Parallel Image Processing with the
Block Data Parallel Architecture

WINSER E. ALEXANDER, MEMBER, IEEE, DOUGLAS S. REEVES, AND CLAY S. GLOSTER JR.

Invited Paper

Many digital signal and image processing algorithms can be
speeded up by executing them in parallel on mulitiple processors.
The speed of parallel execution is limited by the need for commu-
nication and synchronization between processors. In this paper,
we present a paradigm for parallel processing that we call the
block data flow paradigm (BDFP). The goal of this paradigm is
to reduce interprocessor communication, and relax the synchro-
nization requirements for such applications. We present the block
data parallel architecture which implements this paradigm, and we
present methods for mapping algorithms onto this architecture. We
illustrate this methodology for several applications including two-
dimensional (2-D) digital filters, the 2-D discrete cosine transform,
OR decomposition of a matrix, and Cholesky factorization of a
matrix. We analyze the resulting system performance for these
applications with regard to speedup and efficiency as the number
of processors increases. Our results demonstrate that the block
data parallel architecture is a flexible, high-performance solution
for numerous digital signal and image processing algorithms.

I. INTRODUCTION

Many image processing applications require higher rates
of computation than single processors can attain. Even the
faster, superscalar processors promised for the future will
not be fast enough to execute many digital signal and im-
age processing applications. The use of multiple-processor
computers has the potential to provide these higher rates of
computations. Many attempts have been made to implement
high performance multiprocessor systems. Parallel comput-
ers designed for a particular application (application specific
processors) can often obtain high processor utilization and
high throughput. The drawbacks of such computers are
their inability to be used for multiple applications, and
their high design cost due to a low installed base. General
purpose parallel computers are much more flexible, but this
flexibility often results in an actual performance that is far
short of the performance advertised.

Manuscript received July 10, 1995; revised January 16, 1996. This work
was supported by Office of Naval Research Grants N00014-92-J-1201 and
N00014-83-K-0138.

The authors are with the Departments of Electrical and Computer
Engineering and Computer Science, North Carolina State University,
Raleigh, NC 27695-7911 USA.

Publisher Item Identifier S 0018-9219(96)04993-6.

IBM J. RES. DEVELOP. VOL. 44 NO. 5 SEPTEMBER 2000

The category of special purpose systems falls in between
these two extremes. Special purpose systems are pro-
grammable and they are designed to have high performance
for a given type of application. The digital signal processor
(DSP) is a good example of a special purpose processor.
It provides excellent performance on signal processing
algorithms such as convolution, filtering, inner product
computations, etc. However, it is less suitable as the CPU
for a general purpose desktop system.

Most of the high performance systems designed for
demanding digital signal and image processing applications
have been special purpose SIMD systems [1], [2]. Many
of these have used bit serial arithmetic. These systems
have proven to give very high performance for many
applications. However, they have not totally solved the
problem of providing high performance for digital signal
and image processing applications because of input/output
(I/O) problems, synchronization difficulty as the number of
processors increases, and lack of flexibility in adapting to
different applications.

The most successful multiprocessor systems for digital
signal and image processing either have mesh architec-
tures or are pipelined. Mesh architectures often provide
very large speedup after the image has been loaded but
overall performance often suffers from I/O limitations.
Pipelined machines can accept data at a fast rate and often
they can accept it at real-time rates. However, pipelined
multiprocessor systems have historically been difficult to
program or reconfigure for different tasks. The focus of our
research has been to develop a systematic approach for high
performance digital signal and image processing that can
obtain speedup comparable to mesh architectures while still
accepting data at real-time rates comparable to pipelined
architectures. Thus we consider the entire problem of
implementing image processing applications at high rates
including specification of the algorithm, partitioning it for
implementation on a multiprocessor system, developing
a high performance multiprocessor architecture for image
processing applications and evaluating the performance of
the application on the multiprocessor architecture.
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There are several reasons why a multiprocessor system
may not achieve advertised performance on a given appli-
cation. The most important of these include the following:

¢ There is a mismatch between the parallelism in the
algorithm and the multiprocessor architecture.

¢ A synchronization bottleneck occurs because some
of the processors must wait for results from other
processors or from the input device.

e A resource contention problem occurs because two or
more processors need to simultaneously use the same
system resource. For example, two processors may
need to read data from a shared memory at the same
time.

¢ Timing problems due to clock skew, clock distribution,
etc. limit the performance of the system as the number
of processors increases.

¢ Programmers find that high performance can only
be achieved by careful consideration of the target
architecture, and laborious manual optimization of the
code.

In this paper, we introduce the block data flow paradigm
(BDFP) as an approach to achieve high throughput and
efficient multiprocessor execution for many digital signal
and image processing applications. Our approach incor-
porates both a special purpose multiprocessor architecture
called the block data parallel architecture (BDPA) and
a methodology for programming this architecture. The
programming methodology uses a convenient algorithm
specification technique, and assists or automates the process
of partitioning the computation and scheduling it for effi-
cient parallel execution. We describe the architecture and
the programming methodology, followed with a number of
examples of the performance that can be achieved with
this approach. We conclude that the BDPA can provide
almost linear speedup along with high efficiency for many
digital signal and image processing problems. Although we
emphasize the use of the BDPA with the BDFP in this
paper the BDFP can be effectively used with many other
architectures without a major loss in performance.

Many of the efforts to develop algorithms for high
performance digital signal and image processing involve
the development of systolic arrays [3], [4] or bit-level
pipelining [5]. Our approach does not compete with these
approaches because our approach can incorporate these
approaches at the processor level. Rather, we emphasize
the use of multiple processor systems to achieve high
performance.

II. THE BLOCK DATA FLOW PARADIGM

We developed the BDFP as a systematic approach to
solving the algorithm partitioning problem for many digital
signal and image processing algorithms. The BDFP is based
on the following principles.

1) The input data is partitioned into large blocks.

2) The processing for a block is assigned to a single pro-
cessor module (PM). Processing of multiple blocks
occurs in parallel on multiple PM’s.
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3) The processing of a block begins as soon as it
is available, as advocated by research on dataflow
architectures. No global control is needed to indicate
the explicit start and stop times for block processing.

4) Each PM computes the output derived from its as-
signed input block and transmits this output to the
output device as soon as it is ready.

5) PM’s which must exchange partial or intermediate
results do so asynchronously. A point-to-point (single
stage) interconnection network is used for communi-
cation.

A PM may be a single processor or a cluster of tightly
coupled processors. For example, a PM may be a single
application-specific processor, a special purpose processor,
a commercial DSP, a systolic array or a general purpose
processor. We assume that a PM takes longer to process
an input sample than it takes to receive that sample. This
guarantees that once a PM starts receiving a block of data,
it always has data available until it finishes processing that
block.

A. Block Processing

Large scale tasks can be divided into smaller tasks
using either an algorithm partitioning strategy or a data
partitioning strategy. The BDFP supports the use of the data
partitioning strategy at the highest level and it can support
the use of the algorithm partitioning strategy at the PM
level. With the data partitioning strategy, the whole data set
(image or matrix, for example) is divided into data blocks
and the computations for each data block are scheduled on
different PM’s.

We use the term “block processing” to denote the case
when data partitioning is used and each PM performs
all of the computations necessary to produce the output
corresponding to its assigned data block. Block processing
was originally very popular to solve the limited memory
problem when using early computers for block convolution
of images [6]. It is attractive for use in multiprocessor
systems because the overhead of data transmission (hand-
shaking, buffer management, etc.) is averaged over a large
amount of data and it minimizes the amount of coordina-
tion, or synchronization, needed between processors. It is
also compatible with message passing protocols that are
used by several commercial multiprocessors. This form of
coarse-grained parallel processing is a fundamental part of
the BDFP.

Block data processing maximizes the opportunity for
intermediate computational results to be used locally. Only
intermediate results necessary for processing blocks of data
assigned to other PM’s need to be communicated to other
PM’s. As a result, a simple interconnection network with
point-to-point connections is sufficient. This approach helps
reduce interprocessor communication. A large reduction
in interprocessor data communication can tremendously
improve the overall efficiency of a multiprocessor system.

With an algorithm partitioning strategy, a complex algo-
rithm is decomposed into a sequence of simple operations.
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Fig. 1. High-level representation of the BDPA.

Processors cooperate closely in generating the output for
a single input sample. Algorithm partitioning is a finer-
grained form of parallel processing which can be used
within a PM. In Section IV, we present data partitioning
and algorithm partitioning as it relates to the BDFP.

B. The Data Flow Transmission Protocol

Data transmission protocols may be categorized into
synchronous data transmission protocols and asynchronous
data transmission protocols. The synchronous data trans-
mission protocol is fast and simple and there is no hand-
shaking overhead. However, the synchronous data trans-
mission protocol places a tight timing restriction on the
system. This can be a problem for large-scale systems.
On the other hand, the asynchronous data transmission
protocol does not have this timing restriction, but it does
have a considerable amount of overhead associated with it.
A system to implement the BDFP should use a globally
asynchronous data transmission protocol with a large data
grain, and a locally synchronous data transmission protocol
with small data elements within the PM. This accomplishes
two results: 1) it eliminates clock skew problems that result
from global synchronization and 2) it reduces overhead due
to asynchronous handshaking.

