend:

t(ij) Element a(i, j) at location is accessed at time t (read operation). [Order of accesses is only important in operation (3).]
[ij]u Element a(i, j) at location is modified at time u (write operation). [Order of accesses is only important in operation (3).]
{ } Data is part of the operation but neither read nor written [rightmost column in operation (3)].
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step 2, a(6, 2) is read from location 12 and written into
location 14; at time step 3, a(5, 2) is read from location
11 and written into location 13. Next, a(5 :7, 1) of AP is
moved from locations 5:7 to locations 10:12. Since these
storage locations do not overlap, this move can be done by
calling DCOPYat composite time step 4. Note that column
3, a(5 :7, 3), is neither read nor written, as this column is
already in place. After step 3, A is stored in full format as
a square matrix. Step 4 transposes this matrix in place by
a standard in-place square transpose algorithm. Thus, in
step 4, we just exhibit the elements of the matrix after
transposition has occurred. Steps 5, 6, 7, and 8 of Table 1
are self-explanatory.

3. Algorithmic components

● The problem with a large recursion tree
Blocking reduces a large recursion tree to a recursion tree
of small size. Recall that a Cholesky program of size N
has a binary tree with N leaves and N 2 1 interior nodes.
The overhead at any node increases with n, where n is the
size of the Cholesky subproblem, since each interior node
performs the same Cholesky computation. To see this,
note that each call is recursive, so a call at size 2n
includes two calls at size n plus calls to recursive
routines RTRSMand RSYRK. What is important for high
performance is the ratio r of the cost of the recursive call
overhead to the computation cost (number of FLOPs). It
turns out that when n is large, this ratio is tiny and can be
safely neglected. We quantify this ratio in Section 3. Here
we discuss the pruning of the recursion tree so that every
node of the reduced tree has negligible r.

At a given tree level i, all nodes (there are 2 i nodes,
each of size m 5 ni or m 5 ni 1 1, where ni 5 N/ 2 i)
again execute the Cholesky algorithm on a submatrix of
size m. The FLOP count of Cholesky is 1

3
m 3 . Thus, the

overhead to FLOP-count ratio at tree level i is about eight
times smaller than at level i 1 1, and the number of

nodes doubles. At some level, say k, this ratio times 2 k

becomes too high. This requires that we prune the
recursion tree at level k and below. Suppose nb is some
blocking parameter where 2 k

# nb , 2 k11 . If the size of
the Cholesky subproblem is n $ 2 k11 , another recursion
step is attempted. Otherwise, n , 2 k11 , and the given
Cholesky problem of size n is factored using a direct
method. Using this strategy guarantees that the smallest
direct-method problem size will be n $ 2 k if the original
problem size is N $ 2k. If N , 2k, we used a simple packed
format code that used register blocking because the entire
packed matrix fit easily into cache. In our implementation
k was chosen to be 4. An interior node has n $ 2 k11 .
Here we execute a recursive TRSMproblem of size n1 and
a recursive SYRKproblem of size n2 , where n1 1 n2 5 n,
in addition to recursive Cholesky calls of sizes n1 and n2 .
The FLOP counts of TRSMand SYRKat a node of size
m, n are m 2n and (m 2 1 m)n, respectively. If n1 , 2 k11 ,
we solve the TRSMBLAS problem by a direct method and
solve the SYRKBLAS problem similarly. Otherwise, we
can safely do a recursion step, since the ratio r for the
problem will be tiny.

● Block version of recursive packed format Cholesky
In [1], Andersen, Gustavson, and Waśniewski show an
implementation of recursive Cholesky. They let the
recursion go down to a single element. Because of the
overhead of the recursive calls, the implementation has a
significant performance loss for small problems. However,
for large problems most of the computation takes place in
the DGEMM, so that performance loss, while significant for
smaller problems, is minor. The difference between that
implementation and the one described here is that we
combine recursion with blocking.

In our implementation, however, we combine blocking
and recursion to produce a blocked version of their
recursive algorithm. We do recursion only down to a fixed
block size 2nb. To solve problems for sizes smaller than
2nb, we use a variety of algorithmic techniques, some
new and some old, to produce optimized unrolled kernel
routines. These techniques are used for both the Cholesky
factorization routine and the recursive TRSMand recursive
SYRKroutines. The main technique we use to produce
these fast kernels is register and Level 1 cache blocking.
The specific kernels are described in the subsection on
three types of kernel routines.

Next we give details about our block version and
demonstrate analytically that blocking the recursion tree
via pruning completely eliminates performance problems
for small matrix sizes.

Algorithms for block Cholesky, block TRSM, and block SYRK
In this short section we modify the algorithms CHOL

(Figure 2), TRSM(Figure 9), and SYRK(Figure 10) to

Algorithm for block recursive Cholesky factorization. Matrix A is
stored in packed recursive lower format .

Figure 12
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produce their block counterparts, algorithms BC, BT, and
BS in Figures 12, 13, and 14, respectively. In each case, we
have a blocking factor nb, and the only change to these
three algorithms is to make their if-then-else clauses
dependent on nb. Also, the code of each if clause
becomes a call to a kernel routine instead of a square
root operation or a call to a Level 1 BLAS.

We omit all proofs of correctness because they are

similar to the proofs given in Section 2. Note, however,
that when nb 5 1 we get algorithms CHOL, TRSM, and
SYRK, because then the three Level 3 kernel routines BCK,
BTK, and BSK reduce respectively to SQRT, DSCAL, and
DDOTcomputations.

Now we discuss how the packed recursive lower format,
PRLF, and algorithms BC, BT, and BS relate to one
another. Take BC first. In the recursive part of the code

Figure 13
Algorithm for block recursive triangular solution. A is in and B is in row major order with leading dimension n.

Figure 14
Algorithm for block recursive triangular rank n update. A is in row major order with leading dimension n and C is in .
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there are four calls, two to BC and one each to BT and BS.
The definition of PRLF guarantees that the two BC calls
will receive lower triangular submatrices than are in
PRLF. To see this, simply note that the if-then-else
control logic of BC, where n is replaced by n1 5 n/ 2
and n2 5 n 2 n1 , is precisely the same as the control
logic used to define PRLF (see the subsection on data
transformation). Now look at the calls to BT and BS. Each
of these recursive routines has two operands: a triangle
in PRLF and a conventional rectangular matrix stored in
row major order with a leading dimension of n1 . This fact
follows immediately from the definition of PRLF and the
fact that BC control logic is identical to the control logic
defining PRLF. Turning now to recursive algorithms
BT and BS, we see the same if-then-else control logic
that was used in BC. Hence, the two recursive calls in
both BT and BS define triangle and rectangle operands
that are in PRLF and row major format, respectively.
Note, however, that the leading dimension of the
rectangle remains constant for all recursive calls of
BT and BS.

