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This paper presents a survey of some of the
most aggressive custom designs for CMOS
processor products and prototypes in IBM.
We argue that microprocessor performance
growth, which has traditionally been

driven primarily by CMOS technology and
microarchitectural improvements, can receive
a substantial contribution from improvements
in circuit design and physical organization.
We predict that in future microprocessor
designs the floorplan and wire plan will be

as important as the microarchitecture, more
control logic will be structured and become
indistinguishable from dataflow elements, and
more circuits will be designed and analyzed
at the level of single transistors and wires.

1. Introduction

The traditional recipe for improving microprocessor
performance, measured in instructions per cycle divided by
cycle time, relies on improving both the frequency and the
amount of useful computation per cycle. The total amount
of work per cycle is increased by operating on multiple
instructions in parallel and by avoiding stall conditions
through speculation and out-of-order processing. Two
main mechanisms are traditionally used to improve

frequency—a contribution from CMOS technology, and
adding stages to the microprocessor pipeline to reduce the
amount of work per stage or, equivalently, per cycle. Unlike
most microarchitectural mechanisms that aim to increase
the amount of work per cycle, improving the frequency has
an easily predictable benefit to overall performance

and therefore resonates most in the marketplace.

Figure 1 shows an overview of the maximum frequency
times CMOS lithography dimension for processors shipped
in a number of recent 64-bit server systems. Since
transistor delays are (to first order) proportional to
channel length, and channel length is roughly proportional
to the general lithography resolution, the graph provides
(to first order) a technology-invariant measure of
frequency. Except for the Alpha® processors, which set
the standard for high-frequency processor design [1, 2] but
have recently focused on CPI rather than processor
frequency, the graph shows most 64-bit architectures
improving steadily in frequency, even when the
contribution from technology is factored out. It should be
noted that technological improvements beyond lithography
scaling, such as copper interconnects (IBM 0.22- and
0.18-um technologies), and silicon-on-insulator, or SOI
(used in the 0.22-um 64-bit PowerPC*) have not been
compensated for in this graph.

Technology advances have driven much of the
performance improvement in commercial microprocessors.
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Table 1 presents the recent IBM CMOS technologies.
With every generation, chip cycle time, as measured with
a more accurate technology-invariant metric such as the
number of fixed-fanout inverter delays in a cycle, has
continued to decrease (Figure 2), and for the most
aggressive designs now approaches that of 14 fanout-4
balanced inverters. With a constant clocking and latching
overhead per cycle, and ever-increasing complexity to
efficiently operate the longer pipelines, it appears that
superpipelining much beyond today’s pipeline depths

of approximately 20 stages provides little additional
performance. Also, the improvements in transistor
performance cannot continue forever. Increasing power
dissipation and increasing transistor leakage currents may
be an early indicator of a maturing CMOS technology. If
we add to this the fact that the price for developing a new
microarchitecture (let alone a new industry-standard
architecture) and the price for developing new technology
are so high that innovation may become limited by
economics, it becomes clear that pursuing techniques

which promise to increase frequency for a given
technology without changing pipeline depth may be
necessary in order to maintain the current rate of
performance growth.

This paper focuses on physical design as a different
mechanism for improving frequency. Scaled wire delays
are made to track scaled FET delays, but cross-chip delays
do not scale and are now of the same magnitude as cycle
times; hence, transfer cycles are more and more common
in processor microarchitectures. Also, with the growing
number of wiring levels available to the designer, the
disparity in the characteristics of the different layers
increases steadily. This implies that the performance of a
processor microarchitecture cannot be evaluated without
an accompanying floorplan and wire-level plan, as well as
the traditional analysis of the delays of the various
components.

When cycle times approach the delay of 14 fanout-4
inverters, clearly every transistor counts. Designing
control at the gate level or above is no longer adequate.
The entire processor must be designed at the level of
transistors and wires. Design budgets for both control and
dataflow must include wire delays up front. Array-like and
dynamic circuit topologies that do more useful work per
unit of delay are preferred. Eliminating just a single
transistor from a critical path has a measurable effect
on overall performance.

The paper is organized as follows. Section 2 discusses
the state of the art in transistor and wire-level design
methodology within IBM. Sections 3, 4, and 6 present a
number of case studies that show what can be achieved
with careful physical design. Section 3 discusses the
use of dynamic circuits in recent commercial PowerPC
processors. It shows a progression of adder designs as an
example of increasing sophistication in physical design.
Section 4 discusses two short-pipe PowerPC prototype
processors realized entirely in self-resetting and delayed-
reset dynamic circuits. Control is realized predominantly
in array-like structures. In Section 5 we compare the data
cache access paths of a commercial PowerPC processor
and one of the PowerPC prototypes in the same

Table 1 CMOS process technology characteristics.

Technology Material ~ L(drawn) L(effective) T, Wiring layers ~ Metal M1l M2-M4 Supply
(um) (pnm) (nm) (excluding local contacted pitch  contacted pitch voltage

interconnect) (pm) (pm) V)

CMOS 6S bulk Si 0.25 0.18 5 6 Al 0.98 1.26 2.5

CMOS 6X bulk Si 0.25 0.18 5 6 Al 0.98 1.26 1.8

CMOS 78 bulk Si 0.22 0.12 35 6 Cu 0.63 0.81 1.8

CMOS 7S SOI  SOI 0.22 0.12 35 6 Cu 0.63 0.81 1.8

CMOS 8S bulk Si 0.15 0.09 2.7 7 Cu 0.5 0.63 1.5

CMOS 8S2 SOI SOOI 0.15 0.08 2.3 7 Cu 0.5 0.63 1.5
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technology in an attempt to quantify the improvements
that are possible. Section 6 discusses a prototype of the
central component of a high-frequency out-of-order
superscalar processor. It shows the advantages that can be
obtained by integrating control and dataflow functions,
and provides another example of careful transistor-level
design. Section 7 looks briefly at the future.

2. Transistor- and interconnect-level design
To achieve the highest frequency in a given technology,

a circuit macro must be designed to provide an optimal
balance among delay, power, and area. This requires an
understanding of the physical and electrical context of the
macro within the overall design. In addition, the designer
must have access to tools that allow manipulation of the
design database to effect the optimal solution, while
maintaining schedule and minimizing risk.

® Custom design

In practical terms, “custom design” means control over the
circuit style and topology, device sizes, and the physical
design of both transistors and interconnects. Minimizing
both parasitics and the number of stage delays incurred to
implement a particular function are keys in attaining a
high frequency. Computer-aided design tools do not
always provide the flexibility to allow the designer enough
control to arrive at the optimal solution. Accordingly, a
significant amount of custom design tends to be manually
driven, resulting in far less productivity (using a metric
such as transistors per day, for instance) than that of a
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Floorplan as a function of the degree of customization: (a) automated
placement; (b) customized placement; (c) custom circuit design.

designer using a cell-based methodology. Therefore, it
is imperative that early in the design cycle the designer
identify which portions of the design are appropriate
targets for a custom design solution and which are better
left to a more automated approach. In a processor design,
a large fraction of the logic is irregular and cannot be
separated into multiple instances of similar or identical
logic. However, a sizable remainder of the logic is
dedicated to operating on data streams that are 32 or 64
bits or wider, providing a golden opportunity for reusing
customized physical and circuit designs.

Figure 3 conceptually illustrates the varying levels of

customization that can be used to reduce the physical 801
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dimensions of a given block of dataflow logic to improve
the maximum operating frequency of the design. In
Figure 3(a), a cell-based methodology has employed
design automation tools to place predesigned elements
such as logic gates and latches taken from a library
(“cells”). In order to maintain wirability, placement
automation tools typically achieve an active area (sum
of the areas of the bounding boxes of constituent cells)
that is about 50 to 80% of the area of a bounding box
encompassing the limits of the macro. Packing the cells
closer together reduces the number of available wiring
tracks and can result in non-optimal routing (“scenic
routes”) or even failure of the automated wiring tool
to achieve any solution at all.

