Applying
recursion

to serial and
parallel QR
factorization
leads to better
performance

by E. EImroth
F. G. Gustavson

We present new recursive serial and parallel
algorithms for QR factorization of an m by n
matrix. They improve performance. The
recursion leads to an automatic variable
blocking, and it also replaces a Level 2 part
in a standard block algorithm with Level 3
operations. However, there are significant
additional costs for creating and performing
the updates, which prohibit the efficient use
of the recursion for large n. We present a
quantitative analysis of these extra costs.
This analysis leads us to introduce a hybrid
recursive algorithm that outperforms the
LAPACK algorithm DGEQRF by about 20%

for large square matrices and up to almost a
factor of 3 for tall thin matrices. Uniprocessor
performance results are presented for two IBM
RS/6000® SP nodes—a 120-MHz IBM POWER2
node and one processor of a four-way 332-MHz
IBM PowerPC® 604e SMP node. The hybrid
recursive algorithm reaches more than 90%

of the theoretical peak performance of the
POWER2 node. Compared to standard block
algorithms, the recursive approach also shows
a significant advantage in the automatic tuning
obtained from its automatic variable blocking.
A successful parallel implementation on a
four-way 332-MHz IBM PPC604e SMP node
based on dynamic load balancing is presented.
For two, three, and four processors it shows
speedups of up to 1.97, 2.99, and 3.97.

1. Introduction

LAPACK algorithm DGEQREF requires more floating-
point operations than LAPACK algorithm DGEQR?2; see
[1]. Yet DGEQREF outperforms DGEQR?2 on an RS/6000*
workstation by nearly a factor of 3 on large matrices.
Dongarra, Kaufman, and Hammarling, in [2], later,
Bischof and Van Loan, in [3], and still later, Schreiber and
Van Loan, in [4], demonstrated why this is possible by
aggregating the Householder transforms before applying

©Copyright 2000 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/00/$5.00 © 2000 IBM

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

E. ELMROTH AND F. G. GUSTAVSON

605

606

them to a matrix C. The result of [3] and [4] was the k-way
aggregating WY Householder transform and the k-way
aggregating storage-efficient Householder transform. In
the latter, the aggregated representation of Q = I — YTY'.
Here, lower trapezoidal Y is m by k, consisting of k
Householder vectors, and upper triangular 7 is k by k.

Our recursive algorithm, RGEQR3, starts with a block
size k = 1 and doubles k in each step. If we were to allow
this to continue for a large number of columns, the
performance would eventually degrade because the
additional floating-point operations (FLOPs) grow
cubically in k. The cost of RGEQR3 on an n by n
matrix is (13/6)n° + - - -, whereas the DGEQR?2 cost
is (4/3)n” + - -. Thus, to avoid this occurring, RGEQR3
should not be used until kK = n/2. Instead, we propose
to use a hybrid recursive algorithm, RGEQREF, which is a
modification of a standard Level 3 block algorithm in that
it calls RGEQR3 for factorizing block columns instead of
calling DGEQR?2 and DLARFT.' Hence, RGEQREF is a
modified version of Algorithm 4.2 of Bischof and Van Loan,
in [3], and RGEQR3 is a recursive Level 3 counterpart of
their Algorithm 4.1. This work is a continuation of the
work presented in [5].

In Section 2 we describe our new recursive serial
algorithms RGEQR3 and RGEQREF and give a proof
of correctness. The first subsection discusses aspects of
increasing the FLOP count in order to gain performance.
In the second subsection we give an explanation as to why
the FLOP count increases for QR factorization when one
goes from a Level 2 to a Level 3 factorization. Next we
derive FLOP counts for LAPACK algorithms DGEQR2
and DGEQREF and our new algorithms RGEQR3 and
RGEQREF. These counts are functions of the three
parameters m, n, and k, the block size. On the basis of
relations among these various counts, one can devise and
tune various QR factorization algorithms; the above four
are examples. Specifically, we demonstrate the correctness
of the new recursive algorithm by using mathematical
induction on k = log, n, k = 0, 1, 2, - - - . Additionally,
a quantitative analysis is presented that details how the
FLOP counts of the various standard and new recursive
algorithms relate to one another. At the end of the section
we detail savings for RGEQRS3 in computing the 7 matrix
when one need not update later with 7. These savings are
especially important for tall thin matrices. We also discuss
alternative approaches for performing updates of the
matrix, including a description of the routine DQTC
(equivalent to DLARFB) used in our implementations.

Uniprocessor performance results for square and tall
thin matrices are presented for the 120-MHz IBM
POWER2 node and the 332-MHz IBM PPC 604e node
in Sections 3 and 4. Roughly speaking, the algorithm

I Routines starting with DLA . .. are LAPACK auxiliary routines.

E. ELMROTH AND F. G. GUSTAVSON

RGEQR3 is «a times faster than DGEQRF, where «
decreases from 3 to 1.2 as n ranges from 50 to m and

m = 300. We remark that significantly more effort was
needed to tune the parameters for DGEQREF than

was needed for RGEQREF, since DGEQREF has two
parameters that are to be set (defining a two-dimensional
parameter space), whereas only one parameter is to be set
in RGEQREF. The fact that less tuning is needed to obtain
optimal performance is another feature of the automatic
variable blocking of the recursive algorithm. We also
mention the case for which recursion fails to produce
good performance, and the remedy for this.

In Section 5 we describe our new parallel recursive
algorithm. It is related to the LU factorization algorithm
described in [6] and the dynamic load-balancing versions
of LU and Cholesky factorization in [7]. The algorithm is
based on a dynamic load-balancing strategy, implemented
using the pool-of-tasks principle in which each processor
enters a critical section to assign itself more work as soon
as it has completed its last task. This process is fully
asynchronous, since there are no fixed synchronization
points. The amount of work performed in each task is
large enough to make overhead in the work distribution
process negligible. Section 6 shows performance results
for the parallel algorithm on one, two, three, and four
processors of a four-way 332-MHz IBM PPC604e SMP
node. The uniprocessor performance of the parallel
algorithm is basically the same as for the serial algorithm.
The parallel results show nearly perfect speedups, up to
1.97, 2.99, and 3.97 for two, three, and four processors,
respectively.

2. Recursive QR factorization
In our recursive algorithm, the QR factorization of an
m X n matrix 4,

A]l A]Z) — Q R]] R12 (1)
AZI A22 0 R22 ’
is initiated by a recursive factorization of the left-hand
side [/ 20columns, i.e.,

Rll All
o3)-(2)

The remaining part of the matrix is updated,

R A
(Jz) eQIT(lz> , 3
Ay Ay

and then /122 is recursively factorized,
QZRZZ = /’1‘22 : (4)

The recursion stops when the matrix to be factorized
consists of a single column. This column is factorized by
applying an elementary Householder transformation to it.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Proof of correctness

Our method of proof is mathematical induction. We
consider only the case m = n. The recursion takes place
on the column dimension n. We want to prove correctness
forn = 1, 2, ---. However, recursion breaks the problem
into nearly two equal pieces, n, = /20and n, = n — n,.
This suggests that we use mathematical induction on

k =log,n, k =0, 1,---. On the basis of this
observation, we have the following form of mathematical
induction. Suppose the result is true for 1 = n < 2,
Then we establish the results for all j, 2* <j= 2k,
Additionally, we need to establish the result for (m, n)
where n = 1.

Now we give the proof: For n = 1 we compute the
Householder reflector H = I — Tuu’, where u is
computed from A(1:m, 1). Thus, the result is true for
n = 1. Now suppose the result is true for 1 =n < 2" Let
2f <j=2""j =0/20andj, =j —j,. Sincej > 1,
we do the computations indicated by Equations (2), (3),
and (4) in that order.

Equation (2) is satisfied by the induction hypothesis;
Equation (3) is a calculation, and Equation (4) is satisfied
by the induction hypothesis. Using Equations (2)-(4), we
want to show that Equation (1) is true, where Q = 0,0,
and Q, O, and Q, are m X m. That Q is orthogonal
follows by induction, using the induction hypothesis that
0, and Q, are orthogonal and the facts that O, and Q,
are orthogonal Householder transformations for the cases
n, = 1 and n, = 1, respectively, and the fact that the
product of two orthogonal matrices is an orthogonal
matrix.

Partition O, and Q, as follows:

0~ (2 %), o0 3 (5)
! QZI QZZ ’ : 0 QZ ’
where Qz ism —n, bym — n,. Since Q is orthogonal,

Q"0 =1, and it is sufficient to show that 0’4 = R.
Now,

T T T T
QllAll + Q21A21 QIIAIZ + Q21A22) (6)

QITA:< TA TA TA TA
le 11+Q22 21 Q12 12+Q22 22

and by substituting (2) and (3) into (6) we obtain

R, R
T, _ 1
0A4= (0 An) . (7)

Now Q74 = QZT(QITA) becomes equal to R by
substituting (7) for QITA, then carrying out the
multiplication by QZT [see (5)] and finally substituting

=T~

R,, for O, A4,,. [This latter substitution is valid by
Equation (4)]. O

We use the storage-efficient WY form, that is,
Q =1 — YTY", to represent the orthogonal matrices,
and the update by QIT in (3) is performed as a series of

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

matrix multiplications with general and triangular matrices
(i.e., by calls to Level 3 BLAS DGEMM and DTRMM).
In Figure 1, we give the details of our recursive algorithm,
called RGEQR3.

We assume that A is m by n, where m = n. In the
“else” clause there are two recursive calls, one on matrix
A(1:m, 1:n)), the other on matrix A(j :m, j,:n), and the
computations Q[A(1:m, j:n) and —T,(Y,Y,)T,. These
two computations consist mostly of calls to either
DGEMM or DTRMM. Our implementation of RGEQR3
is made in standard FORTRAN 77, which requires the
explicit handling of the recursion.