Finally, note that because the algorithm and the data
structure are so closely tied together, no data movement
of the operands occurs during any of the recursive calls.
Also, the floating-point operations occur only in calls to
BT, BS, at various internal nodes of the Cholesky tree,
and in calls to the kernel routine BCKat the leaves of the
Cholesky tree. Now consider any internal node of the
Cholesky tree where there is one call each to BT and
BS. In both the BT and BS calls there is an associated
recursion tree. For BT, the tree is the left child of the
node; for BS, the tree is the right child of the node.
Now consider either of these trees. At each interior

node there is one call to DGEMM, and at the leaves there
are calls to kernel routines BTK and BSK. We discuss the
implementation of the three kernel routines later in
Section 3. The discussion of the DGEMMimplementation is
beyond the scope of this paper; see [7] for some details.
We merely note that DGEMMis a Level 3 BLAS, and by its
very nature should be high-performance and fully tuned
for a given architecture/platform. The data movements of
the operands occur in the calls to DGEMM, BCK, BTK, and
BSK. In the Conclusion we give a further discussion of
data operand movement in the calls to DGEMM.

Recursion tree has 2i nodes at every level

Theorem 2 Given N $ nb, let 2 qnb # N , 2 q11nb
determine q. Let ni 5 N/ 2 i. Now either 1)
2qnb # N # 2q11nb 2 2q, or 2) 2q11nb 2 2q , N , 2q11nb.
When Case 1 holds, the binary recursion tree for the
blocked Cholesky algorithm BC(N) has 2 q leaves and
2 q 2 1 interior nodes; i.e., it has q 1 1 levels, where
Level k has 2 k nodes, 0 # k # q. When Case 2 holds,
N 5 2 q11nb 2 2 q 1 i, where 1 # i , 2 q . The binary
recursion tree for BC(N) has 2 q 1 i leaves and 2 q 1 i 2 1
interior nodes. It has q 1 2 levels, where Level k has 2 k

nodes, 0 # k # q, and Level q 1 1 has 2 z i leaves.
Consider the binary recursion tree associated with BC(N).
In both cases, for 0 # k # q we have the following:
At a given level k, ak of these nodes denotes a block
Cholesky algorithm BC(nk), and the remaining bk 5 2k 2 ak

denotes a block Cholesky algorithm BC(nk 1 1). Also,
aknk 1 bk(nk 1 1) 5 N holds. Additionally, in Case 2
we have nq 5 2nb 2 1, aq 5 2 q 2 i, and bq 5 i, and
at Level q 1 1 there are 2i leaves with nq11 5 nb.

Figure 15
Recursion tree for N � 743.

23 23 23 23 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24 23 23 23 24

46 46 46 47 46 47 46 47 46 47 46 47 46 47 46 47

92 93 93 93 93 93 93 93

185

743

372

186 186 186

371
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Proof We use mathematical induction. For i 5 0,
n0 5 N, a0 5 1, b0 5 0 as we have the original problem
BC(n0); see Figure 12. Assume that the result is true for
i 5 j. The induction hypothesis is a jnj 1 b j(nj 1 1) 5 N
and a j 1 b j 5 2 j . Now nj11 5 nj / 2. There are two
cases, depending on whether nj is even or odd. When nj

is even, a j11 5 2a j 1 b j and b j11 5 b j . When nj is odd,
a j11 5 a j and b j11 5 a j 1 2b j . The equations for a j11

and b j11 follow directly from the BC algorithm in
Figure 12. In both cases, a direct calculation gives
a j11nj11 1 b j11(nj11 1 1) 5 a jnj 1 b j(nj 1 1),
which equals N via the induction hypothesis. Also,
a j11 1 b j11 5 2(a j 1 b j), which equals 2 z 2 j via the
induction hypothesis. Similar proofs hold for Algorithms
BT and BS of Figures 13 and 14, respectively. h

Some notes: In going from Level i to Level i 1 1, the
number of Cholesky factorizations doubles, but their size
is halved. This means that the total number of FLOPs
decreases by a factor of approximately 4 in going down
one tree level. Precise details about this are given on
page 740 of [8].

In Figure 15 we give an example with N 5 743 and
nb 5 16. The recursion tree has 63 nodes. At level 0
there is one computation consisting of the single (BT, BS)
pair of size (371, 372). The two trees are the two children
of node 743, namely nodes 371 and 372. Hence, for BT

there are 15 calls to DGEMMand 16 calls to kernel BTK.
For BS there are also 15 calls to DGEMMand 16 calls to
kernel BSK. For both BT and BS, the sizes (m, n, k) of
the DGEMMcalls are given by the node labels, which for
kernels BT and BS are the same. At Level 1 there are
two (BT, BS) pairs of sizes (185, 186) and (186, 186),
respectively. The four subtrees are the four trees for BT

and BS, two each. For each tree there are seven DGEMM

and eight kernel calls. At Level 2 there are one (92, 93)
pair and three (93, 93) pairs. The eight subtrees are the
eight trees for BT and BS, four each. For each tree there
are three DGEMMand four kernel calls. At Level 3 there
are one (46, 46) pair and seven (46, 47) pairs. The sixteen
subtrees are the sixteen trees for BT and BS, eight each.
For each tree there are a single DGEMMand two kernel
calls. At Level 4 there are nine (23, 23) pairs and seven
(23, 24) pairs. There are 32 leaves, and these leaves
correspond to sixteen BT and BS calls. Each of the 32 calls is
a kernel routine call. At Level 5 there are 32 BCKcalls, 25 of
size 23 and seven of size 24. This is summarized in Table 2.

The example for N 5 743 is the typical case.
Let 512 # N , 1024. Dividing by 2nb, we have
16 # (N/ 2nb) , 32. This partitions N into nb intervals
[512, 544), [544, 576), . . . , [992, 1024) labeled by the
numbers nb to 2nb 2 1. Note that 743 belongs to the
partition [736, 768) labeled by the number 23. Partitions
16 to 30 have the same binary tree as in Figure 15, namely
one of 63 nodes. Partition 31, Case 2 of Theorem 2,

constitutes a transition between a binary tree of 31 interior
nodes and 32 leaves and one of 63 interior nodes and 64
leaves, the next power of 2. There are 2nb numbers
992 1 i, 0 # i , 2nb in partition 31. For N 5 992 1 i,
the binary tree has 31 1 i interior nodes and 32 1 i
leaves. The leaf nodes consist of 2i nodes of size nb
and 32 2 i nodes of size 2nb 2 1. Later in Section 3,
we refer to this partition as the special case. Finally,
note that the interval [29, 210) is generic, as Theorem 2
shows.

Overhead of recursion is negligible
To calculate the cost of the recursive calls, the recursive
algorithm is written as a recursive cost function. Let tcall be
the cost of a function call overhead, including cycles spent
to initialize variables (e.g., n1 5 n/ 2). Let tflop be the
cost of a floating-point operation.