Achieving the density of the design shown in Figure 3(b)
requires manual intervention by the designer. Here, the
regularity of the logic function has been exploited by
organizing the elements of a given logical data flow (“bit
slice”) into a vertical stack and replicating this slice for
the width of the function (“bit stack™). In this example,
data flows from the top of the stack toward the
bottom of the stack, so inputs to the macro and circuits
implementing logic earlier in the dataflow would be placed
nearer the top of the stack, and outputs and logic near the
end of the dataflow would be placed nearer the bottom.
Ideally, the length of any interconnect is minimized by
intelligent placement of the circuits within the dataflow.
Achieving the packing density implied by the figure
demands a high level of understanding of the connectivity
of the dataflow and typically requires a heavy investment
in time on the part of the designer, who is likely to arrive
at an optimal solution only after a lengthy period of trial
and error. This investment pays off only because the
regularity of the dataflow allows the designer to reuse
the design of the bit slice many times over the dataflow.

In this example, some amount of logic is shown off
to the side and not incorporated into the stack. This
represents control logic that is usually not regular and
therefore does not require or benefit from customized
placement. In Figure 3(c) customized placement is
augmented by custom circuit design. Instead of limiting
the circuit implementation to only those elements that are
available in the predesigned library, the custom design can
employ whatever circuit design style best fits the logic
function. The designer can improve the wirability of
the design by planning the allocation of wiring tracks,
including ordering cells within a stack to minimize
congestion and customizing cell pin locations so that they
align. More efficient routing and closer proximity of cells
within a stack result in shorter interconnects and less
parasitic capacitance, allowing the designer to reduce
device sizes or even eliminate entire levels of buffering.

D. H. ALLEN ET AL.

® Custom design tools
Designing at the transistor level places demands on
designer skills, design methodology, and tools. Tools
for custom circuit design generally fit into one of two
categories: tools that allow a designer to construct
electrical and physical representations of a circuit
(synthesis tools), and tools that allow a designer to verify
the expected behavior of a circuit (analysis tools).
Creative topologies and optimized device sizes are
important factors in minimizing circuit delay, but careful
management of interconnect resources is just as important
to successful high-frequency design. A custom circuit
design must consider both the delay and the noise effects
of interconnects on circuit behavior. Long interconnects
can introduce significant capacitance, resistance, and even
inductance to a critical path and may even dominate the
delay. Transitions on neighboring wires can result in
capacitive coupling to an otherwise “quiet” net and appear
as noise on the input of a circuit. If the noise exceeds the
margin of the circuit, functionality can be threatened.
Therefore, the circuit designer’s “toolbox” must include
tools for engineering high-speed interconnects, using
techniques such as shielding, non-minimum widths, and
isolation to minimize parasitics and interactions between
wires. The designer must also have tools to analyze the
design, including extracting parasitics, predicting noise
events, and modeling the effects of parasitics on delay.

® Transistor-level static timing

Meeting aggressive frequency goals requires iterating and
tuning a circuit design to minimize delay while abiding
by area and power constraints. The ability to quickly
determine the slowest paths and accurately predict the
delay through a circuit is key in achieving an optimal
design. Block-based static timing, while appropriate

in a cell-based methodology, requires generating a

timing model that is accurate over a broad range of
environmental and usage conditions. This may include
temperature, voltage, input transition rates, capacitive
loading, and other factors. This is overkill for custom
design, since the designer is interested only in a particular
application of a circuit and knows in advance the exact
usage conditions. In particular, the designer requires quick
turnaround to enable rapid convergence on an acceptable
solution. Static timing at the transistor level is a means
for a designer to quickly and accurately predict the delay
through a circuit, and EinsTLT fills that role in IBM’s
suite of circuit design tools. EinsTLT is a transistor-level
static timing system based on the EinsTimer [3] static
timing engine. Simulation and modeling routines running
with EinsTLT provide fast RC modeling for interconnects
and simulate devices dynamically using fast, piecewise-
linear techniques. EinsTLT runs on a flat netlist that is
based either on schematics or on the extracted physical
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design. In addition to providing timing for design iteration
and development at the transistor level, EinsTLT
generates a timing model that can be used to time a
higher level of the design hierarchy (for example, chip
level) at the block level, allowing further balancing of run
time versus accuracy.

® Design checking

Designing at the transistor level provides circuit designers
with a degree of freedom not allowed in a cell-based
methodology. However, this freedom comes with a price.
Expanding the design space to include additional circuit
topologies and families demands additional rigor in
checking so that improperly designed circuits do not find
their way into manufacturing. The definition of “best
design practices” is subjective and depends upon many
factors (including the skill and experience of the design
team and the program objectives); generally it is a set of
rules and guidelines that have been agreed upon by the
design team to limit the range of possible circuit designs
and combinations to those believed to provide an
acceptable balance of risk while still enabling the design
to meet the program objectives. EinsCheck [3] provides a
means for discriminating between legal and illegal circuit
constructs and device sizes, and performs basic checks on
electrical relationships such as noise margins, capacitive
coupling ratios, interconnect current-carrying capacity,
and soft-error immunity.

® Cell and macro physical design

Customizing physical design is as important in designing
high-frequency circuits as selecting circuit styles and
device sizes. Minimizing parasitics by proper floorplanning,
placement of inputs and outputs, and use of shielded
and isolated interconnects is the goal of any physical
designer. Time-to-market demands efficient use of
design resources. GYM is a proprietary physical design
entry and editing application with additional capabilities
that allow a circuit designer to quickly arrive at an optimal
physical design. Aside from basic shape manipulation,
GYM provides a circuit generator for quickly generating
common circuit topologies (stacked devices, transmission
gates, etc.) and a compactor for minimizing layout area.
GYM also provides assistance in placement of circuit
components based on schematics. For help in wiring,
GYM contains interfaces to a grid-based router and a
gridless router.

® Test vector generation

Defects introduced during wafer fabrication impair the
function of a circuit or the maximum frequency at which it
may operate. In order to maintain quality and reliability
standards, manufacturing defects must be efficiently
detected and parts containing those defects eliminated

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

from the production flow. Testing circuits with functional
patterns (for example, checking that an adder adds two
operands properly) is not always effective and can lead to
very long and expensive test times. One of the goals of the
custom designer is to deliver a set of test vectors that
provide an acceptable level of coverage (or at least deliver
a testable design for which vectors can be generated at a
higher level of the design hierarchy). To facilitate test
vector generation, GateMaker [4] provides a means for
translating a transistor-level design into an equivalent
Boolean representation. GateMaker is capable of
recognizing the function of advanced circuit design styles
such as domino and CPL, as well as the ubiquitous static
CMOS. Once the Boolean representation is generated,
TestBench' is used to create test vectors which can be
applied through the scan interface, as well as functional
patterns. The combination of scan test and functional test
patterns, applied at the chip level during wafer sort and
module testing, provides both the ac and dc test coverage
required to attain the high level of quality and reliability
required.

3. Case study 1: Star series of PowerPC
processors

® Overview

To better understand the power of custom design, it is
worth taking a look at a few examples. This section
describes the application of custom design techniques in a
series of successful commercial microprocessor designs.
We first describe the development of the Star series
processors, including the original design and several
derivatives. The second subsection focuses on a particular
critical macro used in the Star series and describes how
custom design techniques provided the performance
required for these high-frequency designs.

The Star series of PowerPC processors [5-8], now
shipping in IBM eServer pSeries* and iSeries* servers,
provides an example of aggressive but controlled application
of custom design techniques to enhance the performance
of a family of high-frequency microprocessor designs.

The first processor in the series, dubbed Northstar,
replaced a multichip processor from a previous generation.
Judicious use of custom physical design in dataflow
(particularly in the fixed-point and floating-point execution
units) allowed what had previously been implemented in
seven chips (PU, FPU, PIU, and four MSCU) to be
consolidated on a single processor chip. The increased
level of integration made possible by custom design lowers
not only the cost of the processor, but also the overall cost
by easing power dissipation and delivery, making it

I TestBench is a UNIX**-based set of test design automation tools developed by
IBM for internal use. It was made commercially available in 1994 by the IBM
Microelectronics Division.
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803



804

CLK

d Precharge Half latch |O—|
/A— ___C____E \ Dooutput
[ !

|

Lo __E_/}\

Pulldown
logic network

| Foot device

Basic dynamic gate.

