
by E. Elmroth
F. G. GustavsonApplying

recursion
to serial and
parallel QR
factorization
leads to better
performance

We present new recursive serial and parallel
algorithms for QR factorization of an m by n
matrix. They improve performance. The
recursion leads to an automatic variable
blocking, and it also replaces a Level 2 part
in a standard block algorithm with Level 3
operations. However, there are significant
additional costs for creating and performing
the updates, which prohibit the efficient use
of the recursion for large n. We present a
quantitative analysis of these extra costs.
This analysis leads us to introduce a hybrid
recursive algorithm that outperforms the
LAPACK algorithm DGEQRF by about 20%
for large square matrices and up to almost a
factor of 3 for tall thin matrices. Uniprocessor
performance results are presented for two IBM
RS/6000® SP nodes—a 120-MHz IBM POWER2
node and one processor of a four-way 332-MHz
IBM PowerPC® 604e SMP node. The hybrid
recursive algorithm reaches more than 90%

of the theoretical peak performance of the
POWER2 node. Compared to standard block
algorithms, the recursive approach also shows
a significant advantage in the automatic tuning
obtained from its automatic variable blocking.
A successful parallel implementation on a
four-way 332-MHz IBM PPC604e SMP node
based on dynamic load balancing is presented.
For two, three, and four processors it shows
speedups of up to 1.97, 2.99, and 3.97.

1. Introduction
LAPACK algorithm DGEQRF requires more floating-
point operations than LAPACK algorithm DGEQR2; see
[1]. Yet DGEQRF outperforms DGEQR2 on an RS/6000*
workstation by nearly a factor of 3 on large matrices.
Dongarra, Kaufman, and Hammarling, in [2], later,
Bischof and Van Loan, in [3], and still later, Schreiber and
Van Loan, in [4], demonstrated why this is possible by
aggregating the Householder transforms before applying

rCopyright 2000 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/00/$5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

605

them to a matrix C. The result of [3] and [4] was the k-way
aggregating WY Householder transform and the k-way
aggregating storage-efficient Householder transform. In
the latter, the aggregated representation of Q 5 I 2 YTYT.
Here, lower trapezoidal Y is m by k, consisting of k
Householder vectors, and upper triangular T is k by k.

Our recursive algorithm, RGEQR3, starts with a block
size k 5 1 and doubles k in each step. If we were to allow
this to continue for a large number of columns, the
performance would eventually degrade because the
additional floating-point operations (FLOPs) grow
cubically in k. The cost of RGEQR3 on an n by n
matrix is (13/6)n 3 1 . . . , whereas the DGEQR2 cost
is (4/3)n 3 1 Thus, to avoid this occurring, RGEQR3
should not be used until k 5 n/ 2. Instead, we propose
to use a hybrid recursive algorithm, RGEQRF, which is a
modification of a standard Level 3 block algorithm in that
it calls RGEQR3 for factorizing block columns instead of
calling DGEQR2 and DLARFT.1 Hence, RGEQRF is a
modified version of Algorithm 4.2 of Bischof and Van Loan,
in [3], and RGEQR3 is a recursive Level 3 counterpart of
their Algorithm 4.1. This work is a continuation of the
work presented in [5].

In Section 2 we describe our new recursive serial
algorithms RGEQR3 and RGEQRF and give a proof
of correctness. The first subsection discusses aspects of
increasing the FLOP count in order to gain performance.
In the second subsection we give an explanation as to why
the FLOP count increases for QR factorization when one
goes from a Level 2 to a Level 3 factorization. Next we
derive FLOP counts for LAPACK algorithms DGEQR2
and DGEQRF and our new algorithms RGEQR3 and
RGEQRF. These counts are functions of the three
parameters m, n, and k, the block size. On the basis of
relations among these various counts, one can devise and
tune various QR factorization algorithms; the above four
are examples. Specifically, we demonstrate the correctness
of the new recursive algorithm by using mathematical
induction on k 5 log2 n, k 5 0, 1, 2, Additionally,
a quantitative analysis is presented that details how the
FLOP counts of the various standard and new recursive
algorithms relate to one another. At the end of the section
we detail savings for RGEQR3 in computing the T matrix
when one need not update later with T. These savings are
especially important for tall thin matrices. We also discuss
alternative approaches for performing updates of the
matrix, including a description of the routine DQTC
(equivalent to DLARFB) used in our implementations.

Uniprocessor performance results for square and tall
thin matrices are presented for the 120-MHz IBM
POWER2 node and the 332-MHz IBM PPC 604e node
in Sections 3 and 4. Roughly speaking, the algorithm

RGEQR3 is a times faster than DGEQRF, where a

decreases from 3 to 1.2 as n ranges from 50 to m and
m $ 300. We remark that significantly more effort was
needed to tune the parameters for DGEQRF than
was needed for RGEQRF, since DGEQRF has two
parameters that are to be set (defining a two-dimensional
parameter space), whereas only one parameter is to be set
in RGEQRF. The fact that less tuning is needed to obtain
optimal performance is another feature of the automatic
variable blocking of the recursive algorithm. We also
mention the case for which recursion fails to produce
good performance, and the remedy for this.

In Section 5 we describe our new parallel recursive
algorithm. It is related to the LU factorization algorithm
described in [6] and the dynamic load-balancing versions
of LU and Cholesky factorization in [7]. The algorithm is
based on a dynamic load-balancing strategy, implemented
using the pool-of-tasks principle in which each processor
enters a critical section to assign itself more work as soon
as it has completed its last task. This process is fully
asynchronous, since there are no fixed synchronization
points. The amount of work performed in each task is
large enough to make overhead in the work distribution
process negligible. Section 6 shows performance results
for the parallel algorithm on one, two, three, and four
processors of a four-way 332-MHz IBM PPC604e SMP
node. The uniprocessor performance of the parallel
algorithm is basically the same as for the serial algorithm.
The parallel results show nearly perfect speedups, up to
1.97, 2.99, and 3.97 for two, three, and four processors,
respectively.

2. Recursive QR factorization
In our recursive algorithm, the QR factorization of an
m 3 n matrix A,

SA11 A12

A21 A22
D 5 QSR11 R12

0 R22
D , (1)

is initiated by a recursive factorization of the left-hand
side n/ 2 columns, i.e.,

Q1SR11

0 D 5 SA11

A21
D . (2)

The remaining part of the matrix is updated,

SR12

Ã22
D 4 Q 1

TSA12

A22
D , (3)

and then Ã22 is recursively factorized,

Q̃2 R22 5 Ã22 . (4)

The recursion stops when the matrix to be factorized
consists of a single column. This column is factorized by
applying an elementary Householder transformation to it.1 Routines starting with DLA . . . are LAPACK auxiliary routines.

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

606

Proof of correctness
Our method of proof is mathematical induction. We
consider only the case m $ n. The recursion takes place
on the column dimension n. We want to prove correctness
for n 5 1, 2, However, recursion breaks the problem
into nearly two equal pieces, n1 5 n/2 and n2 5 n 2 n1.
This suggests that we use mathematical induction on
k 5 log2 n, k 5 0, 1, On the basis of this
observation, we have the following form of mathematical
induction. Suppose the result is true for 1 # n # 2 k .
Then we establish the results for all j, 2 k , j # 2 k11 .
Additionally, we need to establish the result for (m, n)
where n 5 1.

Now we give the proof: For n 5 1 we compute the
Householder reflector H 5 I 2 tuuT , where u is
computed from A(1:m, 1). Thus, the result is true for
n 5 1. Now suppose the result is true for 1 # n # 2k. Let
2 k , j # 2 k11 , j1 5  j/ 2, and j2 5 j 2 j1 . Since j . 1,
we do the computations indicated by Equations (2), (3),
and (4) in that order.

Equation (2) is satisfied by the induction hypothesis;
Equation (3) is a calculation, and Equation (4) is satisfied
by the induction hypothesis. Using Equations (2)–(4), we
want to show that Equation (1) is true, where Q 5 Q1Q2

and Q, Q1 , and Q2 are m 3 m. That Q is orthogonal
follows by induction, using the induction hypothesis that
Q1 and Q2 are orthogonal and the facts that Q1 and Q2

are orthogonal Householder transformations for the cases
n1 5 1 and n2 5 1, respectively, and the fact that the
product of two orthogonal matrices is an orthogonal
matrix.

Partition Q1 and Q2 as follows:

Q1 5 SQ11 Q12

Q21 Q22
D ; Q2 5 S I 0

0 Q̃2
D , (5)

where Q̃2 is m 2 n1 by m 2 n1 . Since Q is orthogonal,
QTQ 5 I, and it is sufficient to show that QTA 5 R.

Now,

Q 1
TA 5 SQ 11

T A11 1 Q 21
T A21 Q 11

T A12 1 Q 21
T A22

Q 12
T A11 1 Q 22

T A21 Q 12
T A12 1 Q 22

T A22
D , (6)

and by substituting (2) and (3) into (6) we obtain

Q 1
TA 5 SR11 R12

0 Ã22
D . (7)

Now QTA 5 Q2
T(Q1

TA) becomes equal to R by
substituting (7) for Q1

TA, then carrying out the
multiplication by Q2

T [see (5)] and finally substituting
R22 for Q̃2

TÃ22 . [This latter substitution is valid by
Equation (4)]. e

We use the storage-efficient WY form, that is,
Q 5 I 2 YTYT , to represent the orthogonal matrices,
and the update by Q1

T in (3) is performed as a series of

matrix multiplications with general and triangular matrices
(i.e., by calls to Level 3 BLAS DGEMM and DTRMM).
In Figure 1, we give the details of our recursive algorithm,
called RGEQR3.