Each PM in a system that implements the BDFP has its
own stored program. Once it has all of the required data,
it can operate independently of other PM’s at its maximum
rate. Processing begins as soon as the input becomes
available, as defined in the dataflow model of computation.
The use of large data blocks reduces the requirement for
synchronization and communication between processors.
This is the key to achieving high efficiency and near-linear
speedup on a multiprocessor system for many applications.

III. THE BLOCK DATA PARALLEL ARCHITECTURE

The BDFP is intended to be a generic approach to parti-
tioning algorithms for implementation on a multiprocessor
system. We developed the BDPA to match the requirements
of the BDFP. While the BDPA is one example of an
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Fig. 2. Conceptual representation of an IM for the BDPA.

architecture that can take full advantage of algorithms that
have been partitioned according to the BDFP, other ap-
proaches may be used as well. However, the BDFP and the
associated BDPA have evolved from our extensive research
on developing high performance applications for digital
signal and image processing. We discuss the architectural
features of the BDPA in this section.

The data flow computation model is different from the
Von Neumann computation model. Data flow processors
are stored-program computers. If sufficient resources are
provided, the system can exploit all concurrency present in
the program. This approach can be naturally extended to an
arbitrary number of processors. It reduces the data, control,
and resource dependencies between processors. However,
it is difficult to manage the data flow model for a general
purpose multiprocessor system [7]. We implemented the
data flow paradigm at the processor array level with a large
data-block-grain and used a unidirectional ring to connect
the PM’s together. In addition, each PM has a separate
connection to the input module and a separate connection
to the output module. With these restrictions, we have
successfully implemented the data flow paradigm for the
BDPA.

The BDPA is our example architecture for implementa-
tion of the BDFP and consists of three major components:
an input module (IM), a processor module array (PMA),
and an output module (OM). Fig. 1 is a high-level block
diagram of the BDPA showing the three primary modules.
Buffering of data between all components is accomplished
with first-in/first-out (FIFO) buffers. These buffers allow
PM’s to operate asynchronously, which eliminates the clock
distribution problem that adversely affects multiprocessor
systems with a large numbers of processors. Input data is
transmitted directly from the input device to the PM that
will use it. The interprocessor communication is limited
to passing necessary intermediate computational results.
Output results go directly from each PM to an output
device. Thus the BDFP avoids the I/O bottleneck of most
multiprocessor systems.

A. Input Module

We assumed that the input is a data stream due to the
nature of digital signal and image processing applications.
Thus the input data stream may come from an input device
such as a camera or the input may be stored on a disk or
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Fig. 3. Conceptual representation of a PMA for the BDPA.

in the main memory of a host system. The IM serves as a
buffer between the host system (or an input device) and the
processor module array. It converts the input data stream
into blocks of data. It maintains a direct input channel to
each PM and sends data blocks to each PM through these
channels without any interference from other PM’s. A block
diagram of the IM is shown in Fig. 2.

B. The Processor Module Array

The PMA contains enough PM’s to provide the computa-
tional power required for the application to be implemented.
The interprocessor communication is limited to being local
and in one direction to make the implementation of the
BDFP easier. All of the PM’s have separate input and
output channels in addition to the connections between
processors. The use of two input buses and two output buses
increases the available I/O bandwidth, without significantly
increasing the hardware complexity. The IM uses the input
FIFO’s to sequentially send input blocks to the PM’s, and
the PM’s sequentially send output results to the OM using
the output FIFO’s. The PM’s are divided into two groups:
an odd-numbered PM group and an even-numbered PM
group. Each PM group is directly connected to one input
FIFO and one output FIFO. FIFO buffers are also used to
connect adjacent processors in the unidirectional ring. If
the data communication is restricted to being in only one
direction, then the PM’s can skew their operations. This
makes it possible to process blocks in a pipelined fashion.
Fig. 3 shows a block diagram of a PMA for the BDPA,
with two input buses and two output buses.

A PM may itself consist of multiple processors. Thus
the BDPA can easily accommodate the use of algorithm
partitioning at the PM level. Processors within a PM may
utilize various interconnection networks including a mesh, a
linear array, a star network, or they can be fully connected.
They may also be tightly coupled and can be closely
synchronized with each other.

C. The Output Module

The OM collects processing results from each PM and
converts the blocks of data into a synchronized output data
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stream. It also may contain a postprocessing submodule.
The postprocessing submodule can be very flexible in order
to meet the requirements for different applications. It can
contain different function modules for this purpose. For
example, the postprocessing submodule may implement
different dynamic scaling algorithms for digital signal and
image processing. Fig. 4 shows a block diagram of the OM
for the BDPA.

The use of the BDFP helps to reduce data storage
requirements. In the BDPA, the input data blocks flow
into the system and the output data blocks flow out of the
system. There is no need to store all of the data or all the
entries of a matrix into a BDPA system.

It is sometimes necessary to depart slightly from the
BDFP in order to run an application on the BDPA. For
example, some algorithms require blocks of input data
to be overlapping. Also, some applications may require
data communication to be bidirectional, instead of uni-
directional. While it is possible to modify the BDPA to
accommodate these applications, performance will typically
be reduced and/or special hardware modifications may need
to be made.

IV. MAPPING ALGORITHMS TO THE BDPA

One of the major hurdles in effective use of parallel
computers is the difficulty of programming them. Users
generally must understand the target parallel computer
architecture, and must carefully write their programs to
efficiently use that architecture. This requires considerable
effort and usually, the programs that are produced are
not portable. In this section we present our methods for
automatically mapping algorithms for efficient execution on
the BDPA. Our method is general and provides programs
with increased portability.

The steps in mapping an algorithm onto a parallel ar-
chitecture include algorithm specification, partitioning, and
scheduling. The specification technique must be flexible and
convenient to use for the targeted applications (digital signal
and image processing). This specification of the algorithm
is used to partition it into separate tasks to be implemented
in parallel. The individual tasks are then scheduled for
execution at specific times on specific processors.

Our goal is to minimize the sources of overhead for par-
allel execution: fixed overhead (“startup time”), contention

IBM J. RES. DEVELOP. VOL. 44 NO. 5 SEPTEMBER 2000



for shared resources, communication time, synchronization,
and uneven processor workload assignment. The impact
of startup time is reduced as the problem size becomes
larger. Our target application is continuous, real-time image
and signal processing, for which the startup time becomes
insignificant. The use of FIFO’s, one-way communica-
tion, and large block sizes greatly reduces the impact of
synchronization in the BDFP. The shared resources that
could become bottlenecks are the IM, the OM, and the
communication links between the PM’s. The FIFO’s in the
IM and OM obviously must be large enough to keep up
with the desired input and output rates. The use of dual
FIFO’s in the IM and OM and dual buses for input and
output to the PM’s ensure that the data rates in the PMA
are lower than the data rate for the input data stream. Blocks
of data are formed in the IM and routed sequentially to the
PM’s using the duality of input buses. In addition, the use
of FIFO’s between PM’s ensures that the system can keep
up as long as there are enough processors.

The remaining sources of overhead are excessive commu-
nication, contention for the (shared) communication links,
and unbalanced workload assignment. In the two sections
below, we describe a mapping methodology designed to
minimize these problems. Our methodology works at two
levels. At the higher level, the initial algorithm specification
is transformed into an equivalent state space model which
requires less communication and synchronization for paral-
lel execution. This state space model is then examined to
find a good data partitioning. At the high level, scheduling
of data partitions onto PM’s is a relatively simple task.
At the lower level, the computation required for each
data partition is further partitioned and scheduled onto
multiple processors, if necessary. This partitioning is based
upon an analysis of the signal flow graph (SEG) for the
algorithm. During algorithm partitioning and scheduling the
requirements for synchronization and communication are
precisely calculated and an attempt is made to minimize
their impact.

Our mapping methodology exploits both coarse-grained
and fine-grained parallel processing. Coarse-grained paral-
lelism, based upon data partitioning, is always used. Fine-
grained processing is then resorted to if data partitioning
alone does not achieve the desired processing rate. We now
describe each of these levels in detail.

A. State Space Method

We use a generalized state space approach for partitioning
the algorithm of interest at the high level. The state space
model matches our concept of using data partitioning at the
high level in that the states are updated and the output is
computed as linear combinations of the most recent states
and the current input. Although the assignment of the state
variables is arbitrary in general, states can be chosen to
minimijze the data communication requirements between
processors. In this section, we show how to represent digital
signal and image processing algorithms in the state space
model.
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Many image processing algorithms fall into the cat-
egory of discrete linear shift-invariant (DLSI) systems.
Any algorithm that can be represented as a set of finite
difference equations with constant coefficients meets the
criteria for a DLSI system. For example, filter kernels or
finite impulse response (FIR) filters for image processing
involve computing the output as a weighted average of
pixels from neighboring input pixels. Such a filter may be
expressed in finite difference form as

M, Mo

g(ni,me) = Y Y b(in,d2) f(m — Gi,m2 = j2).