Algorithm RGEQR3 can be proved correct by following
and modifying the above correctness proof. In this regard
we note that RGEQR3 uses the storage-efficient
representation Q = I — YTY', and so T must also
be computed. Furthermore, RGEQR3 computes T
recursively. The modification in the proof would include
the correctness of the recursive 7 computation. Since
it also follows in a similar way, we omit it.

In Figure 2 we give annotated descriptions of algorithms
DGEQRF and DGEQR?2 of LAPACK. See [1] for full
details. The routine DGEQREF calls DGEQR2, which is a
Level 2 version of DGEQREF. In the annotation we have
assumed m = n.

® Remarks on the recursive algorithm RGEQR3

The algorithm RGEQR3 requires more floating-point
operations than the algorithm DGEQRF, which in turn
requires more floating-point operations than DGEQR?2.
Dongarra, Kaufman, and Hammarling, in [2], showed how
to increase performance by increasing the FLOP count
when they aggregated two Householder transforms before
they were applied to a matrix C. The computation they
considered was

c=0'C, ®)

where C ism by n, Q = 0,0,, and Q, and Q, are
Householder matrices of the form I — T,.ul.u[T, i =1, 2.
Their idea was to better use high-speed vector operations
and thereby gain a decrease in execution time. Bischof
and Van Loan, in [3], generalized (8) by using the WY
transform. They represented the product of k& Householder
transforms Q,, i = 1, -+, k, as

0=00, - Q,=1-Wy")

They used (9) to compute Q'C = C — YW'C. Later
on, Schreiber and Van Loan, in [4], introduced a storage-
efficient WY representation for Q:

0=00, -0,=1-YTY', (10)

where T is an upper triangular k by k matrix. In all three
cases performance was enhanced by increasing the FLOP
count. Here the idea was to replace the matrix-vector-type

E. ELMROTH AND F. G. GUSTAVSON

607

RGEQR3 A(1:m, 1:n) = (Y, R, T) !Note, Y and R replaces 4, m = n
if (n = 1) then
compute Householder transform Q = I — 7uu’ such that 04 = (x, 0)"
return (v, x, 1) !Note,u =Y, x =R,andr=T
else
n, = Ln/2] and jy=n +1

call RGEQR3 A(1:m, lin)) = (Y, R, T)) where O, =1 — Y\ T\Y/
compute A(1:m, j :n) = Q{A(l:m,jl:n)
call RGEQR3 A(j,:m, j,:n) = (Y,, R,. T,) where Q, = I — YszY:I

compute 7, = T(l:n,, j:n) = =T, (Y/Y,)T,.
set Y = (Y, Y,) !Yism by n unit lower trapczoidal
return (Y, R, T'), where

R, A(Lin,j:n) T, T
R = and T =
0 R, 0 T,

endif

Recursive OR factorization routine RGEQR3.

DGEQREF(m, n, A, 7, work)
doj = 1, n,nb ! nb is the block size
jb = min(n — j + 1, nb)
call DGEQR2[m — j + 1, jb, A(j, j), 7(j)]
if (j + jb .LE. n) then
compute T(1:jb, 1:jb) in work via a call to DLARFT
compute (I — YT'Y')A(j:m, j + jb:n) using work and T via
a call to DLARFB
endif
enddo

DGEQR2(m, n, A, 7)
doj=1,n
compute Houscholder transform Q(j) = I — 7uu' such that
Q@) A(j:m, j) = (x, 0)" via a call to DLARFG
if (j .LT. n) then
apply Q(j)T to A(j:m, j + 1:n) from the left by calling DLARF
endif
enddo

DGEQRF and DGEQR2 of LAPACK.

608

E. ELMROTH AND F. G. GUSTAVSON IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

RGEQRF(m, n, A, lda, , work)

doj = 1, n, nb !nb is the block size

jb = min(n — j + 1, nb)

call RGEQR3 A(jim, j + jb — 1) = (Y, R, T)

if (j + jb .LE. n) then

!' T is stored in work

compute (I — YT'Y")A(j:m, j + jb:n) using work and T via

a call to DQTC
endif
enddo

Hybrid algorithm RGEQRF.

computations with matrix-matrix-type computations. The
decrease in execution time occurred because the new
code, despite requiring more floating-point operations,
made better use of the memory hierarchy.

In (9) and (10) Y is a trapezoidal matrix consisting of k
consecutive Householder vectors, u,, i = 1,---, k. The
first component of each u, is 1, where the 1 is implicit and
hence is not stored. These vectors are scaled with 7,. For
k = 2, the T of Equation (10) is

T
T —T,U,U,T
T_(Ol lTl 22)- (11)

2

Suppose k, + k, = k and T, and T, are the associated
triangular matrices in (10). We have

0=, Qk1)(Qk1+l Q) =U- Y1T1Y1T)(I - Y2T2Y2T)
=1-YTY', (12)

where Y = (Y|, Y,) is formed by concatenation. Thus, a
generalization of (11) is

T, -TYY.T
T_(Ol IT] 2 2) , (13)

2

which is essentially a Level 3 formulation of (11), (12).

Schreiber and Van Loan and LAPACK’s DGEQRF
compute (12) (by LAPACK algorithm DLARFT) via a
bordering technique consisting of a series of Level 2
operations. For each k, = 1,---, k — 1, k, is chosen to
be 1. However, as (12) and (13) suggest, Q = I — YTY"
can be done recursively as a series of k — 1 matrix—
matrix computations. Also, the FLOP count of the T
computation in (12) by this matrix-matrix computation
is the same as the FLOP count of the bordering
computation to compute T (see the next subsection,
below).

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Algorithm RGEQR3 can be viewed as starting with
k = 1 and doubling k until k = n/2. If this doubling
were allowed to continue, performance would degrade
drastically because of the cubically increasing FLOP count
in the variable k (see the next subsection for details).

To avoid this, RGEQR3 should not be used for large n.
Instead, the LAPACK algorithm, DGEQREF, should be
revised and used with RGEQRS3. In Figure 3 we give our
hybrid recursive algorithm, which we name RGEQREF.
The routine DQTC described in the next two subsections
applies Q" = I — YT'Y" to a matrix C as a series of
DGEMM and DTRMM operations.

Note that RGEQREF has no call to LAPACK routine
DLARFT, which computes the upper triangular matrix T
via Level 2 calls. Instead, routine RGEQR3 computes T
via our Level 3 (matrix-matrix) approach in addition to
computing 7, Y, and R. DGEQREF calls DGEQR2 to
compute 7, Y, and R; there is no need to compute 7, and
so it is not done. However, the “if” clause of RGEQRF
is not invoked after the last and sometimes only column
block A(j:m, j:j + jb — 1) is factored (this occurs when
and only when j + jb — 1 = n). In that case, some of the
Level 3 T computations can be avoided. An example is
given in Figure 4, where matrices 7,, i = 0, -+ -, 4 must
be computed, whereas zero matrices Z,, i = 0, - -+, 3 are
not needed, and hence their computation can be avoided.
Our algorithm RGEQR3 has an additional parameter
ISW (a switch or flag), which when set will avoid the
computation of the Z, matrices. ISW is set on in
RGEQREF just before the last column block is factored.
In RGEQR3, when ISW is set on, the T, computation is
avoided when and only when the right boundary of T,
is equal to n. In Figures 1 and 3 we did not include the
switch logic, as it was a detail that would detract from the
clarity of these algorithms. The necessary modifications

E. ELMROTH AND F. G. GUSTAVSON

609

610

The matrix 7, with T}, i = 0, -, 4 representing blocks that must be
generated and Z, i = 0, -, 3 representing blocks that are not
needed.

should be clear from the description above. In the next
subsection we detail the FLOP-count saving S(m, n) that
results when ISW is set on. All performance tests have
been made with ISW set on.

® Comparative FLOP counts for algorithms DGEQR?2,
DGEQRF, RGEQRF, and RGEQR3

Some dense linear algebra algorithms have the same
FLOP counts for both Level 2 and Level 3 versions.
General LU factorization and Cholesky factorization are
two examples. Others (OR factorization, for example)
exhibit increasing FLOP count for their Level 2 and
Level 3 versions as a function of increasing block size.
We briefly describe why this is so.

Let L be the lower triangular factor of LU factorization
with partial pivoting of a general matrix; i.e., LU = PA.
In LAPACK, the routine that produces L, U, and P, given
A, is called DGETRF. One can represent L as the product
of n rank-one corrections of the identity matrix, i.e.,

L=LL,-L,
where L, = I + lieiT. Here, vector l,.T =(0,---,0,1,
lisye++51,,) is the ith column of L. The point we make

here is that the product of the n elementary matrices L,
requires no arithmetic to produce L; i.e., the product L is

E. ELMROTH AND F. G. GUSTAVSON

only a concatenation of the n vectors [, 1 =i =< n (see
[8] for details). On the other hand, Q = 0,0, -+~ Q
where each Q, = I — friu[uir is not equal to the
concatenation of the n Q, matrices. To form Q we
must multiply these n Q, matrices together. The actual
representation we use is Q = I — YTY', and the extra
work required to produce Q is the work needed to
produce the T matrix.

In the Level 2 implementations DGETF2 and DGEQR2
we work only with matrices L, and Q,. In the Level 3
implementations DGETRF and DGEQRF, we work with
block matrices L and Q. It is clear from the discussion
above that the Level 3 implementation of general LU
factorization requires no additional FLOPs, as L can be
formed from the L, by concatenation, whereas the Level 3
implementation of general QR factorization requires
additional FLOPS, namely those needed to produce T
in the representation Q = I — YTY'.

