Stability of nonlinear polynomial ARMA models and their inverse

EVELIO HERNANDEZt and Y. ARKUN%

Stability and invertibility of discrete time Polynomial ARMA models are studied in
an ‘extended neighbourhood’ to extend the local results obtained earlier. The
analysis combines linear robust control and classical nonlinear system theories.
Polynomial ARMA models are used as examples illustrating the theory.

1. Introduction

The main concern of this paper is the analysis of a nonlinear input-output model
in terms of its stability and invertibility properties. Proper analysis of input/output
models can reveal valuable insight into process dynamics and yield key information
about model-based control schemes. Local results have recently been derived by
Hernandez and Arkun (1993); the thrust of this paper is to extend these local results
to a region specified around a particular equilibrium point. This way, more than just
a local neighbourhood of unknown size is studied and the nonlinear behaviour of the
system is better captured.

This ‘extended neighbourhood’ analysis is achieved through the construction of
conic sectors on the nonlinear input/output map and checking stability by using linear
robust control theory. The bounds calculated for the open loop input/output map can
also be used for invertibility analysis. Thus, with this framework, one can study the
stability of the model’s inverse without having to calculate sector bounds for the
inverse input/output map. Results on the stability of the inverse are useful for
analysing stability of the closed loop system when the model inverse is used as the
controller. Stability of more practical extended horizon type controllers, which
use multiple step ahead predictions can also be studied using the same sector
bounds.

The paper is structured as follows: §2 formulates the problem, introduces the
notation and gives a short overview of relevant results that have appeared in the
literature. In addition, results from linear robust control theory adopted in this work
are summarized; §3 uses conic sector bounds to represent the nonlinear systems as
uncertain linear systems. Based on this representation and utilizing known results
from linear robust control theory, ‘extended neighbourhood’ stability conditions for
nonlinear input/output systems are derived. The new results are contrasted with
others in the literature. Finally, the study is completed with the stability of the
model’s inverse in an ‘extended neighbourhood’. Examples are given throughout
the paper.
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2. Notation and background

There exist numerous model structures proposed for the identification of nonlinear
systems. For a review the reader is referred to Haber and Unbehauen (1990). The
model selected for this study has a polynomial ARMA structure as discussed for
example by Korenberg ef al. (1988). Assume that u(k —p— 1) is the first input to affect
the current output y(k). Then we could use a polynomial model to express the next
output, y(k + 1), as a function of current and previous outputs and inputs prior to and
including time k—p

Wh+1) = 0+ 0 yk—i)+ 3 P ulk—i)

=0 i=p

L35 yk—iyk—)

=0 j=0

+3 568, utk— i u(k—))
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+g%%.f))’(k“i)u(k_j)+'” §))
i=0 j=p
or simply
yk+1) =fiyk), ..., yk—n,), u(k—p), ...,u(k—n,)) )

If the system to be modelled is multivariable, then (1) can be extended in a
straightforward fashion by including, on the right-hand side, the appropriate
monomials in the additional inputs and outputs. In the remainder of the paper only
SISO systems will be considered without any loss of generality. The polynomial
ARMA models have been used by several authors for modelling and control of
nonlinear systems (e.g. Korenberg et al. 1988, Hernandez 1992, Hernandez and Arkun
1993). Theoretical justifications for this structure are also available (e.g. see Diaz and
Descrochers 1988).

For the stability and invertibility analysis it is convenient to construct a state-space
realization of (1). Consider first the following definition of the state

xi(k) =y(k)  xi(k) = u(k—p—1)
Xp (k) =yk—n)  x, (k) =uk—n,)
x'(k) = [x1(k) ... x; (O] x°(k) = [x3(K) ... x;, _,(O)]"

Note that the state has been clearly divided into the ‘output’ and ‘input’ parts: x*(k)
and x°(k), respectively. The complete state is then given by

z“(k)] 3)

726 x(k) = [z”(k)
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Given this definition of state, the state-space realization of (1) is given by

[0 - 0 0 [ flx(k), u(k—p)) |
1 0 0
x¥k+1) _ . 1 0 [E“(k):l 0
[z"(k+1)]_ 0 - 0 ollxw|t| uk—p
1 0 0
_ 1 o] _ 0 _
_ x*(k)
Y =[1 0 - 00 01[5,,(,()] @)

or
x(k+1) = F(x(k), u(k —p))

y(k) = h(x(k))

Note that in defining the above system, the notation has been stretched and allowed
for
y(k+ 1) =f(y(k)’ .. -ay(k_ny), U(k_‘p), ceey u(k—nu))

= fx(k), u(k — p))

Note that the realization used is not necessarily minimal, and introducing more
states than minimally necessary adds dynamics that may not be stable or whose inverse
may not be stable. This would lead to labelling a stable input—output map as unstable
where, if another realization was used, it would be correctly identified as stable. The
main reason for using this realization is that the state variables are physical signals that
can be measured. Furthermore, its construction is intuitive and is free of the numerical
issues associated with other realizations (Constanza et al. 1983).