We assume that A is m by n, where m $ n. In the
“else” clause there are two recursive calls, one on matrix
A(1:m, 1:n1), the other on matrix A(j1:m, j1:n), and the
computations Q1

TA(1:m, j1:n) and 2T1(Y1
TY2)T2 . These

two computations consist mostly of calls to either
DGEMM or DTRMM. Our implementation of RGEQR3
is made in standard FORTRAN 77, which requires the
explicit handling of the recursion.

Algorithm RGEQR3 can be proved correct by following
and modifying the above correctness proof. In this regard
we note that RGEQR3 uses the storage-efficient
representation Q 5 I 2 YTYT , and so T must also
be computed. Furthermore, RGEQR3 computes T
recursively. The modification in the proof would include
the correctness of the recursive T computation. Since
it also follows in a similar way, we omit it.

In Figure 2 we give annotated descriptions of algorithms
DGEQRF and DGEQR2 of LAPACK. See [1] for full
details. The routine DGEQRF calls DGEQR2, which is a
Level 2 version of DGEQRF. In the annotation we have
assumed m $ n.

● Remarks on the recursive algorithm RGEQR3
The algorithm RGEQR3 requires more floating-point
operations than the algorithm DGEQRF, which in turn
requires more floating-point operations than DGEQR2.
Dongarra, Kaufman, and Hammarling, in [2], showed how
to increase performance by increasing the FLOP count
when they aggregated two Householder transforms before
they were applied to a matrix C. The computation they
considered was

C 5 Q TC, (8)

where C is m by n, Q 5 Q1Q2 , and Q1 and Q2 are
Householder matrices of the form I 2 t iuiui

T , i 5 1, 2.
Their idea was to better use high-speed vector operations
and thereby gain a decrease in execution time. Bischof
and Van Loan, in [3], generalized (8) by using the WY
transform. They represented the product of k Householder
transforms Qi , i 5 1, . . . , k, as

Q 5 Q1Q2 · · · Qk 5 I 2 WY T. (9)

They used (9) to compute QTC 5 C 2 YWTC. Later
on, Schreiber and Van Loan, in [4], introduced a storage-
efficient WY representation for Q:

Q 5 Q1Q2 · · · Qk 5 I 2 YTY T, (10)

where T is an upper triangular k by k matrix. In all three
cases performance was enhanced by increasing the FLOP
count. Here the idea was to replace the matrix–vector-type

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

607

Figure 1
Recursive QR factorization routine RGEQR3.

Figure 2
DGEQRF and DGEQR2 of LAPACK.

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

608

computations with matrix–matrix-type computations. The
decrease in execution time occurred because the new
code, despite requiring more floating-point operations,
made better use of the memory hierarchy.

In (9) and (10) Y is a trapezoidal matrix consisting of k
consecutive Householder vectors, ui , i 5 1, . . . , k. The
first component of each ui is 1, where the 1 is implicit and
hence is not stored. These vectors are scaled with t i . For
k 5 2, the T of Equation (10) is

T 5 S t1 2t1u 1
Tu2t2

0 t2
D . (11)

Suppose k1 1 k2 5 k and T1 and T2 are the associated
triangular matrices in (10). We have

Q 5 ~Q1 · · · Qk1
!~Qk111 · · · Qk! 5 ~I 2 Y1T1Y 1

T!~I 2 Y2T2Y 2
T!

5 I 2 YTY T, (12)

where Y 5 (Y1 , Y2) is formed by concatenation. Thus, a
generalization of (11) is

T 5 ST1 2T1Y 1
TY2T2

0 T2
D , (13)

which is essentially a Level 3 formulation of (11), (12).
Schreiber and Van Loan and LAPACK’s DGEQRF

compute (12) (by LAPACK algorithm DLARFT) via a
bordering technique consisting of a series of Level 2
operations. For each k1 5 1, . . . , k 2 1, k2 is chosen to
be 1. However, as (12) and (13) suggest, Q 5 I 2 YTYT

can be done recursively as a series of k 2 1 matrix–
matrix computations. Also, the FLOP count of the T
computation in (12) by this matrix–matrix computation
is the same as the FLOP count of the bordering
computation to compute T (see the next subsection,
below).

Algorithm RGEQR3 can be viewed as starting with
k 5 1 and doubling k until k 5 n/ 2. If this doubling
were allowed to continue, performance would degrade
drastically because of the cubically increasing FLOP count
in the variable k (see the next subsection for details).
To avoid this, RGEQR3 should not be used for large n.
Instead, the LAPACK algorithm, DGEQRF, should be
revised and used with RGEQR3. In Figure 3 we give our
hybrid recursive algorithm, which we name RGEQRF.
The routine DQTC described in the next two subsections
applies QT 5 I 2 YTTYT to a matrix C as a series of
DGEMM and DTRMM operations.

Note that RGEQRF has no call to LAPACK routine
DLARFT, which computes the upper triangular matrix T
via Level 2 calls. Instead, routine RGEQR3 computes T
via our Level 3 (matrix–matrix) approach in addition to
computing t, Y, and R. DGEQRF calls DGEQR2 to
compute t, Y, and R; there is no need to compute T, and
so it is not done. However, the “if” clause of RGEQRF
is not invoked after the last and sometimes only column
block A(j:m, j: j 1 jb 2 1) is factored (this occurs when
and only when j 1 jb 2 1 5 n). In that case, some of the
Level 3 T computations can be avoided. An example is
given in Figure 4, where matrices Ti , i 5 0, . . . , 4 must
be computed, whereas zero matrices Zi , i 5 0, . . . , 3 are
not needed, and hence their computation can be avoided.
Our algorithm RGEQR3 has an additional parameter
ISW (a switch or flag), which when set will avoid the
computation of the Zi matrices. ISW is set on in
RGEQRF just before the last column block is factored.
In RGEQR3, when ISW is set on, the T3 computation is
avoided when and only when the right boundary of T3

is equal to n. In Figures 1 and 3 we did not include the
switch logic, as it was a detail that would detract from the
clarity of these algorithms. The necessary modifications

Figure 3
Hybrid algorithm RGEQRF.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

609

should be clear from the description above. In the next
subsection we detail the FLOP-count saving S(m, n) that
results when ISW is set on. All performance tests have
been made with ISW set on.

● Comparative FLOP counts for algorithms DGEQR2,
DGEQRF, RGEQRF, and RGEQR3
Some dense linear algebra algorithms have the same
FLOP counts for both Level 2 and Level 3 versions.
General LU factorization and Cholesky factorization are
two examples. Others (QR factorization, for example)
exhibit increasing FLOP count for their Level 2 and
Level 3 versions as a function of increasing block size.
We briefly describe why this is so.

Let L be the lower triangular factor of LU factorization
with partial pivoting of a general matrix; i.e., LU 5 PA.
In LAPACK, the routine that produces L, U, and P, given
A, is called DGETRF. One can represent L as the product
of n rank-one corrections of the identity matrix, i.e.,

L 5 L1L2 · · · Ln ,

where Li 5 I 1 liei
T . Here, vector li

T 5 (0, . . . , 0, 1,
li11,i , . . . , lm,i) is the ith column of L. The point we make
here is that the product of the n elementary matrices Li

requires no arithmetic to produce L; i.e., the product L is

only a concatenation of the n vectors li , 1 # i # n (see
[8] for details). On the other hand, Q 5 Q1Q2

. . . Qn ,
where each Qi 5 I 2 t iuiui

T is not equal to the
concatenation of the n Qi matrices. To form Q we
must multiply these n Qi matrices together. The actual
representation we use is Q 5 I 2 YTYT , and the extra
work required to produce Q is the work needed to
produce the T matrix.

In the Level 2 implementations DGETF2 and DGEQR2
we work only with matrices Li and Qi . In the Level 3
implementations DGETRF and DGEQRF, we work with
block matrices L and Q. It is clear from the discussion
above that the Level 3 implementation of general LU
factorization requires no additional FLOPs, as L can be
formed from the Li by concatenation, whereas the Level 3
implementation of general QR factorization requires
additional FLOPS, namely those needed to produce T
in the representation Q 5 I 2 YTYT .

Our recursive algorithms RGEQRF and RGEQR3 also
exhibit increasing FLOP counts. Furthermore, the FLOP
count of RGEQRF is greater than the FLOP count of
DGEQRF. In this subsection we compute the FLOP
counts of these four algorithms. Specifically, we derive
FLOP counts FG, F, FT as functions of m and n, and
FB(m, n, k). The four functions refer to LAPACK
auxiliary routines DLAR{FG, F, FT, FB}. These routines
work on a matrix of size m by n; DLARFB computes
QTC, where C is m by n and Q is m by k. Additionally,
we compute FLOP-count functions T(m, k), Y(m, k),
R(m, k), Diff(k), and M(m, k), S(m, k). Here we use k
instead of n. These latter six functions relate RGEQR3
and RGEQRF to DGEQR2 and DGEQRF. The function
T(m, k) 5 FT(m, k) computes the FLOP count of
producing the T matrix, which we need to compute the
block matrix Q 5 I 2 YTYT . The cost of doing the k 2 1
update computations QTC in RGEQR3 is Y(m, k). We
were unable to find an explicit solution to Y(m, k),
and so computed W(m, k) [5 Y(m, k) 1 DW(k)]
explicitly. R(m, k), standing for the cost of RGEQR3,
was computed as the sum of FG(m, k), Y(m, k), and
T(m, k). Diff(k) 5 Y(m, k) 2 F(m, k) represents the
difference in FLOP count between RGEQRF and
DGEQRF during one block step, i.e., the FLOP count
of one factor-and-update step of RGEQRF/DGEQRF.
Now, T(m, k) 5 M(m, k) 1 S(m, k). M(m, k) is
the modified FLOP count needed to compute only
those parts of the T matrix that are necessary to factor
a single (and last) block column, i.e., the Ti submatrices
of T in Figure 4. S(m, k) is the FLOP count saved by
not computing the Zi submatrices of T in Figure 4.
We were not able to explicitly compute M and S.
However, we produce implicit expressions of M
and S and also produce explicit approximations
of M and S that satisfy T 5 M 1 S.