Our recursive algorithms RGEQRF and RGEQR3 also
exhibit increasing FLOP counts. Furthermore, the FLOP
count of RGEQREF is greater than the FLOP count of
DGEQREF. In this subsection we compute the FLOP
counts of these four algorithms. Specifically, we derive
FLOP counts FG, F, FT as functions of m and n, and
FB(m, n, k). The four functions refer to LAPACK
auxiliary routines DLAR{FG, F, FT, FB}. These routines
work on a matrix of size m by n; DLARFB computes
Q'C, where C is m by n and Q is m by k. Additionally,
we compute FLOP-count functions T(m, k), Y(m, k),
R(m, k), Diff(k), and M(m, k), S(m, k). Here we use k
instead of n. These latter six functions relate RGEQR3
and RGEQRF to DGEQR2 and DGEQREF. The function
T(m, k) = FT(m, k) computes the FLOP count of
producing the T matrix, which we need to compute the
block matrix Q = I — YTY". The cost of doing the k — 1
update computations Q' C in RGEQR3 is Y(m, k). We
were unable to find an explicit solution to Y(m, k),
and so computed W(m, k) [= Y(m, k) + AW(k)]
explicitly. R(m, k), standing for the cost of RGEQR3,
was computed as the sum of FG(m, k), Y(m, k), and
T(m, k). Diff(k) = Y(m, k) — F(m, k) represents the
difference in FLOP count between RGEQRF and
DGEQREF during one block step, i.e., the FLOP count
of one factor-and-update step of RGEQRF/DGEQREF.
Now, T(m, k) = M(m, k) + S(m, k). M(m, k) is
the modified FLOP count needed to compute only
those parts of the 7 matrix that are necessary to factor
a single (and last) block column, i.e., the T, submatrices
of T in Figure 4. S(m, k) is the FLOP count saved by
not computing the Z, submatrices of T in Figure 4.

We were not able to explicitly compute M and S.
However, we produce implicit expressions of M
and S and also produce explicit approximations
of M and S that satisfy T = M + S.

n

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

The purpose of producing these FLOP counts is to be
able to quantify and predict the performance properties of
our new recursive algorithms. For example, we show that
the FLOP count of RGEQR3 is about equal to the sum of
the FLOP counts for DGEQR2 and DLARFT for tall thin
matrices. Thus, for tall thin matrices we can expect about
a threefold speedup of our algorithm over the LAPACK
algorithm DGEQREF (see the second paragraph below for
an explanation). Our experimental results in Section 3
verify this.

It is counterintuitive that an algorithm with a higher
FLOP count will execute faster. The reason is that the
FLOP rate depends crucially on the FLOP operands being
in the higher levels of memory, e.g., in the cache. Our
recursive algorithms automatically block for the memory
hierarchy. Additionally, recursion produces a Level 3
implementation of the “factorization part of the code.”
LAPACK implementations, on the other hand, compute
the “factorization part of the code” as Level 2.

For RISC-type processors one usually needs a Level 3-
type code to maintain peak FLOP rates, even if the
operands are in cache. To a first approximation, execution
time is equal to FLOP rate times FLOP count. The main
result of this paper shows that recursion improves
performance most for tall thin matrices. The reason is
found in the difference between RGEQR3 and the sum of
DGEQR?2 and DLARFT. For tall thin matrices, RGEQRF
and DGEQREF spend the majority of their time in
RGEQR3 and in DGEQR?2 plus DLARFT, respectively.
We assume that, if appropriate, the switch ISW has been
set on. (If we compare RGEQR3 with the switch on to
just DGEQR2, the values of the leading term mk” of the
two FLOP counts are 7/3 and 2. Thus, the FLOP ratio of
the two codes is about 7/6 for tall thin matrices.) Now
RGEQR3 has a higher FLOP count than DGEQR?2 plus
DLARFT, but not drastically so. For tall thin matrices
they are essentially equal. On the other hand, the FLOP-
rate ratio of RGEQR3 to DGEQR?2 plus DLARFT is,
very loosely speaking, about 3, which explains why the
performance results are so good for tall thin matrices.

We start with DGEQR?2 and determine its FLOP count.
We see from Figure 2 that DLARFG is called n times to
compute n Householder transforms, Q(j) = I — ruu’.
This routine computes the 2 (Euclidean) norm of a vector,
avoiding overflow. It then scales the vector. The jth
vector has size m — j + 1. We give the FLOP count as
3(m —j + 2) + 2. This is an underestimate because we
designate the 2 norm cost as 2(m — j) and count square
root as one FLOP. Summing from 1 to n, we obtain

FG(m,n) =n(6m — 3n + 13)/2.

Also, for 1 = j < n, DGEQR2 applies Q(j)" to
A(j:m, j + l:in) from the left by calling DLARF. Let
C = A(j:m, j + 1:n). DLARF computes (I — tuu')C =

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

C — uw’, where w = C'u. Now w = C'u is computed by
calling DGEMV, and C = C — 7uw’ is computed by
calling DGER. The computation w = C'u followed by the
scaling w = ™ costs 2(m + 1 — j)(n — j) FLOPs. The
computation C = C — Tuw’ costs the same, so the FLOP
count is 4(m + 1 — j)(n — j). Summing j from 1 ton — 1,
we obtain

F(m,n)=2n(n —1)[m — (n — 2)/3].

Now we turn to DGEQREF. The routine in Figure 2 is a
simplified version in that no mention is made of blocking
parameter nx. However, it is sufficient for our purposes.
There are two routines we want to analyze, DLARFT and
DLARFB. DLARFT computes 7 via a Level 2 bordering
computation. At the jth step, 1 =j = n, we have T as
an order j — 1 upper triangular matrix, and we want to
compute the jth column of 7. Letting

T w
Y] = (Y> 'U), T] = 0 z ’

we have

(I —-YTYDI - 100"y =1-YTY"

1717 1

and so the cost of computing column j consists of
computing —TY" v, where Y is an m by j unit lower
trapezoidal matrix and v = (1, u")" isanm — j + 1
vector. DLARFT computes w = T(1:j — 1,j) = —7Y"v
by calling DGEMV and then calling DTRMYV to compute
w = Tw. The DGEMYV computation, including the scaling
by 7, costs 2(j — 1)(m — j + 1) FLOPs. The DTRMV
computation costs (j — 1)° FLOPs. Thus, the total cost

is (j — D[2m — (j — 1)]. Summing j from 1 to n, we
obtain

FT(m,n) =n(n —1)[m — (2n — 1)/6].

Now we turn to DLARFB. This routine does the bulk
of the computation. DLARFB is a general routine. In
one specific instance it has the same function as routine
DQTC. For our purposes we want to compute Q' C, where
Cismbynand Q =1 — YTY'. Here Y is m by k lower
unit trapezoidal and T is order k upper triangular. Both
DLARFB and DQTC have the same FLOP count and use
an auxiliary work array of size k by n.

Let

where Y| is an order k unit lower triangular matrix and Y,

is an m — k by k rectangular matrix. Also, let

— C]
C= c,)

611

E. ELMROTH AND F. G. GUSTAVSON

612

Table 1 FLOP counts for operations used to perform
C =0'C, where Q =1 — YTY".

Routine Computation Number of
floating-point operations
DTRMM w=Y*C, k(k — 1)n
DGEMM W=W+Y]*C, 2k(m — k)n
DTRMM w=T"«w k’n
DGEMM C,=C,-Y, =W 2k(m — k)n
DTRMM W=C =W k(k — 1)n
Matrix c,=C -w kn
subtract

Total
computation C = Q'C kn(4m — k — 1)

Table 2 FLOP counts for operations used to compute 7.

Routine Computation Number of
floating-point
operations
DTRMM W=Yl %Y, k. k3
DGEMM =W+Y, *Y, 2k, k,(m — k)
DTRMM =T, =W kik,
DTRMM =W=T, kk;
Total
computation W= -T,(YY)T, kk,(2m — k)

where C, is k by n and C, is m — k by n. Six computations
are performed; they are summarized in Table 1.
From Table 1 we have

FB(m,n, k) =kn(4m — k — 1).

This concludes the analysis of DGEQREF.

We next turn to RGEQRF. Routines DGEQRF and
RGEQREF differ (assuming both use the same blocking
strategy) in FLOP count as follows. DGEQRF calls
DGEQR2 and DLARFT, whereas RGEQREF calls
RGEQR3. Both routines use the DQTC computation
for the bulk of their operations. Hence, to compare
the FLOP-count difference we need to study the
difference between DGEQR2 + DLARFT and
RGEQR3. Turning to RGEQR3, we now show that
its T computation can be separated out and directly
compared to DLARFT. The functional equation
governing the 7 FLOP count is

T(m, k) =T(m, k)+ T(m —k, k,) +kk,(2m—k), (14)

with T(m, 1) = 0. The k k,(2m — k,) FLOP component
is the cost of computing — T, (Y,Y,)T,, where T, and T,
are k, and k, upper triangular, respectively, Y| is m by k,

E. ELMROTH AND F. G. GUSTAVSON

unit lower trapezoidal, and Y, is m — k, by k, unit lower
trapezoidal.
The computation proceeds as follows. Let us write

where Y| and Y|, are order k and k, unit lower
triangular, respectively, Y, is k, by k, Y, ism — k by k|,
Y, ism — k byk,, and k = k, + k,. The computation is
summarized in Table 2. Note that Y|, is not used. First set
W =Tk, k, + Lik) = Y,
We claim T(m, k) = FT(m, k). To show this we
substitute FT(m, k) into (14) and verify that (14) holds.
Now we want to remove the DLARFG part of the
RGEQR3 computation. This computation is done when
n = 1. The remaining part of RGEQR3 consists of
computing Q = I — YTY" minus the T computation,
i.e., the Y matrix. The FLOP count is

Y(m, k) =Y(m, k) +Y(m -k, k) + kk,(4m —k - 1).

(15)
The cost k k,(4m — k, — 1) is the cost of calling DQTC,
ie., the A(Lim, k, + 1:k) = Q[A(l:im, k, + 1:k)
computation of Figure 1. Also Y(m, 1) = 0.

