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This paper addresses some aspects of frequency domain based, state space system identification. A frequency response sensi-
tivity function is developed, and applied to the problem of identifying a coupled rotor-fuselage helicopter model from simu-
lated frequency sweep data. This function indicates how sensitive the frequency response of the model is, at every frequency of
interest, to perturbations of the model parameters. This information can be used to tailor the identification process by indi-
cating what frequency bands and what inputs are best suited for the identification of a given parameter. The paper also pre-
sents expressions for an efficient calculation of the derivatives of this sensitivity function. This enables faster implementations
of the frequency response matching problem and of the calculation of accuracy metrics. The sensitivity functions are used to
partition an identification problem that covers a very wide frequency band into two identifications over smaller frequency
bands. Such frequency-banded identification appears possible, faster, and slightly more accurate for the case studied in the
paper. A possible application of this technique is the identification of a coupled rotor-fuselage system from separate low fre-
quency flight tests and higher frequency, rotor wind tunnel tests. The results indicate that the use of the frequency response

sensitivity function can help automate some decisions typically left to the analyst’s judgment.

Notation

A, B, C State, control, and output matrices
CR Cramer-Rao bound

G(w) Frequency response matrix

H Hessian matrix

IS Parameter insensitivity

J Objective function for frequency matching

o Sensitivity function weighting matrix

w Coherence weighting matrix

n; Number of control inputs

n, Number of response outputs

n, Number of frequency points at which frequency response

matching is sought

p Generic element of A and B matrices
u Control input vector
X State vector
y Output vector

Greek Symbols
B Collective flap angle
B1- Bis Longitudinal and lateral flap angles
B Differential flap angle
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V%(...) Second partial derivative with respect to matrix element

€ Frequency response error function
12 Coherence function
v, Constant dynamic inflow component
Vg, Ve Longitudinal and lateral dynamic inflow components
w Frequency in rad/sec
6, Collective pitch
0, 8,; Lateral and longitudinal cyclic piich
[ Collective pitch of tail rotor
& Collective lag angle
§10 &5 Longitudinal and lateral lag angle
9 Differential lag angle

Introduction

Frequency domain system identification has emerged during the last
decade as a powerful tool in helicopter engineering. This technique has
been used extensively to reconstruct transfer function and linear state
space (i.e., stability and control derivative) mathematical models for ro-
torcraft flight dynamics from wind tunnel and flight test data. Compared
with time domain identification, a frequency domain approach has often
proved more accurate and reliable for the multi-input/multi-output prob-
lems exhibiting substantial nonlinearity, coupling, correlation, and noise
that arise in many helicopter applications. Most system identification ef-
forts based on flight test data have focused primarily on the identification
of rigid-body dynamics (Refs. 1-4). A simplified treatment of main rotor
dynamics and inflow dynamics has also been included, Refs. 5-7. In prac-
tice, constraints to a more sophisticated rotor identification arise from the
complexity of formulating a suitable coupled rotor-fuselage model struc-
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ture and from the lack of good flight test data in the frequency range of the
rotor modes.

Helicopter system identification efforts have focused primarily on
identifying physical quantities in a suitable differential equation model,
rather than directly identifying the elements of a state space matrix repre-
sentation. The former approach was applied in Ref. 8, in which the control
response dynamics of a bearingless main rotor was modeled with a sim-
plified flap-lag rigid blade formulation. The identification focused on the
extraction of those values of the physical characteristics of the bearingless
rotor (such as Lock number, hinge offset, flap frequency, and lift-curve
slope) that would provide the best frequency response fit to the test data.
On the other hand, identifying the elements of the state space matrices di-
rectly is attractive because it may reduce the required effort level of the an-
alyst. In fact, a direct identification would only necessitate the choice of
appropriate states and control inputs; it would not be necessary to estab-
lish functional relationships among them, and to choose appropriate phys-
ical parameters to identify. This, in turn, would help increase the automa-
tion of the identification process.

The state-of-the-art in helicopter applications of frequency domain sys-
tem identification is such that excellent results can be obtained if care is
taken while constructing the underlying mathematical model (or model
structure), especially for rotor and inflow dynamics (Ref. 9). Engineering
judgment is required to interpret correctly the accuracy metric information
and to free or fix the model parameters appropriately during the identifi-
cation. Explicit inclusion of coupled rotor-fuselage-inflow dynamics fur-
ther increases both the number of model parameters to be examined and
the complexity of the model identification process. Required computer
processing time can also become a constraint when the identified parame-
ter set is very large.

This paper addresses one particular aspect of frequency domain system
identification, namely the calculation of state space model parameters
from test data. First, a frequency response sensitivity function is defined,
together with its derivatives. This function describes the sensitivity of the
frequency response of a multi-input/multi-output system to a change of an
element of its state or control matrix. Fully analytical expressions are used
in the calculation of the sensitivity function. The sensitivity function is ap-
plied to the frequency response matching problem and to the calculation
of the theoretical accuracy metrics. This results in very large computa-
tional savings compared with calculations performed using finite differ-
ence approximations.

Several additional numerical tools based on the frequency response
sensitivity function are also developed. They can provide useful insight on
the importance of frequency of excitation and input type on the model pa-
rameters in the identification. This information can be used to tailor the
identification process. These tools can also be employed to expose poten-
tial problems or the cause of identification errors, thereby supplementing
the customary examination of the theoretical accuracy metrics. Finally, the
sensitivity functions are used to partition an identification problem that
covers a very wide frequency band into two identifications over smaller
frequency bands. A possible application of this technique is the identifica-
tion of a coupled rotor-fuselage system from separate low frequency flight
tests and higher frequency, rotor wind tunnel tests.