Start with Algorithm BC(N) of Figure 12. When
n $ 2nb, the else clause of the if statement is executed,
and two calls to BC, one call to BT, and one call to BS

are performed. All of these calls operate on matrix sizes
equal to about half of the original. After investigating the
algorithms for BT in Figure 13 and BS in Figure 14,
we can, when n $ 2nb, write these costs as

C~n! 5 1 z tcallC 1 C~n/ 2! 1 C~n/ 2! 1 T~n/ 2, n/ 2!

1 S~n/ 2, n/ 2!; (16)

T~n, m! 5 1 z tcallT 1 T~n/ 2, m! 1 T~n/ 2, m!

1 G~n/ 2, m, n/ 2!; (17)

S~n, m! 5 1 z tcallS 1 S~n/ 2, m! 1 S~n/ 2, m!

1 G~n/ 2, n/ 2, m!, (18)

where C(n) is the cost of the Cholesky factorization,
T(n, m) is the cost of a triangular solution with m right
sides, S(n, m) is the cost of a symmetric rank-k update
with k 5 m, and G(m, n, k) is the cost of a matrix–matrix
multiply. Notice that each function accounts for the call
to itself. For n , 2nb, no recursive calls are performed,
so the cost is approximated by

Table 2 Values for ni, ai, and bi for different levels at the
recursion tree for N 5 743. Notice that a ini 1 b i(ni 1 1) 5
743 holds for all values of i, 0 # i # 5.

Level i ni ai bi ni 1 1

0 743 1 0 744
1 371 1 1 372
2 185 1 3 186
3 92 1 7 93
4 46 9 7 47
5 23 25 7 24
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C~n! 5 1 z tcallC 1
2n 3

1 3n 2
1 n

6
z tflop ; (19)

T~n, m! 5 1 z tcallT 1 n 2m z tflop ; (20)

S~n, m! 5 1 z tcallS 1 ~n 2
1 n!m z tflop . (21)

Now, only the cost formulation of the matrix–matrix
multiply is needed to solve the cost equations:

G~m, n, k! 5 1 z tcallG 1 2mnk z tflop . (22)

If Case 1 of Theorem 2 holds (i.e., 2qnb # n # 2qnb 2 2q),
the solution to Equation (16) can be written as

C~n! 5
2n 3

1 3n 2
1 n

6
z tflop 1 ~2 z 2 q

2 1! z tcallC

1 @2 q
z ~q 2 1! 1 1# z tcallT 1 @2 q

z ~q 2 1! 1 1# z tcallS

1 @2 q
z ~q 2 2! 1 2# z tcallG . (23)

That is, for Case 1, in order to Cholesky-factorize a
symmetric matrix of size n, there will be 2 z 2 q 2 1 calls
to the Cholesky routine, 2 q

z (q 2 1) 1 1 calls to each of
the TRSMand SYRKroutines, and 2 q

z (q 2 2) 1 2 calls
to the GEMMroutine.

Bounds for (23) for all values of n are found in the
Appendix. For now, we discuss the properties of
Equation (23) for Case 1 values of n with nb 5 16.

The important relation here is the number of tcalls
compared to the number of tflops. Notice that the number
of calls (tcallC 1 tcallT 1 tcallS 1 tcallG) for Cholesky is
3q2 q 2 2 q11 1 3, while the number of floating-point
operations is well known, 1

6
n(n 1 1)(2n 1 1). This clearly

shows that the overhead due to recursion is very small, as
the quotient between the leading terms of these two
expressions is

no. of calls

no. of FLOPs
5 9

log2

n

nb

n 2nb
.

The relative overhead is illustrated in Figure 16, where
the ratio between the number of calls to subroutines and
arithmetic work is plotted. Notice that the recursive code
handles problems where n $ nb, since we provide special
kernels for small problems where 1 # n , nb. The plot
is exact only for Case 1 values of n, since the formula
underestimates the number of function calls for Case 2
values of n. As an example, let n 5 128, nb 5 16
(kernels operate on problem sizes 16 to 31), and assume
that the overhead of a function call, including the small
setup part of the recursive functions, takes 200 times
the amount of time it takes to perform a floating-
point operation. Then the overhead due to the
recursion is about 1.7%! This overhead is also
dropping fast; for n 5 256, it is about 0.6%. For
our example with n 5 743, the number of FLOPs is
n z (n 1 1) z (2n 1 1)/6 5 137000284, while the
number of calls is 419, with nb 5 16; i.e.,

no. of calls

no. of FLOPs
z 200 5

419

137000284
z 200 < 6.12 z 10 24

< 0.06%.

Block size is large enough to give a Level-3-like performance
In our implementation, nb 5 16. This means that the
smallest possible block on which the kernels operate is of
size 16 3 16. The kernels use 4 3 4 loop unrolling and
Level 3 algorithmic preloading [9]. This technique makes
efficient use of the many floating-point registers available.
It separates the load/store operations from the dependent
floating-point operations. This nullifies the number of
stalls in the superscalar architecture; i.e., the floating-point
units are not delayed because their operand has not been
completed. This means that dependent floating-point
operations are scheduled at sufficient distance from one
another. (Example: The operation c11 5 c11 1 a11 z b11

must be sufficiently separated from the operation
c11 5 c11 1 a12 z b21 , or the second operation will be
delayed until the c11 value of the first operation is
calculated.)

Not many extra cycles are consumed in the kernels
anyway. Equations (19)–(22) can be refined further, by
differentiating between the tflops in different kernels. After
substituting tflopC , tflopT , tflopS , and tflopG for tflop in (19)–(22),
the new cost expression for Cholesky factorization becomes

Figure 16

f (n) � 6 3k2k � 2 k�1 � 3 n
n(n � 1)(2n � 1), k � log2 .2nb

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

101 102 103 104

n

f(
n)

nb � 8
nb � 16
nb � 32
nb � 64
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C~n! 5 2~n log n! z tcall

1 1
6

n~2nb 1 1!~nb 1 1! z tflopC

1 1
2

n~n 2 nb!nb z tflopT

1 1
2

n~n 2 nb!~nb 1 1! z tflopS

1 1
3

n~n 2 nb!~n 2 2nb! z tflopG . (24)

This means that the n 3 part of the calculation cost is
spent entirely in the DGEMMroutine! This can be seen by
looking at how the number of FLOPs spent in routines
other than DGEMMis related to the problem size, since the
leading term of the quotient between the coefficients of
the tflopC , TflopT , and tflopS terms and the total number of
FLOPs in C(n) in (24) is

no. of FLOPs not in DGEMM

no. of FLOPs
5

3nb

n
.

Only two node sizes, ni and ni 1 1
Assume that the topmost node is of size n0 . We now show
that the sizes of all of the nodes on the same, arbitrary,
level i in the tree will be one of two consecutive values;
call these sizes ni and ni 1 1. This result is also part of
Theorem 2. We use induction on the level of the tree
i 5 0, 1, . . . . Now, for i 5 0, there is only one node,
and the result is trivially true.