J1=—M j2=—M;
1

For example, M; = M, = 2 for the case of a 5 x 5 kernel.
In a similar way, we can represent 2-D infinite impulse
response (IIR) filters in difference equation form (using
weighted values of previously computed outputs).

The state space representation has been widely used
for many years to represent digital control systems [8].
The state space model converts the difference equation
model to a matrix-vector model where the output can be
represented as a linear combination of the current input and
the most recently computed states in each tuple. Similarly,
the states are updated as linear combinations of the current
input and the most recently computed states in each tuple.
This provides an advantage for the computational model
because all required data is either a current input or a
recently computed state variable. Thus it is easier to develop
a computational model that has low data communication
requirements when using the state space representation.
This is easy to see for the one-dimensional case because
all of the states can be stored in a local memory and only
the new input needs to be communicated to perform the
computations for the new output.

We can use the state space model as a systematic ap-
proach to partition DLSI systems for implementation on
a multiprocessor system. For example, an image can be
considered to be a 2-D signal with the indices for the
rows and columns representing the tuples. Indexing along
the columns can be considered to be the horizontal tuple
and indexing along the rows the vertical tuple. Thus a
horizontal delay represents a delay of one pixel along the
current row and a vertical delay represents a delay of a
row to access the pixel in the previous row along the same
column. Our data partitioning method based on the state
space model transforms the algorithm so that the update of
the current state and the current output involves only the
current input and the most recent state variables for each
tuple. In this case, the update of the state and computation
of the output involves only the current input, the horizontal
state variables, and the vertical state variables.

After mapping the algorithm into the state space repre-
sentation, one can obtain a partitioned algorithm with low
data communication requirements in the following way. All
of the computations for a single row of the image can be
scheduled onto the same PM, and processing of different
rows can be scheduled on different PM’s. State variables
(i.e., intermediate results) that are delayed by one horizontal
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delay are used by the same PM, and state variables that are
delayed by one row are transferred to the PM handling the
next row. If the image is acquired in a raster scan fashion
or is input by row, then the state variables to be transferred
to the next PM are not needed until after the next row of
data is input. This skewing of row computations matches
the sequential input of the rows very well.

‘We gained insight into these data communication patterns
from our research on implementing 2-D digital filters on
a multiprocessor system [9]. We later generalized this
approach to the use of block processing [10]. A block of
data may be a row or a column of an image, a row or
column of a matrix, or it may be a subimage or submatrix
depending on the requirements of the application. Partition-
ing of the state space representation minimizes the amount
of intermediate results that must be communicated between
PM’s. In addition, the state space method ensures that data
transfer is localized if adjacent blocks are scheduled on
adjacent PM’s in the unidirectional ring.

B. Mapping DLSI Systems to the State Space Model

In this section, we show how to map a DLSI system onto
the BDPA as an example. The method is appropriate for
any algorithm that can be represented by a finite difference
equation or a SFG. Our goal was to achieve real-time
filtering of a continuous sequence of images.

The state space representation can be given in matrix
form. It is very convenient to do so because the repre-
sentations are more concise.! We now discuss the state
space representation of the general 2-D DLSI system with
quarter-plane support.

The general-order, causal 2-D finite difference equation
with quarter-plane support is given by [6]

Ly L
g(ni,n2) = D Y b(i,d2) f(n1 — G1,ma — j2)
J1=0 j2=0
L L
=3 aling2)e(ma — jrima — ja2)-
Jj1=0j2=0
J1+j2>0

)]

The parameters a(j1, j2) and b(71, j2) in (2) are coefficients
which determine the characteristics of the algorithm. Since
the coefficients can take on arbitrary values, this equation
can represent many 2-D problems including 2-D kernel
or convolution filters (FIR), 2-D IIR digital filters, image
processing operations such as averaging a region of pixels,
simulation, control systems, etc.

For the 1-D case, a similarity transformation can be used
to optimize the state space representation [8]. However,
there is a fundamental problem in extending this concept to
the 2-D case because an arbitrary bivariate transfer function
cannot be factored into distinct poles and zeros and cannot
be expanded into partial fractions [6]. Thus, approaches

1 However, the coefficient matrices are typically sparse. In the actual

mapping process, it is better to implement individual equations rather than
use matrix operations.
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which involve factorization or partial fraction expansion
are not generally extendible to 2-D systems due to the lack
of a fundamental theory for 2-D systems.

The state space approach can however be used for
mapping 2-D DLSI systems [11], [12]. Roesser’s state space
model for 2-D DLSI systems is perhaps the most widely
accepted model [11]. This model provides for the update
of the next state for a set of vertical state variables and
a set of horizontal state variables as a linear combination
of the current input and the present vertical and horizontal
state variables. The output is also a linear combination of
the present vertical and horizontal state variables and the
current input

Sg(ni+1,n2) | _ [A1x Aia
[Sv(n17"2+1) Az Al §(na,mz)

+ [g: ] [f(n1,n2)]

[9(n1,n2)] = [C1 C2]S(n1,n2) + D[f(n1,n2)]
3

where

S =[] @

Roesser’s state space model is based upon assigning state
variables to the output of the delay elements. However, the
assignment of state variables is arbitrary and we find it more
convenient to assign the state variables to the input of the
delay elements. This makes the state space representation
compatible with the eventual hardware implementation
because a state variable identifies a parameter which must
be stored for a later computation. This alternate choice for
the state variables is equivalent to the parameter substitution

Qu(n1,n2) = Sp(n1 + 1,n2) )
Qv (n1,n2) = Sy(n1,n2 + 1).
With this substitution, the indices for the modified state
vectors are the same as those for the current input. Thus
the modified model is conceptually simpler because it more
closely resembles the finite difference equation model. It
also simplifies our later derivations.
We can combine the vertical state variables and the
horizontal state variables into a state vector for a given
location in the 2-D array. Thus

Q(n1,nz) = [Q”("l’"z) ©

Qv(nl’n2) ’

This state vector and the next output can be computed using
a linear combination of the current input, the most recent
vertical state variables, and the most recent horizontal state
variables. This revised model is equivalent to Roesser’s
original model.
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Fig. 5. Two-dimensional generalized finite state machine.

This modified state model for the causal 2-D DLSI
system with quarter plane support is given by

_ A A Q (n _lan)
Q(n1,n2) = [A.ﬁ A;:] [Q:/I(ni,nz - f)]

+ [o i)

l9(n1,m2)] = [C1 C2] [8’;52;,;21’_713]

+ D[f(n1,n2)]-

In (7), Qu(ni,n2) is a column vector whose elements
are the current values of the state variables for the hor-
izontal processing direction corresponding to the index
ni1. Qv(ni,n2) is a column vector whose elements are
the current values of the state variables for the vertical
processing direction corresponding to the index n,. Note
that (ny — 1,n2) implies a delay in the horizontal direction
and (n1,ns — 1) implies a delay in the vertical direction.
A11, A12, A21, A22, B1, Bg, Cl, C2, and D are
appropriate coefficient matrices such that (2) and (7) are
equivalent.

In order to show the relationship between the 2-D state
space model and the computational model, we represent
the 2-D state space model as a linear finite state ma-
chine in Fig. 5. In this computational model, the hori-
zontal state variables Qp(ni,n2) are stored inside the
processor and the vertical state variables Qv (n1,np — 1)
are sent to external memory. The reason for this will
become clear when we discuss implementing the algo-
rithm on a multiprocessor system. The output is also
computed and sent to the output device. Thus the proces-
sor takes f(ny,n2) and Qv (ny,n2) as inputs and com-
putes Qm(ni,n2), Qv(ni,ng), and g(ni,na). It stores
Qmu(ny1,n2) internally for the next computation, sends
Qv (n1,n2) to external memory for use one row later and
sends g(n;,n2) to the output device.

Our scheme for implementing the 2-D state space repre-
sentation with a multiprocessor system involves scheduling
the computations for each row on a different processor.
Thus in this scheme, the vertical state variables from
the previous row, Qv (n;,ne — 1) are received from the
processor assigned to perform the computations for the
previous row and the vertical state variables Qv (ny,ns)

)
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Fig. 6. Two-dimensional generalized finite state machine for mul-
tiprocessor system.

are sent to the processor assigned the computations for the
next row. This modification is shown in Fig. 6.

We can extend the discussion above to cover nonlinear
systems by considering the modifications required in the
state space representation in order to represent nonlinear
systems. This is important because a large number of impor-
tant applications for image processing can be represented
as nonlinear systems. The median filter is a good example
since the output is the median for a region of neighboring
pixels in the image.