Basic dynamic domino circuit: (a) schematic; (b) timing diagram.

possible for more computing power to occupy a given
volume in a system.

In the Northstar processor, custom circuits comprise
approximately 600K transistors of a total of 2M transistors
used to implement control logic and dataflow (the
remainder of the 12.5M transistors were in instruction and
data caches). About 170K transistors are found in dynamic
circuits and the balance in custom static circuits. The
comparatively small number of transistors used in dynamic
circuits reflects the fact that fewer transistors are needed
to implement a function in dynamic circuits, because the
complementary p-FET network required for static circuits
is replaced by a single precharge device in dynamic
circuits. The use of custom dynamic circuits in the

D. H. ALLEN ET AL.

Table 2

Star series processor evolution.

Technology  Frequency Die size Transistor
(MHz)  (mm?) count
Northstar [6] CMOS 6S2 350 162 12.5M
Pulsar CMOS 78 450 139 34M
Istar [7] CMOS 7S SOI 550 139 34M
Sstar [8] CMOS 8S SOI 660 128 44M

Northstar processor provided a significant performance
advantage over CMOS static circuits.

Dynamic domino circuits are the predominant style of
dynamic circuits used in the Star series of processors.
Figure 4 is an example of a domino dynamic gate. The
logic function is implemented in n-FET transistors
only; this results in lower input capacitance and lower
delay than complementary CMOS gates. Following a
computation, the precharge p-FET transistor resets the
state of the dynamic node and forces the output voltage
low in preparation for the subsequent computation. The
foot n-FET transistor prevents the dynamic node from
being discharged prematurely and prevents a direct path
from the V, supply to ground during the precharge
operation. The half-latch or keeper p-FET transistor holds
the dynamic node high, and thereby the output low, for
conditions in which the precharge p-FET is off and there
is no open path from the dynamic node to ground.

Figure 5 presents one method by which domino dynamic
gates can be connected. A common clock simultaneously
initiates precharge in all of the domino gates. The
computation ripples through the levelized domino gates.
The basic dynamic domino circuit can be improved by
changing to two-phase domino logic, in which the circuit is
partitioned into two halves, the first clocked by CLK and
the second by an additional clock that is out of phase with
CLK. The two halves should be separated by a mid-cycle
latch. This ensures that the first-phase logic signals are
maintained at the input to the second-phase gates.

An investment in a custom processor design need not
be a one-shot proposition. Scaling and other advanced
developments in wafer fabrication technology
(multithreshold devices, copper interconnects, silicon-on-
insulator) can be employed to enhance the frequency and
improve the integration of a custom design so that it
remains competitive for several years after the original
design matures. The engineering effort required to
migrate a design is a fraction of that of the original
design, and the same custom design methodology and
skills that were used to produce the original can be used
to “tune” the design in the new technology. Table 2
illustrates the evolution of the original Northstar processor
into subsequent generations. Each design point achieves a

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000
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higher clock frequency and increased performance through
integration of larger caches and other function.

® Northstar/Pulsar/Istar/Sstar adder

This 64-bit adder is used to compute the effective address
in a PowerPC processor. The adder was originally designed
in CMOS 652 bulk technology and later converted to
CMOS 78 bulk, CMOS 7S SOI [9], and CMOS 8S2 SOI.
This section focuses on the adder’s migration and circuit
modifications through these technologies.

In a high-speed microprocessor, cycle time is typically
limited by a number of critical paths, one of which
involves a cache memory access by a load or store
instruction. For instance, an instruction of the form Iwaux
RT, RC, RB (PowerPC load word algebraic with update
indexed) requires the value in register RC to be added to
the value in register RB to produce the effective address
(EA). The low-order 24 bits of the effective address,
EA(23:0), are used to access the translation lookaside
buffer (TLB) and the cache memory and are the most
timing-critical, as shown in Figure 6. The chip floorplanning
keeps the adder close to the TLB and cache by putting
the adder near the center of the chip (Figure 7).

The adder is designed as a custom macro to allow fast
TLB and cache memory accesses. In this implementation,
the dynamic macro provides the low-order 24 bits of the
Effective Address faster than the high-order 40 bits. This
is done in the 652 adder by using a 64-bit carry-select
adder (CSA) in which the low-order 24 bits are implemented
in dual-rail dynamic and the high-order 40 bits in single-
rail dynamic. In later designs, the effective address is
implemented by a high-order 40-bit single-rail dynamic
carry-select adder and a low-order 24-bit dual-rail dynamic
carry-lookahead adder (CLA). See [10] for an overview of
CSA and CLA adders.

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000

L FIXEDES
p;“fn\rr
[

12 CJCHE

DIRECTORY:

L2.CACHE
DIRECTORY

Dynamic adder placement (chip die photo courtesy of Thomas
Way, IBM Microelectronics Division).

> EZ E‘ Cout(07) i-» —
G2| Ga @ Cout(15) sum |EA(@23:0)
. i
G8 Sum0(23:0)-* | dynamic EA L(14:4)

Sum1(23:0) »

| Cout(23) H Cout(31) I_.

L[ 1B [ FA(63:24)
c2|ca |c8 [Pie. p2a l,.| Cout(39) Sum
G 6' G2 static
16, G24 t Cout(47) |"
[ coues |~
Cout(55)
s e B

Cout(23) >
P1 é?{;yo Csiﬁio > Sum0(63:0)
™| 61 SUMO(63:24) >
RA(63:0) §oit | &-bit SUM1(63:24) >
: carry | sum :
RB(63:0)  |Cin=1|cin=1[" SUML(630)
RA_L(63:0)
RB_L(63:0)

Northstar adder organization.

Figure 8 shows the internal block diagram for the
CMOS 652 64-bit CSA. The adder is broken into 8-bit
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sections. Each 8-bit section generates a sum assuming a
carry-in of 1 and 0; Sum0(63:0) and Sum1(63:0) are the
concatenated buses for these eight 8-bit sections. The
global carry signals, Cout(7, 15, 23, 31, 39, 47, 55), select
the sum that is the correct result for their respective 8-bit
sections. The circuits in this adder are simple-function
dynamic circuits: a022, 0a22, and2, or2, etc. Within the
24-bit dual-rail section, both phases are generated using
separate circuits. The final sum circuit is dynamic for
speed. This is possible because the global carries are dual-
rail dynamic signals. Within the 40-bit CSA, single-rail is
used, since the outputs are not as critical and the final
sum is a static circuit.

The adder migration to CMOS 7S did not meet the
performance requirements, so circuit changes were
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required. The low-order 24 bits, EA(23:0), are generated
by a dual-rail CLA. The 24-bit CLA is a three-level adder
(Figure 9). Positive logic is shown on the left and negative
logic on the right. The remaining high-order 40 bits,
EA(63:24), are generated by the same CSA logic as in

the previous adder.

The 4-bit generate circuit (Figure 10) is the most
complex circuit for the CMOS 7S adder and allows a
three-logic-level adder. This circuit is a compound domino
structure in which the inverter is replaced with a NOR
gate [11], which gives both buffering and logic for faster
performance. The NDIS transistor is a noise-suppressing
discharge transistor that prevents a charge-sharing event
between node INT_OUT and the output G4_OUT. The
precharge devices, PCHG(0:4), are added to precharge
internal nodes and prevent charge sharing. This circuit is
the first level of the adder. It receives its inputs from
latches, so foot devices are required in the pull-down
network. Foot devices are n-FETs in the pulldown
network gated by the local clock.

In addition to making the adder faster, the final level of
the adder generates both phases of the effective address
used by the data cache, EA(14:4) and EA_L(14:4). During
the precharge, EA(14:4) and EA_L(14:4) are low; during
the evaluate phase, EA or EA_L goes high for each bit.
The data cache array begins its access when it detects that
all address bits have been evaluated. This self-timed data
cache solves the chip’s worst cycle-time-limiting path.