Suppose that the result is true when i 5 k; that is, for
Level k in the tree, every node is either of size nk or nk 1 1.
Now, suppose that nk is even; then nk 1 1 is odd. Then the
children of the node of size nk are nk/2 5 nk/2 5 nk/2,
and the children of the node of size nk 1 1 are
(nk 1 1)/ 2 5 nk / 2 and (nk 1 1)/ 2 5 nk / 2 1 1. Thus,
the children nodes are of two sizes, nk / 2 and nk / 2 1 1.

For the other case, if nk is odd, then nk 1 1 is
even. Then the children of the node of size nk are
nk / 2 5 (nk 2 1)/ 2 and nk / 2 5 (nk 1 1)/ 2,
and the children of the node of size nk 1 1 are
(nk 1 1)/ 2 5 (nk 1 1)/ 2 5 (nk 1 1)/ 2. Thus, the
children nodes are of two sizes, (nk 2 1)/2 and (nk 1 1)/2.

This fact is used in our implementation, since it allows
us to make at most two tables for the mapping of the
data in the kernel routines— one map for nq and another
for nq 1 1. However, there is a special case in which
nq 5 2nb 2 1. In this case, the recursion goes one
depth further. Thus, all of the children of the nodes
of size nq 1 1 have the same size, nq11 5 nb, so we still
have only two node sizes, nb and 2nb 2 1.

● Three types of kernel routines
In our implementation, three types of kernel routines have
been considered. What distinguishes these kernels is how
they deal with the nonlinear addressing of the packed
recursive triangles. The first one is called a mapping
kernel, and the technique is used for the Cholesky
factorization kernel. Recall that this kernel operates solely
on a triangular matrix, which is stored in packed recursive
lower format. The ratio of the number of triangular matrix
accesses to the number of operations is small, so the
performance loss of copying the triangle to a full matrix
in order to simplify addressing is not feasible. Also, the
triangle is updated, so two copy operations would be
necessary, one before the factorization and one after,
to store the triangle back in packed recursive format.
Instead, an address map of the structure of the elements
in memory is preconstructed. As was previously shown,
only two maps need be generated, M1 for problem sizes
ni 1 1 and M2 for problem sizes ni . These maps are
initialized before the recursion starts. The map M2 is used
aq times and the map M1 is used bq times during the
execution of BC(N). (See Table 1 for the example
N 5 743, where q 5 5, a5 5 25, and b5 5 7.) In the
kernel, the local address of the element A(i, j) is
computed as loc[a(i, j)] 5 M1[i 1 j z (ni 1 1)] or
loc[a(i, j)] 5 M2[ j 1 i z (ni 1 1)], depending on the
problem size of the kernel. Figure 17 illustrates the two
maps generated for ni 5 23, perhaps for solving a
problem of size N 5 743 (see Table 2). To find the
memory location of an element A(i, j) in any triangle
submatrix of size 24, a lookup at address i 1 j z 24 of
the map M1 is done. To find the memory location of an
element in any triangle submatrix of size 23, the kernel
performs a lookup at address j 1 i z 24 of the map M2 .
Notice the order of i and j. In Section 2 we explained
why packed recursive row lower format gave better
performance due to better element-access stride. This
format is also shown in Figure 17. For n 5 24, the lower
triangle, the locations for the elements in the rectangles
are in row major order. However, for n 5 23, the matrix
map is transposed, so the elements in the map rectangles
are in column major mode. Nonetheless, in both cases, the
data access pattern for both kernels, when matrix elements
are in the rectangle, is stride 1. Also observe that M1

starts at the first memory position (0) of the memory
occupied by the two tables, while M2 starts at memory
position 24. The reason for having one map in row order
and the other map in column order was to conserve
memory. We are trying to address two triangular arrays of
sizes n and n 1 1. Both of these tile into a single square
array of size (n 1 1) 3 (n 1 1), as Figure 17 shows for
n 5 23.

The map design leads to one extra memory lookup and
two extra index operations per reference. However, the
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performance impact should be negligible. The extra
operations are performed by the integer unit1, which
has many spare cycles in these floating-point-intensive
subroutines. (This statement, however, is not true for
processors which have a combined integer unit and

load/store unit.) Therefore, these operations can be done
in parallel with the floating-point operations. Second,
many integer registers are available for use by the kernels,
so several pieces of mapping data can be stored in
registers for later reuse.

For the TRSMand SYRKkernels, more floating-point
operations are performed, which reduces the ratio of the1 Sometimes referred to as the fixed-point unit, FXU.

Figure 17
Maps for kernel problem sizes n � 23 (in italics) and n � 24. Viewed as a matrix of size 24 � 24 in column major (FORTRAN) order.