Given the above state-space representation, conditions for local stability and
invertibility have been derived based on the linearization of (4) around the equilibrium
point of interest (Hernandez and Arkun 1993). The purpose of this paper is to go
beyond the local results and study stability and invertibility in an extended
neighbourhood around the equilibrium point. First, we give an overview of the
available result in this context.

2.1.  Results for models with special structures

The first class of systems to be considered are block-oriented models such as the
Hammerstein or Wiener models that are formed by a static nonlinear map, which
either precedes or follows a linear dynamical system. Assuming that the nonlinear map
is bounded, the open loop stability of block oriented models is determined solely by the
linear dynamical system. Thus, the open loop system is globally stable if the poles of
the linear dynamical part are inside the unit circle. Similarly, assuming that the inverse
of the nonlinear static map exists and is bounded, the open loop stability properties of
the inverse system are completely determined by the linear dynamical part. Therefore,
if the zeros of the linear system are inside the unit circle, the inverse system is globally
stable.

Narendra and Parthasarathy (1990) provided straightforward global stability 727
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Figure 1. Conic sector bounds.

conditions for systems that are linear in the outputs, and global invertibility conditions
for systems linear in the inputs.

Bilinear systems have also been extensively studied. Priestley (1988) gives
conditions for global stability. Explicit conditions for global invertibility of bilinear
systems are not available at this time.

2.2. Analysis of general input—output models

Stability of nonlinear systems has traditionally been studied via Lyapunov methods
(see for example Vidyasagar 1978). However, constructing Lyapunov functions for
general nonlinear systems could be very conservative. Usually, some more structural
information is needed in order to construct useful Lyapunov functions.

Only a few approaches have been suggested for the stability study of general
nonlinear models. One of these approaches is to determine whether the system is a
contraction mapping. This approach was taken by Chen and Billings (1989). However,
the conditions provided in that paper could never by satisfied due to the nature of the
norms and the realization used. A more detailed discussion of this will be given later.

Another general approach is to bound the nonlinear system with conic sectors and
use several analysis tools on the bounded system. For example, Zames (1966) used the
Circle Theorem, and Molchanov (1987) used Lyapunov’s second method to analyse
the stability of nonlinear systems bounded by cones. His method is constructive; that
is, the explicit computation of the Lyapunov functions is given. Another way to use
conic bounds is to reformulate the nonlinear system as an uncertain linear one. Then,
the uncertain linear system can be studied by using results from linear robust control
theory. This approach has been used by, for example, Kammash and Pearson (1990)
and Doyle et al. (1989). A problem with this approach is that the analysis only holds
in the region where the conic approximation is valid. Thus, the user must guarantee
that either the conic approximation is globally valid or that the system cannot leave the
region where the conic approximation is valid (as done, for example, by Doyle and
Morari 1990). This type of approach will be adopted and improved in this paper.

The stability of the inverse model has already been addressed, at least in principle.
If the analytical inverse is constructed, then its stability properties can be studied using
one of the methods described above. However, the pitfall of this is that the analytical

728 calculation of the inverse is a cumbersome process and is even impossible for a variety
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of systems. In those situations, numerical calculations of the inverse may be possible
and still useful for control purposes. Also, for these control purposes, it is important
to know whether the inverse system (even though no analytical solution may exist) is
stable. One of the main contributions of this work is the analysis of the stability of the
model’s inverse in an extended neighbourhood without having to calculate this inverse
analytically.

2.3. Relevant aspects of linear robust control theory

This section reviews several standard results from robust control theory that will
be used. These are the stability conditions for uncertain, time-varying, linear, difference
equations. Consider the linear difference equations

L(k) E|F G || wk)
x(k+1) | = HIA B || x(k) ©)
y(k) J|C D u(k)

M*

where x(k) e R”, y(k) e R? and u(k) e R? are the state, output and input of a dynamical
system at time k. Variables {(k), w(k) € C' denote the internal variables used to describe
the effects of uncertainty. Now let w(k) = 4,(k) {(k), with time-varying uncertainty
4,eC™, and eliminate the {(k) and w(k) variables from (5). The resulting relationship
becomes

[x(k +1)

_ * x(k)
(k) ]‘F"(M "'1)[ ]

u(k)

A% * _afx 1 gk | X(K)
= M+ M A= b ) b |
~ [A +HA(I— EA)'F B+HA1(I—EA1)‘1G] [x(k)]

B u(k)

C+JA4,(I—EA)'F D+JA,(I—EA)™G ©

where the upper linear fractional transformation F,(M*, 4,) has been implicitly
defined. Using the induced 2-norm (the maximum singular value), a stability condition
for time varying perturbations reads (Packard 1988)

For bounded inputs, u(k), and time varying perturbations, the system in (5) is stable
if

G(A+HA,(I—E4))'F) < 1
for all 4,(k)e C™

Itis true that the structured singular value 4 of a matrix with respect to a completely
unstructured perturbation set 4,, = {4| 4e C™", (4) < 1} is equal to the maximum
singular value of the matrix. Thus, the singular value stability condition can be
replaced by: u, (4+HA4,(I —FEA,)'F) < 1. This condition can be shown to be
equivalent to (Packard 1988)