The matrix T, with Ti, i 5 0, ..., 4 representing blocks that must be

generated and Zi, i 5 0, ..., 3 representing blocks that are not

needed.

Figure 4

T
0

T
1

T
2

T
3

T
4

Z
2

Z
1

Z
0

Z
3

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

610

The purpose of producing these FLOP counts is to be
able to quantify and predict the performance properties of
our new recursive algorithms. For example, we show that
the FLOP count of RGEQR3 is about equal to the sum of
the FLOP counts for DGEQR2 and DLARFT for tall thin
matrices. Thus, for tall thin matrices we can expect about
a threefold speedup of our algorithm over the LAPACK
algorithm DGEQRF (see the second paragraph below for
an explanation). Our experimental results in Section 3
verify this.

It is counterintuitive that an algorithm with a higher
FLOP count will execute faster. The reason is that the
FLOP rate depends crucially on the FLOP operands being
in the higher levels of memory, e.g., in the cache. Our
recursive algorithms automatically block for the memory
hierarchy. Additionally, recursion produces a Level 3
implementation of the “factorization part of the code.”
LAPACK implementations, on the other hand, compute
the “factorization part of the code” as Level 2.

For RISC-type processors one usually needs a Level 3-
type code to maintain peak FLOP rates, even if the
operands are in cache. To a first approximation, execution
time is equal to FLOP rate times FLOP count. The main
result of this paper shows that recursion improves
performance most for tall thin matrices. The reason is
found in the difference between RGEQR3 and the sum of
DGEQR2 and DLARFT. For tall thin matrices, RGEQRF
and DGEQRF spend the majority of their time in
RGEQR3 and in DGEQR2 plus DLARFT, respectively.
We assume that, if appropriate, the switch ISW has been
set on. (If we compare RGEQR3 with the switch on to
just DGEQR2, the values of the leading term mk 2 of the
two FLOP counts are 7/3 and 2. Thus, the FLOP ratio of
the two codes is about 7/6 for tall thin matrices.) Now
RGEQR3 has a higher FLOP count than DGEQR2 plus
DLARFT, but not drastically so. For tall thin matrices
they are essentially equal. On the other hand, the FLOP-
rate ratio of RGEQR3 to DGEQR2 plus DLARFT is,
very loosely speaking, about 3, which explains why the
performance results are so good for tall thin matrices.

We start with DGEQR2 and determine its FLOP count.
We see from Figure 2 that DLARFG is called n times to
compute n Householder transforms, Q(j) 5 I 2 tuuT .
This routine computes the 2 (Euclidean) norm of a vector,
avoiding overflow. It then scales the vector. The jth
vector has size m 2 j 1 1. We give the FLOP count as
3(m 2 j 1 2) 1 2. This is an underestimate because we
designate the 2 norm cost as 2(m 2 j) and count square
root as one FLOP. Summing from 1 to n, we obtain

FG~m, n! 5 n~6m 2 3n 1 13!/ 2.

Also, for 1 # j , n, DGEQR2 applies Q(j)T to
A(j:m, j 1 1:n) from the left by calling DLARF. Let
C 5 A(j:m, j 1 1:n). DLARF computes (I 2 tuuT)C 5

C 2 tuwT, where w 5 CTu. Now w 5 CTu is computed by
calling DGEMV, and C 5 C 2 tuwT is computed by
calling DGER. The computation w 5 CTu followed by the
scaling w 5 tw costs 2(m 1 1 2 j)(n 2 j) FLOPs. The
computation C 5 C 2 tuwT costs the same, so the FLOP
count is 4(m 1 1 2 j)(n 2 j). Summing j from 1 to n 2 1,
we obtain

F~m, n! 5 2n~n 2 1!@m 2 ~n 2 2!/3#.

Now we turn to DGEQRF. The routine in Figure 2 is a
simplified version in that no mention is made of blocking
parameter nx. However, it is sufficient for our purposes.
There are two routines we want to analyze, DLARFT and
DLARFB. DLARFT computes T via a Level 2 bordering
computation. At the jth step, 1 # j # n, we have T as
an order j 2 1 upper triangular matrix, and we want to
compute the jth column of T. Letting

Y1 5 ~Y, v!, T1 5 ST w
0 zD ,

we have

~I 2 YTY T!~I 2 tvv T! 5 I 2 Y1T1Y 1
T,

and so the cost of computing column j consists of
computing 2tTYTv, where Y is an m by j unit lower
trapezoidal matrix and v 5 (1, uT)T is an m 2 j 1 1
vector. DLARFT computes w 5 T(1: j 2 1, j) 5 2tYTv
by calling DGEMV and then calling DTRMV to compute
w 5 Tw. The DGEMV computation, including the scaling
by t, costs 2(j 2 1)(m 2 j 1 1) FLOPs. The DTRMV
computation costs (j 2 1)2 FLOPs. Thus, the total cost
is (j 2 1)[2m 2 (j 2 1)]. Summing j from 1 to n, we
obtain

FT~m, n! 5 n~n 2 1!@m 2 ~2n 2 1!/6#.

Now we turn to DLARFB. This routine does the bulk
of the computation. DLARFB is a general routine. In
one specific instance it has the same function as routine
DQTC. For our purposes we want to compute QTC, where
C is m by n and Q 5 I 2 YTYT . Here Y is m by k lower
unit trapezoidal and T is order k upper triangular. Both
DLARFB and DQTC have the same FLOP count and use
an auxiliary work array of size k by n.

Let

Y 5 SY1

Y2
D ,

where Y1 is an order k unit lower triangular matrix and Y2

is an m 2 k by k rectangular matrix. Also, let

C 5 SC1

C2
D ,

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

611

where C1 is k by n and C2 is m 2 k by n. Six computations
are performed; they are summarized in Table 1.

From Table 1 we have

FB~m, n, k! 5 kn~4m 2 k 2 1!.

This concludes the analysis of DGEQRF.
We next turn to RGEQRF. Routines DGEQRF and

RGEQRF differ (assuming both use the same blocking
strategy) in FLOP count as follows. DGEQRF calls
DGEQR2 and DLARFT, whereas RGEQRF calls
RGEQR3. Both routines use the DQTC computation
for the bulk of their operations. Hence, to compare
the FLOP-count difference we need to study the
difference between DGEQR2 1 DLARFT and
RGEQR3. Turning to RGEQR3, we now show that
its T computation can be separated out and directly
compared to DLARFT. The functional equation
governing the T FLOP count is

T~m, k! 5 T~m, k1! 1 T~m 2 k1, k2! 1 k1k2~2m 2 k1!, (14)

with T(m, 1) 5 0. The k1k2(2m 2 k1) FLOP component
is the cost of computing 2T1(Y1

TY2)T2 , where T1 and T2

are k1 and k2 upper triangular, respectively, Y1 is m by k1

unit lower trapezoidal, and Y2 is m 2 k1 by k2 unit lower
trapezoidal.

The computation proceeds as follows. Let us write

Y1 5 1
Y11

Y21

Y31
2 , Y2 5 SY12

Y22
D ,

where Y11 and Y12 are order k1 and k2 unit lower
triangular, respectively, Y21 is k2 by k1 , Y31 is m 2 k by k1 ,
Y22 is m 2 k by k2 , and k 5 k1 1 k2 . The computation is
summarized in Table 2. Note that Y11 is not used. First set
W 5 T(1:k1 , k1 1 1:k) 5 Y21

T .
We claim T(m, k) 5 FT(m, k). To show this we

substitute FT(m, k) into (14) and verify that (14) holds.
Now we want to remove the DLARFG part of the

RGEQR3 computation. This computation is done when
n 5 1. The remaining part of RGEQR3 consists of
computing Q 5 I 2 YTYT minus the T computation,
i.e., the Y matrix. The FLOP count is

Y~m, k! 5 Y~m, k1! 1 Y~m 2 k1, k2! 1 k1k2~4m 2 k1 2 1!.
(15)

The cost k1k2(4m 2 k1 2 1) is the cost of calling DQTC,
i.e., the A(1:m, k1 1 1:k) 5 Q1

TA(1:m, k1 1 1:k)
computation of Figure 1. Also Y(m, 1) 5 0.

To solve Equation (15), we compute an approximate
solution. Define Y 5 W 2 DW, where

W~m, k! 5 W~m, k1! 1 W~m 2 k1, k2!

1 k1k2~8m 1 k2 2 3k1 2 2!/ 2, (16)

with W(m, 1) 5 0. DW(m, k) is a function of k only and
satisfies

DW~k! 5 DW~k1! 1 DW~k2! 1 ~k 2 2k1!~k1k2!/ 2, (17)

with DW(1) 5 0.
The solution to (16) is

W~m, k! 5 k~k 2 1!~4m 2 k!/ 2.

This can be verified by substituting W(m, k) into (16).
Similarly, Y 5 W 2 DW can be verified by substitution
using (15), (16), and (17). Now we turn to the solution
of (17). Note that k 2 2k1 5 0 when k is even and 1
when k is odd. Thus, there is no additional count change
unless k is odd, and then it is k1(k1 1 1)/ 2. In particular,
DW(n) 5 0 when n 5 2 k . To find the general solution we
need some notation. Let N 5 ¥ i$0 bi2

i be the base-two
representation of N. Let Nj 5 N/ 2 j 5 ¥ i$j bi2

12j , and let
nj 5 ¥ i50

j bi2
i . The binary tree associated with N has 2 i

nodes at level i. At the root there is one node of size N0 .
Let n

21 5 0.
There are ni nodes of size Ni11 1 1 and 2i11 2 ni nodes

of size Ni11 at level i 1 1. As we saw above, only odd
nodes add to the count by the amount Ni11(Ni11 1 1)/ 2.