0 0 1 3 5 7 15 20 25 30 35 40 66 77 88 99

1 3 2 4 6 8 16 21 26 31 36 41 67 78 89 100

2 4 5 9 10 11 17 22 27 32 37 42 68 79 90 101

6 7 8 15 12 13 18 23 28 33 38 43 69 80 91 102

9 10 11 16 18 14 19 24 29 34 39 44 70 81 92 103

12 13 14 17 19 20 45 46 47 51 54 57 71 82 93 104

21 22 23 24 25 26 57 48 49 52 55 58 72 83 94 105

27 28 29 30 31 32 58 60 50 53 56 59 73 84 95 106

33 34 35 36 37 38 59 61 62 60 61 62 74 85 96 107

39 40 41 42 43 44 63 64 65 72 63 64 75 86 97 108

45 46 47 48 49 50 66 67 68 73 75 65 76 87 98 109

51 52 53 54 55 56 69 70 71 74 76 77 198 199 200 204

78 79 80 81 82 83 84 85 86 87 88 89 222 201 202 205

90 91 92 93 94 95 96 97 98 99 100 101 223 225 203 206

102 103 104 105 106 107 108 109 110 111 112 113 224 226 227 213

114 115 116 117 118 119 120 121 122 123 124 125 228 229 230 237

126 127 128 129 130 131 132 133 134 135 136 137 231 232 233 238

138 139 140 141 142 143 144 145 146 147 148 149 234 235 236 239

150 151 152 153 154 155 156 157 158 159 160 161 243 244 245 246

162 163 164 165 166 167 168 169 170 171 172 173 249 250 251 252

174 175 176 177 178 179 180 181 182 183 184 185 255 256 257 258

186 187 188 189 190 191 192 193 194 195 196 197 261 262 263 264

198 199 200 201 202 203 204 205 206 207 208 209 267 268 269 270

210 211 212 213 214 215 216 217 218 219 220 221 273 274 275 276

110 121 132 143 154 165 176 187

111 122 133 144 155 166 177 188

112 123 134 145 156 167 178 189

113 124 135 146 157 168 179 190

114 125 136 147 158 169 180 191

115 126 137 148 159 170 181 192

116 127 138 149 160 171 182 193

117 128 139 150 161 172 183 194

118 129 140 151 162 173 184 195

119 130 141 152 163 174 185 196

120 131 142 153 164 175 186 197

207 210 219 225 231 237 243 249

208 211 220 226 232 238 244 250

209 212 221 227 233 239 245 251

214 215 222 228 234 240 246 252

216 217 223 229 235 241 247 253

240 218 224 230 236 242 248 254

241 242 255 256 257 261 264 267

247 248 279 258 259 262 265 268

253 254 280 282 260 263 266 269

259 260 281 283 284 270 271 272

265 266 285 286 287 294 273 274

271 272 288 289 290 295 297 275

277 278 291 292 293 296 298 299
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number of accesses to the number of operations. This
suggests that it would be beneficial to copy the triangle
to a buffer and store the triangle in full array format. This
is especially true for the BT kernel, BTK, since there the
triangle is only read, and thus copying is done only once.
For the BS kernel, BSK, the triangle is both read and
written, so data copying must be done twice. In fact,
since the number of operations depends on the size of
the rectangular operand as well, we use this size as a
threshold. If the rectangle is large enough, the triangle
is copied to a buffer.

A third method is the compiled code approach; see [10]
for a reference. Here all loops have been unrolled; this
means that for every line in the code, the indices are
constant. Thus, the mapping indices are known, and the
mapping reference can be replaced by a constant. This
technique was tested for the Level 2 solve routine kernels,
where the number of operations is equal to the number
of triangle accesses. However, this attempt was not very
fruitful, and gave inconsistent results. There are two major
disadvantages to kernels produced by this approach. First,
separate pieces of code are needed for every possible
problem size on which the kernel operates. The code size
tends to be huge. Second, this requires a high-bandwidth
path to the instruction cache, and an instruction cache
large enough to hold these unrolled operations. Since
some processors have combined instruction and data
caches, there can be a tradeoff here, between large
code and large data. The compiled code approach
was not used in the implementation.

The methods are summarized in Table 3.

● Storage layout
The algorithm PLPR transforms the input matrix from
packed lower format to packed recursive row lower
format. It is pictorially described in the subsection on
data transformation, and is given in Figure 18. It makes
use of the recursive algorithm PLPRK(Figure 19), which
performs the data transformation out of place. In fact, if
memory conservation were not an issue, PLPRKcould be
used alone. However, by using the fact that it is possible
to do an in-place transpose of a square efficiently, PLPR

reduces the needed temporary buffer space from n 2/ 2 to
n 2/8. Notice the different meaning of the “K” in PLPRK,

compared to the algorithms for block Cholesky, block
TRSM, and block SYRK— e.g., BCK. PLPRKis a helper
routine to PLPR in the same way as BCK, but here PLPRK

is recursive, while BCK is not. On the other hand, PLPR

is not recursive in itself, but BC is.
Performance is important in both PLPR and PLPRK,

even though their complexity is only 2(n 2). This is
because both of these routines perform no arithmetic
work, and thus only serve to reduce the MFLOP rate.
To justify the new format, the speed gain given by the
recursion and blocking must be large enough to cover the
overhead by these routines. We accomplish this in PLPR

by using optimized standard routines such as DCOPYand
DGETMI, and in PLPRKwe use unrolled code and a form
of the compiled code approach (for a description and a
reference, see the subsection on three types of kernel
routines). Also, PLPRKcombines blocking and recursion
to reduce the recursion tree so that the calling overhead
becomes negligible. In Figure 19 the code for the case
n 5 4 is written out, with the copying of the ten elements
being done directly. This PLPRKalgorithm does not
handle cases where n , 4. This is not a problem because
problems smaller than nb 5 16 are solved using legacy,
nonrecursive code.

4. Performance
In this section, we describe the different machines on
which we have run our tests. The results for these runs are
presented, both for uniprocessors and for multiprocessors
using shared memory (SMP).

● Machine characteristics
The routine was run on three different machines. The first
machine is the IBM RS/6000* SP Thin Node, with an IBM
POWER2 CPU running at 120 MHz. This processor has a
peak rate of 480 MFLOPs/s, an L1 data cache of 128 KB,
and, due to the large memory bus, a very good peak
memory bandwidth of 15.4 Gb/s.

The second machine is the IBM RS/6000 SP SMP Thin
Node, with four IBM 604e CPUs running at 332 MHz.
Each processor has a peak rate of 664 MFLOPs/s, an L1
data cache of 32 KB, an L2 cache of 256 KB, and a
memory bandwidth of 1.3 Gb/s.

The third machine is the IBM RS/6000 SP POWER3

Table 3 Methods to access nonlinearly stored triangle in kernels. Note that nb/ 2 # n , nb.

Operation No. of operations No. of table accesses Method used

Cholesky 2(n3) 2(n2) Maps

TRSMand SYRK 2(mn2) 2(n2) Copy buffer if m . threshold,
otherwise maps

Level 2 solve 2(n2) 2(n2) Maps, compiled code attempted
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Figure 18
Algorithm for in-place transformation between packed lower format and packed recursive row lower format. (See the subsection on data
transformation, Figure 11, and Table 1 for correlating material.)
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Figure 19
Algorithm for out-of-place transformation between packed lower format and packed recursive row lower format. (See the subsection on data
transformation, Figure 11, and Table 1 for correlating material.)
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SMP Thin Node, with two IBM POWER3 CPUs
running at 200 MHz. Each processor has a peak rate
of 800 MFLOPs/s, an L1 data cache of 64 KB, and
an L2 cache of 4 MB. The memory bandwidth is
12.8 Gb/s; see page 88 of [11] for further information.

Please note the different use of the term level. A Level 1
cache (L1 cache) is the cache closest to the processor,

on the processor chip itself. A Level 2 cache (L2 cache),
if it exists, is situated between the Level 1 cache and the
memory, or other caches (Level 3 cache).

● Uniprocessor results
In the preceding subsection, we discussed levels of
memory; i.e., L1 cache, L2 cache, etc. Here we also
discuss Level 2 and Level 3 routines. We briefly define
these terms so as to better clarify the discussions to
follow. A Level 1 BLAS routine is a vector–vector
operation, a Level 2 BLAS routine is a matrix–vector
operation, and a Level 3 BLAS routine is a matrix–matrix
operation.