ﬂj(ﬂll) <l ™ 729
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where A is defined as:

A ={4|4 = diag(4,,4,), 4,eC*, &(4)<1, 4,eC™", a(d,)<1} (8)

~ E F
M11=[H A]

The above result can be too conservative. In fact, given the realization of the
input—ouput map used, the condition will always fail, as explained later. An alternative
would be to find another realization by defining a different state. Let T be the non-
singular transformation between the current state x(k) and the new state X(k). This
transformation has the effect of replacing A with TAT !, H and B with TH and TB and
F and C with FT7! and CT'. Furthermore, note that a coordinate transformation
cannot change the stability properties of the system. Thus, a new, less conservative
stability condition can be obtained by replacing the u-condition in (7) with

. I, 0\~ (I, 0
Jin (g 7)ls 7)< ®

Note that condition (9) is not equivalent to z;(M,,) < 1 because, in general, T does
not commute with 4,. A major problem associated with (9) is that it is unclear how to
search for the transformation 7. Consider instead the upper bound of (9)

. {{dL 0N\ 0\~ (I 0\(diQ 0
min min o(%0 5 )0 Pmale 2)(5" L0L)<t a0

Finally, note that the transformation 7 has the effect of changing the set of D over
which the optimization is carried. Instead of searching over

and

D = {D|diag(d, I, d,1,), d,eC}
the search is over the larger set
D ={D|diag(d, I,,D,), d,eC, D,eC™"} (11)
and so the conservatism is reduced. Thus, the condition to be used later is

Mina(DM,, D) < 1 (12)

DeD

where D is defined in (11). Minimization (12) can be formulated as a convex
optimization problem and a global solution can be obtained.

3. Extended neighbourhood analysis

The ‘extended neighbourhood’ analysis of nonlinear input—output models begins
by using conic sector bounds to recast the system in (4) into a simpler system. This idea
730 has been suggested by Doyle et al. (1989) in connection with the control of chemical
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reactors, and also by Kammash and Pearson (1990) and Molchanov (1987). The
simpler system could then be analysed using the theory mentioned above. The idea of
conic sector bounds is illustrated in Fig. 1. The nonlinear, real valued map f{(x),
(xeRY) is bounded in some region S by the cone with centre L and radius R: C(L, R).
Mathematically speaking a cone C(L, R) bounds a function f{x) over the region S if

| fX)—Lx| < |Rx|| VxeS (13)

It is critical to point out that the analysis to follow only focuses in the region of interest
(S). The nonlinear function does not need to be bounded by the cone outside this
region.

The system in (4) can be divided into a linear part and an ‘uncertain’ part through
the use of conic sectors. For this, note that the only nonlinearity in system (4) appears
on the function f{x, u), (where the time arguments on x and u have been suppressed)
which is a scalar for SISO systems. Let a cone with centre [4°5°] and radius [R, ]
bound the function f{x, u), then

] [R,n,] [ﬁ]
u

Note that, since f{x,u) is a scalar, for any x and u in S there is always a scalar
A(x,u)e[—1, 1] such that

ok 1)—[A°B] H
u

< ’

X
‘ v[u]es (14)

A —1a°81|] = s R ][]

or
X X
) = (4281 %] s R, 2] 1s)
Linear part ‘Uncertain’ part

Note that 4(x, u) is, in general, a nonlinear operator. In order to use the theory
developed by Packard (1988), a linear time-varying operator 4, is needed. However,
the conditions imposed by Packard on a scalar, time-varying operator are that first, it
belongs to the set of complex numbers, and second that its magnitude is bounded above
by 1. Note that since the nonlinear operator 4(x, ) is real and restricted to {—1, 1},
there always exists a sequence {4, |k = 1, ...;|4,| < 1} such that 4, = A(x, u), regardless
of the trajectory taken by the system. Thus, from now on, we will use a linear time-
varying operator 4, to represent the nonlinear one A(x, %). The time-varying linear
system and the nonlinear system are equivalent in the sense that their states follow
identical trajectories in response to external signals and initial conditions. In essence,
what follows is a study of the stability and invertibility of the time varying system with
a state trajectory equivalent to the nonlinear system of interest. If stability is shown for
the time varying system, then it is also shown for any system with identical state
trajectories to the time varying one. 731
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Using the linear plus ‘uncertain’ representation in (15) the system in (4) can be
rewritten as:

o oy - a(r)zy+1 “gy+2 Otgy+3 o
1 0 0 x 0
1 0 0 0
xk+D =14 0 0 0 0 [*®
0 0 1 0
i 0 0 1 0 |
K4
[ b0 ] [ w(k) ]
0 0
0 0
+ u(k—p) + (16)
1 0
0 0
LO- L 0 h
%/_J
b

where of is the ith entry of the 4° vector, N = n,+n,—p, and w(k) accounts for the
uncertainty in the system and is given by