Frequency Response Sensitivity Function
Definition and Computational Aspects
The goal of frequency domain system identification is the extraction
from test data or nonlinear simulation of a state space, linearized model of
the helicopter that is valid for perturbed motion about a certain flight con-

dition and over a relatively wide frequency band. High fidelity flight dy-
namics models are useful for control law design, simulation applications,
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and nonlinear simulation validation studies. The basic state space repre-
sentation of a dynamic system is

x=Ax + Bu )

y=Cx+Du M
where x is the system state vector, u is the control input vector, and y is the
response output vector. The matrices A, B, C, and D contain the parame-
ters that are determined in the model identification process. For a heli-
copter flight dynamics model, A contains the stability derivatives and B
contains the control derivatives.

Frequency domain system identification compares (and iteratively
matches) the frequency responses of the analytical state space model to the
frequency responses obtained from test data. The frequency response ma-
trix corresponding to Eq. 1 is given by

G(w) = Cliwl -A]'B+ D 2)

where G(w) is a complex-valued, three-dimensional array with a number
of rows equal to the number of outputs n,, a number of columns equal to
the number of control inputs n;, and a third dimension equal to the number
n, of frequencies at which the match between model and test data is
sought. In principle n,, could vary for different input/output pairs, but in
this study the assumption will be made that n,, is constant for all input/out-
put pairs used in the model identification.

The sensitivity of the frequency response function G(w) to changes in
a parameter p, where p is an element of A or B, is given by:

Qo) _ 2 Cliwl - A1 + D] 3
= Cliwt - AY1%8 (il - AYIB + Cliwl -AY'3E @

assuming that C and D do not depend on p. The frequency response sen-
sitivity function is a complex-valued, three-dimensional array with di-
mensions identical to those of the frequency response function G(w). The
quantity (iwl — A)! in Eq. 4 does not depend on the parameter p, and there-
fore need only be calculated once per frequency; it can be stored and
reused if 2(%) needs to be computed for more than one parameter. If the
parameter p 1s an element of the stability derivative matrix A or of the con-
trol derivative matrix B, the derivative malrices—‘?)—and Q(% have a very
simple structure, and contain only a “1”" in the position of the element p,
and zeros everywhere else.

Therefore, if p is an element of A, the second term in Eq. 4 is equal to
zero. Similarly, if p is an element of B, the first term in Eq. 4 is equal to
zero. The simple structure of %—‘2 and ‘%leads to further simplifications.
Define for convenience

E(w) =Cliwl - A)! Flw)=Cliwl - A)'B o)
If p is the element (k) of the matrix A then the generic element (m,n) of
the sensitivity matrix will be

[2]) = EpwFiw) ©
and if p is the element (k,[) of the matrix B

IG(w)l _ [Epfw)n=1

el cfzmonst o

That is, the sensitivity matrix has all its columns equal to zero, except for
the /-th, which is equal to the k-th row of the E(w) matrix. Furthermore, C
is typically a diagonal matrix, and often the identity matrix, in which case
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the calculation of E(w) in Eq. 5 only requires N multiplications (or none at
all if C = I) once (iwl — A)! is available. The number N is equal to the size
of A.

In contrast to the analytic computation, a finite difference calculation
of the sensitivity matrix would yield, for the case in which p is an element
of A,

3G(w) o G(w,p + Ap) - Glw,p) ®
ap Ap

=517,c{ liw I - AQp + Ap)l! ~ [iw I - AQ)'}B (9)
and similarly, if p is an element of B,
Wlo) = Lcio1-AY! (BE + Ap) - BE)) (10)

Both Eq. 9 and Eq. 10 require one additional matrix inversion per param-
eter at each frequency.

The frequency response sensitivity function can also be used when the
parameter is not an element of the A or B matrices. For example, the pa-
rameter could be a physical constant that appears in the governing equa-
tions, and therefore affects several elements of the A or B matrices. Let g
be one such parameter, and let p; i =1, 2, ..., I denote each of the elements
of A and B that are functions of g. Then we have

IG(w) 0G(w) dp;
=2 o W an

The term ggl is the derivative of the corresponding element of A or B with

respect to the parameter g. This derivative can be calculated using finite
difference approximations and may even be available analytically. The

term g a;;’ ) can be calculated using Eq. 4.

The second derivative of the frequency response function G(w) is com-
puted by differentiating Eq. 4:

I
i=1

B2G@D) _ (i [ - A A (i T — AV19A (i T — AV
p9px C(iwI-A) ¢9pk(WI A) 6’pj(WI Ay'B

+ C (i I-A)-lgT;“;(im 1-A)-lgpik(w; 1-AY'B N
. 104 . 1B (12
+Clio I~ AP Lo 1- Ay 2R

C oy Ay19A 7 a-19B
+ C(iwI-A) ‘E(‘wl A) P

No second derivative terms appear in Eq. 12. In fact, ;’%; and PPk are
both zero because p; and py are elements of A or B. The inverse matrix
(iw I - A)1!is already available and need not be recalculated. The gl;‘kand
dp, lerms in Eq. 12 also share the same structure asg%andgg terms in Eq.
4, namely, a “1” in the position of the element p; or p,, and zeros else-
where. This structure can be exploited for additional computational sav-
ings.