The IBM 604e chip has better floating-point arithmetic
performance than memory bandwidth. It is therefore
difficult to reach peak performance, since the machine
design does not allow acceptable data reuse because
of its tiny line size and tiny Level 1 cache. The LAPACK
uplo 5 'L ' DPPTRFroutine (Figure 4) is a Level 2 BLAS
algorithm, and thus has poor data reuse. As a Level 2
BLAS algorithm, it does not block for any cache level, so
performance drops when the cache is exhausted. This is
seen in Figure 20 at two points, one just below N 5 100,
when the Level 1 cache is full, and one at N 5 240, just
before the Level 2 cache is full. However, the recursive
algorithm runs just as well as the LAPACK uplo 5 'L '
DPOTRFroutine (Figure 3), a blocked Level 3 BLAS
algorithm. Notice that the performance of the unblocked
DPPTRFroutine is bounded by the memory bandwidth.
At the beginning of Section 4 we stated that the memory
bandwidth was 1.3 Gb/s, or 20 MDW/s2. Each loaded
element is used in approximately two floating-point
operations before it is flushed out of cache; this, together
with overhead for the table lookaside buffer (TLB), yields
a large-problem performance of about 38 MFLOPs/s. In
the DPOTRFgraph, “dips” can be found corresponding to
bad leading-dimension sizes, which cause poor usage of
the four-way-associative cache. A leading dimension is bad
when a small multiple of it is close to some multiple of 2 k .
(“Close” means that the multiple lies in a window of the
cache’s line size.) The bad-leading-dimension problem is
created by the way in which data from memory is mapped
into the Level 1 cache. This mapping is based on cache
congruence classes (page 568 of [7]). One example is 682,
which multiplied by 3 is 2046, which lies within the small
window of (2044, 2052).

The IBM POWER2 chip has a very good bandwidth due
to its large memory bus of 256 bits (four doublewords).
This is shown in Figure 21, where the DPPTRFroutine
does better compared to the peak rate on this machine
than for the 604e. Still, it levels out at about a fourth of
the peak rate. On this machine, the recursive algorithm

2 One doubleword (DW) 5 64 bits.

Performance for Cholesky factorization on the IBM 604e. Peak
rate is 664 MFLOPs/s.

Figure 20
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Performance for Cholesky factorization on the IBM POWER2.
Peak rate is 480 MFLOPs/s.

Figure 21
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beats the LAPACK DPOTRFroutine by a clear margin.
Also, it uses about half the memory. The lack of a
Level 2 cache on the POWER2 amplifies the effect of the
congruence classes of the Level 1 cache, with very deep
dips for DPOTRF. This is not the case for the recursive
BC subroutine, because it uses many different leading
dimensions in its recursive data structure.

The IBM POWER3 chip also has a very good
bandwidth and built-in prefetches, which automatically
detect vector accesses and prefetch them. These detectors
recognize stride 1 data access patterns, and prefetch data
which are predicted to be needed before they are actually
called, thereby reducing the memory-latency overhead.
Together, these reasons explain the good relative
performance for the LAPACK DPPTRFroutine. On this
machine, the recursive routine also beats the LAPACK
DPOTRFroutine which uses full storage; see Figure 22.
The Level 1 cache on the POWER3 chip is 128-way-
associative, which almost eliminates the cache congruence-
class effect. The only remaining dips are some small ones
at N 5 256, 512, 768, with N 5 512 having the largest
performance decrease.

● Multiprocessor results
We have parallelized the Cholesky routine by simply
linking to an SMP version of DGEMM. The results for one
SMP machine, a two-way POWER3 machine, are shown
in Figure 23. The speedup is not impressive for small
problems. At N 5 1000, it is about 1.4 for POWER3. For
larger problems, the speedup reaches more than 1.6. Also,
this speedup is reached only by using an SMP version of
the DGEMMroutine. All other code is compiled without
using any parallelization flags. This is not possible to do
for the LAPACK DPPTRFroutine, since it cannot make
use of DGEMMbecause of the packed data structure. Also,
DPOTRFis not as good with SMP DGEMMbecause it has
fixed block size; take a look at SMP DGEMMplots for
DPOTRFfor large problem sizes. Figure 23 shows that
algorithm BC, with fixed NB 5 16, outperforms DPOTRF

except for cases in which the blocking size for DPOTRF

equals 64 and 400 # N # 1200, where the performance
is about equal.

We briefly explain why. The FLOPs of Algorithm BC

follow a geometric progression. At Level 0, three quarters
of the FLOPs are consumed in two calls to Algorithms
BT and BS. At Level 1, three quarters of the remaining
quarter of the FLOPs are consumed, etc. Now, both
BT and BS call DGEMMwith operands whose size may
vary according to the recursion tree level. In essence,
Algorithm BC spends most of its computing time in two
calls to DGEMMat Level 0 of the recursion tree. On the
other hand, the floating-point operations of Algorithm
DPOTRFfollow an arithmetic progression (for a figure, see

[8]). Specifically, the N dimension of DGEMMis always fixed
at or below NB, the block size. Hence, the C matrix of
DGEMMcannot be easily broken into large pieces for SMP
DGEMMto work on.

This means that parallel DPOTRFworks well for parallel
machines with only a few processors. On the other hand,
BC should scale with more processors because of the
geometric nature of the recursive algorithm. In Figure 23,

Performance for Cholesky factorization on the IBM POWER3.
Peak rate is 800 MFLOPs/s.

Figure 22
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Performance for Cholesky factorization on the IBM POWER3;
peak rate is 2 � 800 MFLOPs/s.

Figure 23

1400

1200

1000

800

600

400

200
0 500 1000 1500 2000 2500 3000

N

M
FL

O
Ps

/s

BC, NB � 16

DPOTRF, block size � 16

DPOTRF, block size � 32

DPOTRF, block size � 64

Factorization on IBM POWER3

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000 F. G. GUSTAVSON AND I. JONSSON

845



this is shown as DPOTRFperforms worst with small NB,
whereas BC performs better for small NB, as more FLOPs
are being performed in SMP DGEMMwith the C matrix
large.

5. Conclusions
We have presented a novel algorithm for Cholesky
factorization. It has three attractive features: It uses
minimal storage, it attains Level 3 performance, and it
uses standard packed format for input. The last feature,
perhaps the most important, means that existing codes can
use the new algorithm; i.e., it is portable and migratable.
The new algorithm outperforms the standard algorithms
DPPFA, DPOFAof Linpack and DPPTRF, DPOTRFof
LAPACK. Compared to the standard packed routines,
the performance ratio is greater than 4, sometimes as
large as 7, when N is large. Compared to DPOTRF, the
performance was greater by 31%, 40%, and 11% at
N 5 200 and 5%, 14%, and 25% at N 5 1000 for the
three IBM RISC machines POWER3, POWER2, and
PowerPC 604e. These figures include the cost of the data
transformation from lower packed to recursive lower
packed row format. The memory bandwidth characteristics
of these three machines decrease downward from
POWER2 to POWER3 to PowerPC. Our performance
results demonstrate this characteristic; i.e., the new
algorithm is better able to exploit machines with better
memory bandwidth. The performance is also more
uniform, especially on POWER2, than for LAPACK
DPOTRF. For example, on POWER2, for certain values of
N, LAPACK DPOTRFperformance drops by more than a
factor of 2, whereas for the new algorithm it is closer to
10%.