The technology migration to 7S SOI met the
performance requirements, but circuits were changed to
combat SOI noise effects due to the floating body [12-15].
The 24-bit CLA is a three-level adder with an additional
dynamic buffer as the first level (Figure 11). Custom
design work focused on noise immunity to ensure that

IBM J. RES. DEVELOP. VOL. 44 NO. 6 NOVEMBER 2000



bipolar effects were contained and lower noise immunity
maintained.

The G4 circuit in 7S SOI is the second level of logic
within the adder (Figure 11); the first level is the dynamic
buffers. This allows the removal of the foot devices, which
eliminates one of the bipolar conditions and increases the
speed of this circuit to offset the additional delay from the
dynamic buffers. The path delay did not change, yet the
G4 gained noise immunity. Although removing the foot
devices helps, it does not solve the entire noise problem.
SOI bipolar leakage from the precharge node to
intermediate nodes can still occur. Therefore, internal
nodes within the pulldown network of G4 are discharged
during the precharge phase to reduce SOI bipolar effects.
Discharging these internal nodes guarantees charge
sharing within the G4 circuit. However, this effect is
reduced in SOI technology because of lower drain/source
capacitance. In Figure 12, six discharge devices, PDIS(0:5),
are added to the G4 circuit. Note that circuit data
inputs (A0, Al, A2, and A3) drive these discharge devices,
except in the case of PDIS(1), which must use the CLK
input to avoid a dc path from V to ground. This causes
minimal effects on performance while preventing SOI
bipolar effects.

When the adder was converted into 8S2 SOI [16],
timing requirements were met through the technology, but
changes were necessary because of scaling effects. Using
G4 as an example (Figure 12), the NOR circuit requires
PO and P1 to be large since they are in series and part of
the evaluate path, making the beta ratio of the NOR high.
A problem occurs for this technology when the PRE node
discharges and the PRE1 node falls slightly from noise
effects. In this state, an output noise pulse can be
generated because of the high beta ratio of the NOR. To
solve this problem, two additional n-FETs, N2 and N3, are
added to the static NOR [11]. These n-FETSs alter the
beta ratio of the NOR, allowing more noise immunity for
PREL. The intent is to have NDRIVE high during burn-in
or stress testing and low during normal operation. NDIS

ST oot e

ADD N2 and N3
9l

INT_OUT

NDIS (o] G4_0UT

) "||:JLPRE-||iNDRIVE-| N2
- = {L N3

LCLK Iir -ﬁ oy PREL

ADD discharge devices

A0 AL{[ A24[ A34
10 11 12 13 15, 16
Bo4[ B14L B2-L B34 A0, LCLK-||;_PDIS<O:1>

A2-4LB24
10,11, 12, 13

= A0, Al, A2, A3-|§_PDIS<2:5>

Remove foot device /

Istar G4 circuit.

also performs this ratio balancing, but for noise immunity
on the PRE node.

SOI technology provides greater speed than bulk
technology because of reduced drain/source capacitance,
increased current due to lower threshold voltages, and a
reduction in the reverse-bias effect on stack transistors.
Table 3 compares this adder’s 6S2, 7S, 7S SOI, and 8S2
SOI delays from SPICE simulation. EA(23) and Cout(23)
are the MSB and carry-out of the 24-bit adder. EA(63) is
the MSB of the entire 64-bit adder. For second-generation
SOI, EA(23) is determined in less than 278 ps, while
EA(63) is complete in less than 435 ps. There is a 28%
improvement moving into the first generation of SOI and
a 21% improvement going to the second generation of
SOI. The bottom row shows the timing results from a

Table 3  Star series path delay comparisons.

Path CMOS 652 CMOS 78 CMOS 78 CMOS 882

bulk delay bulk 1st SOI 2nd SOI
(ps) - -
Delay A Delay B Delay C
(ps) (%) (ps) (%) (ps) (%)
Cout(23) 753 426 —43 337 -21 283 —16
EA(23) 625 487 -22 351 —28 278 -21
EA(63) 942 615 =35 489 —21 435 —11
FO4 94 65 =31 52 -20 38 —26

A Improvement compared to CMOS 6S2.
B Improvement compared to CMOS 7S.
C Improvement compared to CMOS 7S SOI.
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well-known generic circuit, fan-out 4 (FO4),” which serves
as a reference for speed comparison across technologies.
The FO4 circuit is an inverter driving four inverters of
similar size. FO4 in CMOS 6S2 uses normal-threshold
devices, whereas the other three delay numbers use low-
threshold devices. Device sizing was done by using the
driver strength versus load ratio and wire rise/fall time
requirements.

The values in Table 3 are simulated. To validate these
times to hardware, the path from the adder to the data
cache is measured in the hardware (Figure 13). This path
passes through the adder, a latch, and several inverters to
move across the chip to the arrays. The timing tools and
methodology simulate this path at 681 ps. The hardware
measurement for this path at the same conditions is 675 ps.
Figure 14 shows the best-fit line of data measurements
on a number of parts across the spread of the process.
The left axis shows the delay for the path from the adder
to the data cache. The bottom axis shows the process, in
which fast chips are on the left and slow on the right. The
dotted line indicates the nominal process and points to the
hardware speed of 675 ps for the data cache path.

Performance comparisons indicate a 28% gain from
bulk to first-generation SOI, followed by an additional
gain of 21% to second-generation SOI. Overall, the adder

2 D. Harris, R. Ho, G.-Y. Wei, and M. Horowitz, “The Fanout-of-4 Delay Metric”
(private communication).
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speedup is more than 43%, giving a complete 24-bit add
in less than 280 ps. The less critical 64-bit path speedup
is more than 30%, with path delay less than 440 ps. The
entire area of the 64-bit adder in CMOS 8S2 measures
0.357 mm’. Challenges in SOI dynamic circuits are solved
by the methods discussed above. Additional improvements
in noise immunity can be obtained by reordering the
inputs to the pulldown network and by adding additional
feedback [16].

4. Case study 2: The guTS and Rivina PowerPC
prototypes

® [ntroduction

This section discusses two prototype PowerPC processors
that were designed to demonstrate the performance gains
that can be obtained with a focus on physical design. Both
designs have a cycle time equivalent to about 14 fanout-4
balanced inverters, and thus could be expected to have
very deep pipelines. Instead, these processors have very
short pipes (Figure 15) and do more work per cycle by
using aggressive circuit techniques, a carefully crafted
floorplan, and a PD-aware microarchitecture.

The first of these prototypes, “guTS” [17] (Figure 16),
consists of a GHz integer core with 4KB caches. A subset
of about 100 integer instructions from the PowerPC 64-bit
ISA is supported. This prototype effort taught us how
to develop GHz-class delayed-reset and self-resetting
dynamic components and helped develop a discipline and
methodology necessary for integrating these components
without sacrificing frequency. The second prototype,
“Rivina” [18] (Figure 17), implements the complete 64-bit
PowerPC instruction set, including floating-point and
address translation. It also achieved a more balanced
design by replacing the single-cycle 4KB caches with
64KB, two-cycle caches. The Rivina processor required a
new control methodology, built around dynamic PLAs, so
that control functions could be implemented to match the
delays of the dataflow elements.

® Timing closure by design

With a cycle time that is no more than the delay of about
14 fanout-4 inverters, including wire delays and clocking
uncertainties, it is clear that cycle time must be budgeted
to an extraordinary degree. For example, merely inserting
a redrive buffer (pair of inverters) without planning for it
up front can cause the cycle-time target to be missed by
up to 10%. To guarantee eventual timing closure, all logic
was designed to follow the strict partitioning of the cycle
shown in Figure 18. In addition, up-front floorplanning
and global wiring and timing runs before the macros
were fully realized allowed us to identify areas requiring
modification early in the process. Finally, macro schematics
were constructed to include all wires longer than a few
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Rivina prototype processor (photo courtesy of Thomas Way, IBM
Microelectronics Division).
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~ 4 A CLD)

P
Control setup (140 ps)

Rivina timing template.

hundred microns. These “hand-extracted” schematics
guarantee that transistor sizes are optimized appropriately
and that final delay models extracted from the layout
closely match what is designed.