Application to Frequency Response Matching

The starting point of a state space identification procedure is a set of
frequency responses of the system to identify. This set is normally deter-
mined by applying frequency sweep type inputs (Ref. 5). The state space
representation of the system to identify is given by Eq. 1. In this study we
assume that the matrix D is a zero matrix and that some of the elements of
A and B are known exactly, with only an estimate available for the rest.
This corresponds to a model identification in which some of the model pa-
rameters have been determined very accurately, for example, from previ-
ous identifications or from simulation studies, and need not be identified.
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The known elements of a model can also be physical quantities, or ele-
ments that are either “1” or “0” due to the underlying model structure. The
goal of the identification, then, is to determine the unknown model para-
meters using the test data. The C matrix of Eq. 1 is simply used to extract
the outputs y from the state vector x, and therefore is the identity matrix or
a rectangular portion of it.

The unknown matrix elements in A and B are determined by matching
the frequency response of the model to that from the test. This is accom-
plished by minimizing the objective function J, defined as

B, nony,
J =3 3 3 WwpleplwpP (13)
j=l k=1 =1
The term &(w;) represents the error between the model responses and the
test frequency responses:

gi(wp) = Gp(w) ~ Gp(@) ey 14)

The function W(w) is used to weigh the error in such a way that W(w)
varies from 1 for the best quality data (coherence functiony,, = 1) to 0 for
the worst (coherence function y,, = 0) (Ref. 5).

The most powerful unconstrained minimization algorithms require the
gradient of the objective function J with respect to the design parameters
(in this case, with respect to all the parameters p). The frequency response
sensitivity function can be used to calculate the gradient of J much more
efficiently than by using finite difference approximations. In fact, the de-
rivative of J with respect to a generic design parameter p can be written as:

a _ s ¢ ¢ [, W, 9g(wp) 15
kPP [epnmwn Z520] (1)

Taking the derivative of the error &;(w;), Eq. 14, with respect 1o p yields
[0 -k(w,) — aG!'k(wl)

P op
because the test data frequency responses G(w),,,, are not affected by

changes in model parameters. Thus the objective function gradient can be
rewritten as

(16)

R

322 R R T [t Walwn 2SH@D 17
i ]g pp> [ex@p o) =520 ] (17

IGlw
The derivative——f%()—l)- is the element in the j-th row and &-th column of
the sensitivity function %p@l given by Eq. 4. The term ¢;(w;) need only

be computed once for each gradient call, and it can be recycled for succes-
sive parameters. This further improves the efficiency of the solution process.

Application to Accuracy Metrics Calculation

After the objective function J has been minimized, two fundamental
theoretical measures of accuracy, the Cramer-Rao bound and the parame-
ter insensitivity, can be computed for each identified element (Ref. 5). The
Cramer-Rao bound from a single test run establishes the standard devia-
tion of the identified parameter; large bounds indicate poor confidence in
the computed element value. Inaccuracies can result from poor data qual-
ity, correlation of parameters to identify, or improper model formulation.
The parameter insensitivity quantifies the effect of each identified para-
meter on the objective function J and represents a lower limit on the
Cramer-Rao bound. Parameter insensitivity is high when changes in the
parameter do not significantly affect the objective function.
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The Cramer-Rao bound, CR;, and parameter insensitivity, IS; for each
identified element p; are approximated from the Hessian matrix H respec-
tively as (Ref. 10):

CR;= 2V(H); (18)
and
18;= (Hy\2 (19)
where
H=V%J (20)

An expression for the Hessian can be obtained by taking the derivative
of Eq. 15 with respect to p and neglecting higher order terms, which
gives

nw Je:
Hy = 23 Wyto) [ZHE0T @

where the sensitivity of the local fit error £,(w)) is given by Eq. 16. Note
that although the sensitivity is a complex number containing amplitude
and phase information, the element /j; of the Hessian matrix is real. The
computational savings obtained through the use of Eq. 16 and Eq. 21 are
substantial, compared with the use of one-sided finite difference approxi-
mations for the calculation of 0_51_6:)_, and even greater if central differ-
ences are used. Finite difference methods also require a check that the step
size be appropriate, and may suffer from inherent phase shifts that need to
be corrected. Analytic methods do not require these steps that can be time
consuming.

If the parameter is not an element of the A or B matrices, then the sen-
sitivity of the objective function J is given by:

aJ _ L a7 ap;
%9 2% @

where ¢ is the parameter, and p;, i =1, 2, ... , I denotes the elements of A
and B affected by q. The Hessian then becomes

I I 2
H=V%=3% 39 op op; 23)
7= 2 Zopopy0a o

Ip; ap;
in which the detivaﬁves?p-‘- and a—p‘ are the same as in Eqa21(1}'( ax;d the sec-
. . : . w) .
ond dcrl.vaUVe of J can be obtained very efficiently once W is calcu-
lated using Eq. 12.

Magnitude Frequency Response Sensitivity Functions

One of the potential problems of identifying coupled rotor-fuselage
models is the number of parameters that need to be identified. For larger
models that are valid for a wide range of frequencies, each of the matrix
elements tends to be more significant in some specific frequency band and
for specific inputs. Two special forms of the frequency response sensitiv-
ity function can help provide additional information and insight on the in-
fluence of each model parameter. They will be called “magnitude” fre-
quency response sensitivity functions because they are obtained by
summing the magnitudes of the sensitivity functions in various ways.
They are:

1. Cumulative Frequency Response Sensitivity Function, a—GagL—')
o . 0GH{w)
2. Input Frequency Response Sensitivity Function, —-5-1,—
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The “cumulative” frequency response sensitivity function 3Gw) isa
real-valued vector function with one element per frequency point. The [-th
element of the vector is calculated by summing the magnitudes of all the

elements of i&pi) corresponding to the frequency w, that is:

n, n;

oG ;
42= 3 EQ].,‘|391§("’_’)|1=1,2,...,n,,, 4
P k=1 P

where j and k denote the matrix element in the j-th row and k-th column.
The purpose of the weighting function Q is to normalize the elements of

9G(@) when the system inputs u or outputs y are of differing units. The

weighting function Q is a matrix with a number of rows equal to the num-
ber of outputs n,, and a number of columns equal to the number of control
inputs n;. Larger values of 13—%&)over a specific frequency range indi-
cate that changes in the parameter p have a greater overall impact on the
responses at those frequencies.