In comparing the new algorithm to full-format
algorithms, we note that the storage requirement is nearly
a factor of 2 less. However, temporary storage of 1

8
N 2

elements is required for the data transformation. Finally,
as N becomes very large, say N . 1000, and approaching
N 5 4000, the performance of the new algorithm
gradually increases, whereas LAPACK DPOTRFlevels
off at its N 5 1000 value. These five factors, namely
portability and migratability, better performance, less
storage, more uniformity, and slow improvement for large
values of N, lead to the following conclusion: The use of
packed format for Cholesky factorization will become a
competitive method of choice over full format.

Several less important results were also demonstrated.
A blocked form of the pure recursive algorithm was
introduced and completely analyzed. The results showed
that the overhead due to recursion became negligible.
Some novelty was introduced to make this possible: The
use of two-dimensional mappings and data copying was
introduced. We showed that only two mappings were
necessary, so the extra storage requirements become

negligible. We also demonstrated that the percentage of
FLOPs spent in DGEMMapproach 1 2 (3nb/ 2N) as N
becomes large. This means that a parallel SMP version of
the algorithm becomes automatic by merely producing a
parallel SMP DGEMM.

We mention that recursion is ideally suited to Cholesky
factorization. For other dense linear algorithms, the use
of recursion may not be as relevant. For Cholesky, the
reason can be seen in Figure 1 by noting that the
recursive part truly divides the problem into a smaller
instance of itself. To see this, note that the two children
of the parent node Cholesky-factor a problem of half
the size. On the other hand, other dense linear algebra
problems such as dense LU with partial pivoting, QR
factorization, reduction to tridiagonal form, and symmetric
indefinite factorization algorithms all have some global
feature that remains during their factorization phase. This
global feature of the factorization phase appears to be
inherent. It means that a sizable part of the matrix is
needed for each of the “rank one pivot” steps. This
implies that data movement from memory, Level 2 cache,
and any cache levels between these cannot be avoided,
and so the FLOPs consumed during the “rank one pivot”
step cannot be Level-3-like; i.e, they must be either Level-
2- or Level-1-like. For Cholesky, this is not true. The
factor phase can be made Level-3-like because one merely
factors an order n positive definite matrix which definitely
fits in the Level 1 cache. In summary, for Cholesky, it
definitely appears that recursion- and blocked-based
formats will become the method of choice.

To summarize: We have demonstrated in this paper
every reason to make a change. There were no negative
results other than “status quo.” Even there, we adapted
our algorithm to accept the older data format of the
status quo, so even that objection tends to disappear.

There are some issues we have not covered. In ESSL,
there are also new algorithms for LDLT factorization and
matrix inverse where A is positive definite symmetric.
We produced new algorithms similar to the algorithms
presented here, and the results were essentially the same,
although we do not discuss the results here owing to lack
of time and space. On a more positive note, we had
wondered in February 1999 if newly proposed BLAS
libraries for packed formats would pick up these ideas
[12]. As of December 1999, we learned that the new
Level 3 BLAS routines for packed format were dropped,
partly because of results such as those appearing in
this paper. Finally, we note that Level 2 routines using
the new recursive formats must use these formats as
input; i.e., they cannot transform from packed format
to recursive packed format as is done in the Level 3
algorithms. The reason is fairly simple. We cannot do a
packed-to-recursive-packed data transform, followed by a
recursive packed Level 2 BLAS, followed by a recursive-
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packed-to-packed data transform. This is not practical
because each of the two data transformations is as costly
to perform as doing the Level 2 BLAS in the original
packed data format.

Finally, a natural question arises: Does this new method
produce the fastest Cholesky factorization routine for
today’s RISC-type processors? The answer is no. To
see why this is so, recall that most of the FLOPs of our
algorithms are consumed in DGEMM. Surprisingly, “DGEMM”
performance on Cholesky factorization can be improved,
but only by changing the input data format of AP. In [6, 8, 9]
we indicate why. Briefly, for dense Level 3 factorization
routines (Cholesky is a prime example), DGEMMis called
multiple times on submatrices of the matrix A that is to
be factored. A generic DGEMMdoes not know about this
relationship and hence cannot exploit it. To generally
exploit these relationships one must change the input
data format; see again [6, 8, 9]. When this is done, the
new DGEMMwill work on the new data format, which is
especially tailored to the factorization routine. The new
DGEMMbecomes simpler and faster because any data
copying of the old DGEMMis avoided.

In this paper, we have partially applied the principle:
We changed the input format AP to PRLF. However, we
kept the resulting n 2 1 rectangular (nearly square) arrays
in standard row major order, with the leading dimension
being ni , ni 1 1, i 5 1, . . . , q. As is argued in [6, 8, 9],
standard row and column major format is not the best
input format for DGEMMwhen it is applied to dense linear
algebra factorization routines. And since the standard
format is used by the CHOLand BC algorithms here,
performance will be sub-optimal.

The “better” data formats require some expansion of
the input array space AP, whereas the current algorithms
CHOLand BC do not. Hence, CHOLand BC are more
portable and migratable than the other “better” formats.
Also, tuned DGEMMroutines are widely available on many
platforms.

Appendix: Solution for Equation (16) and
bounds for the solution
Equations (16) to (18), (19) to (22), and (23) define the
cost C(n) of Cholesky factorization in terms of tcall and
tflop. Before proceeding, note that for a given n, the
recursive algorithm CHOLof Figure 2 makes multiple calls
to the recursive algorithm TRSMof Figure 9 and the
recursive algorithm SYRKof Figure 10. In fact, for each
interior node of the recursion tree of Figure 1 there is a
single call to both TRSMand SYRK. We define integer
functions st(n) and ss(n) which sum together all of these
recursive calls. Also, c(n) and g(n) represent respectively
the number of calls to the Cholesky factor routine and to
the GEMMroutine. Here we forget about tflop and compute
only the part of C(n) that pertains to tcall. We may write

C~n! 5 c~n!tC 1 st~n!tT 1 ss~n!tS 1 g~n!tG , (A1)

where tC , tT , tS , and tG denote the tcallC , tcallT , tcallS , and tcallG

of Equation (23). We set nb 5 1 here; i.e., we consider
the full recursive call where there is no blocking factor.
Using (16)–(23) with nb 5 1, we obtain Table 4.