To solve Equation (15), we compute an approximate
solution. Define Y = W — AW, where

Wm, k) = W(m, k) + Wm - k,, k)
+ kky(8m + k, — 3k, — 2)/2, (16)

with W(m, 1) = 0. AW(m, k) is a function of k£ only and
satisfies

AW(k) = AW(k,) + AW(k,) + (k — 2k,)(k,k,)/2, (17)

with AW(1) = 0.
The solution to (16) is

W(m, k) = k(k — 1)(4m — k)/2.

This can be verified by substituting W(m, k) into (16).
Similarly, Y = W — AW can be verified by substitution
using (15), (16), and (17). Now we turn to the solution
of (17). Note that k — 2k, = 0 when k is even and 1
when k is odd. Thus, there is no additional count change
unless k is odd, and then it is k (k, + 1)/2. In particular,
AW(n) = 0 when n = 2", To find the general solution we
need some notation. Let N = 2_ | b,.2i be the base-two
representation of N. Let N, = N/ = 2 b,.ZH, and let
n; = X, b2'. The binary tree associated with N has 2'
nodes at level i. At the root there is one node of size N,
Letn_, = 0.

There are n, nodes of size N, + 1 and 2 — n, nodes
of size N, at level i + 1. As we saw above, only odd
nodes add to the count by the amount N, (N, + 1)/2.

i+1

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Now, N, is odd if and only if b, = 1. Thus, N, + 1 is odd
if and only if b, = 0. Using these facts, we see that at
level i the increase in the count is

[(1=b)n + b2 = n)]N,, (N, +1)/2].
Since AW(1) = AW(2) = 0, we obtain

Oogy NG-1

AW(NY = > [n,+2b(2" = n)IIN. (N,

i=0

+1)/2].

+1

To obtain a bound on AW(N), we note that the
contribution at each node at level i + 1 is four times
smaller than that at a node at level i. Since the number of
nodes at level i + 1 is double that of level i, we find that
the increase at level i + 1 is at most two times smaller
than at level i. Thus, an upper bound for AW(N) is two
times the value at level 0, i.e., 2[N,(N, + 1)/2]. But when
N is even, the contribution at level 0 is 0. Hence, we write
N = 2'n, where n is odd. Contributions begin to show up
only at level i, and there are 2' instances of the same
positive contribution. Thus, an upper bound is

AW(N) <2 (n/2)(n/2 + 1)/2.

In our implementation we found k = 48 to be an optimal

blocking factor for RGEQREF. The corresponding best

factor for DGEQRF was nb = 40. For k = 48,

W(m, k) = 4512m — 54144 — AW(48), where AW(48) = 32.
Next we compute the FLOP-count difference between

RGEQRF and DGEQRF during one block iteration of

size k, i.e., the call to RGEQR3 minus the calls to

DGEQR2 and DLARFT. This difference, Diff(m, k),

is Y(m, k) minus F(m, k):

Diffm, k) = k(k = 1)(k = 8)/6 — AW (k). (18)

Note that Diff is independent of m and the cubic growth
in k is only 1/6, where k is the blocking factor and k is
around 50 for practical problems. For k = 48, Diff is
15008 FLOPS. A realistic problem might have m = 1000.
Summing FG(m, k), Y(m, k), and T(m, k), we obtain the
FLOP count of RGEQR3:

R(m, k) = 3k*m — k(5k* + 3k — 38)/6 — AW(k).

For m = 1000 and k = 48, R(m, k) ~ 6.8 X 10°. The
ratio Diff/R(m, k) is 0.0022, about 0.2%. For tall thin
matrices the difference is negligible; i.e., the FLOP counts
are essentially equal. Thus, we have quantified a remark
we made above regarding Equation (12).

Now compare Diff(k) to T(m, k) = FT(m, k). T(m, k)
is at least four times more costly to compute, and this
occurs when m = k. For tall thin matrices (say m/k = 20),
the ratio is greater than 100. The point we make here
is that the additional cost of using 7 in kK — 1 calls to
DQTC of RGEQR3 is tiny compared to the cost of
producing it.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Although the point is very minor, the cost T(m, k) is
actually less than FT(m, k). We listed the cost of the first
DTRMM computation as klkzz. However, Y, is unit lower
triangular; thus, the cost is actually k k,(k, — 1). We used
the more expensive cost because the results were equal.
Thus, using Level 3 BLAS to replace a series of Level 2
computations can be slightly cheaper because a constant
feature in the higher-level BLAS can be exploited,
whereas in the lower-level BLAS it is only one operation
and usually cannot be taken advantage of.

As mentioned, there is a modification of RGEQR3
which can save FLOPs. Recall that the computation
—TI(YITYZ)T2 is done after the second recursive call. The
computation is necessary only when Q = I — YTY' is
needed to update a submatrix to the right of the currently
factored submatrix. If the RGEQR3 task is to factor
the entire matrix, there is never a right submatrix. In
RGEQRF, RGEQR3 is called as a subroutine 7 = n/k
times, where k is the block size. On the first 7 — 1 calls
there is a right submatrix to be updated. On the last call
there is none. Thus, in these cases, in RGEQR3 we omit
the T, computation when the right boundary of T, a
submatrix of 7, is k. If the right boundary of T, is less
than k, T, must be computed (see Figure 4). Let M(m, k)
be the modified FLOP count and S(m, k) be the saved
FLOP count of computing the 7, matrix. We have

M(m, k) =T(m, k) +M(m -k, k); (19)
S(m, k) = S(m — k,, k,) + kk,(2m — k), (20)

where M(m, 1) = S(m, 1) = 0. It is clear by induction
that M(m, k) + S(m, k) = T(m, k), since the sum of
the right-hand side of (19) and (20), using the induction
hypothesis, gives the right-hand side of (14). We can
show that

M(m, k) = flk)m — f,(k); (21)
S(m, k) = g(kym — g,(k). (22)
Furthermore,

flk) = f(k,) + k(k, = 1);

fitk) = fi(k,) + k[f(k,) + (k, = 1)(2k, — 1)/6], (23)
and

g(k) = g(k,) + 2k k,

9,(k) = g,(k,)) + k,[g(k) + kk,], (24)

with f(1) = f,(1) = 0 and g(1) = g,(1) = 0 defining the
functions f, f|, g, and g,, for k. = 1,2, - -.

Consider
af(2x) = af(x) + x(x — 1);
af (2x) = af (x) + x[f(x) + (x — 1)(2x — 1)/6], (25)

E. ELMROTH AND F. G. GUSTAVSON

613

614

05 F WM,,_,———— 7, ()
A

o
| T

0.35F

03 | W/V

0.25F i

r(k)

02
0.15F
0.1 f
0.05F

10! 102 103 104
k

Log plots of r, (k) and r(k) vs. k.

ag(2x) = ag(x) + 2x%
ag,(2x) = ag,(x) + x[ag(x) +x°]. (26)

The prefix a means approximate. A solution to (25), (26)
is

af(x) =3 (x = 1)(x = 2);

af,(x) = (x — 1)(4x” — 17x + 18)/42; (27)
ag(x) =3 (x + D(x - 1);
ag,(x) = (x — 1)(5x* + 5x — 9)/21. (28)

These functions approximate the true functions (23) and
(24). For k = 2/, they are identical. Note that

flk) + g(k) = af(k) + ag(k) = k(k — 1) (29)
and
fitk) + g,(k) = af (k) + ag,(k) = k(k — 1)(2k — 1)/6. (30)

We can also show directly that

Ag(2k) = Ag(k); (31)
Ag(2k + 1) = Ag(k + 1) + 3k; (32)
Ag,(2k) = Ag, (k) + kAg(k); (33)

Ag,(2k + 1) = Ag, (k) + k[Ag(k + 1) + (4k — 1)/21], (34)

where Ag(k) = g(k) — ag(k) and Ag, (k) = g,(k) — ag, (k).
Now define

Aag(x)=ag(x + 1) —ag(x) = %(Zx +1) (35)

E. ELMROTH AND F. G. GUSTAVSON

and
Aag,(x) =ag,(x + 1) —ag,(x) = (5x* +5x = 3)/7. (36)
It turns out that

ag(k) = g(k) < ag(k + 1); (37
ag,(k) = g,(k) < ag,(k + 1). (38)

We can show that (37) and (38) are true by using
induction. These proofs are straightforward. A sketch of
the proofs is given in the Appendix.

Note that in each region 2/ < k = 2’*', Equations (37)
and (38) bound g(k) and g, (k) from below and above.
Thus, limk_m[g(k)/kz] = limk_m[ag(k)/kz] = 2/3.
Similarly, limk_m[gl(k)/k3] = limk_m[agl(k)/k3] = 5/21.
From (29) and (30) we obtain limk_m[f(k)/kz] = 1/3 and
limk_m[fl(k)/kz] = 2/21. Let r, (k) = f(k)/g(k) and
r(k) = f,(k)/g,(k). Figure 5 gives log plots of r, and
r vs. k. The plots verify experimentally that »_ and r
have the correct limits of 0.5 and 0.4.

We now use the above results to compare RGEQR3 to
DGEQR?2 with the switch on. The cost of RGEQR3 in
this case becomes R(m, k) — S(m, k). Using ag(k) and
ag, (k) for g(k) and g, (k) and keeping only terms in k*m
and k°, R(m, k) — S(m, k) ~ k’[(7/3)m — (40/21)k].
The FLOP count of DGEQR2, keeping the same terms,
is k*(2m — k/3). For large m and small k (the tall thin
matrix case), the FLOP ratio of RGEQR3 to DGEQR?2
is about 7/6; i.e., the FLOP count is about 17% higher.
Assuming a 3 to 1 FLOP-rate ratio, it follows that
RGEQR3 should execute 2% times faster. This loose
analysis quantifies the remarks we made above regarding
this comparison.