Thus we see that the direct application of the state space
representation along with scheduling the computations for
each row on a different processor can lead to a mul-
tiprocessor system design with low data communication
requirements. In (7), the system is linear because the
elements for all of the coefficient matrices are constants.
In addition, it shows the state vectors and the input being
multiplied by these matrices. This is a direct result of the
original equation being a finite difference equation with
constant coefficients as shown in (2). If we define these
matrices as functions of the independent variables and
define a general operator I'[ ] that operates on a matrix
and vector to obtain an output vector, we can represent the
2-D nonlinear state space model as

QH(nla n2) = P[All (7'7/1, n2)’ QH("I - 17 n?)]
+ I'[A12(n1, n2), Qv (na, n2 ~ 1)]
+ F[Bl(nl7 n2)7 [f(nh n2)]]
Qv (n1,n2) = T[A21(n1,n2), Qu(n1 — 1,m2)]
+ [[A22(n1,n2), Qv (ni,n2 = 1)]  (®)
+ I'[Bz(n1,n2), [f(n1,n2)]]
[9(n1,n2)] = T[Cy(n1,n2), Qu(n1 — 1,n2)]
+ [[C2(n1,n2), Qv (n1,n2 — 1)]
+ T[D(n1,n2), [f(n1, n2)]].
From these equations, we see the primary modification we
need to make in our 2-D linear finite state machine model
is that the processor must be able to perform the nonlinear
operations depicted by I'[ |. Another complexity is that
the coefficient matrices may vary as functions of the row

or column numbers. Normally, this means that the coeffi-
cients must also be computed inside the processor. Typical
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Fig. 7. Block diagram representation of a 2-D system.

nonlinear operations that lead to nonlinear systems include
sorting, comparisons, division, and logical operations. The
data communication patterns that we developed for the
DLSI system will also work for nonlinear systems. We later
present our results for mapping the Cholesky factorization,
QR decomposition and back substitution as examples that
fit this model.

We further generalized the above discussion to include
the block state model for computing [10], [13], [14]. For
this model, the input is partitioned into blocks and the
computations for each block are scheduled for different
processors. The vertical state variables Qv (ni,ng) are
replaced by block state variables Qp(n1,n2). Otherwise,
the high level computational model is the same as shown
in Fig. 6. We later present the mapping of the 2-D discrete
cosine transform (DCT) as an example that fits this model.

C. A 2-D Example of the State Space Method

We now consider the state space representation of the
2-D IIR digital filter as an example. The state space
representation for a given 2-D DLSI system is not unique.
In addition, the problem of defining a representation with
the minimum number of states has not been solved [15].
Qur intended application for this example is real-time
filtering of images where the image comes from a camera or
other video source or is stored by row in memory. For this
application, a horizontal delay represents a storage of one
word while a vertical delay represents a storage of an entire
row of data. This is true because we must keep all of the
vertical state variables for a row to be able to have access
to a state variable from the previous row each time we
bring in a new pixel. Therefore we selected a computational
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form that minimizes the number of vertical delays. We then
assigned state variables to the inputs of the delay elements
to obtain the state space representation. This procedure can
be applied to obtain a state space representation from any
SFG although it is not guaranteed to have a minimum
number of states.

Fig. 7 gives a block diagram representation of a 2-D
filter partitioned to have a minimum number of vertical
delays (z; ). Note that the number of vertical delays is the
same as the order of the filter in the 2, variable, which is
the minimum possible number. We can obtain the desired
state space representation by assigning a horizontal state
variable to the input of each of the horizontal delay blocks
(associated with the z; variable) and a vertical state variable
to each of the vertical delay blocks (associated with the 25
variable). We then write the resulting equations in matrix
form as given in (7).

Fig. 8 gives a section of the block diagram of the 2-D
DLSI system having one horizontal delay and one vertical
delay. Assigning state variables as described above, the
typical vertical state equation for the 2-D DLSI system can
be represented as

g2,j:(n1,n2) = b(0, j2) f(n1,n2) — a(0, j2)g(n1, n2)
+q1,1,(r1 — 1,m2) + g2,5,+1(n1,n2 — 1)
1<j2 <L, 9
I, = ng] +1
@,1,+1(n1,m2 — 1) = 0.
In a similar way, the typical horizontal state variable is
given by
01,1, (1, n2) = b(j1, j2) f(n1,n2) — a(j1, j2)g(n1, n2)
+ q1,,41(n1 — 1,m2)

1< <Li-10<52< L, (10)
I = joLy + 1.
q1,1, (1, m2) = b(j1, 2) f(n1,n2) — aj1, j2)g(n1, n2);
J1=Li; 0<j2< Lo, (11)
Iy = joL1 + j1.

The output equation is given by

g(n1,n2) = (0,0)f(n1,n2) + q1,1(n1 ~ 1,n2)

+¢2,1(n1,m2 — 1). (12)
The above equations are still not in the state space
form because the horizontal and vertical state variables
are defined in terms of the output. Therefore, we need
to substitute for the output in these equations to obtain a
state space representation where each state variable and the
output is defined in terms of the current input and the most

recent values of the state variables. Thus we obtain

q1,1,(n1,m2)
= [b(41,J2) — a(j1,42)b(0,0)] f(n1, n2)
— a(j1,72)[q1,1(n1 — 1,m2) + g2,1(n1, 2 — 1)]
+ q1,1,41(n1 — 1,n2);
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Fig. 8. A section of the block diagram of a 2-D DLSI system having one horizontal delay and

one vertical delay.

1< <L -1;0< 5 < Ly 13)
I = jo Ly + 1.
q1,1,(n1,n2)
= [b(j1, J2) — ald1,32)b(0,0)] f(n1, n2)
—a(j1,72)[a1,1(n1 — 1,m2) + g2,1(n1,n2 — 1)};
Ji=Li; 0<j2< L. (14)
I = ja L1 + j1-
92,5,(n1,m2)
= [6(0, j2) — a(0, j2)6(0, 0)] f(n1, n2)
= a(0,72)[g1,1(n1 — 1,m2) + g2,1(n1,n2 — 1)]
+qin,(n1 — 1,n2) + g2, j,+1(n1,m2 — 1)
1<j2 <Ly (15)
I =4l +1

¢2,0,+1(n1,n2 — 1) = 0. (16)

As an example, a second order filter (L; = L, = 2)
requires six horizontal state variable equations, two vertical
state variable equations and one output equation.

D. The Order Graph Method

In this section, we describe a method of partitioning and
scheduling that exploits the algorithm’s potential for fine-
grained parallel processing. This method is intended to be
used to improve a parallel execution schedule that is not
fast enough for a given application after using the high level
block state space approach described above. This method
is based upon the use of algorithm partitioning to develop
a schedule for processors in a PM.

After data partitioning, each PM has been assigned a
block of data and a set of computations to perform on
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that block of data. Our approach is to develop a SFG
for this set of computations. If the PM consists of several
closely coupled processors, this SFG can be partitioned and
scheduled for execution in parallel on these processors.

There are many techniques for mapping algorithms
to parallel processors, including parallelizing compilers
[16]-[19], loop optimization [20]-[24], targeting of
recurrence equations to systolic arrays [25]-[29], heuristic
scheduling [30]-{33], and flowgraph manipulation [2],
[34]-{39]. Some recent surveys of these and other methods
can be found in [40]-[44]. Quantitative comparison of
these methods is difficult, since they are targeted for
different classes of machines, use varying specification
techniques, and (most importantly) usually fail to report
detailed results for any standard benchmarks. Few of them
have all of the desired characteristics for signal and image
processing:

* use of a familiar and convenient specification tech-

nique;

e fully automated algorithm partitioning and scheduling;

* scalability to large problems;

 exploitation of fine-grained parallel processing;

¢ reduction of communication overhead;

» consideration of network topology;

* practicality of implementation;

 retargetable for lots of different parallel architectures;

* optimization of processing rate and/or number of pro-

cessors; and

* acceptable running time.
The method closest to our own is the cyclostatic realization
method [2], [34], [35], which has some (but not all) of the
desired characteristics, and is intended for parallel signal
and image processing.
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The computation to be partitioned is specified by a
SFG. The SFG shows (by directed edges) the sequence
in which operations (indicated by operator nodes) must
be performed, and on what clock cycle (as indicated by
delay nodes). The user also specifies the desired delay
T between successive input samples (or, alternatively, the
desired rate of input processing Ry = 1/T,), and/or the
available number of processors, P;. Note that the minimum
number of clock cycles which is possible for this SFG
(as determined by the longest delay path between two
consecutive delay nodes) imposes a lower bound on Ty. If
Ty is less than this, the SFG would have to be restructured
(using, for instance, retiming [45]) so that the minimum
clock rate is no greater than Tj.