Our aim is to find general expressions for c, st, ss, and
g. To do so we first write some recursive equations. From
Equations (17) and (18) we find

T~n, m! 5 ~2n 2 1!tT 1 ~n 2 1!tG (A2)

and

S~n, m! 5 ~2n 2 1!tS 1 ~n 2 1!tG . (A3)

Using Equations (16), (A1), (A2), and (A3) and
comparing coefficients of tC , tT , tS , and tG , we find that

c~n! 5 c~n1! 1 c~n2! 1 1, (A4)

st~n! 5 st~n1! 1 st~n2! 1 2n1 2 1, (A5)

ss~n! 5 ss~n1! 1 ss~n2! 1 2n2 2 1, (A6)

g~n! 5 g~n1! 1 g~n2! 1 n 2 2, (A7)

where c(1) 5 1 and st(1) 5 ss(1) 5 g(1) 5 0. Also, n1

denotes n/ 2, and n2 denotes n/ 2. Now Equation (A4),
like (17) and (18), is easily solved to give

c~n! 5 2n 2 1. (A8)

Similarly, it is fairly easy to see, via induction, that

g~n! 5 2 1 jn 2 2 j11, (A9)

where j 5 log2 n. Now we turn to solving (A5) and (A6).
Let

sa~n! 5
1
2

@ss~n! 1 st~n!# (A10)

and

d~n! 5
1
2

@ss~n! 2 st~n!#. (A11)

Table 4 Number of calls to the different subroutines for
some values of n.

n c(n) st(n) ss(n) g(n)

1 1 0 0 0
2 3 1 1 0
3 5 2 4 1
4 7 5 5 2
5 9 6 10 4
6 11 9 13 6
7 13 12 16 8
8 15 17 17 10
·
·
·

·
·
·

·
·
·

·
·
·

·
·
·
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Here sa stands for the average of st and ss, and d stands
for their deviation. Then, using (A5), (A6), (A10), and
(A11), we obtain

sa~n! 5 sa~n1! 1 sa~n2! 1 n 2 1 (A12)

and

d~n! 5 d~n1! 1 d~n2! 1 n2 2 n1 , (A13)

with sa(1) 5 d(1) 5 0. Again, it is fairly easy to see, via
induction, that a solution to (A12) is

sa~n! 5 1 1 ~ j 1 1!n 2 2 j11. (A14)

To find a closed-form expression for d(n), we need the
following.

Lemma a id(ni) 1 b id(ni 1 1) 2 g i 5 a i11d(ni11) 1

b i11d(ni11 1 1), where g i 5 a i if ni is odd and g i 5 b i if
ni is even. The terms a i , b i , and ni are defined in
Theorem 2.

Proof Let ni be odd. Then a i11 5 a i , b i11 5 a i 1 2b i ,
d(ni) 5 d(ni11) 1 d(ni11 1 1) 1 1, and d(ni 1 1) 5

2d(ni11 1 1). Thus, a id(ni) 1 b id(ni 1 1) 2 g i 5

a i[d(ni11) 1 d(ni11 1 1) 1 1] 1 2b id(ni11 1 1) 2 a i 5

a id(ni11) 1 (a i 1 2b i)d(ni11 1 1) 5 a i11d(ni11) 1

b i11d(ni11 1 1). Let ni be even. Then a i11 5 2a i 1 b i ,
b i11 5 b i , d(ni) 5 2d(ni11), and d(ni 1 1) 5 d(ni11) 1

d(ni11 1 1) 1 1. Thus, a id(ni) 1 b id(ni 1 1) 2 g i 5

2a id(ni11) 1 b id(ni11) 1 b id(ni11 1 1) 1 b i 2 b i 5

(2a i 1 b i)d(ni11) 1 b id(ni11 1 1) 5 a i11d(ni11) 1

b i11d(ni11). Since ni must be odd or even, we are
done. h

Corollary Let N 5 n0. Then d(N) 5 aid(ni) 1 bid(ni 1 1)
1 ¥k50

i21 gk .

Proof We use mathematical induction. For i 5 0,
d(N) 5 d(n0). Assume that the result is true for i 5 j.
The induction hypothesis is d(N) 5 a jd(nj) 1 b jd(nj 1 1)
1 ¥k50

j21 gk. Let x 5 d(N) 2 ¥k50
j21 gk. By the lemma and the

induction hypothesis, x 5 ajd(nj11) 1 bj11d(nj11 1 1) 1 gj,
and the result follows.

Corollary d(N) 5 ¥k50
q21 gk , where q satisfies 2 q

# N ,

2 q11 2 1.

Proof Set i 5 q. Then nq 5 1, and so d(nq) 5 d(nq 1 1)
5 0. h

In Table 5 we list some values of d(n).
We now give some additional results with respect to d(n).

It is clear that d(2k) 5 0; also, d(n) is a symmetric function
between two successive powers of 2. Hence, we need to
compute d(n) from 2 j to 3 z 2 j21 . Now we claim that
in the interval [2 j , 2 j11], d takes its first maximum
value at n( j) 5 1 1 2

3
(2 k11 2 1)(2 k11 1 1) for

j (5 2k 1 1) odd and n( j) 5 1
3

(2 k11 2 1)(2 k11 1 1)
for j (5 2k) even. For j odd, the maximum value is
d[n( j)] 5 1

3
(2 k11 2 1)(2 k11 1 1); for j even, the

maximum value is d[n( j)] 5 2
3

(2 k11 2 1)(2 k11 1 1).
These claims can be established using mathematical
induction. In Table 6 we give some of the first maximum
values of d.

Without proof we state that the following piecewise
linear function bounds d from above. Consider the interval
[2j, n( j)]. We partition [2j, n( j)] into [x0, x1], [x1, x2], . . . ,
[ xj22 , xj21], where xi 5 2 j 1 [0, 1, 3, . . . , n( j 2 2)].
Note that n(0) 5 1. With each of these j 2 1
intervals, associate ordinate intervals [ y0 , y1], [ y1 , y2], . . . ,
[ yj22 , yj21], where y0 5 0. The slopes of lines in each of
these intervals will be m 5 j, j 2 2, j 2 3, . . . , 1. Now
the piecewise linear majoring function is obtained as
follows: Start at interval [ x0 , x1], [ y0 , y1]. Use the first
slope m 5 j to compute y1 . Use the second slope
m 5 j 2 2 to compute y2 . Follow this procedure for
the rest of the intervals. This defines y2 , etc.

From (A10) and (A11) we can solve for

st~n! 5 sa~n! 2 d~n! (A15)

and

ss~n! 5 sa~n! 1 d~n!. (A16)

Table 5 Deviation in number of calls between SYRKand
TRSMfor some values of n.

n d(n) n d(n) n d(n) n d(n)

1 1 9 3 17 4 25 10
2 0 10 4 18 6 26 10
3 1 11 5 19 8 27 10
4 0 12 4 20 8 28 8
5 2 13 5 21 10 29 8
6 2 14 4 22 10 30 6
7 2 15 3 23 10 31 4
8 0 16 0 24 8 32 0

Table 6 First maximum values of d(n) in the interval
[2 j , 2 j11] for some j.

j 2j n(j) d[n(j)]

1 2 3 1
2 4 5 2
3 8 11 5
4 16 21 10
5 32 43 21
6 64 85 42
7 128 171 85
8 256 341 170
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Let tA 5 (tT 1 tS)/ 2 and tD 5 (tS 2 tT)/ 2 be the
average and deviation t of tT and tS . Then, using (A15)
and (A16), we obtain

C~n! 5 c~n!tC 1 2sa~n!tA 1 g~n!tG 1 2d~n!tD . (A17)

Note that if tS 5 tT , d(n) does not even enter into the
computation.
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