{(k) = R, x(k) +r, u(k—p)
w(k) = 4,¢

(17)

Collecting all the information gathered about the system and the uncertainty yields the
set of equations in the form of (5)

o® 0o R n] %
xtk+1) [=| e A4 b (z_ )
yk+1) Ce, CA cb |"7P
' (18)
M
w(k) = 4, {(k)
x(k) = z7'x(k+1)
wheree, =[1 0 - 0]".
732 In cases where one cone is not possible or practical, more than one cone may be
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constructed in order to represent the system as a linear plus uncertain system. Then it
would be necessary to find R, ,, R, ,, ..., R, , such that

and there exists s scalars: 4,(x,u), i = 1, ...,s such that

1) —[4° 1) [5]
u

x
S ||[Ryn)| [ F 1R o xl 4+ IR, x|
u

A = 1481 2+ 400 R o) |2+ 4,050 R x4 4,50 R, (19

The result of considering more cones is to augment the dimension of the uncertainties
vector and so the original system (4) now becomes

[ ] [0 R, r ][ ok ]
(9] 0 R, , 0 ,(k)
to [Tl o R, o] e (20)
x(k+1) e o b x(k)
| yk+1) ] | Cel €o Cb 11 u(tk—p) |

wy(k) = 4; ,, {i(k)

where 0 is a row vector with s zeros and e, is an »n x s matrix where the first row is a
vector of ones and the rest of the matrix contains zeros. System (20) is in the form of
(5) for which stability conditions were given.

3.1. ‘Extended neighbourhood’ stability

We have, so far laid the framework and the results needed to characterize the
‘extended neighbourhood’ stability of input—output models. In particular, the
nonlinear system was reformulated as a linear plus (time-varying) uncertain system.
Conditions for stability of such systems were given in §2. Therefore, all that is left to
do is to state formally the conditions for the ‘extended neighbourhood’ stability of
input—output models. This is done now in the form of a theorem.

Theorem 3.1: Let the system in (4) be bounded in a region S by conic sectors with centre
[4°b°] and radii R, ,, ..., R, ,, and r,. Using these bounds, let the system be represented
by (20). Then, assuming that the system does not leave S, its equilibria in S will be
asymptotically stable provided that

ming (DM,, D) < 1 (@3)

DeD

where this time M, is given by

(=]
=

Mu =

WS
R -

& is defined in (16) and D is defined in (11) 733
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Remarks

(a) An excellent discussion on the computation of conic sector bounds can be
found in Doyle and Morari (1990)

(b) There is nothing in the theorem that limits the results to SISO systems. In fact,
if conic bounds are obtained for MIMO systems, then the result is also valid
for multivariable systems, this is shown in detail in Herndndez (1992).

(¢) The framework being used for analysis is conservative in the sense that it will
provide conditions for stability of more systems than just (4). In fact, any one
of the systems that is bounded by the cone in (20) is analysed. This is important
since we know that the model will only be an approximation of the actual
plant.

(d) Other conditions for stability can be derived given that conic sector bounds
are available. Notably, Molchanov (1987) derives Lyapunov functions for
nonlinear systems bounded by sectors. However, this approach is not pursued
any further because it cannot be used for the study of the stability of the inverse
of the input—output map.

(e) It must be stressed that Theorem 3.1 assumes that the system does not leave the
region S. The reason being that the conic bounds are only valid in S. If the
system leaves this region, then the representation of (20) is not valid. The next
section addresses this issue by providing restrictions on the construction of S
and by bounding the jacobian of the F(x, «) map instead of the function itself.

3.2. Improvement to the result of Chen and Billings (1989)

By using the ideas presented so far, it is possible to strengthen a result obtained by
Chen and Billings (1989). Interestingly, this will, in turn, strengthen the general result
given in Theorem 3.1. Since the result of Chen and Billings is based on the concept of
a ‘contraction’ and the Contraction Mapping Theorem, these ideas will begin the
discussion in this section.

Definition3.1: A mapping F(x, u*)is said to be Lipschitz continuous in S if there exists
a constant % such that for all x’,x"e S

IFx',u*)—F(x",u*)|| < Z || x"— x| (22)
Note that the input, u*, is assumed constant for now.
Definition 3.2: A mapping F(x, »*) is said to be a contraction
mapping in S if: (i) F(x,u*) maps S into itself; and (ii) £ in (22) is less than 1.

Theorem 3.2—Contraction mapping theorem: [f a mapping, F(x, u*) is a contraction
in S then
(1) F(x,u*) has an equilibrium point (x*,u*) in S.
(ii) The equilibrium point is unique in S.
(iii) The equilibrium can be reached by successive iterations of the F mapping. That
is, the system is asymptotically stable.