Table 1 FLOP counts for operations used to perform
C 5 QTC, where Q 5 I 2 YTYT .

Routine Computation Number of
floating-point operations

DTRMM W 5 Y1
T

p C1 k(k 2 1)n

DGEMM W 5 W 1 Y2
T

p C2 2k(m 2 k)n

DTRMM W 5 TT
p W k2n

DGEMM C2 5 C2 2 Y2 p W 2k(m 2 k)n

DTRMM W 5 C1 p W k(k 2 1)n

Matrix
subtract

C1 5 C1 2 W kn

Total
computation C 5 QTC kn(4m 2 k 2 1)

Table 2 FLOP counts for operations used to compute T3.

Routine Computation Number of
floating-point

operations

DTRMM W 5 Y21
T

p Y12 k1k2
2

DGEMM W 5 W 1 Y31
T

p Y22 2k1k2(m 2 k)

DTRMM W 5 2T1 p W k1
2k2

DTRMM W 5 W p T2 k1k2
2

Total
computation W 5 2T1(Y1

TY2)T2 k1k2(2m 2 k1)

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

612

Now, Ni is odd if and only if bi 5 1. Thus, Ni 1 1 is odd
if and only if bi 5 0. Using these facts, we see that at
level i the increase in the count is

@~1 2 bi!ni 1 bi~2 i11
2 ni!#@Ni11~Ni11 1 1!/ 2#.

Since DW(1) 5 DW(2) 5 0, we obtain

DW~N! 5 O
i50

log2 N21

@ni 1 2bi~2 i
2 ni!#@Ni11~Ni11 1 1!/ 2#.

To obtain a bound on DW(N), we note that the
contribution at each node at level i 1 1 is four times
smaller than that at a node at level i. Since the number of
nodes at level i 1 1 is double that of level i, we find that
the increase at level i 1 1 is at most two times smaller
than at level i. Thus, an upper bound for DW(N) is two
times the value at level 0, i.e., 2[N1(N1 1 1)/ 2]. But when
N is even, the contribution at level 0 is 0. Hence, we write
N 5 2 in, where n is odd. Contributions begin to show up
only at level i, and there are 2 i instances of the same
positive contribution. Thus, an upper bound is

DW~N! # 2 i11~n/ 2!~n/ 2 1 1!/ 2.

In our implementation we found k 5 48 to be an optimal
blocking factor for RGEQRF. The corresponding best
factor for DGEQRF was nb 5 40. For k 5 48,
W(m, k) 5 4512m 2 54144 2 DW(48), where DW(48) 5 32.

Next we compute the FLOP-count difference between
RGEQRF and DGEQRF during one block iteration of
size k, i.e., the call to RGEQR3 minus the calls to
DGEQR2 and DLARFT. This difference, Diff(m, k),
is Y(m, k) minus F(m, k):

Diff~m, k! 5 k~k 2 1!~k 2 8!/6 2 DW~k!. (18)

Note that Diff is independent of m and the cubic growth
in k is only 1/6, where k is the blocking factor and k is
around 50 for practical problems. For k 5 48, Diff is
15 008 FLOPS. A realistic problem might have m 5 1000.
Summing FG(m, k), Y(m, k), and T(m, k), we obtain the
FLOP count of RGEQR3:

R~m, k! 5 3k 2m 2 k~5k 2
1 3k 2 38!/6 2 DW~k!.

For m 5 1000 and k 5 48, R(m, k) ' 6.8 3 106. The
ratio Diff/R(m, k) is 0.0022, about 0.2%. For tall thin
matrices the difference is negligible; i.e., the FLOP counts
are essentially equal. Thus, we have quantified a remark
we made above regarding Equation (12).

Now compare Diff(k) to T(m, k) 5 FT(m, k). T(m, k)
is at least four times more costly to compute, and this
occurs when m 5 k. For tall thin matrices (say m/k 5 20),
the ratio is greater than 100. The point we make here
is that the additional cost of using T in k 2 1 calls to
DQTC of RGEQR3 is tiny compared to the cost of
producing it.

Although the point is very minor, the cost T(m, k) is
actually less than FT(m, k). We listed the cost of the first
DTRMM computation as k1k2

2 . However, Y12 is unit lower
triangular; thus, the cost is actually k1k2(k2 2 1). We used
the more expensive cost because the results were equal.
Thus, using Level 3 BLAS to replace a series of Level 2
computations can be slightly cheaper because a constant
feature in the higher-level BLAS can be exploited,
whereas in the lower-level BLAS it is only one operation
and usually cannot be taken advantage of.

As mentioned, there is a modification of RGEQR3
which can save FLOPs. Recall that the computation
2T1(Y1

TY2)T2 is done after the second recursive call. The
computation is necessary only when Q 5 I 2 YTYT is
needed to update a submatrix to the right of the currently
factored submatrix. If the RGEQR3 task is to factor
the entire matrix, there is never a right submatrix. In
RGEQRF, RGEQR3 is called as a subroutine ñ 5 n/k
times, where k is the block size. On the first ñ 2 1 calls
there is a right submatrix to be updated. On the last call
there is none. Thus, in these cases, in RGEQR3 we omit
the T3 computation when the right boundary of T3 , a
submatrix of T, is k. If the right boundary of T3 is less
than k, T3 must be computed (see Figure 4). Let M(m, k)
be the modified FLOP count and S(m, k) be the saved
FLOP count of computing the T3 matrix. We have

M~m, k! 5 T~m, k1! 1 M~m 2 k1, k2!; (19)

S~m, k! 5 S~m 2 k1, k2! 1 k1k2~2m 2 k1!, (20)

where M(m, 1) 5 S(m, 1) 5 0. It is clear by induction
that M(m, k) 1 S(m, k) 5 T(m, k), since the sum of
the right-hand side of (19) and (20), using the induction
hypothesis, gives the right-hand side of (14). We can
show that

M~m, k! 5 f~k!m 2 f1~k!; (21)

S~m, k! 5 g~k!m 2 g1~k!. (22)

Furthermore,

f~k! 5 f~k2! 1 k1~k1 2 1!;

f1~k! 5 f1~k2! 1 k1@ f~k2! 1 ~k1 2 1!~2k1 2 1!/6#, (23)

and

g~k! 5 g~k2! 1 2k1k2

g1~k! 5 g1~k2! 1 k1@ g~k2! 1 k1k2#, (24)

with f(1) 5 f1(1) 5 0 and g(1) 5 g1(1) 5 0 defining the
functions f, f1 , g, and g1 , for k 5 1, 2,

Consider

af~2x! 5 af~ x! 1 x~ x 2 1!;

af1~2x! 5 af1~ x! 1 x@ f~ x! 1 ~ x 2 1!~2x 2 1!/6#, (25)

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

613

ag~2x! 5 ag~ x! 1 2x 2;

ag1~2x! 5 ag1~ x! 1 x@ag~ x! 1 x 2#. (26)

The prefix a means approximate. A solution to (25), (26)
is

af~ x! 5 1
3 ~ x 2 1!~ x 2 2!;

af1~ x! 5 ~ x 2 1!~4x 2
2 17x 1 18!/42; (27)

ag~ x! 5 2
3 ~ x 1 1!~ x 2 1!;

ag1~ x! 5 ~ x 2 1!~5x 2
1 5x 2 9!/ 21. (28)

These functions approximate the true functions (23) and
(24). For k 5 2 j , they are identical. Note that

f~k! 1 g~k! 5 af~k! 1 ag~k! ; k~k 2 1! (29)

and

f1~k! 1 g1~k! 5 af1~k! 1 ag1~k! ; k~k 2 1!~2k 2 1!/6. (30)

We can also show directly that

Dg~2k! 5 Dg~k!; (31)

Dg~2k 1 1! 5 Dg~k 1 1! 1 2
3 k; (32)

Dg1~2k! 5 Dg1~k! 1 kDg~k!; (33)

Dg1~2k 1 1! 5 Dg1~k! 1 k@Dg~k 1 1! 1 ~4k 2 1!/ 21#, (34)

where Dg(k) [g(k) 2 ag(k) and Dg1(k) [g1(k) 2 ag1(k).
Now define

Dag~ x! ; ag~ x 1 1! 2 ag~ x! 5 2
3 ~2x 1 1! (35)

and

Dag1~ x! ; ag1~ x 1 1! 2 ag1~ x! 5 ~5x 2
1 5x 2 3!/7. (36)

It turns out that

ag~k! # g~k! , ag~k 1 1!; (37)

ag1~k! # g1~k! , ag1~k 1 1!. (38)

We can show that (37) and (38) are true by using
induction. These proofs are straightforward. A sketch of
the proofs is given in the Appendix.

Note that in each region 2 j , k # 2 j11 , Equations (37)
and (38) bound g(k) and g1(k) from below and above.
Thus, limk3`

[g(k)/k 2] 5 limk3`
[ag(k)/k 2] 5 2/3.

Similarly, limk3`
[g1(k)/k 3] 5 limk3`

[ag1(k)/k 3] 5 5/ 21.
From (29) and (30) we obtain limk3`

[f(k)/k 2] 5 1/3 and
limk3`

[f1(k)/k 2] 5 2/ 21. Let rm(k) 5 f(k)/g(k) and
r(k) 5 f1(k)/g1(k). Figure 5 gives log plots of rm and
r vs. k. The plots verify experimentally that rm and r
have the correct limits of 0.5 and 0.4.