We close this section with some remarks on why the
hybrid algorithm RGEQREF should not be replaced with
RGEQR3. Let m = n and set k = n in R(m, k). The
cubic term is (13/6)n°. For DGEQRF and RGEQRF
using fixed nb << n, the extra FLOP cost is marginally
higher than for DGEQR?2, which has a cubic term of
(4/3)n’.

Even if we replace T(m, k) with M(m, k) to compute
R(m, k) (which one should do), the reduction in the cubic
term would only be 3/7, and the new cubic term would be
73/42. In summary, the preceding FLOP-count analysis of
this section shows that the hybrid algorithm RGEQRF
should be chosen. RGEQREF should exhibit Level 3
performance for even relatively small values of k. For
large m and n, and using k = nb << n, the additional
FLOP count is marginally higher than for DGEQREF.

® The routine DQTC
The matrix multiplications in the update operation

C<0'c=Cc-Yr'Y'c

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Table 3 Alternative approaches for updates, ¢ < Q'C = C — YT'Y'C, in QR factorization.

Method

Number of
floating-point operations

C—Y=[T"= (" *(C)
C—Y*[(TT YT = C]
C—[Y=(T"«Y")]=*C
C—[(Y*TH=Y"]*C
C—=TH=* X" =C)

w (S} —

N

aaaan

kn,(4n, —k — 1)
kn,(4n, —k — 1) + k(n,k — k + 1/3 — k°/3)
n(2n, + 2k — 1) + k(13 — k — k*/3)
ni(2n, + 2k — 1) + k(n, — kn, — 2k + 1)
kn,(4n, — 2k) + k(n k — k — 2k*/3 + 2/3)

can be performed in several different orders. Depending
on the sizes of the matrices involved, the total number of
floating-point operations may be quite different for the
different approaches. In Table 3 we show the five possible
alternatives and the number of floating-point operations
required for each of them, assuming that C is n, X n,,
Yis n, X k unit lower trapezoidal, and T is k X k upper
triangular. Since we here consider each individual update
through the whole factorization of an m by n matrix, we
have for clarity chosen to use the new variables n, and n,
to denote the size of the matrix to be updated.

For comparisons with results in the preceding
subsection, where we express the operations in terms of
the first update, n, and n, should be replaced by m and
n — k, respectively. In the update performed in a QR
factorization of a large m X n matrix where m = n, we
know that n, = n, + k and that k is normally much
smaller than n, and n, for almost all updates performed.

It is apparent that methods C, and C, require
significantly fewer floating-point operations than the other
alternatives for the typical case in the QR factorization,
i.e., for n, large and k relatively small. The C, method
requires the smallest number of floating-point operations
of these methods for all updates that occur in RGEQRF
for a factorization of an m X n matrix if m = n. For the
case m = n, method C; is almost as cheap if m = n is
large and k is small.

The larger the block size is or the smaller n, is
compared to n, the larger is the gain from using method
C, compared to C,. From this we conclude that method
C, definitely is to be preferred by the recursive algorithm
RGEQRS3, where 7, typically never exceeds half of the
block size nb used in the calling routine RGEQREF. For
updates in RGEQREF, the choice of method is less
obvious. However, in order to reduce the software
complexity we have chosen to use the same method
for all updates. Therefore, the routine DQTC implements
method C,. The routine DLARFB called by the LAPACK
algorithm DGEQREF also implements the C, method, even
though the implementation is slightly different. In both
routines, the operations are performed as a series of calls
to the Level 3 BLAS routines DGEMM and DTRMM.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

3. Uniprocessor performance analysis

The uniprocessor performance of RGEQRF has been
evaluated on a 120-MHz IBM POWER?2 node and on one
processor of a four-way 332-MHz IBM PPC 604e SMP
node. The performance results are compared to those of
the LAPACK Level 3 QR factorization routine DGEQRF.
The performance has been analyzed both for square
matrices (m = n) and for tall thin matrices (m >> n),
which are important in many applications. Results are
presented for large as well as for small matrices.

Both RGEQRF and DGEQRF have parameters that must
be set properly in order to obtain optimal performance. The
only parameter that must be set in RGEQREF is nb; i.e.,
nb is the number of columns to be factorized by the pure
recursive algorithm RQEQR3. In DGEQREF, nb is the
number of columns to be factorized by the Level 2
algorithm DGEQR2. DGEQREF also uses a parameter nx
as a crossover point, so that when the remaining matrix
to be factorized consists of fewer than nx columns, it is
completely factorized by the Level 2 algorithm. By using
an appropriately chosen crossover point, the overhead
(extra FLOPs) of the Level 3 algorithm is avoided for
matrices too small to benefit from the Level 3 operations.

One could argue that a similar crossover point
should also be used in RGEQRF in order to improve
performance, but in our effort to make the routine as
close to self-tuned as possible, we have chosen not to use
this approach. We note, however, that turning on the ISW
switch has the effect of automatically introducing a second
type of blocking. In the following sections, all serial and
parallel performance results for the recursive algorithm
have been obtained with the ISW switch turned on.

Of course, the optimal settings of nb for RGEQRF and
nb and nx for DGEQRF vary depending on the size and
the shape of the matrix to be factorized. Since we believe
that most users of linear algebra library software do not
change these parameters between different calls to the OR
factorization routines, we have chosen to find a good
general setting for these parameters for each machine
used for performance testing. The settings have been
made to give the best overall performance for square
matrices varying from m = n = 100 to m = n = 2000.

E. ELMROTH AND F. G. GUSTAVSON

615

616

420

RGEQRF
400

380
360
DGEQRF
340

320

MFLOPs/s

300
280

260

240 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

m=n

Uniprocessor performance results in MFLOPs/s for the hybrid
recursive algorithm RGEQRF and DGEQRF of LAPACK on a
120-MHz IBM POWER2 node.

In DGEQREF, the parameters nb and nx are obtained
from the LAPACK routine ILAENV, which always should
be modified to return the “optimal” parameters at the
time of the installation (as we have done for the two
machines considered here). We fear that some users do
not notice this, or that the users do not take the time to
determine what values to choose for these parameters.
One should also note that the values for the parameters
nb and nx used in DGEQREF are the same as the ones
used in routines for RQ, QL, and LQ factorization. Of
course, there are default values to be used (nb = 32 and
nx = 128 in the version we used), but use of them will
lead to suboptimal performance on many computer
systems. We also note that significantly more effort is
needed to find optimum parameter settings for DGEQRF
than for RGEQREF because the two parameters (nb and
nx) used in DGEQREF define a two-dimensional parameter
space, while the parameter space for RGEQREF is one-
dimensional (nb only). On this basis, we believe that each
step toward automatic tuning is just as important as the
optimum performance achieved.

A defect in the recursive approach is the overhead cost
of handling the recursion (e.g., the calling overhead). Thus,
for small m and n the direct method will perform faster.
A way to avoid this defect is to introduce a recursive

blocking parameter rb. Pure recursion has rb = 1. When
n, the recursion variable, satisfies n > rb, a recursion

step is taken; otherwise, a direct method is used.

For QR the value of rb can be quite small, say rb = 4.
This is so because we are interested in achieving Level 3
performance via register blocking; typically an unrolling of
4 works well. However, we have used only pure recursion,
rb = 1, in our performance studies.

® [BM POWER?2 performance results

The performance results are obtained on a 120-MHz IBM
POWER?2 node, using IBM XL FORTRAN 5.1 [9]. The
overall best block sizes nb for square matrices were found
to be 48 for RGEQREF and 40 for DGEQREF. The overall
best crossover point nx for using the Level 2 algorithm
only in DGEQRF was found to be 112. These parameters
were used in all performance tests for this node reported
in this section, including tests for tall thin matrices. The
BLAS routines used are from ESSL Version 2.2 [10].

IBM POWER2—square matrices

The performance results in MFLOPs/s for RGEQRF and
DGEQRF on square matrices are shown in Figure 6.
RGEQREF clearly reaches high performance much earlier
than DGEQREF for increasing m = n. For very small
matrices RGEQRF does not provide optimal performance,
primarily because of overhead from handling the recursion
and because we do not use any crossover point similar to
nx in DGEQREF to avoid the extra FLOPs performed in
the T computations for matrices too small to benefit from
Level 3 operations.

We note that the highest performance obtained for
RGEQREF is 415.4 MFLOPs/s, which is 90.3% of the
theoretical peak performance of the POWER2 node
(460 MFLOPs/s). DGEQREF reaches 353.4 MFLOPs/s,
which is 76.8% of the theoretical peak performance.

Table 4 shows that the performance of RGEQREF is
nearly 20% better than that of DGEQRF for square
matrices with n = 800. This difference in performance
seems to stabilize for large matrices. A similar behavior
was also observed in the first results for the hybrid
recursive algorithm presented for a 112-MHz IBM
PPC 604 node in [5].

IBM POWER2—tall thin matrices

The performance results for RGEQRF and DGEQRF
on tall thin matrices are shown in Table 5 and Table 6,
respectively. Here, RGEQRF shows better performance

Table 4 Ratio of uniprocessor performance results for RGEQRF and DGEQRF on a 120-MHz IBM POWER?2 node.

m=n 200 400 600 800

1000 1200 1400 1600 1800 2000

Ratio 0.91 1.03 1.13 1.17

1.20 1.19 1.18 1.18 1.17 1.17

E. ELMROTH AND F. G. GUSTAVSON

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

than DGEQREF for all but four cases, and the difference
is sometimes much larger than for the tests with square
matrices. RGEQREF achieves a performance close to or
greater than 300 MFLOPs/s for n = 100 and m = 600.
For DGEQRF to obtain similar performance for large m,
the number of columns #» must be significantly larger
(around 400).