Though the cumulative sensitivity function provides useful insight on
the overall sensitivity of the frequency responses to perturbations of a pa-
rameter p, some detailed information is sacrificed by collapsing all the sen-
sitivities into one function. For certain applications, the sensitivity of the
frequency responses associated with a particular control may be of impor-
tance during the system identification process. Therefore a second, or “in-
put,” form of magnitude frequency response sensitivity function can be de-
fined by summing at each frequency point the magnitudes of all the
frequency responses corresponding to a given input. This results in a real-
valued matrix function. The element of this matrix corresponding to the
k-th control input and the /-th frequency is:

_"GI(‘”)] _ Yo I_,_,_aGk(w)l,:l 2 25
[ e A% | e oo @

Large magnitudes of this sensitivity function for specific control input
over a particular frequency range, and for a given parameter p, indicate
that the identification of p.is best carried out from the frequency responses
to that particular control input, and in that frequency range. This informa-
tion can be used to tailor the identification process by emphasizing certain
control inputs and frequency bands.

The two magnitude sensitivity functions introduced in this section pro-
vide information on the sensitivity of the analytical model uscd in the iden-
tification to changes of its parameters. Therefore, they can be calculated
independently of the test results and can provide useful information, for
example, in planning the tests themselves. On the other hand, their accu-
racy in describing the sensitivity of the actual system will depend on the
accuracy of the analytical model used in the identification. Therefore, they
are best used when the primary purpose of the identification is to refine an
analytical model that is already reasonably accurale.

Results
Generation of Simulated Test Data

The results of the system identification presented in this section were
obtained from simulated helicopter flight test data. The time histories were
generated using a linearized representation extracted from a non-lincar, 4-
bladed, articulated rotor helicopter model consisting of a simplified ver-
sion of that presented in Ref. 11. The linearization was performed in the
fixed-frame about a trimmed hover flight condition, so as to obtain a cou-
pled rotor-fuselage-inflow model in first order form. A state space simu-
lation was chosen to generate the time history data because the usc of a lin-
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ear model facilitated the comparison of calculated model matrix elements
with the true element values. On the other hand, no nonlinear or periodic
effects were present in the simulated test data. Furthermore, the use of sim-
ulated data, even with the addition of random noise, tends to be more be-
nign than the use of actual test data.

The bare airframe configuration used in the study was initially unsta-
ble, therefore attitude feedback loops were added in the roll and pitch
channels. The additional stabilization ensured that the helicopter states re-
turned to a trimmed flight condition after cessation of the control inputs.

The model state vector x contained nine fuselage, 16 rotor, and three
inflow states in the fixed-frame as follows:

X=[lf V_wp_qf¢0¢ﬁoﬁlcﬁ15ﬁ2ﬁoﬂlcﬂlsﬂ2 (26)
Coclc clx €2 Co Clc Cls CZ Vo Vs VC]T

The control vector was
u=1[0,0,.6,,61" @7
and the outputs were

y=[uvaqr¢0ﬂoﬂlcﬂlsCaClcClsC2]T (28)

Frequency sweeps simulating flight test sweeps for each of the four
control inputs (collective, longitudinal cyclic, lateral cyclic, and tail rotor)
were individually computed. They were then overlaid with a computer-
generated stochastic function to ensure a degree of randomness and to pro-
vide a rich spectral content over the frequency range of identification.
Each control input was zero-padded for several seconds at the end of the
frequency sweep allowing the helicopter to return to a trimmed flight con-
dition. A fourth-order low-pass filter was applied to the inputs to attenuate
frequencies above the range of validity of the linear model. An automated
algorithm was then used to apply the resulting control inputs to the lin-
earized helicopter state space model.

The subsequent treatment followed the process detailed in Ref. 5.
Thus, a nonparametric frequency domain system identification was per-
formed on each input/output pair. This yielded the complex-valued, three-
dimensional matrix function G(w),,;, which consisted of the simulated test
frequency responses. The chirp z-transform was used to extract high-res-
olution spectra in predetermined frequency bands, therefore increasing the
accuracy of the identification process (Refs. 12,13). Time domain filtering,
mean and trend removal, and windowing, as well as frequency domain
spectral averaging, were all performed to decrease random and bias errors
in the final calculations (Ref. 14). The ordinary coherence functiony (@),
which is a measure of the quality of the frequency response calculations,
was also computed for each frequency response.

The matrices A and B of the state space model used in this study were
respectively a square matrix of size 28 and a rectangular matrix with 28
rows and four columns, for a combined total of 896 elements. For the re-
sults presented in this paper, specific numbers of the elements in A and B
were freed. These elements became the design parameters of the uncon-
strained optimization problem. The “correct” value of each free element of
A and B was assumed to be given by the corresponding element in the state
space model used to generate the input and output time history data. In
other words, the objective of the identification was to recover the linear
model used to generate the time histories. Freeing a relatively small num-
ber of elements corresponds to an identification in which the goal might
be to improve or “fine-tune” an existing model. Selection of the elements
could be based on the accuracy metrics from a pre¢vious identification or a
priori knowledge from simulation.