® Delayed-reset and self-resetting dynamic circuits

With a delay budget of no more than 610 ps, or about
nine fanout-4 inverter delays, to realize the dataflow
macros such as register files or a fixed-point unit, even
well-designed two-phase dynamic circuits do not meet the
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latency requirements. Also, at least as important, resetting
multiple stages of dynamic logic at the same time leads to
unnecessarily large reset devices.

Delayed-reset dynamic circuits [17, 19, 20] were used
predominantly, as illustrated in Figure 19. Staging the

D. H. ALLEN ET AL.

precharge signals allows foot devices to be eliminated,
improving circuit performance by 5 to 15%. Combining a
multiplexor with the latch and eliminating the mid-cycle
latch further improves evaluate latencies. Cycle time
improves, because it is now limited by the reset and
evaluate delays of a single stage, plus clocking and processing
uncertainties. One-shots are used, both in the sampling
multiplexor-latch and in the reset of the final stage of
dynamic logic. The former provides the logic stages with
a fixed-width pulse, which tends to widen through the
stages of a latency-optimized design, whereas the latter
guarantees a fixed hold time into the next cycle, which
simplifies integration. Short fixed-width pulses, however,
stress certain devices for only a small fraction of the long
cycle times typical for burn-in (stress-testing). Additional
clock signals, selected only during burn-in, allow all devices
to be stress-tested for a fixed fraction of the cycle.
Self-resetting circuits [21, 22] were used in the floating-
point multiplier. A self-resetting dynamic circuit is shown
in Figure 20. In this example, the dual-rail outputs Ct
and Cc are ORed to obtain a completion signal, which is
inverted and delayed to drive the precharge signals for the
domino levels that form the outputs B, C, and D. Self-
resetting circuits were used to provide timing robustness
in the floating-point multiplier. Self-resetting and delayed-
reset dynamic circuits distribute the precharge load both
spatially and temporally, which improves power-supply
noise and eliminates long precharge signal wires.

® Array-based control

Although aggressive dataflow macros and a well-controlled
floorplan are necessary to vastly improve frequency, they
will succeed only if there is also a methodology for
generating control elements that can match their
performance. Most current designs are realized with
custom dataflows and static synthesized control. With

a budget of only 470 ps, or about seven fanout-4
inverters, for control logic, it soon became clear that this
methodology would not support control for the short-pipe
designs we were aiming to construct. On the other hand,
individually designed custom dynamic macros for control
would not have allowed us to overlap the physical design
phase with the logic design phase, and would have added
significantly to the schedule and design cost. Instead, all
logic was constructed to fit in a set of custom-designed but
automatically personalized PLAs, followed by at most one
more stage of complex dynamic logic before controlling
the multiplexor latch. Logic is partitioned by hand to
meet the constraints of the largest realizable PLA. Logic
optimization, PLA type selection, schematic and layout
personalization, and logic-to-layout verification are all
automated to create a PLA synthesis methodology. Like
all other macros, PLAs are manually placed. In the Rivina
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processor, 191 PLAs and a total of 88 different PLA
personalizations were used.

® Merged functionality and parallel computation

Relative to static circuits, logic functions are most
optimally implemented in dynamic circuits by using fewer
levels of higher complexity. In order to fully exploit the
benefits of dynamic circuits, the microarchitecture must be
designed to this approach. This results in functional blocks
which combine functions that are traditionally composed
of separate structural units. Examples include the
multiplexing latch and the MFXU, which is a complete
fixed-point unit in a single macro [17]. In addition to using
fewer, more complex gates, the unit reuses wires, and
therefore allows a tighter integration, reducing wire
delays. A third example can be found in the Rivina
register file. There the multiplexor that supports
forwarding from the write ports to support read-after-
write operation has been widened to include immediate
generation of operands at a minimal area and delay
penalty, saving a separate immediate generation unit and
separate buses for distribution of immediate operands.
Final examples of merged functionality are the sum-
addressed caches, developed independently at IBM [17]
and Sun Microsystems [23], that allow elimination of the
address-generation cycle preceding cache access. In
addition to sum-addressed caches, Rivina included a
sum-addressed address-translation unit.

With short cycle times and the resulting few levels of
logic which can be accommodated, parallel computation of
multiple possible results with late selection of the correct
results can become necessary. For instance, in the Rivina
floating-point unit, three possible result exponents are
formed in parallel. The critical path is the logic that
performs the selection of the correct result. Parallel
computation is also used to speed highly critical portions
of a computation. For example, an optimized structure
is used to determine the time-critical sign bit of the
alignment shift amount in the floating-point unit faster
than it is produced by the shift-amount adder. Another
example is the guTS compare unit, which computes the
condition codes for most arithmetic operations in a
separate unit prior to the completion of the ALU
operation [24]. (A traditional organization would first
complete the ALU operation and then compute the
condition codes in a subsequent cycle.)

® Microarchitectural innovation

While the floorplan and preliminary timing results based
on estimated macro delays, loads, and drive strengths were
being studied, two paths emerged that were unlikely to
close. The first was the path to preclude updates of the
architected state in the case of a cache miss. The second
was the hold control-signal on the copies of the instruction
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buffer, driven by the dependency-detection circuitry. Both
led to modifications in the microarchitecture: a history-
file mechanism and dependency-prediction circuitry
(Figure 21), respectively. The important point here is that
neither of these modifications seemed necessary from an
analysis based only on logic complexity. Only when the
floorplan and signal loading are taken into account does
the problem become obvious. We believe that either one
could have caused us to miss our target by a wide margin,
and that our experience stresses the importance of
designing the floorplan and logic hand in hand.

® Fast-turnaround chip integration and timing
With a significant fraction of the cycle time devoted to
data forwarding and distribution, macro and inverter
placement and wire-level assignments must be designed,
then subsequently fine-tuned. Fine-tuning is an iterative
process, and the more iteration, the better the result. We
were able to process incremental changes to the design
and generate a new timing report within 24 hours [25].
Structural VHDL provides a netlist for wiring and a list
of macros. New inverters and PLAs are generated and
placed. A dataflow compiler adjusts the placement of
macros in placed stacks. A quick-running initial global
route provides representative wires that can be used in the
wire-extraction process. This initial route and extraction
took about eight hours for Rivina. A detailed route and
final extraction ran overnight. The extracted delays
and capacitances, along with extracted macro input
capacitances and simplified macro timing equations based
on load and simulated delay, allow an accurate timing run
in about 15 minutes. Also, existing IBM clock distribution
methodology based on a tuned H-tree driving a grid [26]
was extended to speed up integration. Clock distribution
skew was designed to be less than 15 ps [18]; thus, even in
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this high-frequency design, ignoring clock skew until the
very end constitutes a valid approach.

® At-speed scan-based testing

Both the guTS and the Rivina processors include a
serializing—deserializing tester interface [27] that enables
at-speed functional testing of the processor using test
equipment that runs at a fraction of the processor
frequency. Both scan data and scan control are serialized
so that all synchronization with the tester occurs at the
slower (tester) frequency. One of the eight multiplex
inputs of the multiplexing latch is dedicated to support
scanning at a minimal cost to the overall design.

D. H. ALLEN ET AL.

® Predicted and measured results

The static-timing slack histogram in Figure 22 shows
critical paths for both data and control in most pipeline
stages to be about 950 ps. The critical path of the machine
is in the branch resolution logic. Resizing a comparator
circuit output stage, in which a cell was reused to reduce
design time, would fix the problem. From the per-stage
critical path delays, and the slack histogram, it is obvious
that improving the cycle time below 950 ps requires hard
work in nearly all pipeline stages. This is how it should be;
i.e., the design is well balanced.

Figure 23 shows the results of functional test on the
packaged modules for fast hardware. At a module supply
of 1.87 V, the processor runs at 1.15 GHz, dissipates
112 W, and operates at 101°C. At just above 1.5 V, the
processor tops out at 1 GHz at about 65 W and 65°C.

The processor is still functional at 1.3 V on the module,
and runs at 800 MHz, 40 W, at about 50°C. Rising chip
temperatures limit the peak performance of 1.2 GHz.