We now use the above results to compare RGEQR3 to
DGEQR2 with the switch on. The cost of RGEQR3 in
this case becomes R(m, k) 2 S(m, k). Using ag(k) and
ag1(k) for g(k) and g1(k) and keeping only terms in k 2m
and k 3 , R(m, k) 2 S(m, k) ' k 2[(7/3)m 2 (40/ 21)k].
The FLOP count of DGEQR2, keeping the same terms,
is k 2(2m 2 k/3). For large m and small k (the tall thin
matrix case), the FLOP ratio of RGEQR3 to DGEQR2
is about 7/6; i.e., the FLOP count is about 17% higher.
Assuming a 3 to 1 FLOP-rate ratio, it follows that
RGEQR3 should execute 2 4

7 times faster. This loose
analysis quantifies the remarks we made above regarding
this comparison.

We close this section with some remarks on why the
hybrid algorithm RGEQRF should not be replaced with
RGEQR3. Let m 5 n and set k 5 n in R(m, k). The
cubic term is (13/6)n 3 . For DGEQRF and RGEQRF
using fixed nb ,, n, the extra FLOP cost is marginally
higher than for DGEQR2, which has a cubic term of
(4/3)n 3 .

Even if we replace T(m, k) with M(m, k) to compute
R(m, k) (which one should do), the reduction in the cubic
term would only be 3/7, and the new cubic term would be
73/42. In summary, the preceding FLOP-count analysis of
this section shows that the hybrid algorithm RGEQRF
should be chosen. RGEQRF should exhibit Level 3
performance for even relatively small values of k. For
large m and n, and using k 5 nb ,, n, the additional
FLOP count is marginally higher than for DGEQRF.

● The routine DQTC
The matrix multiplications in the update operation

Ĉ4 Q TC 5 C 2 YT TY TC

Log plots of rm(k) and r(k) vs. k.

Figure 5

101 102 103 104

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

rm(k)

r(k)

k

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

614

can be performed in several different orders. Depending
on the sizes of the matrices involved, the total number of
floating-point operations may be quite different for the
different approaches. In Table 3 we show the five possible
alternatives and the number of floating-point operations
required for each of them, assuming that C is n1 3 n2 ,
Y is n1 3 k unit lower trapezoidal, and T is k 3 k upper
triangular. Since we here consider each individual update
through the whole factorization of an m by n matrix, we
have for clarity chosen to use the new variables n1 and n2

to denote the size of the matrix to be updated.
For comparisons with results in the preceding

subsection, where we express the operations in terms of
the first update, n1 and n2 should be replaced by m and
n 2 k, respectively. In the update performed in a QR
factorization of a large m 3 n matrix where m $ n, we
know that n1 $ n2 1 k and that k is normally much
smaller than n1 and n2 for almost all updates performed.

It is apparent that methods C1 and C5 require
significantly fewer floating-point operations than the other
alternatives for the typical case in the QR factorization,
i.e., for n1 large and k relatively small. The C1 method
requires the smallest number of floating-point operations
of these methods for all updates that occur in RGEQRF
for a factorization of an m 3 n matrix if m $ n. For the
case m 5 n, method C5 is almost as cheap if m 5 n is
large and k is small.

The larger the block size is or the smaller n2 is
compared to n1 , the larger is the gain from using method
C1 compared to C5 . From this we conclude that method
C1 definitely is to be preferred by the recursive algorithm
RGEQR3, where n2 typically never exceeds half of the
block size nb used in the calling routine RGEQRF. For
updates in RGEQRF, the choice of method is less
obvious. However, in order to reduce the software
complexity we have chosen to use the same method
for all updates. Therefore, the routine DQTC implements
method C1 . The routine DLARFB called by the LAPACK
algorithm DGEQRF also implements the C1 method, even
though the implementation is slightly different. In both
routines, the operations are performed as a series of calls
to the Level 3 BLAS routines DGEMM and DTRMM.

3. Uniprocessor performance analysis
The uniprocessor performance of RGEQRF has been
evaluated on a 120-MHz IBM POWER2 node and on one
processor of a four-way 332-MHz IBM PPC 604e SMP
node. The performance results are compared to those of
the LAPACK Level 3 QR factorization routine DGEQRF.
The performance has been analyzed both for square
matrices (m 5 n) and for tall thin matrices (m .. n),
which are important in many applications. Results are
presented for large as well as for small matrices.

Both RGEQRF and DGEQRF have parameters that must
be set properly in order to obtain optimal performance. The
only parameter that must be set in RGEQRF is nb; i.e.,
nb is the number of columns to be factorized by the pure
recursive algorithm RQEQR3. In DGEQRF, nb is the
number of columns to be factorized by the Level 2
algorithm DGEQR2. DGEQRF also uses a parameter nx
as a crossover point, so that when the remaining matrix
to be factorized consists of fewer than nx columns, it is
completely factorized by the Level 2 algorithm. By using
an appropriately chosen crossover point, the overhead
(extra FLOPs) of the Level 3 algorithm is avoided for
matrices too small to benefit from the Level 3 operations.

One could argue that a similar crossover point
should also be used in RGEQRF in order to improve
performance, but in our effort to make the routine as
close to self-tuned as possible, we have chosen not to use
this approach. We note, however, that turning on the ISW
switch has the effect of automatically introducing a second
type of blocking. In the following sections, all serial and
parallel performance results for the recursive algorithm
have been obtained with the ISW switch turned on.

Of course, the optimal settings of nb for RGEQRF and
nb and nx for DGEQRF vary depending on the size and
the shape of the matrix to be factorized. Since we believe
that most users of linear algebra library software do not
change these parameters between different calls to the QR
factorization routines, we have chosen to find a good
general setting for these parameters for each machine
used for performance testing. The settings have been
made to give the best overall performance for square
matrices varying from m 5 n 5 100 to m 5 n 5 2000.

Table 3 Alternative approaches for updates, Ĉ 4 QTC 5 C 2 YTTYTC, in QR factorization.

Method Number of
floating-point operations

C1: C 2 Y p [TT
p (YT

p C)] kn2(4n1 2 k 2 1)

C2: C 2 Y p [(TT
p YT) p C] kn2(4n1 2 k 2 1) 1 k(n1k 2 k 1 1/3 2 k2/3)

C3: C 2 [Y p (TT
p YT)] p C n1

2(2n2 1 2k 2 1) 1 k(1/3 2 k 2 k2/3)

C4: C 2 [(Y p TT) p YT] p C n1
2(2n2 1 2k 2 1) 1 k(n1 2 kn1 2 2k 1 1)

C5: C 2 (Y p TT) p (YT
p C) kn2(4n1 2 2k) 1 k(n1k 2 k 2 2k2/3 1 2/3)

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

615

In DGEQRF, the parameters nb and nx are obtained
from the LAPACK routine ILAENV, which always should
be modified to return the “optimal” parameters at the
time of the installation (as we have done for the two
machines considered here). We fear that some users do
not notice this, or that the users do not take the time to
determine what values to choose for these parameters.
One should also note that the values for the parameters
nb and nx used in DGEQRF are the same as the ones
used in routines for RQ, QL, and LQ factorization. Of
course, there are default values to be used (nb 5 32 and
nx 5 128 in the version we used), but use of them will
lead to suboptimal performance on many computer
systems. We also note that significantly more effort is
needed to find optimum parameter settings for DGEQRF
than for RGEQRF because the two parameters (nb and
nx) used in DGEQRF define a two-dimensional parameter
space, while the parameter space for RGEQRF is one-
dimensional (nb only). On this basis, we believe that each
step toward automatic tuning is just as important as the
optimum performance achieved.

A defect in the recursive approach is the overhead cost
of handling the recursion (e.g., the calling overhead). Thus,
for small m and n the direct method will perform faster.
A way to avoid this defect is to introduce a recursive

blocking parameter rb. Pure recursion has rb 5 1. When
n, the recursion variable, satisfies n . rb, a recursion
step is taken; otherwise, a direct method is used.
For QR the value of rb can be quite small, say rb 5 4.
This is so because we are interested in achieving Level 3
performance via register blocking; typically an unrolling of
4 works well. However, we have used only pure recursion,
rb 5 1, in our performance studies.

● IBM POWER2 performance results
The performance results are obtained on a 120-MHz IBM
POWER2 node, using IBM XL FORTRAN 5.1 [9]. The
overall best block sizes nb for square matrices were found
to be 48 for RGEQRF and 40 for DGEQRF. The overall
best crossover point nx for using the Level 2 algorithm
only in DGEQRF was found to be 112. These parameters
were used in all performance tests for this node reported
in this section, including tests for tall thin matrices. The
BLAS routines used are from ESSL Version 2.2 [10].

IBM POWER2—square matrices
The performance results in MFLOPs/s for RGEQRF and
DGEQRF on square matrices are shown in Figure 6.
RGEQRF clearly reaches high performance much earlier
than DGEQRF for increasing m 5 n. For very small
matrices RGEQRF does not provide optimal performance,
primarily because of overhead from handling the recursion
and because we do not use any crossover point similar to
nx in DGEQRF to avoid the extra FLOPs performed in
the T computations for matrices too small to benefit from
Level 3 operations.

We note that the highest performance obtained for
RGEQRF is 415.4 MFLOPs/s, which is 90.3% of the
theoretical peak performance of the POWER2 node
(460 MFLOPs/s). DGEQRF reaches 353.4 MFLOPs/s,
which is 76.8% of the theoretical peak performance.

Table 4 shows that the performance of RGEQRF is
nearly 20% better than that of DGEQRF for square
matrices with n $ 800. This difference in performance
seems to stabilize for large matrices. A similar behavior
was also observed in the first results for the hybrid
recursive algorithm presented for a 112-MHz IBM
PPC 604 node in [5].

IBM POWER2—tall thin matrices
The performance results for RGEQRF and DGEQRF
on tall thin matrices are shown in Table 5 and Table 6,
respectively. Here, RGEQRF shows better performance

Uniprocessor performance results in MFLOPs/s for the hybrid

recursive algorithm RGEQRF and DGEQRF of LAPACK on a

120-MHz IBM POWER2 node.