This section presents some representative results of this study. Many
additional results can be found in Ref. 15.
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Magnitude Frequency Response Sensitivity Function

Examples are presented here for the cumulative and control input
forms of the magnitude frequency response sensitivity function, defined
by Eq. 24 and Eq. 25, respectively. The output vector y contained quanti-
ties with units of ft/sec, rad/sec, and radians, so the weighting matrix Q re-
quired to normalize the frequency response sensitivities used the main
rotor radius to normalize lengths and rotor speed to normalize time. Be-
cause the control inputs had the same units, the columns of Q were iden-
tical, with the first column given by:

Qi = [1AS2R) 1/(S2R) 1/(S2R) 1/Q2 1/Q2 1/Q2

e e e e e @

The matching of the frequency responses was sought at a total of 90 points,
logarithmically spaced between the frequencies of 0.1 and 100.0 rad/sec.

Figs. 1 through 5 and Tables 1 through 5 display results of two types
of magnitude frequency response sensitivity function for several represen-
tative elements of the A and B matrices. The first four rows of Table 1 refer
to the input sensitivity function a—Galg‘—’), Eq. 25, for each of the four inputs.
The fifth row of the table gives the values of the cumulative sensitivity
function ‘ﬁ%@ Eq. 24. Based on the definition, the table should have 90
columns, that is one per frequency point. Instead, to summarize in a con-
venient way the influence of frequency and input type on the identifica-
tion, the values of each of the sensitivity functions were averaged over
three frequency bands, each 30 frequency points wide. The frequency
bands were 0.1—1 rad/sec, 1—10 rad/sec, and 10—100 rad/sec. Thus the
table has only three columns. Tables 2 through 5 were similarly obtained.
A common scaling factor was used in all tables for ease of interpretation.

Fig. 1 and Table 1 refer to the element of the A matrix corresponding
to the longitudinal velocity derivative X,, (without rotor and inflow contri-
butions). The figure shows that the derivative has a greater influence on
the model at frequencies below approximately | rad/sec. The sensitivity
magnitudes decrease rapidly at higher frequencies, indicating that changes
to this element have a smaller impact on the model at frequencies above
about 1 rad/sec. Because X, affects primarily the rigid-body modes of the
helicopter, changes to its value do not significantly alter the precision of
the state space model at higher frequencies. Fig. 1 also shows that longi-
tudinal cyclic is the dominant control input for X, especially for frequen-
cies between 0.1 rad/sec and 3 rad/sec. These results imply that the deriv-
ative X,, is best identified through the frequency response (o a longitudinal
cyclic input at frequencies between 0.1 and 1 rad/sec.

3 —rt —— ——y
10 i—.\ ]
v\ Collective 3
._{.\ — — - Lateral Cyclic 5
L F AN N — - —--Longitudinal Cyclic | 3
107 & NNel e Tail Rotor 3
N 3
€ 0t
Z 10 :g
2 F
= ;
10° ¢
107 |
10° . s PRI T
0.1 1 10 100

Frequency (rad/sec)

Fig. 1. Input frequency response sensitivity functions for
longitudinal velocity derivative X, = A,,.
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Table 1. Input and Cumulative Sensitivity Functions for

Longitudinal Velocity Derivative X, = A,

Frequency (rad/sec) — 0.1-1 1-10 10-100
Collective 9.2219 0.0026 0.0000
Lateral Cyclic 29.2817 0.0042 0.0001
Longitudinal Cyclic 56.7452 0.0558 0.0000
Tail Rotor Collective 4.6820 0.0064 0.0000
Cumulative 99.9309 0.0690 0.0001

Fig. 2 and Table 2 refer to the element of the A matrix corresponding
to the yaw damping derivative N,. Yaw damping is mainly a rigid-body
mode and therefore has a greater impact on the model fidelity at low fre-
quencies. Fig. 2 shows that the cumulative magnitude frequency response
sensitivity is higher for frequencies less than approximately 5 rad/sec and
rolls off for higher frequencies. This figure also shows that the largest con-
tribution is that due to the tail rotor input. Therefore, the derivative N, is
best identified through the frequency response to a tail rotor input at fre-
quencies between about 0.1 and 5 rad/sec.

10" g —————rt

10°

10

three control inputs. Table 3 confirms these results by indicating that the
cumulative sensitivity function values are relatively even for the three fre-
quency bands used in the calculations, and that the largest contribution
comes from the sensitivity of the collective pitch. This behavior implies
that the identification of the element A 14 is best accomplished from fre-
quency responses to collective pitch inputs, and that the frequency of ex-
citation is relatively unimportant.
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Fig. 2. Input frequency response sensitivity functions for yaw
damping derivative N, = Ag.

Table 2. Input and Cumulative Sensitivity Functions for

Yaw Damping Derivative N, = Age

Frequency (rad/sec)
Fig. 3. Input frequency response sensitivity functions for collective
flap parameter §,/8, = A 14,

Table 3. input and Cumulative Response Sensitivity Functions
for Collective Flap Parameter 8,8, = Aso,.14

Frequency (rad/sec) — 0.1-1 110 | 10-100
Collective 34.8967 27.6203 29.3957
Lateral Cyclic 1.5225 0.1148 0.0648
Longitudinal Cyclic 2.3804 0.0296 0.0547
Tail Rotor Collective 3.5216 0.1969 0.0250
Cumulative 42.3211 28.1385 29.5404

Frequency (rad/sec) — 0.1-1 1-10 10-100
Collective 28.6459 1.7186 0.0036
Lateral Cyclic 1.1094 0.2283 0.0017
Longitudinal Cyclic 1.8909 0.0926 0.0018
Tail Rotor Collective 63.3886 2.9082 0.0106
Cumulative 95.0348 4.9476 0.0176