The reader should note that one of the defining points of a contraction in a set S
734 is that the mapping must map S into itself. This is equivalent to the requirement in the
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general Theorem 3.1 that the system must not leave the region S. Unfortunately, it is
difficult to confirm this condition a priori and thus it is necessary to strengthen the
general result of Theorem 3.1. An alternative form of Theorem 3.2 is obtained if the
region S is known a priori to contain an equilibrium point. This will likely be the
situation in the type of analysis sought because S would usually be an ‘extended
neighbourhood’ of an equilibrium point. If this is the case, then the following result
can be stated (Economou 1985).

Theorem 3.3:  If a mapping F(x, u*) is Lipschitz continuous in S, the Lipschitz constant
is less than 1 and S is known to contain an equilibrium point, (x*,u*) of F(x, u*) then:

(a) the equilibrium point is unique in S.

(@) the equilibrium can be reached by successive iterations of the F mapping. That is,
the system is asymptotically stable.

Finally, if the input is not fixed, then the results need only slight modification. First
of all, the region S would include the variation in the input. Furthermore, for every
possible value of the input u, it is necessary to ensure that S contains an equilibrium
point for this value of . This is needed so that Theorem 3.3 can be applied to every
different value of u considered.

From the definitions and the theorems displayed above, it is clear that the
computation of £ is of major importance. One way to compute this quantity is
through the mean value theorem, which states the following

Mean value theorem: Let S = R? be an open set and let F:S—RY. Suppose that S
contains the points a, b and the line segment joining these points, and that F is
differentiable at every point on this segment. Then there exists a point on the segment, c,
such that

IF(®)—F(a)ll = |VF(c) (b—a)|| (23)

where VF(c) denotes the jacobian of F evaluated at the point ¢
It follows from (23) that
IF(6)—F@)ll < IVF()Il-|6—al
Thus, one # can be found through the following optimization

& = max |VF(x,u)| 24)

{z,u}esS

Cheng and Billings use the contraction mapping ideas presented above to study the
stability of the general input-output map.

Wk+1) =fyk), ..., pk—n,), utk—p), ..., u(k —n,))

through the state-space realization in (4). They obtain an upper bound of .Z that is
simpler to compute by ‘breaking up’ the optimization in (24) into smaller problems.
Specifically, they define

. flx,u)| .
&, = max f(;a) z=1,...,ny+1
{z,u}esS axi
5 flx,u)| .
B; = max a,b j=1,..,n,
{z,ulesS xj 735
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Then, ||J|| can be shown to be an upper bound of & in (24), where J is defined as

r&1 &ny dny+1 ﬁl ﬁnu—l ﬁnu ]
1 0 cee O 0 0 N 0
Fe 0 1 0 0 0 0
0 0 0 0
0 0 1 0 0
| 0 cos 0 0 coe 1 0 |

Since ||J]| is an upper bound to %, then if ||/ is less than 1, & is less than one and
from Theorem 3.3, the system is asymptotically stable in S. The particular norm used
by Chen and Billings was the induced 2-norm, or the maximum singular value of J.
This is precisely the problem with their result. Recall that the maximum singular value
of a companion matrix such as J'is always greater than or equal to 1. To see this, first

note that - -
a(AJ) < 6(A)6(J) (25)
Now let
0 1 :
4= -0
0 0 1

and J as defined above. Then note that

0 0
ai=|1 :
1 0
Finally, observe that 5(4) = 6(A4J) = 1. Substituting this back to (25), the following is
obtained ~
aJ)=1

So the conditions given by Chen and Billings can never be met. Furthermore, other
simple-to-compute matrix norms such as the induced 1 and o0 norms (maximum
column and row sums, respectively) are also guaranteed to be greater than or equal to
1 due to the 1sin J.

One way to correct the result would be to use an invertible state transformation, T
to define a new state x’

x=Tx
which, in turn, defines a new system
x'(k+1) = Tx(k+1) = TR(T X' (k), u(k — p)) = F'(x'(k), u(k — p)) (26)

It is crucial to stress that this invertible transformation cannot change the stability
properties of a system. Thus, if the system in (26) is stable, so is the one in (4). A
Lipschitz constant . for the new system can be computed as before through (24). The
jacobian of F'(-, -) with respect to x'(k) can be calculated through the chain rule as

736 Vo F(X,u) =TV, Flx,u) T
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The goal is now to find a coordinate transformation such that

max ming(TV,F(x,u) T™") < 1
{z,ulteS T

@27

The nonlinear program posed in (27) could be difficult to solve. However, an upper
bound of this quantity can be cast into a convex optimization problem through the use
of the linear robust control theory presented in §2. The plan undertaken is as follows.
First recast the matrix V. F(x,u) for {x, y} € S with a constant, nominal matrix plus an
uncertainty. This representation will be then used to calculate an upper bound to (27),
which can be computed through a convex optimization problem. If this upper bound

is less than one, it will then follow that the nonlinear system is stable.