A flowchart of the order graph method is shown in Fig. 9.
The major steps in this method:

1) preprocess the SFG to minimize interprocessor com-
munication;

2) generate different partitions for the graph in a way
that heuristically balances the workload of the pro-
Cessors;

3) generate schedules for each candidate partition; and

4) validate the correctness of the schedule, determine the
impact of interprocessor communication, and com-
pare the resulting sampling rate and number of pro-
cessors to the desired rate and number of processors.

Each of these is now described in more detail.

When SFG’s are partitioned for paralle] execution, split-
ting a feedback loop (i.e., a cycle in the graph) can result
in excessive communication and synchronization overhead.
The order graph method preprocesses the SFG to produce
a directed acyclic graph (DAG) to avoid this. The first
step is finding all the strongly connected components’ in
the graph. This step can be done in linear time [46]. A
DAG is produced from the SFG by replacing each strongly
connected component with a single node. The incoming
edges of this new node are the union of the incoming
edges of the strongly connected component, and likewise
for the outgoing edges. The computational delay of this new
node is the sum of the computational delays of all nodes
in the strongly connected component. The DAG no longer
captures the exact timing dependencies which are shown
in the original SFG. For this reason, it is used solely for
generating candidate partitions of the SFG. The benefit is
that feedback loops are not split for execution on multiple
processors. Once the partitions have been generated from
the DAG, scheduling these partitions and validating the
schedule is done from the original SFG, so no timing
dependencies are overlooked.

It may be that the computational delay of a strongly con-
nected component exceeds the desired sampling interval 7.
This would mean that algorithm partitioning fails to achieve
the user-specified performance bound, since a single node

2 A strongly connected component in a directed graph contains either a
single node or all the nodes involved in a feedback loop.
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Fig. 9. Flowchart of the order graph method.

is not normally split for parallel execution.’ This is ac-
commodated by converting the replacement node back into
the original graph of the corresponding strongly connected
component, removing a feedback edge from this graph,
identifying the new strongly connected components, and
creating a new DAG from these components. This process
continues until no node in the DAG has a computational
delay that exceeds T;. We use heuristics to determine the
order for which replacement nodes are processed (when
more than one has a delay exceeding Ty), and the order in
which feedback edges are removed. Details can be found
in [47].

The output of the preprocessing stop is a DAG which
shows the precedence of operations that must be performed.
A linear extension is a sequential ordering, or list, of the
nodes in a DAG that preserves the precedence indicated
by the edges of the graph. For example, for a graph with
nodes V = {1,2,3,4,5} and the edges 1 — 3, 2 — 3,
2 — 4,3 — 5,4 — 5, the possible linear exten-
sions are [1,2,3,4,5], [2,1,3,4,51, [1,2,4,3,5], [2,1,4,3,5], and
[2,4,1,3,5]. The generation of all linear extensions from the
DAG is accomplished using the algorithm found in [48].

3 Although our method allows this to be done if the user so desires.
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This algorithm has complexity O(|V'|t) where |V| is the
number of nodes and ¢ is the number of linear extensions
which satisfy the precedence conditions.

Once a linear extension is found, it is partitioned for
parallel execution. A set of partitions is found by processing
the linear extension from left to right, building partitions in
a greedy fashion. Let partition p start with the node in the
tth position of the linear extension, and let the weight of
this partition be equal to the computational delays of all the
nodes it includes. Partition p includes all nodes from the
ith to the jth position such that the weight of p is less than
or equal to Ty, and the weight of p + d; 1, where dj, is
the delay of node k, exceeds T,. For the linear extension
[1,2,3,4,5], if each node has a computational delay of one
and the desired input sampling delay is two, the greedy
partitioning procedure gives [1,2], [3,4], [5].4

The aim of this heuristic is to minimize the number of
partitions, and to find partitions whose execution times
are approximately equal. This minimizes the number of
processors required for parallel execution, and balances
the workload of the processors. All linear extensions of
the DAG are generated exhaustively, and for each linear
extension, all possible potential solutions are found using
the greedy heuristic. This process stops when the first
potential solution is found that is valid and meets the
performance goals, or when no such solution exists. A
potential solution is rejected if the number of partitions
in it exceeds the user-specified bound on the number of
processors available for use. Our method of generating
partitions ensures that all precedence and timing constraints
are properly met.

If there are p partitions to be executed in parallel on p
processors, there are p! possible schedules. Schedules may
be generated exhaustively until a valid schedule is found,
or no such schedule exists. The order graph method focuses
on two potential schedules: a fully pipelined schedule and a
strictly parallel schedule. The communication requirements
must also be considered to determine if a schedule is
valid. We assume that communication and computation are
fully overlapped (as is true, for instance, for the Inmos
Transputer and the Texas Instruments TMS320C40), that
receiving or sending each data word requires some fixed
time c (specified by the user), and that communicating w
words (either sending or receiving) requires total time w - c.
Each solution’s total communication time must not exceed
the desired sampling delay Ty, or the solution is invalid.’

The total communication time per partition can be tabu-
lated by inspection of the partitioned SFG. This process
is complicated by the fact that one processor can be
scheduled to execute multiple partitions (at different times)
for the same input sample. In this case, the data transmitted
between partitions does not require communication between

4Our method is more flexible than this example indicates. The process
of partitioning a linear extension can begin with any node in the extension,
not just the first one. Partitioning proceeds from left to right, with
wraparound from the end of the extension to the start of the extension
[47].

In addition, if processors execute synchronously the inputs for a
partition must arrive at the correct time. This can also be checked [47].
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Fig. 10. Signal flow graph for the second-order 2-D IIR filter,
with mapping generated by the order graph method.

different processors, and so should not affect the total
communication time for those partitions. A final validity
check requires that the usage per input sample for each
communication link does not exceed the desired sampling
period Ty. We assume that the network topology specified
by the user contains exactly one path between each source
and destination processor. From the schedule, the amount
of communication per input sample between each pair of
processors is tabulated. This communication time is added
to the load for each link on the path that connects the two
processors. In this way, contention for communication links
is considered and minimized.

We have developed a prototype tool to implement the
order graph method. An example of mapping a 2-D IIR
filter for parallel execution on seven processors is shown
in Fig. 10. The details of the algorithm for this example
are given in Section IV-C. In this example, each multiply
requires two time units (or computational cycles) and each
addition requires one time unit, and communication time
per word c is one time unit. Feedback paths (connecting
q1,3(n1,n2) and ¢ 3(n1 — 1,ny), for instance) are omitted
for simplicity. Our results show that a PM with seven
processors can solve all of the required equations using
eight computations cycles per pixel. Our results further
show that this can be done with the processors connected as
specified for the BDPA. We have used our tool for mapping
a variety of algorithms to the BDPA, including a fourth-
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order Jaumann wave digital filter, a fourth-order all-pole
lattice filter, a 16-point FIR filter, and a 1-D second-order
IIR filter. The running time for the tool is generally on the
order of a few seconds of CPU time.

In summary, the order graph method can be used to
automatically partition and schedule a SFG, using fine-
grained parallel processing. It considers the effects of
the network topology, and minimizes the communication
overhead to the extent possible. It is possible to optimize
the sampling rate or the number of processors needed, or
to meet user-specified bounds on one or both. The method
balances the workload of processors heuristically. Although
potentially expensive to use for very large signal flow
graphs or large numbers of processors, we have found it
to be quite practical for actual use on important signal and
image processing problems.

V. METHODS OF PERFORMANCE EVALUATION

Our goal in mapping algorithms to the BDFP and sched-
uling them on the BDPA is to achieve a high performance as
determined by maximum possible input data rate, speedup,
and efficiency as we add more and more processors. In
our early work, we used analytical methods to determine
performance [9], [49]-[53]. The drawbacks of this approach
are that it can be quite difficult to develop a good analytical
model, and there is always the possibility that assumptions
and oversights will cause important results to be over-
looked. We have developed several tools to enable us to
do a more detailed analysis and verification of our ideas.
These tools are the following:

* sogae [54]—a dataflow tool for doing fast, approxi-

mate analysis of proposed parallel algorithms;

* erg [55)—a detailed simulator for doing precise anal-
ysis of proposed algorithms, and validating the cor-
rectness of the mapping; and

* a prototype hardware system—for final demonstration
of a proposed parallel algorithm, in actual operation.

Each of these methods has something to offer, in terms of
ease of use, speed of execution, or degree of precision. We
now describe each one in turn.

sogae [54] models a parallel architecture as a set of pro-
cessors connected by point-to-point communication links
(as in the BDPA). Each processor has a set of named queues
(FIFO’s); a queue corresponds to an input, an output, or
a register used in the computation of an image or signal
processing algorithm. For each processor there is an input
matrix whose columns specify the order in which data
values are needed from the queues, and whose rows show
which data values are used on a particular clock cycle. As
an example, for a processor with two queues, where queue
#1’s data is needed on cycles one and three, and queue #2’s
data is needed on cycles two and three, the corresponding
matrix R would be

)

=y
I
—= 0 =
=]
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Fig. 11. Creating the Erg simulator from the descriptions of the
algorithm and architecture.