In Figure 7 the performance ratio of RGEQREF to
DGEQREF is shown for different values of n. Notably, for
m = 800 and n = 150, RGEQREF outperforms DGEQRF
by a factor of 1.5-2.3; for n = 100, RGEQRF shows more
than twice the performance of DGEQREF for m = 800.
It confirms that the benefit of the recursive algorithm is
bigger for tall thin matrices than for square matrices.
However, one should note that the crossover point nx
used in DGEQREF could be changed to give better
performance for the LAPACK routine for tall thin
matrices as well. As mentioned above, nx is here chosen
to give a good overall performance. In RGEQREF the
recursion leads to an automatic blocking that apparently
performs well for a wider range of matrix sizes.

® [BM PPC 604e uniprocessor performance results

The performance results are obtained on one processor
of a four-way 332-MHz IBM PPC 604e SMP node, using
IBM XL FORTRAN 5.1 [9]. The overall best block sizes

2.6
24}
22F
n =100
2 L
Hr 150
/ n=

16} =50
14} n =200

=, =250
12} n = 300
1
08}

1 1 1 1 1 1 1 1 1

0.6
0 200 400 600 800 1000 1200 1400 1600 1800 2000
m

Performance ratio of RGEQRF to DGEQRF on a 120-MHz IBM
POWER2 node for m = 100, ---, 2000 and n = 50, ---, 300.

nb for square matrices were found to be 56 for RGEQRF
and 40 for DGEQREF. The overall best crossover point nx
for using the Level 2 algorithm only in DGEQREF was
found to be 72. We remark that this optimal crossover

Table 5 Uniprocessor performance on tall thin matrices for RGEQRF on a 120-MHz IBM POWER?2 processor.

m\n 50 100 150 200 250 300 350 400 450 500
200 152.3 214.6 231.4 249.7 — — — — —
400 198.6 270.6 288.6 306.7 324.8 333.4 336.9 341.3 — —
600 218.4 294.4 302.2 322.3 333.0 340.3 356.0 355.6 357.9 362.8
800 218.8 295.3 301.1 319.7 337.8 346.2 362.9 368.5 364.1 369.1

1000 232.1 296.6 305.0 326.8 344.1 354.2 369.0 374.2 369.2 374.7

1200 235.8 297.0 310.4 328.8 346.3 356.1 370.3 375.9 372.4 377.4

1400 220.3 298.6 307.7 327.6 341.9 348.0 366.2 372.3 368.7 373.3

1600 220.7 297.5 307.6 328.2 339.1 352.7 369.6 375.2 370.7 376.3

1800 225.7 301.0 308.2 327.6 345.0 355.3 372.7 378.9 372.6 377.8

2000 225.0 295.0 301.8 322.2 341.6 351.7 362.8 371.0 368.9 371.4

Table 6 Uniprocessor performance on tall thin matrices for DGEQRF on a 120-MHz IBM POWER2 processor.

m\n 50 100 150 200 250 300 350 400 450 500
200 217.4 210.3 242.9 278.0 — — — — —
400 215.8 155.6 206.4 291.0 303.0 314.1 313.6 3289 — —
600 177.2 151.5 197.5 271.1 286.5 301.4 310.0 329.9 330.7 3312
800 145.4 133.7 175.9 246.0 261.4 260.3 286.4 308.9 311.1 305.4

1000 147.5 146.1 186.9 2483 264.8 279.8 289.2 309.0 311.7 314.9

1200 146.5 144.0 184.9 246.9 263.7 278.3 288.0 308.3 311.4 315.0

1400 146.6 145.0 186.6 247.0 263.8 276.6 286.2 305.9 305.0 3132

1600 131.7 130.5 170.6 232.8 250.2 264.3 2743 296.2 299.5 305.5

1800 142.0 144.3 185.2 244.1 260.5 275.0 284.9 304.2 307.2 312.1

2000 139.8 140.7 181.8 2412 257.9 2722 281.2 301.4 301.6 309.3

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

E. ELMROTH AND F. G. GUSTAVSON

617

618

350

300

RGEQRF

S50k DGEQRF

MFLOPs/s

200

150

100 1 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000

m=n

f=}

Uniprocessor performance results in MFLOPs/s for the hybrid
recursive algorithm RGEQRF and DGEQRF of LAPACK on a
332-MHz IBM PPC 604¢ node.

point is very small, in fact less than twice the block size
nb. These parameters were used in all performance tests
for this node reported in this section, including tests for
tall thin matrices. The BLAS routines used are from ESSL
Version 3.1 [11].

IBM PPC 604e—square matrices
The performance in MFLOPs/s for RGEQRF and
DGEQREF on square matrices is shown in Figure 8. As for
the POWER?2 results, RGEQRF outperforms DGEQRF
for all matrices except the very small ones.

The performance ratio of RGEQRF to DGEQREF is
shown in Table 7. Except for drops in performance for
m = n = 1000, 1100, and 2000, RGEQRF shows around
15% better performance than DGEQREF for large matrices,
which is almost as good as the performance observed for
the POWER?2 node.

However, there seem to be some irregular drops in
performance for m = n = 1000, 1100, and 2000
in Figure 8. In order to get a better picture of the
critical matrix sizes, the performance results for
m = n = 900, 901, 902, - - -, 1200 are presented
in Figure 9. From this figure, it is clear that the
performance is around 10% lower than what one
would expect for 925 < m = n < 1130.

300
295

290 |- W
ZSSJ
280

&
S
= 275F
s
270 F
265 F
260
AR
255 1 1 1 1 1
900 950 1000 1050 1100 1150 1200
m=n

Closeup of performance results for RGEQRF on a 332-MHz IBM
PPC 604e node for m = n = 900 to 1200.

Additional tests indicate that this performance problem
depends on the leading dimension of the matrix. All of
the performance results presented here are performed
with a leading dimension equal to m + 1. If the leading
dimension, for example, is increasing by a constant 300,

a similar performance drop is observed for m = n around
700 to 800.

This behavior is currently not fully understood, but one
possible reason is that this is an effect explained by the
fact that the Level 2 cache memory on the 332-MHz PPC
604e node is direct-mapped; i.e., it is not a set-associative
cache memory. We remark that no indications of similar
problems were observed on the POWER?2 node, which
indeed has a four-way set-associative Level 2 cache
memory.

® [BM PPC 604e—tall thin matrices
The performance results for RGEQRF and DGEQRF
on tall thin matrices are shown in Table 8 and Table 9,
respectively.

As for the POWER?2 results, RGEQRF appears
to handle tall thin matrices significantly better than
DGEQREF. In fact, RGEQREF outperforms DGEQRF
on all matrix sizes tested, and the performance ratios

Table 7 Ratio of uniprocessor performance results for RGEQRF and DGEQRF on a 332-MHz IBM PPC 604e node.

m=n 200 400 600 800 1000 1200 1400 1600 1800 2000

Ratio 1.05 1.14 1.15 1.14

1.04 1.15 1.15 1.15 1.15 1.03

E. ELMROTH AND F. G. GUSTAVSON

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

approach a factor of nearly 3. As seen in Figure 10, the
gain from using RGEQREF is bigger the smaller the n is.

We also remark that for larger n, a performance
degradation around m = 1000 similar to that for square
matrices can be observed.

4. General comments on uniprocessor
performance
For both square and tall thin matrices, the gain in
performance is partially explained by the increased
performance of RGEQR3 compared to DGEQR?2.
Additional benefits occur because the faster RGEQR3
leads to an increased optimal block size in RGEQRF
compared to DGEQREF, which in turn improves the
performance of the Level 3 BLAS updates in DQTC.
For RGEQREF we observe that the performance on the
POWER?2 node for tall thin matrices is close to constant
for increasing m and fixed n. On the PPC 604e the
performance decreases for increasing m and fixed 7.
Since the number of floating-point operations is 0(mn”
(for m = n) and the amount of data is O(mn), the
number of floating-point operations per matrix element
is constant for fixed n. That the performance decreases
as the number of floating-point operations per matrix
element remains the same indicates that the memory

)

3
28
26 n =50
Sl n =100
22

n =150
2 L
18}

n =200
1.6 | / n:§(5)8
4t 7/ "=
b 7

1 1 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
m

Performance ratio of RGEQRF to DGEQRF on a 332-MHz IBM

PPC 604e node for m = 100, ---, 2000 and n = 50, ---, 300.

system is the bottleneck. Hence, it seems that the
POWER?2 memory system is much better suited to
serve the POWER?2 processor with data than is the
corresponding system on the PPC 604e.