First, observe that the partial derivatives of f{x, u) with respect to each of the state
variables must be bounded in S in order for the optimal value of (27) to be bounded.
If this is the case, then there exists ‘means’: a?, B} and ‘ranges’: af, fF;i=1,...,n,+1;

Jj=1,...,n, such that for any (x,u)e S

ofix, u) _ oxj(k+1) ofix, u) _ ox4(k+1)

0 R — R
ot o) oo and i~ Pt onanf
for some d,€[—1,1];i = 1,..., N. Then define F?¢ as
[ o)+, af “2y+1 + 5ny+1 a§y+1 B+ ‘5ny+2 B ﬁ?zu +0y ﬁﬁu ]
1 0 .. 0 0 0
1 0 :
F= 0 0
1
1
=3 0 -
(28)

and thus V, F(x,u) = F? for some §,e[—1,1], i =1, ..., N. Therefore, it follows that

for every (x’,u’) € S there exists a &’ = [0}, ..., 0%] such that

a(V, F(x',u') = &(F7)
and
ming(TV,Fx',u)T™") = ming(TF,T™)
T T

Since (30) holds for every (x’,u’)€ S, then it is also true that

max ming(TV, F(x,u) T™") < maxmina(TFT™)
(z,u)eS T é T

(29)

(30)

€2))

Therefore max;min,, & (TF$ T™*) is an upper bound to the quantity in (27). This upper
bound, however, is easier to solve because it can be casted as a convex optimization as

shown next.

In what follows, it will prove convenient to write F as an upper linear fractional

transformation. For this, define
(i) A = F? ‘evaluated’ at 6, =0fori=1,...,N.

(i) H = e, (the matrix with ones in the first row and zeros elsewhere).
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o

(iii) G =
ﬁR
(iv) Eis an N x N matrix of zeros.
- E G
(V) Mll = [H A]
0,
(vi) 4, =
Oy
The F, = A+ HA,(I—- EA4,)'G = F,(M,,, 4,) and, as discussed in §2, the following
problem:
min&(DM,, D) (32)
De2
with

9D = {(g 2_') \ D= dlag (dp cees dN), diEC, di +0;Te CV*N T-1 eXiStS}

serves as an upper bound to

maxmina (T{F2} T™)
J T

The theory presented above can be formally summarized in the following theorem.

Theorem 3.4: Ifaregion S is known to contain an equilibrium point (x*, u*) for an input
u* in S, and if
ming(DM,, DY) < 1

De9
then the equilibrium point (x*,u*) of x(k+1) = F(x, u) in S is asymptotically stable.

Proof: The theorem has been essentially proven from the arguments in this section
since it has been shown that if (32) is less than one, then (27) is less than one. In turn,
this means that the Lipschitz constant for the transformed nonlinear system (using T’
as a transformation) is less than one and stability follows from Theorem 3.3. Since an
invertible transformation cannot change the stability properties of a system then
F(x, u) is asymptotically stable. O

At this point we must comment on the conservatism of Theorem 3.4. Note that
this theorem is derived from a series of conservative tests. First of all, the cones
approximation is conservative as mentioned earlier. Afterwards, the contraction
mapping theorem is used, which is a sufficient condition. The Lipschitz constant was
calculated using the mean value theorem, thus it is conservative. Finally, the quantity
computed in Theorem 3.4 is an upper bound to (27). Thus, there is considerable
incentive in reducing the conservatism of this result. The following example, however,

738 shows that the theorem is nevertheless useful.
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Example 1: The following model has been identified as a continuous Stirred Tank
Reactor from data collected around the lower stable branch of the equilibrium curve
(see Hernandez 1992 for details)

Yk+1)=0,+0,yk)+0,u(k)+0,u(k—1)
+0,y(k) u(k— 1) u(k—2)+ 6 u*(k—2) + 0 y(k — D u(k) u(k—1) (33)
where
6,=0041 6,=0719 6,=0013 6,=0012
6,=0039 6,=0020 6,=0031

By defining the following state,

x,(k) = y(k)

x,(k) = yk—1)
x,(k) = u(k—1)
x,(k) = u(k—2)

a realization of (33) is obtained as

a1 [ (00 +0, x,(k) + 6, (k) + 0, x,(k) + 6, 2, (K) x,(k) x4(k)) ]
xilk+ 0,05, + B, x,0K) x,(0) (k)
Xkt 1) x,6) (34)
x,(k+1) u(k)
x,(k+1) x,(k)

Direct calculations show that, for every input in (—0-5, 0-5), there exists a steady-
state output in (0-1, 0-21). Thus, the region S is selected as

S = {(xy, Xa, X3, X4, U) | X1, X, €[0-1,0-21], x;, x,, ue[—0-5,0-5]}
The jacobian of (34) is given by

0,+0,x,x, Ogxzu 60,+60,x,x,+0;x,u 6, x, x;+30,(x,)*

1 0 0 0
V.F= 0 0 0 0 (35)
0 0 1 0

which in § can be represented as

0-72+46,001 0+46,0:0326 0-012+6,0-:00947 0-015+5,0:004

1 0 0 0

6
Fo= 0 0 0 0
0 0 1 0
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Figure 2. General M — 4 configuration.
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Figure 3. M — A4 configuration of uncertain difference equations.