Figure 6

200 400 600 800 1000 1200 1400 1600 1800 2000

420

400

380

360

340

320

300

280

260

240

RGEQRF

DGEQRF

m 5 n

M
F

L
O

P
s/

s

Table 4 Ratio of uniprocessor performance results for RGEQRF and DGEQRF on a 120-MHz IBM POWER2 node.

m 5 n 200 400 600 800 1000 1200 1400 1600 1800 2000

Ratio 0.91 1.03 1.13 1.17 1.20 1.19 1.18 1.18 1.17 1.17

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

616

than DGEQRF for all but four cases, and the difference
is sometimes much larger than for the tests with square
matrices. RGEQRF achieves a performance close to or
greater than 300 MFLOPs/s for n $ 100 and m $ 600.
For DGEQRF to obtain similar performance for large m,
the number of columns n must be significantly larger
(around 400).

In Figure 7 the performance ratio of RGEQRF to
DGEQRF is shown for different values of n. Notably, for
m $ 800 and n # 150, RGEQRF outperforms DGEQRF
by a factor of 1.5–2.3; for n 5 100, RGEQRF shows more
than twice the performance of DGEQRF for m $ 800.
It confirms that the benefit of the recursive algorithm is
bigger for tall thin matrices than for square matrices.
However, one should note that the crossover point nx
used in DGEQRF could be changed to give better
performance for the LAPACK routine for tall thin
matrices as well. As mentioned above, nx is here chosen
to give a good overall performance. In RGEQRF the
recursion leads to an automatic blocking that apparently
performs well for a wider range of matrix sizes.

● IBM PPC 604e uniprocessor performance results
The performance results are obtained on one processor
of a four-way 332-MHz IBM PPC 604e SMP node, using
IBM XL FORTRAN 5.1 [9]. The overall best block sizes

nb for square matrices were found to be 56 for RGEQRF
and 40 for DGEQRF. The overall best crossover point nx
for using the Level 2 algorithm only in DGEQRF was
found to be 72. We remark that this optimal crossover

Performance ratio of RGEQRF to DGEQRF on a 120-MHz IBM

POWER2 node for m 5 100, ..., 2000 and n 5 50, ..., 300.

Figure 7

0 200 400 600 800 1000 1200 1400 1600 1800 2000

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

n 5 100

n 5 150

n 5 50

n 5 200
n 5 250
n 5 300

m

Table 5 Uniprocessor performance on tall thin matrices for RGEQRF on a 120-MHz IBM POWER2 processor.

m\ n 50 100 150 200 250 300 350 400 450 500

200 152.3 214.6 231.4 249.7 — — — — — —
400 198.6 270.6 288.6 306.7 324.8 333.4 336.9 341.3 — —
600 218.4 294.4 302.2 322.3 333.0 340.3 356.0 355.6 357.9 362.8
800 218.8 295.3 301.1 319.7 337.8 346.2 362.9 368.5 364.1 369.1

1000 232.1 296.6 305.0 326.8 344.1 354.2 369.0 374.2 369.2 374.7
1200 235.8 297.0 310.4 328.8 346.3 356.1 370.3 375.9 372.4 377.4
1400 220.3 298.6 307.7 327.6 341.9 348.0 366.2 372.3 368.7 373.3
1600 220.7 297.5 307.6 328.2 339.1 352.7 369.6 375.2 370.7 376.3
1800 225.7 301.0 308.2 327.6 345.0 355.3 372.7 378.9 372.6 377.8
2000 225.0 295.0 301.8 322.2 341.6 351.7 362.8 371.0 368.9 371.4

Table 6 Uniprocessor performance on tall thin matrices for DGEQRF on a 120-MHz IBM POWER2 processor.

m\ n 50 100 150 200 250 300 350 400 450 500

200 217.4 210.3 242.9 278.0 — — — — — —
400 215.8 155.6 206.4 291.0 303.0 314.1 313.6 328.9 — —
600 177.2 151.5 197.5 271.1 286.5 301.4 310.0 329.9 330.7 331.2
800 145.4 133.7 175.9 246.0 261.4 260.3 286.4 308.9 311.1 305.4

1000 147.5 146.1 186.9 248.3 264.8 279.8 289.2 309.0 311.7 314.9
1200 146.5 144.0 184.9 246.9 263.7 278.3 288.0 308.3 311.4 315.0
1400 146.6 145.0 186.6 247.0 263.8 276.6 286.2 305.9 305.0 313.2
1600 131.7 130.5 170.6 232.8 250.2 264.3 274.3 296.2 299.5 305.5
1800 142.0 144.3 185.2 244.1 260.5 275.0 284.9 304.2 307.2 312.1
2000 139.8 140.7 181.8 241.2 257.9 272.2 281.2 301.4 301.6 309.3

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

617

point is very small, in fact less than twice the block size
nb. These parameters were used in all performance tests
for this node reported in this section, including tests for
tall thin matrices. The BLAS routines used are from ESSL
Version 3.1 [11].

IBM PPC 604e—square matrices
The performance in MFLOPs/s for RGEQRF and
DGEQRF on square matrices is shown in Figure 8. As for
the POWER2 results, RGEQRF outperforms DGEQRF
for all matrices except the very small ones.

The performance ratio of RGEQRF to DGEQRF is
shown in Table 7. Except for drops in performance for
m 5 n 5 1000, 1100, and 2000, RGEQRF shows around
15% better performance than DGEQRF for large matrices,
which is almost as good as the performance observed for
the POWER2 node.

However, there seem to be some irregular drops in
performance for m 5 n 5 1000, 1100, and 2000
in Figure 8. In order to get a better picture of the
critical matrix sizes, the performance results for
m 5 n 5 900, 901, 902, . . . , 1200 are presented
in Figure 9. From this figure, it is clear that the
performance is around 10% lower than what one
would expect for 925 , m 5 n , 1130.

Additional tests indicate that this performance problem
depends on the leading dimension of the matrix. All of
the performance results presented here are performed
with a leading dimension equal to m 1 1. If the leading
dimension, for example, is increasing by a constant 300,
a similar performance drop is observed for m 5 n around
700 to 800.

This behavior is currently not fully understood, but one
possible reason is that this is an effect explained by the
fact that the Level 2 cache memory on the 332-MHz PPC
604e node is direct-mapped; i.e., it is not a set-associative
cache memory. We remark that no indications of similar
problems were observed on the POWER2 node, which
indeed has a four-way set-associative Level 2 cache
memory.

● IBM PPC 604e—tall thin matrices
The performance results for RGEQRF and DGEQRF
on tall thin matrices are shown in Table 8 and Table 9,
respectively.

As for the POWER2 results, RGEQRF appears
to handle tall thin matrices significantly better than
DGEQRF. In fact, RGEQRF outperforms DGEQRF
on all matrix sizes tested, and the performance ratios

Uniprocessor performance results in MFLOPs/s for the hybrid

recursive algorithm RGEQRF and DGEQRF of LAPACK on a

332-MHz IBM PPC 604e node.

Figure 8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

350

300

250

200

150

100

RGEQRF

DGEQRF

m 5 n

M
F

L
O

P
s/

s

Closeup of performance results for RGEQRF on a 332-MHz IBM

PPC 604e node for m 5 n 5 900 to 1200.

Figure 9

900 950 1000 1050 1100 1150 1200

300

295

290

285

280

275

270

265

260

255

m 5 n

M
F

L
O

P
s/

s

Table 7 Ratio of uniprocessor performance results for RGEQRF and DGEQRF on a 332-MHz IBM PPC 604e node.

m 5 n 200 400 600 800 1000 1200 1400 1600 1800 2000

Ratio 1.05 1.14 1.15 1.14 1.04 1.15 1.15 1.15 1.15 1.03

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

618

approach a factor of nearly 3. As seen in Figure 10, the
gain from using RGEQRF is bigger the smaller the n is.

We also remark that for larger n, a performance
degradation around m 5 1000 similar to that for square
matrices can be observed.

4. General comments on uniprocessor
performance
For both square and tall thin matrices, the gain in
performance is partially explained by the increased
performance of RGEQR3 compared to DGEQR2.
Additional benefits occur because the faster RGEQR3
leads to an increased optimal block size in RGEQRF
compared to DGEQRF, which in turn improves the
performance of the Level 3 BLAS updates in DQTC.

For RGEQRF we observe that the performance on the
POWER2 node for tall thin matrices is close to constant
for increasing m and fixed n. On the PPC 604e the
performance decreases for increasing m and fixed n.

Since the number of floating-point operations is 2(mn 2)
(for m $ n) and the amount of data is 2(mn), the
number of floating-point operations per matrix element
is constant for fixed n. That the performance decreases
as the number of floating-point operations per matrix
element remains the same indicates that the memory

system is the bottleneck. Hence, it seems that the
POWER2 memory system is much better suited to
serve the POWER2 processor with data than is the
corresponding system on the PPC 604e.

Performance ratio of RGEQRF to DGEQRF on a 332-MHz IBM

PPC 604e node for m 5 100, ..., 2000 and n 5 50, ..., 300.