Table 8 Uniprocessor performance on tall thin matrices for RGEQRF on a 332-MHz IBM PPC 604e processor.

m\n 50 100 150 200 250 300 350 400 450 500
200 125.2 169.3 181.4 190.4 — — — — — —
400 143.4 188.4 206.9 218.9 234.0 239.3 249.6 251.3 — —
600 138.2 180.6 202.7 218.1 239.7 246.5 2535 255.8 261.9 265.5
800 126.5 176.9 199.7 216.8 235.8 2437 249.4 252.3 262.4 267.0

1000 114.2 152.5 168.1 176.8 195.0 199.2 2115 213.4 232.8 237.4

1200 115.7 164.3 193.5 210.5 233.6 2426 2479 251.4 260.3 266.5

1400 119.9 172.6 194.6 211.9 233.6 2432 250.6 254.0 263.3 269.4

1600 121.8 172.8 194.7 2125 233.3 242.8 249.4 252.6 261.9 268.3

1800 116.0 168.5 190.9 208.9 229.2 239.4 2459 250.2 258.6 265.5

2000 104.7 148.1 164.4 174.1 191.0 196.0 209.7 212.7 230.3 235.9

Table 9 Uniprocessor performance on tall thin matrices for DGEQRF on a 332-MHz IBM PPC 604e processor.

m\n 50 100 150 200 250 300 350 400 450 500
200 873 123.2 151.3 175.2 — — — — — —
400 80.0 111.7 132.8 169.6 185.3 198.2 208.0 217.6 — —
600 72.0 96.5 128.4 163.7 179.5 191.4 197.3 209.0 216.2 222.6
800 63.0 88.2 108.5 152.6 168.3 180.6 188.4 202.5 210.3 216.8

1000 50.2 76.9 96.4 135.9 151.7 162.5 169.5 187.4 196.4 203.8

1200 46.8 71.2 91.4 130.5 144.8 156.6 165.4 184.5 193.1 200.1

1400 44.1 66.1 86.1 120.9 135.8 147.4 157.4 176.0 184.5 191.7

1600 424 63.6 82.7 116.5 130.3 141.9 151.4 169.6 177.8 184.9

1800 41.1 61.6 80.1 111.6 125.4 136.9 146.6 163.8 172.1 179.1

2000 39.7 60.2 782 108.0 121.6 133.0 141.8 158.3 166.4 173.6

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

E. ELMROTH AND F. G. GUSTAVSON

619

620

THRQR(m, n, A, Ida, T, work)

if (me = 0) then

call RGEQR3 A(1:m, 1:firstjb) = (Y, R, nextT)

endif

do while (There is still work enough for me)
call GETJOB(/, first, last, jb, T, nextT, Y, nextY, R, dofact, . ..)
compute (I — YT Y")A(j:m, first:last) using work and T via

a call to DQTC
if (dofact) then

call RGEQR3 A(first:m, first + jb — 1) = (nextY, R, nextT)

endif
enddo

Brief description of routine THRQR.

We make similar observations from the results of the
LAPACK algorithm DGEQREF, even though this routine
shows a slight decrease in performance for increasing m
on the POWER?2 system. This indicates that the data
locality in DGEQREF is not quite as good as in the
recursive hybrid algorithm RGEQREF.

Even though we have seen in Section 3 that RGEQRF
shows significantly better performance than DGEQREF, we
believe that a possible bigger advantage of the recursive
approach is the fact that the automatic variable blocking
leads to an automatic tuning which ensures good
performance. Also, very little time and effort were
spent on adjusting tuning parameters, compared to
the effort we gave to tuning DGEQREF.

5. The parallel algorithm PRGEQRF

In the parallel version of RGEQREF, several execution
threads are created by a parallel do construction. The
number of threads created is equal to the number of
available processors, and a routine THRQR (standing for
THRead QR) is called once for each parallel thread. In
the THRQR routine, each processor repeatedly performs
three major operations. It finds a new block to update
through a call to routine GETJOB, it updates that block
through a call to routine DQTC, and it factorizes that
block through a call to RGEQRS3, if required. The
processor returns from THRQR when the QR factorization
is completed. A brief description of routine THRQR is
given in Figure 11.

The critical part of the parallel QR factorization is
done by the GETJOB routine. GETJOB implements a
distributed version of the pool-of-tasks principle [12]
for dynamically assigning work to the processors. The

E. ELMROTH AND F. G. GUSTAVSON

GETIJOB algorithm is sketched in Figure 12 and is
described in the next paragraph.

In the pool-of-tasks implementation, only one critical
section is entered per job (to find a new task, to tell what
submatrix is reserved for this task, to update variables
after the task is completed, etc). Associated with each
processor are three variables which keep track of an
iteration index and two indices equal to the first and last
column the processor is working on. The sizes of the
blocks to be updated depend on the size of the remaining
matrix and the number of processors available. Near the
end of the computation, a form of adaptive blocking is
used [13]. As the remaining problem size decreases, both
the number of processors and the sizes of the blocks being
updated are decreased. A processor that will both update
and factorize a block will update only the columns it will
factor, i.e., last = first + jb — 1 in Figure 11. There
is no fixed synchronization in the algorithm; it is an
asynchronous algorithm. This means that sometimes
processors may be working on different iterations;
therefore, more than one T matrix is needed. For
example, one processor may still be performing updates
with respect to the factorization in iteration i — 1, while
another processor is updating with respect to iteration i
and factorizing for iteration i + 1. In this example two T
matrices are being used read-only and a third one is being
produced. In practice, at least three such 7 matrices are
required to avoid contention, and that is what is used in
this implementation.

We remark that this pool-of-tasks algorithm implements
a general strategy for dynamic load balancing that may
be used for parallel implementations of other matrix-
factorization algorithms as well. It is related to the

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

do while (I have not yet found a new task, i.c., a new block to update)

Enter Critical section

If I did factor in my last task, update global variables
If (rcmaining problem is too small for the current number of processors) then
Update global variables and terminate

else

Find the next matrix block to update
Test whether it is OK to start working on this block, i.e. test that:
- no one is writing on any column in this block
- the block I will read is computed
— if T will factor: Is it safe to overwrite one of the T matrices?
If (it is OK to start working on this block) then

Update global variables
else

Update variables to show that no block is rescrved

endif
endif
Leave Critical section
enddo

Algorithm GETJOB performs the pool-of-tasks implementation.

strategies used for the LU factorization algorithm
described in [6] and the dynamic load-balancing versions
of LU and Cholesky factorization in [7].

6. Parallel performance results

The performance results for the four-way 332-MHz IBM
PPC 604e SMP node were obtained using the same
compiler and ESSL library as in Section 3. In order to
perform tests on one, two, three, and four processors, the
environment variable XLSMPOPTS parthds is set to 1, 2,
3, and 4, respectively.

The performance in MFLOPs/s and the parallel
speedup, S, for PRGEQREF for one to four processors
on square matrices are shown in Table 10.

It should be noted that the uniprocessor performance
for the parallel algorithm is almost the same as the results
presented for the serial algorithm in Figure 8. For some
matrix sizes, the parallel algorithm shows negligibly higher
MFLOPs/s figures; for others, it shows up to 3% lower
figures.

In order to facilitate the interpretation of the parallel
speedup, Figure 13 shows the speedup for one, two, and
three processors for varying matrix sizes. The largest
speedups observed are 1.97, 2.99, and 3.97, for two, three,
and four processors, respectively.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

4 p=4
35F
3 F p=3
g e
= %
2+ =2
15F
1 1 1 1 1 1 1 1 1

1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

m=n

Relative parallel speedup of PRGEQRF for two, three, and four
processors on a four-way 332-MHz IBM PPC 604e¢ node for m =
n =100, -+, 2000.

7. Conclusions
We have shown that a significant increase in performance
can be obtained by replacing the Level 2 algorithm in a

E. ELMROTH AND F. G. GUSTAVSON

621

622

Table 10 Parallel performance for PRGEQRF on a four-way 332-MHz IBM PPC 604e SMP node.

m=n One Two processors Three processors Four processors
processor
(MFLOPs/s) (MFLOPs/s) N (MFLOPs/s) N (MFLOPs/s) N
100 114.5 146.6 1.28 137.5 1.20 133.5 1.17
200 192.7 318.6 1.65 393.7 2.04 398.0 2.07
300 225.1 399.3 1.77 541.0 2.40 612.2 2.72
400 243.0 452.9 1.86 615.9 2.53 759.2 3.12
500 251.4 477.0 1.90 653.4 2.60 762.7 3.03
600 265.6 517.5 1.95 713.7 2.69 886.1 3.34
700 268.7 522.7 1.95 741.1 2.76 895.1 3.33
800 277.0 541.4 1.95 766.7 2.77 942.6 3.40
900 273.7 5333 1.95 772.9 2.82 955.0 3.49
1000 250.4 493.9 1.97 735.3 2.94 913.5 3.65
1100 257.3 505.9 1.97 768.4 2.99 964.0 3.75
1200 289.0 556.7 1.93 823.8 2.85 1039.8 3.60
1300 295.3 568.1 1.92 851.8 2.88 1061.2 3.59
1400 300.7 577.8 1.92 860.5 2.86 1090.8 3.63
1500 299.0 572.4 1.91 863.1 2.89 1087.2 3.04
1600 303.9 584.5 1.92 873.0 2.87 1116.1 3.67
1700 299.2 573.4 1.92 860.4 2.88 1090.6 3.65
1800 306.1 592.3 1.94 879.3 2.87 1135.5 3.71
1900 301.3 579.5 1.92 868.0 2.88 1119.8 3.72
2000 270.4 524.5 1.94 805.3 2.98 1072.9 3.97

LAPACK-style block algorithm for QR factorization with
a recursive algorithm that essentially performs Level 3
operations. Another important advantage is the automatic
tuning obtained from the automatic variable blocking
following from the recursion.

Recursion has previously been successfully applied
to LU factorization [14, 15]. For the LU case, no
extra FLOPs are introduced from recursion, and the
performance exceeds or significantly exceeds that of
LAPACK block algorithms. In this contribution we have
shown that despite the extra FLOPs, the hybrid OR
factorization benefits even more from using recursion
than the LU factorization does.

The parallel speedup compares well with previously
published results for QR factorization routines for shared
memory systems. The algorithm presented here shows
better speedup than that presented for the IBM 3090*
VE/600] in [7] and the Alliant fx2816 in [16], and it is
similar to what is presented for the IBM 3090 VF/600J
in [16].

Acknowledgments

We are grateful to Bo Kagstrom and Carl Tengwall, who
were instrumental in setting up our fruitful collaboration.
We thank Isak Jonsson for providing the coefficient of m
for § when k = 2/ and for the plots in Figure 5. We are
also grateful to the anonymous referees for carefully
reading the manuscript, and to the second referee for

E. ELMROTH AND F. G. GUSTAVSON

pointing out an alternative approach for deriving Y(m, k)
in (15) for the simplified case when n = 2%,

This research was conducted using the resources of the
High Performance Computing Center North (HPC2N)
in Umed, Sweden, and UNI®C in Lyngby, Denmark.

*Trademark or registered trademark of International Business
Machines Corporation.