An output vector for each processor specifies where (i.e.,
which queue) the output produced on a particular cycle is
intended to go. The set of queues, and the input matrix
and output vector, are determined directly from the SFG
and the parallel algorithm mapping for the flow graph. An
assumption made in this simulator is that data values are
produced and stored in the queues in the order in which
they will be needed by the processor.

A simulation run models the consumption and production
of data items in the way specified by the input matrices
and output vectors. If a processor’s input matrix indicates
the use of a data item from a queue which is empty, the
simulated execution of that processor’s task blocks until a
data item has been put into the queue. sogae outputs several
pieces of useful information to the user, including statistics
on queue lengths and total number of simulated cycles to
complete a parallel computation. In addition, a graphical
interface allows the user to watch and interactively query
the state of the processors during the progress of the
simulation. Note that sogae only models the timing of
computations, and does not produce the actual results that
would be generated by those computations.

erg [55] is intended to be a more precise (but slower)
simulator for verifying both the detailed performance of
an algorithm, and the correctness of the results produced
by that algorithm. The user of erg describes both the
architecture of the parallel computer, and the program
executed by each processor. These descriptions can both be
written in the C programming language for convenience.
The descriptions are compiled, along with the simulation
event queue manager, into a simulator which can be directly
executed (i.e., not interpreted) on the host machine. A
picture of this process is shown in Fig. 11. Other parallel
computer simulators which implement some of the same
ideas are described in [56] and [57].
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Fig. 12. Application specific processor for the 2-D IIR digital
filter.

The architecture description specifies the time required
for each type of operator (addition, multiplication, condition
checking, etc.), the network topology, and the sizes of all
queues. The algorithm description specifies the function
(the actual C code) executed by each processor, the function
of input and output devices, and the function of the IM and
the OM.

The erg simulation produces a set of performance sta-
tistics and the output that would be produced by an actual
system. The output is used to verify that parallel execu-
tion produces the same result that would be produced by
execution of the algorithm on a single processor system.
The statistics include processor utilization, maximum queue
lengths, and total processing time. erg is a valuable analysis
tool, and has helped to clarify many of our ideas about algo-
rithm mapping. Most of the performance results described
in the next section have been produced using erg.

A final method of performance analysis and verification is
to map algorithms to a real system and measure their perfor-
mance on real data. For this purpose, we are constructing a
prototype parallel computer consisting of high-performance
DSP chips (the Texas Instruments TMS320C40). This com-
puter, which currently has nine processors, will allow us to
determine maximum processing rates and the practical fac-
tors which limit those rates. Algorithms are manually coded
for execution on the parallel system, although a future goal
is to generate parallel code directly from our mapping tools.
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Table 1 Computational Table for a Second
Order IIR Digital Filter

cycle b_in | input a_in fdback | r_reg | q_reg | reg8
0 0 0 0 0 q1,1 q2,1 q1,5
1 %,\0 f Y 0 1,1 q2,1 q1,6
2 0 f 0 0 0 0 y
3 lﬂ: f ari y Q1,2 0 g
4 17/1\2 f ais y 0 0 0
5 1,/2\1 f azi y a3 | @22 | @11
6 b3 f 13 y q1,4 0 q1,2
7 bra f ara y 0 0 Q2,1
8 b/z\z f az s y a5 0 q1,3
9 1;; f ais y .6 0 q1,4
10 b’l'; f ais y 0 0 q2,2

VL. APPLICATIONS

We have mapped a large number of image processing
algorithms onto the BDPA. We briefly discuss the mapping
of some of these algorithms in this section. This includes
the 2-D FIR and IIR digital filters, the 2-D DCT, Cholesky
factorization, QR decomposition, and the back substitution
algorithm to solve a system of equations after factorization.
We have included matrix operations in this list because
many image processing applications can be expressed in
matrix form. As an example, the popular algorithms for
beam-forming involve finding the eigenvalues and eigen-
vectors of a matrix, and solving a system of equations [58],
[59].

We programmed these applications and simulated their
execution on the BDPA using the erg simulator [55]
to evaluate their performance. For each application, we
provide performance results for a sample sequence of
images or matrices. These results are summarized in a
graph for each application. In these graphs, speedup for N
processors is defined as the time (total number of simulated
clock cycles) to execute the program on a single-processor
BDPA, divided by the time to execute the program on an
N-processor BDPA. The tables showing number of cycles
per output are computed as the total time to execute the
program, divided by the number of outputs produced by
the program (where an output is one element of a matrix,
or one pixel of an image). The number of processors N does
not need to be a power of two, but it must be even. In spite
of this, for most applications, the number of processors we
chose to simulate happens to be a power of two.

For each application, we also computed the correct output
values using a standard symbolic algebra program (Matlab)
running on a workstation. The outputs produced by erg
were verified to be correct by comparing them with the
expected output values.

A. 2-D IIR Filtering

Our early experience in developing parallel algorithms
for digital signal and image processing was obtained during
our efforts to develop a real-time system for filtering images
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Table 2 Modified Computational Table for a Second Order IIR Digital Filter

cycle b_in input a_in fdback r_reg _reg reg8

0 b(0,0) f 0 0 q1,1 92,1 Qs
1 0 f 0 0 0 0 a6
2 0 f 0 0 0 0 g
3 b(1,0) f -a(1,0) g q,2 0 0
4 b(2,0) f -a(2,0) g 0 0 0
5 b(0,1) f -a(0,1) g q1,3 92,2 a1,1
6 b(1,1) £ -a(l,1) g @ 0 a2
7 b2,1) f -a2,1) g 0 0 @,
8 b(0,2) f -a(0,2) g qas 0 .3
9 b(L,1) f -a(1,2) g a6 0 a4
10 b(2,2) f -a(2,2) g 0 0 g2,

at TV frame rates. As a part of this effort, we designed an 32

application specific processor for efficiently executing the

state space model for the 2-D IIR digital filter [9], [49]. This 24 -

processor has a three-stage pipeline using two multipliers a

and three adders, as shown in Fig. 12. The required equa- =1 6 - -O-4th Order

tions can be solved by applying the appropriate inputs to g_ “O-2nd Order

the input registers. The output corresponding to these inputs o

is available in reg8 after two computational cycles. Table 1 84

gives the inputs required for the solution of the equations

for each pixel with a second order IIR digital filter. 0 ’ i I

In Table 1, the previous horizontal state variable 0 8 16 24 32

g1,1(n1 — 1,m2) and the previous vertical state variable
g2,1(n1,n2 — 1) are used as inputs for the first two cycles
to compute y(n1,n2) and g(ni,n2). This can be provided
for in the control sequence for the processor. However,
we found that we could simplify the control sequence
without penalty if we used the current output g(ni,n2)
for the feedback instead of using the temporary variable
y(n1,n2). The corresponding equations for the second
order example are given in (9)-(11). Table 2 shows the
inputs required for this approach. We chose this approach
for the application specific processor because of the simpler
control sequence. The state variables are used only once
during each sequence (11 cycles for the second order IIR
filter). Since the state variables are computed in the same
order they are used, the controller only needs to control
whether a new input should be provided or if the input
should be a null.

Both tables show that the output for a particular set of
inputs to the input registers is available in reg8 two cycles
later. Thus the output g(ni,n2) is available on cycle two
where the inputs are applied on cycle zero. The output ¢, 5
on cycle zero refers to the output ¢; 5(n1 — 1,n2) and the
output g; ¢ on cycle one refers to the output g; g(n1—1, n2).
All other outputs are related to the current input f(n1,n2).
Thus, the tables refer to the timing for a loop to solve all
of the equations for each individual input.

We developed a hardware simulator (a predecessor to
erg) to evaluate the use of this application specific proces-
sor in the BDPA for doing 2-D IIR filtering. The number
of state equations to be solved for the 2-D IIR digital filters
depends on the order of the filter. For example, the second
order filter requires six horizontal state variables, and two
vertical state variables. The fourth order filter requires 20
horizontal state variables and four vertical state variables.
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Fig. 13. Parallel speedup for 2-D IIR filtering of eight (64 x 64)
images using the application specific processor.

The application specific processor requires 11 clock cycles
per input to compute all of the state variables and the
output for the second order filter and 27 cycles per input
to compute all of the state variables and the output for the
fourth order filter.

Fig. 13 shows the parallel speedup when using up to 16
processors to filter a sequence of eight images with a second
order filter and up to 32 processors to filter a sequence
of eight images with a fourth order filter. The system
reaches its maximum output rate of almost one output per
cycle when 12 processors are used for the second order
filter and when 28 processors are used for the fourth order
filter. Adding additional processors after this time does not
significantly affect the output rate since the system can keep
up with the input of almost one input per cycle. However,
there is some overhead associated with handshaking so it
is not possible to achieve a throughput rate of one output
per cycle. The input image size was 64 pixels by 64 rows.