The sensitivity results for the element (10,14) of the A matrix are pre-
sented in Fig. 3 and Table 3. This is the element in the row of A corre-
sponding to the derivative 8, and in the column corresponding to f,. For
convenience this element is referred to as ﬂ'(/ﬂ,,. A similar nomenclature is
used for other elements of the A and B matrices. The collective flap ele-
ment ﬁ,,/ﬂo is a rotor parameter and has an impact on the rotor model at
mid and high frequencies as seen in Fig. 3. The cumulative magnitude sen-
sitivity function is relatively flat for frequencies below approximately 30
rad/sec. This plot also shows that perturbations of the the collective flap
parameter /8, impact significantly the frequency response to collective
pitch, while having a much smaller effect on the responses to remaining
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The sensitivity results for the element A, g | ¢ are presented in Fig. 4 and
in Table 4. This element can be defined as a coupled longitudinal lag/lat-
eral flap parameter §;./8,,. The cumulative sensitivity function is low at
frequencies below approximately 1 rad/sec and is larger at frequencies
above this value. The parameter {; ./, is part of the main rotor portion of
the helicopter model. Therefore it has less effect on the rigid-body dy-
namics, but needs to be included when the rotor dynamics is to be identi-
fied. For frequencies above approximately 1 rad/sec, Fig. 4 indicates that
perturbations of §;./B;; have the strongest influence on frequency re-
sponses to lateral cyclic input and, to a smaller extent, to longitudinal
cyclic. The lateral and longitudinal cyclic sensitivity function values are
the largest of the four controls presented in Table 4 for the frequency range
1-100 rad/sec. This implies that the element A ¢ is best identified from
frequency responses to lateral cyclic, or to a lesser extent longitudinal
cyclic, at frequencies between 3-4 and 30-40 rad/sec.

Finally, Fig. 5 and Table S present the sensitivity results for the element
By of the control mairix B, corresponding to the uncoupled parameter
B146,.- Because this parameter is an element of the control derivative matrix
B, the input frequency response sensitivity function contains only data for 8, .
and zeros for the other control inputs. This explains the zero rows in Table 5
and the presence of just one curve in Fig. 5. The sensitivity results indicate
that By, , is best identified below 10 rad/sec, and especially in the frequency
bands around the two resonance peaks, that is around 0.1-0.3 and 2-7 rad/sec.
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Fig. 4. Input frequency response sensitivity functions for coupled
longitudinal lag/lateral flap parameter §,./8;, = Ag14,

Table 4. Input and Cumulative Sensitivity Functions
for Coupled Longitudinal Lag/Lateral Flap Parameter {; /8, = Asg 46

Frequency (rad/sec) — 0.1-1 1-10 10-100
Collective 4.6952 5.0600 0.2741
Lateral Cyclic 1.9141 31.4410 12.4763
Longitudinat Cyclic 3.8658 13.9107 7.0905
Tail Rotor Collective 3.0870 15.5644 0.6208
Cumulative _| 13.5621 65.9762 20.4617
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Fig. 5. Input frequency response sensitivity functions for control
derivative 8,./0,. = By, 1,

Table 5. Input and Cumulative Sensitivity Functions
for Control Derivative f, /0;,

Frequency (rad/sec) — 0.1-1 1-10 10-100
Collective 0.0000 0.0000 0.0000
Lateral Cyclic 62.7058 32.5182 4.7759
Longitudinal Cyclic 0.0000 0.0000 0.0000
Tail Rotor 0.0000 0.0000 0.0000
Cumulative 62.7058 32.5182 4.7759
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In summary, the examples presented in Figs. 1 through 5 and Tables 1
through S indicate that the magnitude sensitivity functions can be a useful
tool in the planning and interpretation of a system identification procedure,
and that the quantitative information that they provide agrees with engi-
neering judgment. This suggests that the use of such functions can help in-
crease the automation of some parts of the identification process or, equiv-
alently, reduce the level of training required of the analyst performing the
identification.

Frequency-Banded State Space Identification

This section presents the results of a complete state space identification
for the coupled rotor-fuselage system. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm for unconstrained optimization, Ref. 16, was
used to minimize the performance index J defined in Eq. 13. Two types of
identification were conducted. For the first type, which represents the
baseline solution, a total of 40 elements from both the A and B matrices
were identified simultaneously over the entire frequency range from 0.1 to
100 rad/sec. It should be noted that the mode with the lowest frequency
was the phugoid, at 0.12 rad/sec, whereas that with the highest was the col-
lective flap, at 50.84 rad/sec. The elements to be identificd included sta-
bility and control derivatives from both the rotor and fuselage portions of
the model, as well as from portions of the state matrix A that couple rotor
and fuselage dynamics. The second type of cases were studied to deter-
mine the feasibility of performing the parameter identification in a piece-
wise way. This was done by identifying some of the unknown elements of
A and B in one frequency band, and the rest in a different frequency band,
based on the information generated by the frequency response sensitivity
functions. In the remainder of the section, this type of identification will
be called “frequency-banded.” In both types of cases the initial guess for
the 40 elements to identify was obtained by multiplying the known correct
values (that is, those used in the calculation of the simulated test data) by
a random vector with a uniform distribution.