for some 8,e[—1,1], i = 1,...,4. For this example, M, is given by

(=]
—

o
cocoococooco & o
[

e
o0

(36)

>
coo~o0o0 oo
coo~0oo0 0o
coom~mo0o0o0Oo
cocoor~roo0co0oo0
@ -
S O = QO O O o
[\
g
—oo2og8eo
[\
@
coocoosgoo00
[\S]

L

Performing the optimization required in condition (32) results in

a(D*M,,(D*)™) = 0-7382

for
[ 08547 0 0 0 0 0 0 0 ]
0 12781 0 0 0 0 0 0
0 0 28748 0 0 0 0 0
D — 0 0, 0 28748 0 0 0 0
0 0 0 0 00695 00063 00233 —0014
0 0 0 0 —00551 0159 —00039 00051
0 0 0 0 00581 —0-043 41104 —0-0635
|0 0 0 0 —00035 00082 00088 01878 |

Therefore, the model obtained predicts that the equilibria on the chosen region of
operation is stable. This prediction is correct since we chose the region to be part of the
740 stable branch. O
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3.3. ‘Extended neighbourhood’ invertibility

This section concentrates on the study of the invertibility and stability of the
model’s inverse in an extended neighbourhood. By the inverse of a system X, we mean
a system, X2, which takes as its input a signal r, and produces as an output a signal
u which, if provided as an input to system X, the output of X is equal to the signal r
delayed by the deadtime of system X. Note that the previous section studied the
stability of general systems; thus the stability of the inverse of a model has been studied
in principle. However, in order to use those results for the study of ‘Extended
Neighbourhood’ invertibility, one would need to:

(1) construct an analytical expression for the inverse;

(2) reformulate the nonlinear inverse constructed as a linear plus (time-varying)
uncertain one by using conic sector bounds on the nonlinear inverse.

However, Step 1 of this procedure is impractical in general since explicit sector bounds
of the inverse are needed. The calculation of these bounds would require the analytical
expression of the inverse.

The following result presents the first step of an alternative route for the
determination of stability of the inverse. It studies the stability of the inverse of the
linear time-varying system. This is justified since the state and output trajectories of the
linear time varying system and the nonlinear system of interest are identical by con-
struction, the inverse to one system is the inverse to the other. The invertibility result
obtained here is important because it presents explicit formulae for the M —4
representation of the inverse of a system given the M — 4 representation of the system.

Theorem 3.5: Consider a system characterized by an M — A configuration as shown in
Fig. 2. Then, if M,, and (I— M, A) are invertible, explicit formulae for M" and A" of the
inverse system shown in Fig. 3 are given by

A'=4

M{l = Mll_Ml2M;2lM21

M, =M, M;;

My =—My My,

M éz =M 521
Proof: The result follows from applying the matrix inversion lemma to F,(M, 4).

O

Note that the assumptions of Theorem 3.5 are that: (a) (I — M,, 4) and (b) M,, are
invertible matrices. These are reasonable assumptions and are not restrictive. The first
assumption is necessary for the relationship between y and u (namely F, (M, 4)) to be
well defined. The second assumption is necessary so that the map between y(k + 1) and
u(k — p) is invertible. This is an implicit assumption made in the very definition of the
input—output map 2.

Theorem 3.5 can now be used to obtain ‘extended neighbourhood’ stability
conditions for the inverse model. 741
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Theorem 3.6:  Let the system in (4) be bounded in a region S by conic sectors with centre
[4°b°]) and radii R, ,, ..., R, ,, and r,. Using these bounds, let the system be represented
by (20). Then, assuming that the system does not leave S, the equilibria of the inverse in
S will be asymptotically stable provided that

(@) I—M,, A) and M,, are invertible
(b) ming(DMI, D) <1

Deb

where M1, is given in Theorem 3.5.

Proof: The proof follows from the stability condition (12) for time-varying uncertain
systems and that M7, is the correct M,, for the inverse system as proved in Theorem

3.5. 0

Again, nothing in Theorem 3.6 limits the results to SISO systems: the result is valid
for multivariable systems although care must be taken in the definition of the inverse
for a multivariable system. A more detailed discussion can be found in Herndndez
(1992).

A parallel result to Theorem 3.4 can be formulated for the inverse system. The
difference in the analysis of the open loop and inverse systems is that the input, u(k),
in the inverse system is a function of the state, x(k). Therefore, this dependence should
be accounted for in the derivative of F(x, u(x)) with respect to x. This total derivative
is now given by

dF(x,u) _ OF(x,u) +aF()_c, u) du
dx = ou dx

The derivation begins as before, noting that the partial derivative of F(x,u) with
respect to the state can be written as a constant matrix plus an uncertainty (29). In the
same spirit, (OF(x,u)/0u) (du/dx) can be represented as

[0 +3, 7 ]
0
0P u)du _ o, du_ | 0 |du
w dx < *dx 1 dx
0
| 0

Thus, the total derivative of F(x, ) with respect to the state is given by

dF(x,u)
dx

, du

s
F
Fi+ iy

742 which can be expressed as
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where F? is given by (28) and