Table 3 shows the number of clock cycles needed to
generate a single output pixel for the second order filter as a
function of the number of processors used. Table 4 shows
the number of clock cycles needed to generate a single
output pixel for the fourth order filter as a function of the
number of processors used. In computing the time required
for a single processor in the above tables, we assumed that
processing overlaps input but it does not for output. We
also assumed that six cycles are used for handshaking per
block of input data. Thus if the block size is given as M,
and the number of cycles per input is given as K., then the
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Table 3 Clock Cycles per Output for a

Second Order IIR Digital Filter

Number of Processors 2 4 6 8
Cycles/Output 6.42 3.22 2.14 1.61
Number or Processors 10 12 14 16
Cycles/Output 1.29 1.07 1.07 1.07
Table 4 Clock Cycles per Output for a
Fourth Order IIR Digital Filter
Number of Processors 2 4 6 8
Cycles/Output 14.97 7.49 5.00 3.75
Number or Processors 10 12 14 16
Cycles/Output 3.00 2.50 2.14 1.88
Number of Processors 18 20 22 24
Cycles/Output 1.67 1.52 1.37 1.25
Number of Processors 26 28 30 32
Cycles/Output 1.16 1.07 1.07 1.07
Table § Clock Cycles per Output for a Standard DSP
Number of Processors 2 4 8 16 32
Cycles/Output 296 149 75 38 19

computation time per block required for a single processor
is given by

T(1)=(K.+ 1)+« M +6. 18)
For example, there are 8 x 64 data blocks (number of rows)
in a sequence of eight 64 x 64 images. In addition, K. = 11
for a second order 2-D IIR filter. Thus 7'(1) = 396 288 for
this case.

Except for the case above for the application specific pro-
cessor, the BDPA performance evaluations results for the
applications presented in this paper were based upon the use
of a standard DSP chip (like the TMS320C40). The speedup
tables for these applications were normalized to the time
for two processors. We did this because of the difficulty in
obtaining an appropriate time for the single processor. The
BDPA requires a minimum of two processors because of its
architecture. Thus we used 7'(1) = 0.5 x T(2). This means
that the speedup for two processors is always two in these
figures. The speedup for higher numbers of processors is
therefore relative to the time required for two processors
rather than for a single processor.

Fig. 14 shows the resulting speedup for a second order
2-D IIR digital filter for the standard DSP when filtering six
frames, each of size 64 x 64. The number of clock cycles
needed to produce each output is shown in Table 5. These
results indicate that the speedup is excellent for parallel
execution on the BDPA using either processor. The number
of processors can be increased until the output rate matches
the requirements of the application. The application specific
processor achieves a performance several times better than
the standard DSP chip.

B. A 2-D FIR Filter

The mapping of 2-D FIR digital filters to the BDFP is
very similar to the mapping for the 2-D IIR filter, except all
of the a(j1,72) coefficients are equal to zero. Making this
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Fig. 14. Parallel speedup for 2-D IIR filtering of six (64 x 64)
images using a standard DSP.
Table 6 Clock Cycles per Output for the
Standard DSP for the 2-D Filter
Number of Processors 2 4 8 16 32
Cycles/Output 296 129 65 33 17

modification to the state equations, we obtain the following
equation for the vertical state variables.

2,52(n1,m2) = b(0, j2) f(n1,n2) + g1,1,(n1 — 1, m2)
+@2j,+1(n1,n2 —1); 1<j2< Lo
I =52l + 1 19
92,1,+1(n1,m2 — 1) = 0.
This equation requires one multiplication and two additions

(or subtractions).
The equations for the horizontal state variables are

q1.1, (n1,m2) = b(j1, jo)f(n1,n2) + qu,1, 41(n1 — 1,n2);

1<j1€£L-1; 0<j2<Ly (20
I = jaLi + j1.
q1,1, (n1,n2) = b(j1, j2) f(n1,m2)
Ji=Ly; 0< 52 < Lo (21)
I = joL1 + 1.

These equations require one multiplication and one or two
additions (or subtractions).
The output equation is given by

g(n1,n2) = b(0,0) f(n1,n2) + q1,1(n1 — 1,n3)

+g2,1(n1,n2 — 1). (22)
This equation requires one multiplication and two additions
(or subtractions).

Simulation results for this algorithm are shown in Fig. 15.
Speedup for a standard DSP was essentially linear for up
to 32 processors. The number of cycles required per output
is in Table 6.
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Fig. 15. Parallel speedup for 2-D FIR filtering of six (64 x 64)
images.

C. A 2-D Discrete Cosine Transform

The discrete cosine transform has been widely used
for data compression and for the implementation of filter
banks. It has been adopted as a part of several international
standards, including the high-definition television (HDTV)
standard [60], [61]. The discrete cosine transform is a
computationally intensive transform which is well suited
for implementation using a multiprocessor system. An nxn
point 2-D DCT is defined as

Y = C*XC (23)

where C is the coefficient matrix, X is the input image, and
C* is the transpose of the coefficient matrix. (All matrices
are of dimension n x n.) The elements of the matrix C are
the coefficients for the DCT as given by

i = \/g cos[(—%——%j:l)—ﬂ] 24

where 1 = 1,2,---,nand j = 2,3,---,n, and
cin=n"Y2 (25)

Using the above equations, direct computation of the
DCT for a n X n matrix requires on the order of 2n®
multiply-accumulate operations. When the size of the image
is large, computation of the DCT for the entire image
is prohibitively expensive. Therefore, in our research we
divide the image into subimages of size m x m, where
n = km and k is a positive integer. Given an n X n image,
we compute the m X m point DCT of k? subimages. Fig. 16
presents an n X n image partitioned into k? subimages.
The figure also illustrates the data partitioning used when
mapping the DCT onto the BDFP. A block of data, defined
as k subimages, is sent to each PM. Processors within a PM
divide this m X n block of data evenly to balance workload.
Each PM then produces a single m X n block of the output
image.

We use a hierarchical BDPA for this application. We
utilize a linear array of PM’s, where each PM consists of a
linear array of processors. Fig. 17 shows an example of a
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Fig. 16. Data partitioning of the DCT for the BDPA.
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Fig. 17. A processor module containing two processors.

Table 7 Clock Cycles per Output for the 2-D DCT

Number of Processors 2 4 8 16 32
Cycles/Qutput 525 263 132 66 33

PM that consists of two processors. Our implementation of
the DCT uses both data partitioning at the high level, and
algorithm partitioning at the PM or low level.

Fig. 18 presents performance results obtained from the
simulation of a 2-D DCT for which m = 8, n = 64, and
k = 8. The number of cycles per output is shown in Table 7.
In these experiments, when the number of processors was
eight or less, all processors were included in a single PM.
In all other cases, each PM contained eight processors
requiring each processor to compute the DCT of a single
8 x 8 DCT subimage. Speedup was almost perfectly linear
in this experiment.

D. Cholesky Factorization

Given an n X n symmetric, positive-definite matrix A,
Cholesky factorization is the determination of a triangular
matrix L such that

A=L-LT (26)

where L is also an n X n matrix with nonzero elements
only on and below the main diagonal, i.e.,

Ly 0 0 ... 0
Iy b O

L=|* @7
Ly by Iz oo Lom
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Fig. 18. Parallel speedup for the 8 x 8 2-D discrete cosine
transform of a sequence of six (64 x 64) images.
Table 8 Clock Cycles per Output for a
64 x 64 Cholesky Factorization
Number of Processors 2 4 8 16 32

Cycles/Output 229 114 51 20 10

This factorization originates from a special case of the well
known LU factorization which is associated with Gauss-
ian elimination [62]. Similar to the LU decomposition,
Cholesky factorization decomposes a square matrix into the
product of a lower triangular matrix and an upper triangular
matrix. Adding the constraint on the input matrix A that it
is symmetric and positive-definite, Cholesky factorization
becomes even less computationally intensive by utilizing
the relationship between the upper triangular matrix and
the lower triangular matrix (i.e., U = LT to reduce the
total number of computations needed by a factor of % as
compared to LU factorization). Cholesky factorization is
used in many computationally intensive applications such
as data modeling, line fitting, data smoothing, and maxi-
mum likelihood estimation. However, the most prevalent
application is in the solution of the linear least squares
problem. Additional parallel implementations of Cholesky
decomposition can be found in [63], [64].

Fig. 19 is a graphical depiction of the Cholesky Fac-
torization on the BDPA. Each processor accepts as input
a column of the input matrix as its block of data. One
column of output, corresponding to the input block and
the state variables received from the previous processor,
is created by each processor. The code for each PM is
identical, except for slight modifications for the first and last
columns (boundary conditions). Figs. 20 and 21 summarize
the performance of the Cholesky algorithm on the BDPA,
obtained using erg. Parallel speedup on the BDPA for this
example is excellent. For the 64 x 64 factorization, the
number of cycles needed per output element is shown in
Table 8.