® Summary

These short-pipe processors at a delay equivalent to only
14 fanout-4 inverters demonstrate the advantages that
can be obtained by focusing on physical design. It is also
demonstrated that these gains do not have to come at the
expense of either productivity or reliability. The Rivina
processor contains 19 million transistors and is described
by some 325000 lines of VHDL, yet it was realized by a
team of, on average, ten people over two years. The
design supports scan-based testing, and the dynamic
circuits have been designed to operate under burn-in
conditions.

5. A comparative study of the load latency
in the Pulsar and Rivina processors

® [ntroduction

In this section we analyze the Rivina and Pulsar data
cache access paths in some detail. The comparison is
interesting because both processors provide a two-cycle
access path to a cache of approximately the same physical
size (the Pulsar cache is 128 KB and the Rivina cache is
64 KB but dual-ported). Both caches are two-way set-
associative. Both processors have similar numbers of
execution units. Both processors were realized in IBM
CMOS 7S technology, but we present the comparison of
delays in technology-independent units. The Rivina two-
cycle load instruction requires 29.1 fanout-4 (FO4) delays,
whereas the Pulsar two-cycle load instruction requires
68.1 FO4 delays, a substantial difference. The comparison
is intended to help substantiate and quantify the main
premise of this paper, namely that innovation in
floorplanning, physical design, and “pico”architecture can
lead to significant improvements in cycle time. (The term
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Table 4  Pulsar data cache access timing (data courtesy
Charles Wait, IBM Rochester).

1. Internal fixed-point logic (multiplexor) 3.54 FO4
2. RA/RB KO0 data-in to data-out and setup time 4.00 FO4
3. 24-bit ADD 7.38 FO4
4. Re-power and wire 1.31 FO4
5. DC_ADDR K1 data-in to data-out 1.85 FO4
6. Re-power and wire 6.00 FO4
7. DC array access 20.61 FO4
8. First level of merge logic and wire 4.61 FO4
9. DC_DATA K1 data-in to data-out 2.46 FO4
10. Cache data multiplexors 11.69 FO4
11. Wire and re-power to fixed-point unit 2.46 FO4
Clock skew and jitter 2.16 FO4
Total (two cycles) 68.07 FO4

picoarchitecture refers to improvements in organization
somewhat below the level of the microarchitecture.) The
types of architectural innovation we describe do not
change the pipeline structure of the machine, or the
order in which instructions are executed, but improve
performance by enabling efficient circuit implementations
and an efficient floorplan. In this section we limit
ourselves to the execution of load instructions, but similar
picoarchitectural innovations [17, 18, 24] have led to
comparable improvements in the fixed-point execution
unit and branch processing.

® Picoarchitectural improvements

Figures 24 and 25 show the high-level organization of the
Pulsar and Rivina load-access paths. The most significant
improvement in the organization of the Rivina data cache
is the elimination of the effective address adder through
the use of a “sum-addressed” [17, 23, 28] data store. In
this organization, the word lines are selected through a
combination of a carry-free adder and a traditional
decoder circuit. The penalty to the access delay of the
cache is minimal, amounting to less than one additional
inverter delay versus 7.4 FO4 delays for the adder (Table 4).
A second improvement is the (near) elimination of the
address translation hardware from the cache access path.
In a traditional organization, the TLB/directories must be
accessed in order to perform the selection between the
data of the two sets. The Rivina cache uses set prediction
integrated with the address decode circuitry [28]. This
implies that the set prediction bits must be stored twice,
but it relieves the designer from the duty of floorplanning
the address translation tables physically close to both the
data cache and the address latches. In Rivina, a small
store queue and a history file allow recovery of the
overwritten architectural state for a limited number of
cycles. As a result, the timing of the cache miss signal,
which originates in the address translation macros, is not
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critical, and further allows us to floorplan the address
translation macros wherever it suits us.

® [mprovements in the floorplan

Figures 26 and 27 show the locations of the different
units and wires involved in the data-cache access paths
tabulated in Table 4 and Table 5. With the elimination
of both the effective address adder and the address
translation hardware from the critical path of the load
instruction, the designer can focus on placing the address
latches and the target latches (units) for the load data

as close to the cache as possible. In Rivina the address
latches are placed directly on the perimeter of the data
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cache, which saves 1.31 FO4 in repowering and wire delay,
814 and the latches to which the data must be forwarded are
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Table 5 Rivina data cache access timing.

1. Multiplexor-latch data-in to data-  3.24 FO4 3.24 FO4

out

2. Sum-addressed array access 16.39 FO4 16.39 FO4
3. Three-level align—-merge 4.25FO04 4.25F04
4. Wire and final merge 1.54 FO4 1.54 FO4
5. Re-power and wire to latches 1.68 FO4

6. Re-power and wire to RF 5.56 FO4
Clock adjustment on RF latch —2.91 FO4
Clock skew and jitter (2X) 1.00 FO4  1.00 FO4
Total (two cycles) 28.10 FO4 29.07 FO4

centered with respect to the cache macro for minimal
delay. The total delay in wires and buffers (inverters)
outside the cache macro in the Pulsar load path is
9.77 FO4, and 2.65 FO4 in the Rivina load path. The
net saving is about 7.1 FO4.

® [mprovements in the latches and clocking

A significant improvement in latency is obtained by using
(edge-triggered) sampling latches rather than level-
sensitive latches. The use of edge-triggered latches allows
the mid-cycle (K1) latches to be removed. The latency is
further optimized by incorporating the (8:1) multiplexor
function in the Rivina latch. In both Pulsar and Rivina
one of the latches is hidden in the storage array [28]. The
combination of the multiplexor and the latches outside the
array accounts for a total delay of 10.0 FO4 in Pulsar and
3.2 FO4 in Rivina. A low-skew clock distribution and low-
jitter PLL minimize the clock skew and jitter penalty from
2.16 FO4 to 1.0 FO4. Together the differences in latching
and clocking penalties amount to 8.0 FO4.

® [mprovements in the circuits

The remaining differences in latency, totaling about

16.5 FO4, stem from the extensive use of delayed-reset
and self-resetting circuits in the Rivina data cache and
merge and align circuitry. It should be noted that the
Pulsar effective address adder implementation and self-
timed cache are quite aggressive, and that a comparison
against a fully static implementation would lead to a more
significant difference.

® Summary

The two-cycle Pulsar load delay is more than twice that

of the Rivina two-cycle load delay. Of the difference in
delay, 19% (7.4 FO4) is attributable to a difference in
picoarchitecture, 18% (7.1 FO4) is attributable to the
improvements in the floorplan that flow from this
improved architecture, 21% (8.0 FO4) can be attributed to
improved clocking and latches, and 42% (16.5 FO4) can
be attributed to the use of an improved circuit family.
Many of the improvements are interdependent; the
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floorplan improvement stems in large part from the
improved picoarchitecture, and the circuit-family and
clocking/latching improvements cannot be obtained
independently.

6. Case study 3: Instruction window buffer

® [ntroduction

This section discusses a so-called “instruction window
buffer” (IWB) that manages instructions and interrupt
processing, controlling the processing sequence for an out-
of-order CPU. The out-of-order processor dispatches the
instructions still in order but allows them to execute and
complete out of order. The generic structure of the out-
of-order CPU is shown in Figure 28. After instruction
fetch, decode, and branch prediction, the instructions are
stored in an instruction queue. In a single cycle, up to
four instructions can be dispatched from the instruction
queue into a 64-entry reservation station. During this
dispatch process the target register is renamed to map the
register name space onto the reorder buffer registers. This
is done to avoid the so-called “write-after-read” and
“write-after-write” hazards that otherwise would prevent
the out-of-order execution of these instructions. In the
reservation station the instructions wait for operands
while dispatch proceeds. As operands become available,

in each cycle up to four instructions are issued from the
reservation station to the four execution units, possibly out
of program order. After execution, the results are stored
in allocated entries of the reorder buffer. The reorder
buffer (ROB) stores the results until they are written

to the register file in program order by the retire

process.

The described blocks, storing the instructions until the
operands are valid and reordering the results before the
instructions are retired, are complex to control, especially
since it is required to maintain precise exceptions (in-
order execution appearance in case of an interrupt) and
to recover from mispredicted branches. Because of this
complexity and the required high frequency of operation,
all design aspects from microarchitecture to logic, circuit
design, and floorplanning have to be addressed from the
beginning. This is required in order to achieve an optimal
solution with respect to performance, power consumption,
and cost. Otherwise, the control flow path limits cycle time
(or additional pipeline stages must be introduced, leading
to an overpipelined processor design).