Figure 10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

n 5 100

n 5 150

n 5 50

n 5 200
n 5 250
n 5 300

m

Table 8 Uniprocessor performance on tall thin matrices for RGEQRF on a 332-MHz IBM PPC 604e processor.

m\ n 50 100 150 200 250 300 350 400 450 500

200 125.2 169.3 181.4 190.4 — — — — — —
400 143.4 188.4 206.9 218.9 234.0 239.3 249.6 251.3 — —
600 138.2 180.6 202.7 218.1 239.7 246.5 253.5 255.8 261.9 265.5
800 126.5 176.9 199.7 216.8 235.8 243.7 249.4 252.3 262.4 267.0

1000 114.2 152.5 168.1 176.8 195.0 199.2 211.5 213.4 232.8 237.4
1200 115.7 164.3 193.5 210.5 233.6 242.6 247.9 251.4 260.3 266.5
1400 119.9 172.6 194.6 211.9 233.6 243.2 250.6 254.0 263.3 269.4
1600 121.8 172.8 194.7 212.5 233.3 242.8 249.4 252.6 261.9 268.3
1800 116.0 168.5 190.9 208.9 229.2 239.4 245.9 250.2 258.6 265.5
2000 104.7 148.1 164.4 174.1 191.0 196.0 209.7 212.7 230.3 235.9

Table 9 Uniprocessor performance on tall thin matrices for DGEQRF on a 332-MHz IBM PPC 604e processor.

m\ n 50 100 150 200 250 300 350 400 450 500

200 87.3 123.2 151.3 175.2 — — — — — —
400 80.0 111.7 132.8 169.6 185.3 198.2 208.0 217.6 — —
600 72.0 96.5 128.4 163.7 179.5 191.4 197.3 209.0 216.2 222.6
800 63.0 88.2 108.5 152.6 168.3 180.6 188.4 202.5 210.3 216.8

1000 50.2 76.9 96.4 135.9 151.7 162.5 169.5 187.4 196.4 203.8
1200 46.8 71.2 91.4 130.5 144.8 156.6 165.4 184.5 193.1 200.1
1400 44.1 66.1 86.1 120.9 135.8 147.4 157.4 176.0 184.5 191.7
1600 42.4 63.6 82.7 116.5 130.3 141.9 151.4 169.6 177.8 184.9
1800 41.1 61.6 80.1 111.6 125.4 136.9 146.6 163.8 172.1 179.1
2000 39.7 60.2 78.2 108.0 121.6 133.0 141.8 158.3 166.4 173.6

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

619

We make similar observations from the results of the
LAPACK algorithm DGEQRF, even though this routine
shows a slight decrease in performance for increasing m
on the POWER2 system. This indicates that the data
locality in DGEQRF is not quite as good as in the
recursive hybrid algorithm RGEQRF.

Even though we have seen in Section 3 that RGEQRF
shows significantly better performance than DGEQRF, we
believe that a possible bigger advantage of the recursive
approach is the fact that the automatic variable blocking
leads to an automatic tuning which ensures good
performance. Also, very little time and effort were
spent on adjusting tuning parameters, compared to
the effort we gave to tuning DGEQRF.

5. The parallel algorithm PRGEQRF
In the parallel version of RGEQRF, several execution
threads are created by a parallel do construction. The
number of threads created is equal to the number of
available processors, and a routine THRQR (standing for
THRead QR) is called once for each parallel thread. In
the THRQR routine, each processor repeatedly performs
three major operations. It finds a new block to update
through a call to routine GETJOB, it updates that block
through a call to routine DQTC, and it factorizes that
block through a call to RGEQR3, if required. The
processor returns from THRQR when the QR factorization
is completed. A brief description of routine THRQR is
given in Figure 11.

The critical part of the parallel QR factorization is
done by the GETJOB routine. GETJOB implements a
distributed version of the pool-of-tasks principle [12]
for dynamically assigning work to the processors. The

GETJOB algorithm is sketched in Figure 12 and is
described in the next paragraph.

In the pool-of-tasks implementation, only one critical
section is entered per job (to find a new task, to tell what
submatrix is reserved for this task, to update variables
after the task is completed, etc). Associated with each
processor are three variables which keep track of an
iteration index and two indices equal to the first and last
column the processor is working on. The sizes of the
blocks to be updated depend on the size of the remaining
matrix and the number of processors available. Near the
end of the computation, a form of adaptive blocking is
used [13]. As the remaining problem size decreases, both
the number of processors and the sizes of the blocks being
updated are decreased. A processor that will both update
and factorize a block will update only the columns it will
factor, i.e., last 5 first 1 jb 2 1 in Figure 11. There
is no fixed synchronization in the algorithm; it is an
asynchronous algorithm. This means that sometimes
processors may be working on different iterations;
therefore, more than one T matrix is needed. For
example, one processor may still be performing updates
with respect to the factorization in iteration i 2 1, while
another processor is updating with respect to iteration i
and factorizing for iteration i 1 1. In this example two T
matrices are being used read-only and a third one is being
produced. In practice, at least three such T matrices are
required to avoid contention, and that is what is used in
this implementation.

We remark that this pool-of-tasks algorithm implements
a general strategy for dynamic load balancing that may
be used for parallel implementations of other matrix-
factorization algorithms as well. It is related to the

Figure 11
Brief description of routine THRQR.

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

620

strategies used for the LU factorization algorithm
described in [6] and the dynamic load-balancing versions
of LU and Cholesky factorization in [7].

6. Parallel performance results
The performance results for the four-way 332-MHz IBM
PPC 604e SMP node were obtained using the same
compiler and ESSL library as in Section 3. In order to
perform tests on one, two, three, and four processors, the
environment variable XLSMPOPTS parthds is set to 1, 2,
3, and 4, respectively.

The performance in MFLOPs/s and the parallel
speedup, S, for PRGEQRF for one to four processors
on square matrices are shown in Table 10.

It should be noted that the uniprocessor performance
for the parallel algorithm is almost the same as the results
presented for the serial algorithm in Figure 8. For some
matrix sizes, the parallel algorithm shows negligibly higher
MFLOPs/s figures; for others, it shows up to 3% lower
figures.

In order to facilitate the interpretation of the parallel
speedup, Figure 13 shows the speedup for one, two, and
three processors for varying matrix sizes. The largest
speedups observed are 1.97, 2.99, and 3.97, for two, three,
and four processors, respectively.

7. Conclusions
We have shown that a significant increase in performance
can be obtained by replacing the Level 2 algorithm in a

Figure 12
Algorithm GETJOB performs the pool-of-tasks implementation.

Relative parallel speedup of PRGEQRF for two, three, and four

processors on a four-way 332-MHz IBM PPC 604e node for m 5

n 5 100, ..., 2000.

Figure 13

0 200 400 600 800 1000 1200 1400 1600 1800 2000

4

3.5

3

2.5

2

1.5

1

p 5 3

p 5 4

p 5 2

m 5 n

M
F

L
O

P
s/

s

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

621

LAPACK-style block algorithm for QR factorization with
a recursive algorithm that essentially performs Level 3
operations. Another important advantage is the automatic
tuning obtained from the automatic variable blocking
following from the recursion.

Recursion has previously been successfully applied
to LU factorization [14, 15]. For the LU case, no
extra FLOPs are introduced from recursion, and the
performance exceeds or significantly exceeds that of
LAPACK block algorithms. In this contribution we have
shown that despite the extra FLOPs, the hybrid QR
factorization benefits even more from using recursion
than the LU factorization does.

The parallel speedup compares well with previously
published results for QR factorization routines for shared
memory systems. The algorithm presented here shows
better speedup than that presented for the IBM 3090*
VF/600J in [7] and the Alliant fx2816 in [16], and it is
similar to what is presented for the IBM 3090 VF/600J
in [16].

Acknowledgments
We are grateful to Bo Kågström and Carl Tengwall, who
were instrumental in setting up our fruitful collaboration.
We thank Isak Jonsson for providing the coefficient of m
for S when k 5 2 j and for the plots in Figure 5. We are
also grateful to the anonymous referees for carefully
reading the manuscript, and to the second referee for

pointing out an alternative approach for deriving Y(m, k)
in (15) for the simplified case when n 5 2 k .

This research was conducted using the resources of the
High Performance Computing Center North (HPC2N)
in Umeå, Sweden, and UNI●C in Lyngby, Denmark.

*Trademark or registered trademark of International Business
Machines Corporation.

Appendix: Sketch of proof for Equations (37)
and (38)
Equations (37) and (38) are the same as

0 # Dg~k! , Dag~k! (A1)

and

0 # Dg1~k! , Dag1~k!. (A2)

The following relations are true:

ag~ x! 5 2
3 ~ x 2

2 1! (A3)

and

Dag~ x! ; ag~ x 1 1! 2 ag~ x! 5 2
3 ~2x 1 1!; (A4)

ag1~ x! 5 1
21 ~5x 3

2 14x 1 9! (A5)

and

Dag1~ x! ; ag1~ x 1 1! 2 ag1~ x! 5 1
7 ~5x 2

1 5x 2 3!; (A6)

Table 10 Parallel performance for PRGEQRF on a four-way 332-MHz IBM PPC 604e SMP node.

m 5 n One
processor

Two processors Three processors Four processors

(MFLOPs/s) (MFLOPs/s) S (MFLOPs/s) S (MFLOPs/s) S

100 114.5 146.6 1.28 137.5 1.20 133.5 1.17
200 192.7 318.6 1.65 393.7 2.04 398.0 2.07
300 225.1 399.3 1.77 541.0 2.40 612.2 2.72
400 243.0 452.9 1.86 615.9 2.53 759.2 3.12
500 251.4 477.0 1.90 653.4 2.60 762.7 3.03
600 265.6 517.5 1.95 713.7 2.69 886.1 3.34
700 268.7 522.7 1.95 741.1 2.76 895.1 3.33
800 277.0 541.4 1.95 766.7 2.77 942.6 3.40
900 273.7 533.3 1.95 772.9 2.82 955.0 3.49

1000 250.4 493.9 1.97 735.3 2.94 913.5 3.65
1100 257.3 505.9 1.97 768.4 2.99 964.0 3.75
1200 289.0 556.7 1.93 823.8 2.85 1039.8 3.60
1300 295.3 568.1 1.92 851.8 2.88 1061.2 3.59
1400 300.7 577.8 1.92 860.5 2.86 1090.8 3.63
1500 299.0 572.4 1.91 863.1 2.89 1087.2 3.64
1600 303.9 584.5 1.92 873.0 2.87 1116.1 3.67
1700 299.2 573.4 1.92 860.4 2.88 1090.6 3.65
1800 306.1 592.3 1.94 879.3 2.87 1135.5 3.71
1900 301.3 579.5 1.92 868.0 2.88 1119.8 3.72
2000 270.4 524.5 1.94 805.3 2.98 1072.9 3.97