E. OR Decomposition
Many digital signal or image processing applications re-
quire the computation of a few of the eigenvalues (and their
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Fig. 19. Illustration of Cholesky factorization on the BDPA.
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Fig. 20. Parallel speedup for Cholesky factorization of a se-
quence of 50 (32 x 32) matrices.

corresponding eigenvectors) for a large matrix. Examples
of such applications include array signal processing [65],
system identification [66], [59], image processing [67],
spectrum estimation [68], and filter design [69]. The first
step of the partial eigenvalue solution algorithm is the
QR decomposition of a covariance matrix E to solve the
set of linear equations EU = S, where E = QR and
B = Q'S. We now discuss the mapping of the required
QR decomposition to the BDFP. This requires the QR
decomposition of E to find R and B.

EU=S
QTEU = QTs 28)
RU =B.
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Fig. 21. Parallel speedup for Cholesky factorization of a se-
quence of six (64 x 64) matrices.

Table 9 Clock Cycles per Output for QR Decomposition

Number of Processors 2 4 8 16 32
Cycles/Output 685 352 184 100 57

We used Given’s rotations for the QR decomposition.
The purpose of the Given’s rotation is to annihilate the
subdiagonal elements of matrix E and reduce it to upper tri-
angular form. In Given’s rotation, the subdiagonal elements
of the first column are annihilated first, then the elements
of the second column, and so forth until an upper triangular
form is eventually reached. The matrix Q is a product of
matrices used to zero elements of E. Each element of E
(es;) is zeroed by multiplying E by an orthogonal matrix
Q;j. The matrix Qy; is formed from the identity matrix by
replacing the diagonal (%,¢) and (j, j) elements by c;;, the
(¢,7) element by s;;, and the (j, %) element by —s;; where

€jj

A
Vi T e 29

€ij

A s
€5 + €ij
Multiplying E by Q;; updates row 7 (e;) and row j (e;)
of E

€; «— —8i;€; + Cij€5

G0
€; «— C;j€; + s;5€;.
The element e;; becomes
. €;;j€;j €;;€ij
&ij = — 2333 331 = 0. (31)

e +el; ef; + el
Therefore, a subdiagonal element, e;;, is zeroed in this way,
and the two rows e; and e; are modified for each element
e;; that is zeroed.

We partitioned the matrix E by columns. A column of
E and a row of S are sent to each PM as a block of

W. E. ALEXANDER, D. S. REEVES, AND C. S. GLOSTER, JR.

32

24 #
o ,//
=3 -
816 e
aQ -
[72] g

8 - o

/n/,
o
()} -— T 1
0 8 16 24 32

Number of Processors

Fig. 22. Parallel speedup for QR decomposition of a sequence of
six (64 x 64) matrices.

data. Each PM receives previously computed c;; and s;;
pairs and the updated B from the previous PM as state
variables. The PM annihilates the subdiagonal elements
for its assigned column and updates B. It then sends the
updated B, its newly computed c¢;; and s;; values and all
previously computed c;; and s;; values to the next PM as
state variables. Finally, it sends the results for its assigned
column of R to the output (OM).

The above algorithm is a modified version of the QR
decomposition algorithm, in which we update B while
computing Q and R. This is a more efficient approach
when the final goal is to compute B. B does not need to be
updated and communicated to the next PM for the normal
QR decomposition. Fig. 22 presents simulation results for
the QR decomposition algorithm that computes Q and R.
The number of cycles per output is shown in Table 9.
Fig. 23 presents the simulation results for the modified QR
decomposition algorithm that computes R and updates B
during each pass. In this experiment, the B matrix has
dimensions 64 x 4. Speedup is acceptable for both of these,
although less than ideal in this case.

F. Back Substitution

The QR decomposition algorithm described above would
be followed by the use of back substitution to obtain the
solution of a set of equations. The goal of this algorithm
is to find U for

RU=B 32)

given the upper triangular matrix R and the matrix B. Since
R is a m x m matrix and U and B are m x k matrices, this
algorithm solves for k elements of U simultaneously. Since
R is upper triangular, the linear equations corresponding to
the rows of the matrix equation are solved in reverse order,
starting with the last row. This procedure is repeated until
the equation corresponding to the first row is solved.

We partitioned this problem by row, with each PM
receiving a row of R and a row of B as a block of data.
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Fig. 23. Parallel speedup for modified QR decomposition of a
sequence of 50 (64 x 64) matrices.

Table 10 Clock Cycles per Output for Back Substitution

Number of Processors 2 4 8 16 32
Cycles/Output 65 33 17 10 6

The PM receives previously computed values of U from
the previous PM as state variables. It then updates a row of
U corresponding to its assigned row and sends the updated
values of U and all previously computed values of U to the
next PM as state variables. The PM also sends the updated
values of U corresponding to its assigned row to the output
(OM).

Simulation results for this algorithm are shown in Fig. 24.
Again, speedup is acceptable although not ideal. The num-
ber of cycles per output is shown in Table 10.

G. Summary

The examples of applications we have given show the
wide range of applicability of the BDFP. Our simulated
experimental results indicate that the architecture and our
method of partitioning effectively exploits the parallelism
inherent in these applications.

VII. CONCLUSION

We feel that the BDPA provides a solution to many
of the problems associated with high performance digital
signal and image processing. The use of block processing
reduces the requirement for data communication. The use
of data flow computing permits the processors to operate
asynchronously. We developed the BDFP as a paradigm for
mapping digital signal and image processing applications
on a multiprocessor system and we presented methods for
partitioning applications for the BDFP. By restricting the
data communication at the algorithm level, we can require
all communication to be local (nearest neighbor) and in
one direction (normally up to down and left to right). This
allows the processors to skew operations which makes it
easier to keep all processors operating at the same time.

The BDFP evolved from our research on developing a
multiprocessor architecture for implementing 2-D digital
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Fig. 24. Parallel speedup for back substitution of a sequence of
six (64 x 64) matrices.

filters in real-time. Through extensive simulation, we were
able to verify that this approach could achieve almost
linear speedup and very high efficiency as the number of
processors increases until the processing rate equals the
input data rate. The BDFP can be used to implement any
algorithm that can be implemented using block data pro-
cessing. Thus we expect the BDFP to be widely applicable
to a wide variety of high performance digital signal and
image processing applications. We have mapped a large
number of image processing algorithms onto the BDPA
and we presented performance evaluation results that are
consistent with our claim that the BDPA can provide almost
linear speedup for many image processing algorithms.

We feel that the BDPA is flexible and adaptable to
changes in technology. We have explored the use of appli-
cation specific processors, DSP chips, and general purpose
processors as node processors in the BDPA. Either of
these can be used although the highest performance can
be provided with the use of application specific processors.
However, special purpose processors such as DSP chips
offer a good compromise between high performance and
programmability. On the other hand, the greatest flexibility
and lowest cost can be provided with general purpose
processors as node processors in the BDFA.

We are experimenting with the implementation of the
DCT using Pentek 4284 and 4270 boards in a VME bus
extender connected to the ISA bus of a PC. One goal of
this experiment is to determine if commercial boards with
multiple DSP’s such as the Pentek 4270 can be used to
implement the BDFP. We use the Pentek 4284 in our setup
to emulate the IM and the OM and one or more Pentek
4270 boards to emulate the PMA. Our early experiments
show that the bottleneck for this configuration is the I/O.
We are currently working on optimizing the I/O so that we
can take advantage of the processing power of the multiple
DSP’s on the 4270 boards.

Our work presented in this paper involves the use of
the BDFP and the BDPA on low level image processing
applications. However, we feel that the BDFP is appropriate
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for many medium level and high level image processing
applications as well. Since the communication between
PM’s is asynchronous and computation is based upon data
flow, a multiprocessor system based upon the BDFP can
dynamically adjust work load based upon the requirements
of the application. In addition, our concept of the BDPA
involves the use of a stored program in each PM rather
than central control. Thus a PM can run different program
segments based upon the intermediate data it receives, etc.
We are exploring some of these ideas. We are also exploring
the use of hierarchical BDPA systems where the PM is
replaced by another BDPA. However, the BDFP does not
support global communication in general. Our approach is
to avoid this problem by remapping the algorithm so that
only local communication is required.

As we continue our research, we will continue to focus
on developing a systematic approach to mapping image
processing applications to the BDFP. Our goal is to provide
software tools to automate the whole algorithm partitioning
and scheduling process. Our experience in using the state
space model and the order graph method will provide the
base for the development of these tools. We will continue to
improve our tools for performance evaluation because we
need feedback from these to evaluate our research results
on actual image processing applications. Finally, we plan
to continue to explore opportunities to test our methods
on actual hardware. This includes exploring the use of the
BDFP to map applications to commercial multiprocessor
systems as well as a small scale effort to develop our own
hardware prototype.
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