As a feasibility study for future high-frequency IBM
S/390* processors, the critical parts of an instruction
window buffer (IWB) were designed, implemented, and
fabricated in a 0.18-um IBM CMOS 8S bulk silicon
technology.

The IWB contains the renaming logic, reservation
station, and reorder buffer, as shown in Figure 28. In the
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next subsections we describe how this IWB is developed
and implemented. We then present the measurement
results of the IWB hardware.

® [WB high-frequency design methodology

After initial architectural design and its modeling in
C++, the first step in the development process was the
partitioning of the IWB into independent macros. In this
process, logic and circuit designers worked together to
cover all circuit and logic aspects down to the transistor
level, and physical placement from the beginning. Initial
design focused on how the dataflow could be mapped onto
the reorder buffer and reservation station macros such
that it could support a GHz+ frequency. The greater
challenge, however, was subsequently to design a control
structure that could support complex control for the data
path and enable very high frequency. Thereby, the initial
assignment of the dataflow was optimized (for example,
by introducing bypasses) during the detailed design of
the control flow.

One very important aspect in supporting such a high
frequency was the introduction of distributed control
structures. Instead of implementing a single control block
that controls all parts, as shown in Figure 28, a structure
was designed in which each part of the data path is
controlled locally. This leads to a dataflow-like operation
in which each entry in the reservation station and reorder
buffer entry also has all of the status bits. From these
status bits, the state of the instruction can be calculated

without the need for any global control signals. For 815
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example, each reservation station contains the same issue
logic for every entry. Only the final stage of control,
selecting the entry that will be issued to a specific
execution unit, receives the inputs of all entries. Stages
that receive the inputs of all entries are kept as simple
(and regular) as possible by doing all of the other tasks
for each entry individually in front of those stages.

Another important aspect of the high-frequency design
methodology was to design the part for regularity.
Partitioning the circuits such that each entry is controlled
locally, followed (or preceded) by a stage that connects all
entries, leads to logic that can be realized by regular
structures.

The final aspect of the high-frequency design
methodology was that, because of the regularity of the
design logic structure, each such macro could easily be
implemented by array structures. The IWB macros contain
array structures such as decoders, CAMs, comparators,
greater—equal compares, and priority networks to
implement tasks such as “selecting the entry in which the
result must be written in the reorder buffer,” “selecting
the active window of the reservation station,” and so on.
The use of array structures has the advantage that their
path delays can be estimated very accurately early in the
design cycle by evaluating only the critical part of the
array (the so-called cross section). Furthermore, they are
the ideal place to use dynamic logic, since the timing can
be very structured, path lengths are known, and physical
dimensions are fixed. The introduction of dynamic logic
in such an array structure improves the performance
significantly without introducing significant additional
costs. Additional costs are limited to additional design
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complexity due to less noise immunity and more complex
clocking. The design process described above resulted

in a design that was completely implemented by array
structures. The resulting partitioning of the IWB into
macros is shown in Figure 29.

Local to each dataflow array structure, there is a control
array structure that controls the flow of data. The control
wiring is orthogonal to the dataflow wiring. Control
decisions are achieved in parallel for all entries, in synch.
For example, each entry within the ROB control array
probes the result coming back from execution to decide
whether it has to be stored in the ROB data array. The
reservation-station control array contains the associative
search logic to select the operand locations that depend
on the result data and to set their validity in parallel
for each entry. The issue-filter array selects the oldest
instruction waiting for issue based on the issue window
calculated by the issue-window array. Finally, the
renaming array and its associated checkpoint array
implement the renaming function, together with the
ability to reload the state of the rename logic from the
checkpoint array. Such a reload of the checkpoint is
performed in the case of a mispredicted branch, such that
the IWB can immediately continue its operation after the
instructions which follow the mispredicted branch have
been purged.

e Circuit style, timing, and clocking

Besides performance and cost, reliability is a major design
criterion for high-end server processors, affecting the
implementation. As shown in [29, 30], essential parts of
the S/390 processor are doubled, executing the instruction
stream twice and comparing the two results before it is
written back to the memory to achieve best possible
failure detection and allow recovery. On a circuit level,
stability, noise immunity, and a wide operation window are
required. Turbo machines run with deep-sorted hardware
in a chilled environment, while harsh quality screening
requires function at burn-in conditions (supply voltage is
1.5 times nominal V, and 140°C). This is an extremely
rigid requirement for fast hardware out of the best-case
process arena. Power consumption can be a problem
because of high dc currents at these conditions. Dynamic-
circuit-specific problems include leakage at dynamic nodes
and coupled noise due to the high V, and the low V of
the devices resulting from the high operating temperature.
For test and bring-up, the hardware must run from
maximum frequency down to quite slow production-stress
frequencies, perhaps even with single clock pulses. To
minimize risk as well as design effort, standard static
CMOS logic is used for combinatorial logic wherever
possible. Having a circuit library with an almost
continuous set of device strengths, together with
sophisticated tools with integrated synthesis, placement,
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routing, and timing capabilities, yields very dense and
fast solutions [30]. However, the growing performance
requirements make the use of dynamic circuits in selected
places desirable. Array structures are an ideal place to
use dynamic circuits. Timing can be very structured, path
length is very well known, and physical dimensions are
fixed. The timing is designed together with the floorplan.
The circuit technique of choice for the IWB can be
characterized as clocked, synchronous, unfooted, delayed-
reset style, embedded into an LSSD clocking scheme.

This way, the dynamic logic appears encapsulated within
clocked macros. The clocked macros are bounded at both
input and output by latches, ensuring that all input and
output signals to and from the clocked macro are static.
This concept sprinkles dynamic logic into a sea of static
logic. The analysis methods for timing and logic simulation
are those used for static logic.

Figure 30 shows a standard LSSD configuration. All
logic paths are bounded by master-slave latches. The cycle
starts by launching data from the slave latch with the
leading C2 clock edge. The data propagates through the
combinatorial logic and is captured with the trailing edge
of CI into the master latch.

Figure 31 shows the logic representation of the
embedded clocked macro used for high-level logic
simulation and for the static timer. Data is presented to
the C2 clocked macro from the C1 clocked master latch
Q1. The C1 latch is transparent to the previous path until
the trailing edge of C1. The data is received by the input
latch with the leading-edge C2 clock, which is the starting
point for the signal propagation through the logic.

The output of the macro is captured with the C1 latch
Q2. The clocked macro acts as a slave latch for the master
latch Q1. The maximum path delay for the clocked macro
stretches from the leading edge of C2 to the trailing edge
of C1. Combinatorial logic can be inserted between the
output of the clocked macro and the receiving latch if
the clocked macro does not fill the complete cycle. The
restriction of this scheme is that there can be no logic or
long wires between the sending latch Q1 and the clocked
macro. The clocked macro must be the first component in
the cycle. In this ideal scheme, input setup time to the
macro is guaranteed by clock separation between the
trailing edge of C1 and the leading edge of C2. Static
paths and dynamic macros can both be driven from the
same sending master—slave latch. The dynamic path is fed
from the master, the static path from the slave of the
same latch. It is also no problem to combine outputs of
the clocked macros with signals from combinatorial paths
and capture the result in the receiving master.