For the frequency-banded identification method, the 40 clements were
partitioned into two groups using the cumulative frequency response sen-
sitivity function, Eq. 24. Nineteen elements, primarily from the fusclage
portions of the state space model, were found to be most significant in the
frequency range 0.1-10 rad/sec, while the remaining 21 elements had more
impact on the model frequency responses for frequencies between 5 and
100 rad/sec. The identification was performed in two steps. In the first, the
21 “high frequency” elements were freed, while the remaining 19 “low fre-
quency” elements were kept fixed at their respective initial (and incorrect)
solution guess. The 21 free elements were identified using only data in the
frequency range of 5-100 rad/sec. In the second step, the 21 high frequency
elements were held fixed at their respective identified value and the 19 low
frequency elements were freed. These low frequency elements were iden-
tified using only data in the 0.1-10 rad/sec frequency range. The same
amount of frequency response data was used in the baseline case and in the
high and low frequency identifications of the frequency-banded case.

Table 6 shows the required CPU time and the error performed in both
types of identification. The accuracy of the prediction of the poles was
chosen as an overall measure of the accuracy of the entire identification.
The CPU time shown for the frequency-banded identification was the sum
of the times required for the high frequency identification and for the low
frequency identification. The rotor and fuselage pole error data represent
the average of the relative errors for all the poles in the respective portion
of the model. The average pole error for all the identified poles for the
baseline case was 3.24%, indicating a good overail accuracy of the identi-
fication. The fuselage pole error was typically slightly larger than the rotor
pole error due mainly to some numerical problems in the identification of
the low frequency rigid-body modes in hover. The rigid-body derivatives
were normally much smaller than many of the rotor derivatives, and this
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numerical difference appears to be the main cause of the slightly larger in-

accuracies in the “fuselage” poles predictions. 0-5 ! ‘ ‘ : : 4
For the frequency-banded identification case, the errors in the determi- V4
nation of the poles decreased slightly. Identification of the rigid-body poles 0 PN f\ ’/ ;

in general was more sensitive to errors in the matrix elements than identi-
fication of the main rotor poles due to the higher coupling of the fuselage
modes in hover. The frequency-banded identification method also yielded
a 41% reduction in required CPU time as compared to the baseline case.
The savings in CPU time resulted from a smaller parameter set to identify
in each of the high and low frequency bands as compared to the identifi-
cation of the complete set of 40 parameters for the baseline case. The ac-
curacy of the frequency-banded identification was found to be rather sen-
sitive to the proper choice of frequency bands and of the free parameters. a5 i
Table 6 shows the results of one of the most accurate identifications. 1

1
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Table 6. Comparison of CPU Time and

Average Error in the ldentified Poles -2 o i N 3| ; 5 6 - s
CPU Time Average Pole Error Time (sec)
Method (Minutes) Rotor Fuselage | Total Fig. 7. Time history of fuselage pitch attitude response to lateral
Baseline 160 1.58% 6.56% | 3.24% cyclic input.
Frequency-Banded 94 117% 5.89% 2.75% 0.2
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Verification in the time domain was conducted after each test case by
supplying a control input, different from that used for the identification,to ¢+ o - | Frequency-Banded |
both the identified model and the model used to generate the simulated :
flight test data. For all controls, this input consisted of a rectangular pulse ; |

of 3.5 seconds started at time ¢ = 1 sec. The rectangular shape of the input —g 0.05 kA ‘
has to be considered as a mathematical idealization. In reality it would be 2 ! Lo L el N s 4
impossible to achieve the instantaneous changes at the beginning and the Z 0: « '
end of the input that such shape implies. Figs. 6 through 9 are representa- | \//

tive of the results of the validation. They show respectively the response -0.05 !

of the fuselage pitch attitude to collective pitch, of the fuselage pitch rate

to lateral cyclic, of the lateral lag angle of the rotor to lateral cyclic, and of .01

the longitudinal lag angle of the rotor to longitudinal cyclic. Each figure

contains three curves. The curve marked “Correct” denotes the simulated .0.15 ; ; i

test data. The curve marked “Baseline ID” shows the response obtained 0 1 2 3 4 5 6 7 8
from the baseline identification. Finally, the curve marked “Frequency- Time (sec)

Banded ID” shows the response of the state space system obtained fol-

lowing the frequency-banded identification process. The figures confirm Fig. 8. Time history of rotor lateral lag angle response to lateral

cyclic input.
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that the frequency partitioning of the identification does not compromise
the accuracy of the results; for several input-output pairs the frequency-
banded identification even appears to be more accurate than the baseline.
The primary objective in defining a frequency-banded identification
process was to determine whether an identification over a very wide fre-
quency band could be partitioned into two (or possibly more) identifica-
tions over smaller frequency bands. The results shown in this section in-
dicate that this may indeed be possible. The results also show that the
procedure may be faster, and also yield improvements in accuracy.

Computational Efficiency Comparison

Fig. 10 shows a comparison of the CPU time required to calculate the
frequency response sensitivity funct.iona—Ga(‘L’l using different computa-
tional schemes and assumptions. The compall"isons were conducted using
Fortran with full compiler optimization on a Sun Sparc5 workstation. The
bar marked FD indicates the time required when finite difference approx-
imations were used to calculate the gradients. The three bars marked A in-
dicate the times required using the analytical formulation presented in this
study. The A1 bar refers to a direct application of Eq. 4. The CPU time of
bar A2 was obtained by exploiting the mathematical structure of %—A and
%l(see Egs. 5 through 7). Finally, for bar A3 the additional assumption

was made that the C matrix was either the identity matrix or a portion of
it, so that its function was merely to select specific elements of the state
vector. The case in which the C matrix is a diagonal matrix or a rectangu-
lar portion of it, but not the identity matrix, was not explicitly considered
but should yield CPU times very close to that of case A3. The results
shown in Fig. 10 indicate that the analytical formulation of the present
study reduces the computer time required for the calculation of ‘%@) by

an amount that ranges from 39% to 97% compared with the case in which
finite differences are used. These figures refer to the example of the pre-
sent study, with a state matrix A of size 28 and 40 free parameters to be
identified. The CPU times savings were mostly due to the fact that a ma-
trix of the size of A needs to be inverted only once per frequency value,
rather that once per free parameter. Therefore the savings will increase
with the size of the mathematical model (which determines the cost of in-
verting a matrix of the size of the state matrix A) and with the number of
free parameters (which determines the number of matrix inversions at each

frequency).