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

622

Dag~2k! 5 Dag~k! 1 4
3 k (A7)

and

Dag1~2k! 5 Dag1~k! 1 5
7 k~3k 1 1!; (A8)

Dag~2k 1 1! 5 Dag~k 1 1! 1 4
3 k (A9)

and

Dag1~2k 1 1! 5 Dag1~k 1 1! 1 15
7 k~k 1 1!; (A10)

g~2k! 5 g~k! 1 2k 2 (A11)

and

g1~2k! 5 g1~k! 1 k@ g~k! 1 k 2#; (A12)

g~2k 1 1! 5 g~k 1 1! 1 2k~k 1 1! (A13)

and

g1~2k 1 1! 5 g1~k 1 1! 1 k@ g~k 1 1! 1 k~k 1 1!#; (A14)

Dg~2k! 5 Dg~k! (A15)

and

Dg1~2k! 5 Dg1~k! 1 kDg~k!; (A16)

Dg~2k 1 1! 5 Dg~k 1 1! 1 2
3 k (A17)

and

Dg1~2k 1 1! 5 Dg1~k 1 1! 1 kFDg~k 1 1! 1
~4k 2 1!

21 G ,

(A18)

where Dg(k) [g(k) 2 ag(k) and Dg1(k) [g1(k) 2 ag1(k).
There are four induction proofs, two for (A1) and two

for (A2). Using (A7), (A9), (A15), and (A17) we obtain

Dag~2k! 2 Dg~2k! 5 Dag~k! 2 Dg~k! 1 4
3 k (A19)

and

Dag~2k 1 1! 2 Dg~2k 1 1! 5 Dag~k 1 1!

2 Dg~k 1 1! 1 2
3 k. (A20)

Using (A8), (A10), (A16), and (A18) along with (A7),
(A9), (A15), and (A17), we obtain

Dag1~2k! 2 Dg1~2k! 5 @Dag1~k! 2 Dg1~k!#

1 k@Dag~k! 2 Dg~k!# 1
k

21
~17k 1 1!

(A21)

and

Dag1~2k 1 1! 2 Dg1~2k 1 1! 5 @Dag1~k 1 1! 2 Dg1~k 1 1!#

1 k@Dag~k 1 1! 2 Dg~k 1 1!#

1
k

21
~13k 1 4!. (A22)

Lemma 1 Dg(k) $ 0.

Proof Dg(1) 5 0. Assume result is true for 0 , k # 2 j .
Let 2 j , l # 2 j11 . For l 5 2k the result follows from
(A15) and the induction hypothesis (IH). For l 5 2k 1 1,
the result follows from (A17) and the IH. e

Lemma 2 Dag(k) . Dg(k).

Proof Dag(1) 5 2 and Dg(1) 5 0. Assume result is true
for 0 , k # 2 j . Let 2 j , l # 2 j11 . For l 5 2k the result
follows from (A19) and the IH. For l 5 2k 1 1, the result
follows from (A20) and the IH. e

Lemma 3 Dg1(k) $ 0.

Proof Dg1(1) 5 0. Assume result is true for 0 , k # 2 j .
Let 2 j , l # 2 j11 . For l 5 2k the result follows from
(A16), Lemma 1, and the IH. For l 5 2k 1 1, the result
follows from (A18), Lemma 1, and the IH. e

Lemma 4 Dag1(k) . Dg1(k).

Proof Dag1(1) 5 1 and Dg1(1) 5 0. Assume result is
true for 0 , k # 2j. Let 2j , l # 2j11. For l 5 2k the result
follows from (A21), Lemma 2, and the IH. For l 5 2k 1 1,
the result follows from (A22), Lemma 2, and the IH. e

Note: Equations (A15)–(A16) follow from Equations
(A11)–(A12) and (A3)–(A5). Equations (A17)–(A18)
follow from Equations (A13)–(A14) and (A3)–(A5).
Equations (A7)–(A8) and (A9)–(A10) follow from
Equations (A3)–(A4) and (A5)–(A6).

References
1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammarling, S. McKenney,
S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide—
Release 3.0, SIAM Publications, Philadelphia, 1999.

2. J. Dongarra, L. Kaufman, and S. Hammarling, “Squeezing
the Most Out of Eigenvalue Solvers on High Performance
Computers,” Lin. Alg. & Its Appl. 77, 113–136 (1986).

3. C. Bischof and C. Van Loan, “The WY Representation for
Products of Householder Matrices,” SIAM J. Scientif. &
Statist. Computing 8, s2–s13 (1987).

4. R. Schreiber and C. Van Loan, “A Storage Efficient
WY Representation for Products of Householder
Transformations,” SIAM J. Scientif. & Statist. Computing
10, 53–57 (1989).

5. E. Elmroth and F. Gustavson, “New Serial and Parallel
Recursive QR Factorization Algorithms for SMP
Systems,” Applied Parallel Computing, Large Scale
Scientific and Industrial Problems, B. Kågström et al.,
Eds., Lecture Notes in Computer Science, No. 1541,
1998, pp. 120 –128.

6. R. C. Agarwal and F. G. Gustavson, “A Parallel
Implementation of Matrix Multiplication and LU
Factorization on the IBM 3090,” Aspects of Computation
on Asynchronous and Parallel Processors, M. Wright, Ed.,
IFIP, North-Holland, Amsterdam, 1989, pp. 217–221.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000 E. ELMROTH AND F. G. GUSTAVSON

623

7. K. Dackland, E. Elmroth, B. Kågström, and C. Van Loan,
“Parallel Block Matrix Factorizations on the Shared
Memory Multiprocessor IBM 3090 VF/600J,” Int. J.
Supercomputer Appl. 6, 69 –97 (1992).

8. R. K. Brayton, F. G. Gustavson, and R. A. Willoughby,
“Some Results on Sparse Matrices,” Math. Computation
24, 937–954 (1970).

9. IBM Corporation, XL Fortran for AIX, Language Reference,
Version 5, Release 1, 1997; Order No. SC09-2607-00.

10. IBM Corporation, Engineering and Scientific Subroutine
Library, Guide and Reference, Version 2, Release 2, 1994;
Order No. S323-0526-01.

11. IBM Corporation, Engineering and Scientific Subroutine
Library, Guide and Reference, Version 3, Release 1, 1998;
Order No. SA22-7272-01.

12. A. Chalmers and J. Tidmus, Practical Parallel Processing,
International Thomson Computer Press, London, UK,
1996.

13. C. Bischof, “Adaptive Blocking in the QR Factorization,”
J. Supercomputing 3, 193–208 (1989).

14. F. G. Gustavson, “Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms,” IBM J.
Res. Develop. 41, 737–755 (1997).

15. S. Toledo, “Locality of Reference in LU Decomposition
with Partial Pivoting,” SIAM J. Matrix. Anal. Appl. 18,
1065–1081 (1997).

16. K. Dackland, E. Elmroth, and B. Kågström, “A Ring-
Oriented Approach for Block Matrix Factorizations
on Shared and Distributed Memory Architectures,”
Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, R. F. Sincovec et al.,
Eds., SIAM Publications, Philadelphia, 1993, pp. 330 –338.

Received July 14, 1999; accepted for publication
January 14, 2000

Erik Elmroth Department of Computing Science and High
Performance Computing Center North, Umeå University, SE-901
87 Umeå, Sweden (elmroth@cs.umu.se). Dr. Elmroth is a
Senior Lecturer in Parallel Computing and Numerical
Analysis at the Department of Computing Science, Umeå
University, Sweden. He is also appointed Coordinator and
Advanced Consultant at the High Performance Computing
Center North (HPC2N). Dr. Elmroth received his Ph.D. in
numerical analysis and parallel computing from Umeå
University in 1995. His experience includes positions as
Postdoctoral Fellow at NERSC, Lawrence Berkeley National
Laboratory, University of California, Berkeley; Visiting
Scientist at the Department of Mathematics, Massachusetts
Institute of Technology (MIT), Cambridge; and a three-year
appointment as a National HPC lecturer in Sweden. Dr.
Elmroth’s current research interests include dense linear
algebra kernels for high-performance-computing (HPC)
platforms, matrix eigenvalue and subspace problems with
applications in control theory, and HPC application software.

Fred G. Gustavson IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (GUSTAV at YKTVMV, gustav@watson.ibm.com).
Dr. Gustavson manages the Algorithms and Architectures
group in the Mathematical Sciences Department at the IBM
Thomas J. Watson Research Center. He received his B.S.
degree in physics, and his M.S. and Ph.D. degrees in applied
mathematics, all from Rensselaer Polytechnic Institute. He
joined IBM Research in 1963. One of his primary interests
has been in developing theory and programming techniques
for exploiting the sparseness inherent in large systems of
linear equations. Dr. Gustavson has worked in the areas of
nonlinear differential equations, linear algebra, symbolic
computation, computer-aided design of networks, design and
analysis of algorithms, and programming applications. He and
his group are currently engaged in activities that are aimed
at exploiting the novel features of the IBM family of RISC
processors. These include hardware design for divide and
square root, new algorithms for POWER2 for the Engineering
and Scientific Subroutine Library (ESSL) and for other math
kernels, and parallel algorithms for distributed and shared
memory processors. Dr. Gustavson has received an IBM
Outstanding Contribution Award, an IBM Outstanding
Innovation Award, an IBM Outstanding Invention Award,
two IBM Corporate Technical Recognition Awards, and a
Research Division Technical Group Award. He is a Fellow
of the IEEE.

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

624