The structural realization of the clocked macro using
dynamic circuits is shown in Figure 32. Data-in and data-
out signals are static data in order to allow universal usage
of the macro within a static circuit environment. The
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macro internal clock is generated through a clock chopper.
All internal timing depends on this internal clock, and
therefore on the leading edge of the macro clock. External
signal timings such as setup, hold, and delay are all
specified relative to the leading-edge macro clock. The
first input stage of the clocked macro performs the wave
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formatting. Typically this is a true-complement generator,
but it can also be a logic stage, gated by the clock. Since
the evaluation trees comprise n-MOSFETs, the signals
propagating through the dynamic logic have to be
formatted to a return-to-zero waveform. The general logic
circuit concept is “delayed-reset.” The precharge, restore
circuitry is default “on,” and opens an evaluate window
only if requested. The evaluate window is shifted through
the cycle, allowing the different circuit stages to evaluate
for only that specific time during which the dynamic nodes
are kept by the keepers only. The evaluate window is
independent of the cycle time. This solves potential
leakage problems on dynamic notes operated on a long
cycle at high temperature and high voltage. The circuit
type used is always the one best fitting the required
function [31]. Where possible, biased static circuits
benefiting from the return-to-zero waveform are used. The
general dynamic circuit type is unfooted domino. The first
circuit after long wires is always static in order to be as
immune as possible from coupled noise. The output of the
clocked macro is driven by a set-reset latch. The latch is
reset by the macro clock at the beginning of the cycle and
set by the result of the evaluation through the logic path.
To prevent false switching of the output latch, the reset
pulse can be a combination of macro clock and evaluation
request, or it can be timed equivalent to the expected set
pulse with the set overwriting the reset.
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® Testability

The goal of the implementation is to support full LSSD
testing, including random self-test, at any cycle time equal
to or longer than the functional cycle. An exception is
made for scan. Scanning is done at a lower frequency to
keep power during test acceptable. The clocked macro can
be isolated from the surrounding logic during test, to
allow individual test sequences for the clocked macro and
the macro-surrounding logic. The latches feeding the
clocked macro as well as the S/R macro output latches get
an additional slave latch to allow independent scanning.
The master as well as the slave scan clock and the macro
clock are independent of C1, C2 clocks during test. To
test the macro only, the respective stimulus patterns are
scanned into the latches driving the macro, and the macro
clock is fired. The result is received in the output latch
and can be observed after scanning the data out. The
macro gets into a defined state after power-on, since the
default state of all restore devices is on, precharging all
dynamic nodes. No additional test signals, such as reset
after power-on, are necessary. Single clocked cycles, such
as the typical test sequence consisting of scan-in, execute
one cycle, and scan-out, are possible.

® Functions implemented in hardware

The macros making up the critical path of the instruction
window buffer have been designed and laid out in the
IBM 0.18-um CMOS 8S bulk silicon technology and put
on a test site for verification. The design supports a cycle
time equivalent to 17 balanced fanout-4 inverters. Circuit
design details and measured data are reported elsewhere
[32].

The macros that were implemented are the four macros
(described above) on the lower part of the IWB, as shown
in Figure 29: reservation station data part, reservation
station control part, issue window control, and issue filters.

® Summary

A method has been discussed that enables the design of a
GHz+ instruction window buffer (IWB). The key aspects
of designing for such high frequency are the following:

A design process in which logic and circuit designers
work together from the beginning to cover all
requirements from microarchitecture down to the
transistor level.

Using distributed control.

Mapping the logic functions onto regular structures.
Implementing the logic with array structures using
dynamic circuits.

The function of the IWB implementation as suggested
here has been successfully demonstrated by hardware. It
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has been shown that the chosen design for the instruction
window buffer supports very competitive frequencies.

7. Alook at the future

In this section we briefly discuss a few topics that will
affect microprocessor design in the near future. Power
dissipation is a major concern; hence, we examine power
efficiency. We also discuss some technology developments
that promise to improve performance, but fall outside the
domain of improvements due to device and interconnect
scaling.

® Power and power efficiency

Power dissipation increasingly limits what can be achieved.

CMOS power densities are rapidly increasing [33]
(Figure 33). Many of the packaging and cooling techniques
originally developed for bipolar processors are again
being applied. The power budget for a microprocessor is
becoming a design constraint of similar importance to
target technology, target area, and target performance.
It is therefore crucial to evaluate circuit techniques and
microarchitectural improvements with regard not only to
their effect on performance, but also to their net effect
on power.

The most effective means available to control power
dissipation in a microprocessor is (dynamic) voltage
scaling® [34]. In a processor with dynamic voltage control,
supply voltage and operating frequency are adjusted to
the workload. When the frequency is reduced by 1%,
the voltage can be reduced by 1% as well, resulting in
a 3% decrease in power, since to first order power is
proportional to CV’f. Thus, first-order, 1% performance
is worth 3% power. The scaling law holds over the
region in which supply voltage and maximum frequency
are proportional, which is from about three times the
threshold voltage upward. Over this range, MIPS/W'?, or
equivalently, energy-delay® [35], is a constant, making this
an appropriate measure of energy efficiency. This metric
favors performance more heavily than the commonly used
energy-per-operation and energy-delay [36] metrics. An
example of how this works can be found in Figure 23.
At high voltage, the Rivina processor does not compare
favorably on either the energy or the energy-delay
metrics with the Pulsar processor, which dissipates 22 W
at 450 MHz [8], yet at 1.3 V, 40 W, and 800 MHz,
the Rivina processor provides better performance
at equivalent energy per operation.

The rule can be used to guide decisions about circuit
design® as well as microarchitecture, and applies to
frequency as well as IPC. That being said, it is important
to realize that unless one is willing to manage multiple

3 K. Nowka, P. Hofstee, and G. Carpenter, “CMOS VLSI Power Efficiency Under
Voltage Scaling Assumptions,” J. Solid-State Circuits, in press.
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power supplies, the scaling can only be applied globally;
that is, a design that does not balance the per-stage delays
is always wasting energy. In some stages of a pipeline,
reducing delays may have a significant enough impact on
overall performance to warrant spending the additional
power, whereas in other parts of the design a low-power
multistage or low-power, low-speed circuit-family solution
may be optimal.

® Technology considerations
In this section we briefly discuss two other techniques that
hold promise for increasing performance in the future.
The first is cooling technology. IBM mainframes are
sold in “turbo” [29] versions, in which performance is
improved by cooling the modules to improve frequency.
Cooling has the additional benefit of dramatically reducing
off-currents and improving reliability. Since the off-current
is one of the limiting factors in device design, a reduced
off-current can be traded for additional performance if
one tailors a process to low-temperature operation [37].
Whereas traditionally systems have been cooled by
refrigerators that include pumps, which add significantly
to overall system cost, advances in thermoelectric cooling
[33] hold promise for low-cost, low-temperature systems.
It is important to note, however, that a thermoelectric
cooler increases the total amount of heat that must be
removed from the system. If a (multiprocessor) system is
limited by the amount of heat that must be removed from
the system, it is not obvious that thermoelectric cooling
results in a net performance advantage. 819
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Blazer 1MB fast embedded DRAM macro [38].

If one wants to predict what a next generation of
microprocessors might look like, examining the system in
which they are used usually gives a good clue. Present-day
designs have migrated L2 caches and multiple cores onto
the chip. It is thus interesting to examine integrating
DRAM on the die with the processor. IBM has
demonstrated the capability of combining high-
performance DRAM, the next off-chip component, with
high-performance logic on the same die [38] (Figure 34).
When logic transistor performance no longer suffers, the
power and density advantages of DRAM make it a good
candidate for an on-chip, higher-level cache. For a large
enough cache size, a DRAM can even outperform an
SRAM in latency because the delay to cover the distance
over the array to the processor dominates the time needed
to access the subarray. Promising as this technology may
be, it is by and large complementary to the improvements
that are expected in the core of the processor.

8. Conclusions

The various designs discussed in this paper, from product-
quality adders and an instruction window buffer to a
complete prototype processor, demonstrate the advantages
that can be obtained by increasing the focus on physical
design. The work on the Star series commercial
microprocessors has shown that it is possible to integrate
aggressively designed components in testable and
manufacturable products. According to the trends shown
in Figure 2, we should expect cycle times, as measured in
fanout-4 inverter delays, to dip well below 20 in the near
future. We have shown, by prototyping an entire short-
pipe processor and the reorder structures needed to
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implement a more complex microarchitecture, that
such cycle times are feasible today if the circuits, logic,
floorplan, and microarchitecture are designed hand in
hand. We expect engineering and architecting for low
power to be a major design consideration in the future.
Even though the power dissipation of an aggressively
designed microprocessor such as the Rivina prototype
processor is large, its power efficiency is in fact
competitive with those of previous designs in the

same technology.
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