70.0

60.0

50.0

40.0

30.0

CPU Time (minutes)

20.0

10.0

0.0 -
FD Al A2 A3

Fig. 10. Comparison of required CPU time for frequency response

sensitivity function calculation (FD: Finite Difference methods; A1,
A2, A3: Analytic methods of this study).
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Fig. 11 presents a comparison of the CPU time required to complete
the model identification and parameter accuracy metric calculations for
frequency response sensitivities calculated numerically and analytically.
For the numeric method, the BFGS optimization algorithm used one-
sided finite-difference approximations to the gradients for each freed el-
ement. Central-difference methods were used to compute the Cramer-
Rao bound and parameter insensitivity percentages. Three separate cases
using the analytic frequency response sensitivities to compute both the
objective function gradients and the theoretical accuracy metrics were
also executed. These three cases were identical to those described in Fig.
10.

The baseline numeric calculations required a total of 585 minutes, of
which 520 minutes was used for the model identification and 65 minutes
was used for the theoretical accuracy metrics calculation (bar marked
“FD” in Fig. 10). Introduction of the frequency response sensitivity func-
tion with no other assumptions made on the model structure reduced the
CPU time to 464 minutes for the model identification and 40 minutes for
the accuracy metrics calculation, a total decrease of approximately 14%
(bar marked “A1” in Fig. 11). With the assumptions made on the structure
of the A and B matrix derivatives, the total required CPU time was reduced
further to 319 minutes, which was a decrease of approximately 46% as
compared to the baseline numeric results (bar marked “A2” in Fig. 11). In-
corporation of the final assumption on the structure of the output matrix C
yielded a total required CPU time reduction of approximately 72% to 162
minutes (bar marked “A3” in Fig. 11).

The values of the identified elements were identical for all three of the
analytic test cases. The difference between the values identified using fi-
nite difference methods and those identified using analytic methods was
less than 1% for each element. The small error is due to the accuracy of
the analytic gradients computed using Eq. 15 as compared to the gradients
computed internally by the optimization algorithm.

Although they are quite substantial, the improvements in required CPU
time for the complete identification shown in Fig. 11 were smaller than
those obtained for the frequency response sensitivity function IGw
in Fig. 10. This was mostly due to the following reason. The BFGS algo-
rithm, like most optimization methods, consists of repcatedly applying two
basic steps: (i) the determination of a direction of the design space along
which the objective function decreases, and (ii) a onc-dimensional mini-
mization of the objective function along that descent direction. The direc-
tion finding step requires the calculation of the gradient of the objective
function, and it is in the execution of this step that the majority of the com-
putational efficiency is gained when using the expression for a—Ga%l pre-

sented in this paper. On the other hand, the one-dimensional minimization
step requires the calculation of the objective function, but not of its gradi-
ent. Therefore no computational gains were obtained using the methods of
this paper for this portion of the optimization. Since both first and second
derivatives of the objective function J can be calculated efficiently using
the first and second derivatives of the frequency response, Equations 4 and
12, it is possible to build second order Taylor series expansions of J in
terms of the parameters p to be identified. Then the one-dimensional min-
imization steps could be performed on the Taylor series approximations
rather than on the original objective function J. This technique was not at-
tempted in the cases presented in this paper, but has the potential for fur-
ther substantial reductions of required computer time.

shown

Summary and Conclusions

This paper focused on some aspects of the frequency domain based
system identification of a large dynamic system, such as a coupled rotor-
fuselage helicopter model, described in state-space form. The case of in-
terest was one in which some elements of the state and control matrices
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Fig. 11. Comparison of required CPU time for state-space
identification and accuracy metrics calculation (FD: Finite
Difference sensitivities; A1, A2, A3: Analytic sensitivities).

are identified directly. The identifications were performed using simu-
lated test data obtained from a linearized model in hover: these limitations
should be kept in mind when generalizing all the results and conclusions
of this study.

A frequency response sensitivity function, which describes the sensi-
tivity of the frequency responses of a linear system to changes in elements
of the state and control matrices was defined, and analytical expressions
for its derivatives were obtained. These expressions allow an efficient use
of powerful, gradient based numerical optimization methods in the fre-
quency matching part of the system identification. These expressions can
also be used for an efficient calculation of the accuracy metrics. The re-
sults show substantial efficiency gains compared with the cases in which
finite difference approximations are used to calculate derivative informa-
tion.

Modifications of the frequency response sensitivity function were
found to be useful in determining which types of inputs, and over which
frequency bands, are the best for the identification of a given element of
the state or the control matrix. These functions provided quantitative re-
sults consistent with engineering judgment, and thus can help automate
some critical phases of the system identification. These expressions pro-
vide valuable information on the interaction of the model parameters and
can be employed to tailor the identification process.

It appears possible to partition an identification that requires a wide fre-
quency band into two or more identifications that can be performed over
smaller frequency bands. The specific parameters to be identified in each
of the subproblems can be selected using the magnitude sensitivity func-
tions described in the paper. Partitioning the identification also reduces the
computational requirements, and may improve the overall accuracy of the
identification. A possible application of this technique is the identification
of a coupled rotor-fuselage system from separate low frequency flight tests
and higher frequency, rotor wind tunnel tests.
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