Fo= Fi6=0)
Fo=F(5=0)

w=A4

du

C = Rx+rba

[ar 0 0 0] [0 ]
) 5,
a:”+l 52
R::= ﬂf ;o= ; Al=
0 Sy
n J,
0 0 o | 92 | ) )

The total derivative of y(-) with respect to x is given by

dy oOF _0Fdu

(37

Using the linear-uncertainty representations, the following equations are derived

[ ¢1 [ o R, r, |[o]
dF e | || 1
dx = z
= | = — (38)
dy Ce, CF° |CF® du
| dl ] | 1 z u 1L dﬁ |

du ~ ~ lo
a = Mzzl M,, [I]
Therefore
C - -~ -~ - w
d_F = {Mu_Mle;lezl}I:I]
d_)£ EXZ{I j
and
dF -
a = E;(M{v Al)
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Using the same arguments that led to Theorem 3.4, one obtains the following
sufficient condition for the stability of the nonlinear inverse in S

. _((D, O\, (Di* O
mnol(o 7)o (S )< ®

TeCM¥
D ={D|D = diag(d,, ...,dy,,),d,€C, i=1,..}
Formally, the result can be stated in the form of a Theorem.
Theorem 3.7: If a region S is known to contain an equilibrium point for each desired

output value, r*, in S, and if condition (39) is satisfied, then all of the equilibrium points
of the inverse system in S are asymptotically stable.

Example 2: This example investigates the effects of large sampling times on the zero
dynamics of an identified input—output model. The system to be studied is the Van de
Vusse reaction in a CSTR. This system is known to contain a region of unstable zero
dynamics. Therefore, if the system is sampled arbitrarily fast, the discretized system
will also display zeros. A polynomial ARMA model for this system has been identified
by Hernandez (1992)
Y(k+1) = 0,+ 0, u (k) + 0, y(k) + 0, u3 (k) + 6, y(k — 1) u(k — 1) u (k)
where the sampling time is 0-04 hours and u, denotes the scaled inputs in [0, 1]. The
parameters are given by
6, =0-558 0,=0538 6,=0116
0, =—-0127 6,=-0034
By defining the state as
x,(k) = y(k)
xy(k) = y(k—1)
x5(k) = u(k—1)

The following realization is obtained:

x,(k+1) 6y + 0, u (k) + 0, x,(k) + 05 u3(k) + 0, x,(k) x5(k) u (k)
x,(k+1) | = x,(k)
X,k +1 uy(k)

Direct calculations show that for every scaled input in [0, 1] there is a steady-state
output in (0-6, 0-105). Thus, define the region S as

S = {(xls x2’ x3’ u) | xl’ x2 € [06’ 105] 5 x39 us € [Oa 1]}
In the region, F¢ can be written as
0-116 —0017+,0017 —0-018+6,0018

F=| 1 0 0
0 0 0
and F? as
0-330+6,0-208
0
0
F, 1

744
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Thus, M is given by

[0 000 o0 0 0 0 ]
0000 O 0017 0 0
0000 O 0 0018 | 0
g_|0 000 o0 0 0 0-208
1 11 1 0116 —0017 —0018 | 0330
0000 1 0 0 0
0000 0 0 0 1
|1 1 1 1 0116 —0017 —0018 | 0330 |
Therefore, M, is given by
[0 0 0 0 0 0 0
0 0 0 0 0 0017 0
0 0 0 0 0 0 0018
Mi=|—-0632 —0632 —0632 —0632 —0073 0019 0011
0 0 0 0 0 0 0
0 0 0 0 1 0 0
| —3034 —3034 —3034 —3034 —0351 0052 0055

Finally, performing the optimization in (39), it is found that for

anything 0 0 0 0 0 0
0 17-1158 0 0 0 0 0
0 0 0-7458 0 0 0 0
D*= 0 0 0 0-2521 0 0 0
0 0 0 0 2:0079 0744  —0-006
0 0 0 0 0-0369 0-3868 0-0007
0 0 0 0 —0-:0063 —0-001 0-0235
Then

a(D*M! (D*)™) = 07587

and thus, the equilibria of the inverse system in S are asymptotically stable when the
sampling time is chosen very large.

4. Conclusions

In this paper the stability of nonlinear input/output dynamical models and the
stability of their inverses were studied in an extended neighbourhood around an
equilibrium point. The first type of result assumed that it is known a priori that the
dynamical system does not leave the ‘extended neighbourhood’. This would be the
case, for example, if the system is part of a constrained control scheme where the
controller guarantees that the system is kept in some region. Also, in some situations
it can be guaranteed from physical laws that the system will not leave a region (e.g.
mole fractions must be between 0 and 1). However, in more general settings, this first
type of result is difficult to apply. To remedy this situation, the second type of result
obtained combines the ‘Contraction Mapping Theorem’ of operator theory with 745
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linear robust control results to provide conditions that guarantee that the system does
not leave the pre-specified region of analysis and that the system’s equilibria in this
region are asymptotically stable.
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