Appendix: Sketch of proof for Equations (37)
and (38)
Equations (37) and (38) are the same as

0= Ag(k) < Aag(k) (A1)
and
0= Ag, (k) < Aag, (k). (A2)

The following relations are true:

ag(x) =5(x* = 1) (A3)
and
Aag(x) =ag(x + 1) —ag(x) =3 (2x + 1); (A4)
ag,(x) = 2 (5x° — 14x + 9) (A3)
and

Aag,(x) = ag (x + 1) —ag,(x) = %(5x2 + 5x — 3); (A6)

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Aag(2k) = Aag(k) + %k (A7)
and
Aag,(2k) = Aag,(k) + 2k(3k + 1); (A8)
Aag(2k + 1) = Aag(k + 1) + 3k (A9)
and
Aag,(2k + 1) = Aag,(k + 1) + 2 k(k + 1); (A10)
g(2k) = g(k) + 2k* (A11)
and
9,(2k) = g,(k) + k[g(k) + k*]; (A12)
g2k +1) = gk + 1) + 2k(k + 1) (A13)
and
9,2k +1)=g(k+1)+k[glk+1)+k(k+1)]; (A14)
Ag(2k) = Ag(k) (A15)
and
Ag,(2k) = Ag, (k) + kAg(k); (A16)
Ag(2k + 1) = Ag(k + 1) + 3k (A17)
and
(4k — 1)

Ag 2k +1) = Ag,(k+ 1) + k| Ag(k + 1) + 1 I
(A18)
where Ag(k) = g(k) — ag(k) and Ag, (k) = g,(k) — ag,(k).
There are four induction proofs, two for (Al) and two
for (A2). Using (A7), (A9), (A15), and (A17) we obtain

Aag(2k) — Ag(2k) = Aag(k) — Ag(k) + %k (A19)
and

Aag(2k + 1) — Ag(2k + 1) = Aag(k + 1)

—Aglk +1) +3k. (A20)

Using (A8), (A10), (Al6), and (A18) along with (A7),
(A9), (A15), and (A17), we obtain

Aag,(2k) — Ag,(2k) = [Aag,(k) — Ag, (k)]

k
+ K[Aag(k) — Ag(k)] + 7 (17k + 1)
(A21)

and
Aag,(2k + 1) — Ag,(2k + 1) = [Aag,(k + 1) — Ag,(k + 1)]
+ k[Aag(k + 1) — Ag(k + 1)]

k
+ 57 (13K + 4). (A22)

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

Lemma 1 Ag(k) = 0.

Proof Ag(1) = 0. Assume result is true for 0 < k < 2/,
Let 2 <[= 2" For | = 2k the result follows from
(A15) and the induction hypothesis (IH). For [= 2k + 1,
the result follows from (A17) and the IH. [

Lemma 2 Aag(k) > Ag(k).

Proof Aag(1l) = 2 and Ag(1) = 0. Assume result is true
for 0 < k =2 Let2 <[=2"" Forl = 2k the result

follows from (A19) and the IH. For [= 2k + 1, the result
follows from (A20) and the IH. [

Lemma 3 Ag (k) = 0.

Proof Ag,(1) = 0. Assume result is true for 0 < k = 2/,
Let 2/ < = 2" Forl = 2k the result follows from
(A16), Lemma 1, and the IH. For [= 2k + 1, the result
follows from (A18), Lemma 1, and the IH. [

Lemma 4 Aag, (k) > Ag, (k).

Proof Aag (1) = 1 and Ag,(1) = 0. Assume result is

true for 0 < k = 2. Let 2 <[= 2"'. For | = 2k the result
follows from (A21), Lemma 2, and the IH. For / = 2k + 1,
the result follows from (A22), Lemma 2, and the IH. O

Note: Equations (A15)-(A16) follow from Equations
(A11)-(A12) and (A3)-(AS). Equations (A17)—(A18)
follow from Equations (A13)-(A14) and (A3)-(AS5).
Equations (A7)-(A8) and (A9)-(A10) follow from
Equations (A3)-(A4) and (AS5)-(A6).

References

1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, S. McKenney,
S. Ostrouchov, and D. Sorensen, LAPACK Users’ Guide—
Release 3.0, SIAM Publications, Philadelphia, 1999.

2. J. Dongarra, L. Kaufman, and S. Hammarling, “Squeezing
the Most Out of Eigenvalue Solvers on High Performance
Computers,” Lin. Alg. & Its Appl. 77, 113-136 (1986).

3. C. Bischof and C. Van Loan, “The WY Representation for
Products of Householder Matrices,” SIAM J. Scientif. &
Statist. Computing 8, s2—s13 (1987).

4. R. Schreiber and C. Van Loan, “A Storage Efficient
WY Representation for Products of Householder
Transformations,” SIAM J. Scientif. & Statist. Computing
10, 53-57 (1989).

5. E. Elmroth and F. Gustavson, “New Serial and Parallel
Recursive QR Factorization Algorithms for SMP
Systems,” Applied Parallel Computing, Large Scale
Scientific and Industrial Problems, B. Kégstrom et al.,
Eds., Lecture Notes in Computer Science, No. 1541,

1998, pp. 120-128.

6. R. C. Agarwal and F. G. Gustavson, “A Parallel
Implementation of Matrix Multiplication and LU
Factorization on the IBM 3090,” Aspects of Computation
on Asynchronous and Parallel Processors, M. Wright, Ed.,
IFIP, North-Holland, Amsterdam, 1989, pp. 217-221.

E. ELMROTH AND F. G. GUSTAVSON

623

624

7. K. Dackland, E. Elmroth, B. Kégstrom, and C. Van Loan,
“Parallel Block Matrix Factorizations on the Shared
Memory Multiprocessor IBM 3090 VF/600J,” Int. J.
Supercomputer Appl. 6, 69-97 (1992).

8. R. K. Brayton, F. G. Gustavson, and R. A. Willoughby,
“Some Results on Sparse Matrices,” Math. Computation
24, 937-954 (1970).

9. IBM Corporation, XL Fortran for ALX, Language Reference,
Version 5, Release 1, 1997; Order No. SC09-2607-00.

10. IBM Corporation, Engineering and Scientific Subroutine
Library, Guide and Reference, Version 2, Release 2, 1994;
Order No. S323-0526-01.

11. IBM Corporation, Engineering and Scientific Subroutine
Library, Guide and Reference, Version 3, Release 1, 1998;
Order No. SA22-7272-01.

12. A. Chalmers and J. Tidmus, Practical Parallel Processing,
International Thomson Computer Press, London, UK,
1996.

13. C. Bischof, “Adaptive Blocking in the QR Factorization,”
J. Supercomputing 3, 193-208 (1989).

14. F. G. Gustavson, “Recursion Leads to Automatic Variable
Blocking for Dense Linear-Algebra Algorithms,” IBM J.
Res. Develop. 41, 737-755 (1997).

15. S. Toledo, “Locality of Reference in LU Decomposition
with Partial Pivoting,” SIAM J. Matrix. Anal. Appl. 18,
1065-1081 (1997).

16. K. Dackland, E. Elmroth, and B. Kégstrom, “A Ring-
Oriented Approach for Block Matrix Factorizations
on Shared and Distributed Memory Architectures,”
Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, R. F. Sincovec et al.,
Eds., SIAM Publications, Philadelphia, 1993, pp. 330-338.

Received July 14, 1999; accepted for publication
January 14, 2000

E. ELMROTH AND F. G. GUSTAVSON

Erik Elmroth Department of Computing Science and High
Performance Computing Center North, Umed University, SE-901
87 Umed, Sweden (elmroth@cs.umu.se). Dr. Elmroth is a
Senior Lecturer in Parallel Computing and Numerical
Analysis at the Department of Computing Science, Umea
University, Sweden. He is also appointed Coordinator and
Advanced Consultant at the High Performance Computing
Center North (HPC2N). Dr. Elmroth received his Ph.D. in
numerical analysis and parallel computing from Umea
University in 1995. His experience includes positions as
Postdoctoral Fellow at NERSC, Lawrence Berkeley National
Laboratory, University of California, Berkeley; Visiting
Scientist at the Department of Mathematics, Massachusetts
Institute of Technology (MIT), Cambridge; and a three-year
appointment as a National HPC lecturer in Sweden. Dr.
Elmroth’s current research interests include dense linear
algebra kernels for high-performance-computing (HPC)
platforms, matrix eigenvalue and subspace problems with
applications in control theory, and HPC application software.

Fred G. Gustavson IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (GUSTAV at YKTVMYV, gustav@watson.ibm.com).
Dr. Gustavson manages the Algorithms and Architectures
group in the Mathematical Sciences Department at the IBM
Thomas J. Watson Research Center. He received his B.S.
degree in physics, and his M.S. and Ph.D. degrees in applied
mathematics, all from Rensselaer Polytechnic Institute. He
joined IBM Research in 1963. One of his primary interests
has been in developing theory and programming techniques
for exploiting the sparseness inherent in large systems of
linear equations. Dr. Gustavson has worked in the areas of
nonlinear differential equations, linear algebra, symbolic
computation, computer-aided design of networks, design and
analysis of algorithms, and programming applications. He and
his group are currently engaged in activities that are aimed
at exploiting the novel features of the IBM family of RISC
processors. These include hardware design for divide and
square root, new algorithms for POWER?2 for the Engineering
and Scientific Subroutine Library (ESSL) and for other math
kernels, and parallel algorithms for distributed and shared
memory processors. Dr. Gustavson has received an IBM
Outstanding Contribution Award, an IBM Outstanding
Innovation Award, an IBM Outstanding Invention Award,
two IBM Corporate Technical Recognition Awards, and a
Research Division Technical Group Award. He is a Fellow
of the IEEE.

IBM J. RES. DEVELOP. VOL. 44 NO. 4 JULY 2000

