R. Landaver

Spatial Variation of Currents and Fields
Due to Localized Scatterers
in Metallic Conduction

Abstract: Localized scatterers can be expected to give rise to spatial variations in the electric field and in
the current distribution. The transport equation allowing for spatial variations is solved by first considering
the homogeneous transport equation which omits electric fields. The homogeneous solution gives the
purely diffusive motion of current carriers and involves large space charges. The electric fleld is then found,
and approximate space charge neutrality is restored, by adding a particular solution of the transport
equation in which the electric field is associated only with space charge but not with a current. The pres-
ence of point scatterers leads to a dipole field about each scatterer. The spatial average of a number of
these dipole fields is the same as that obtained by the usual approach which does not explicitly consider
the spatial variation. Infinite plane obstacles with a reflection coefficient r are also considered. These pro-

duce a resistance proportional to r/(1 =r).

1. Introduction

In the solution of the transport equation in modern treat-
ments of the electrical conductivity process, it is customary
to assume that the distribution of electrons in momentum
space is the same throughout the specimen (or at best has
only a macroscopic variation due to temperature gradients,
et cetera). Coupled with this is an assumption that the ap-
plied field is uniform. The applied field then produces a
motion of the electronic distribution in momentum space.
Scattering by lattice waves and obstacles tends to restore
the original distribution, and equilibrium is established be-
tween the scattering and the accelerating field. The current
density is then computed by taking a sum over the states of
the undisturbed crystal and weighting the current associated
with each state by its probability of occupation. This proc-
ess ignores the off-diagonal elements of the current matrix.
These off-diagonal elements do not contribute to the space
average of the current density, but they can represent local
fluctuations in the current distribution. The current due to
each of the diagonal terms has the periodicity of the crystal.
The spatial uniformity of current can, therefore, be re-
garded as a consequence of the assumed field uniformity
and of the neglect of the off-diagonal matrix elements.
We wish to point out that the uniformity of the field and
current density are assumptions which may frequently be
well justified, but whose validity in general is not apparent.
If the intensity of scattering is not uniformly distributed

over the material, but is concentrated in well localized
scattering centers, as is the case in the residual resistivity
caused by impurities at low temperatures, then it seems in
fact reasonable that the field should be concentrated near
the points where the scattering is actually produced, so as
to enable the current to pass around these obstacles. We
shall, therefore, in this paper solve the transport equations
in two simple cases without neglecting the relevant spatial
variations. We shall consider the case of highly localized
point scatterers and also the case of scattering by specular
reflection at planes of infinite extension.

Despite the fact that the ordinary viewpoint neglects
spatial variations it will, in most cases, lead to a correct
answer. The quantities which have spatial variations may
be characterized by suitably defined average values, which
then can be used in the usual formalism. Some care must be
exercised in this averaging process. If the averaging is car-
ried out in too naive a manner, incorrect results can be
obtained, as will be shown in the case of plane obstacles
treated in Section 8.

In constructing our solution we do not wish to assume a
uniform field and initially do not know the correct field
distribution. It will, instead, be assumed that at the bound-
aries of the specimen the number of electrons which are
moving into the interior of the specimen are so controlled
as to maintain the proper current flow in and out of the
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material. If there were no scattering in the specimen, the
current carriers could move unhampered, and the main-
tenance of the current at the surfaces of the specimen
would not produce a field. An obstacle in the path of the
current will result in a pile-up of electrons on one side of
the obstacles and a deficit on the other side. This dipole
moment will grow until the resultant electric field enables
the incident current to pass the obstacle at the same rate at
which further charges arrive. It is a superposition of many
such dipole fields which will then constitute the electric
field associated with the current flow, and it is the space
average of these dipole fields which enter into a conduc-
tivity measurement.

In the usual discussions of the residual resistivity of
metals, the conductivity is evaluated with the aid of the
electron acceleration law, dk/dt = —eE/#. Since the electric
field is spatially inhomogeneous and highly concentrated
about positions where the periodicity of the lattice poten-
tial is disturbed, the use of this relation is questionable, The
transport equation, as used in the subsequent discussion,
will naturally involve a term closely related to the electron
acceleration law. It will be seen, however, that the term can
be modified at positions close to the scatterers without
affecting our evaluation of the conductivity.

2. General form of treatment

All the complications due to the real crystalline nature of
the medium will be neglected in this treatment, and we will
assume that our medium is isotropic. Its crystalline nature
will be acknowledged only through the fact that the density
of states in energy, dn/dU, at the spherical Fermi surface,
and the wave number k, associated with this Fermi surface,
will be taken as independent quantities. Except for the use
of Fermi statistics our considerations will be classical, and
we shall assume that at each point in space there is a well-
defined distribution of electrons in k space. (k is the wave
vector which determines the wave-function variation in
going from cell to cell.) In the presence of a current, the
number of electrons per unit volume moving within a solid
angle d about the direction  (a unit vector) will differ
from the number that moves in that direction in the undis-
turbed metal by an amount N(Q)dQ. We shall restrict our-
selves to sufficiently low temperatures so that the distribu-
tion changes represented by N(L) are contained in a suffi-
ciently narrow energy range to give all the N(Q) extra (or
deficit) electrons the same velocity and scattering cross
sections. The transport equation for the steady state can
then be written in the form

IN(Q, r)/0t=0=—aQ -E—VN-v+(dN/0?) 4. @.1)

In this equation the first term on the right-hand side repre-
sents the acceleration by the field. In terms of the electronic
charge e and the Fermi-surface wave number k,, we have
a=ek¢*/4n3h. The second right-hand term represents spa-
tial gradients, and v =#A71Q dU/dk. The last term represents
the effect of the scatterers which cause the resistance.

Eq. (2.1), considered as an equation for N, is a linear
inhomogeneous equation. Such equations can be solved by
taking a particular solution and then adding to it solutions

R. LANDAUER

of the homogeneous equation to satisfy the boundary con-
ditions. We shall use this procedure and shall use a par-
ticularly simple solution of Eq. (2.1) for the particular
solution. Eq. (2.1) always has a solution in which the
electric field produces spatial variations in electronic den-
sity but does not cause a current. This is a solution in which
N(Q, r) is independent of Q. In that case, we can expect
the term (3.N/9?) g to vanish, Using E= —V¥, we then find
for Eq. (2.1) the form

aQ-VV=vQ-VN, 2.2)
which has the solution

_ o _ 1 dn
Nr)= 5V(r)+c— in weV(r)+c, 2.3)

where ¢ is independent of r, and dn/dU is the density of
states at the Fermi surface.

The boundary conditions which determine the current
entering and leaving the specimen must then be satisfied
by a solution of the homogeneous transport equation. The
homogeneous equation represents the motion of particles
subject only to scattering and therefore gives the purely
diffusive motion of the carriers.

3. Neutrality condition

Let Np(L, r) represent the solution to the homogeneous
equation. Let Ny (Q, r) be the particular solution as given
by Eq. (2.3). Np will be determined by the boundary con-
ditions and the diffusive motion. To determine Ny and V,
we have to use Poisson’s equation in addition to Eq. (2.1).
This states

V2V =dref(Np+ Nv)dQ. (3.1)
Now let
np=[NpdQ and ny=[NydQ. 3.2)

If in (2.3) we choose the origin of the potential such that
N(@)=0 where V(r)=0, it becomes

nv(r)=%eV(r). (3.3)

Combining (3.3), (3.2), and (3.1), we find
ny—1%V’ny =np, G4

with 1/I2=4xe%dn/dU. The distance [ is the range to which
the electronic screening in this medium permits electric
fields to penetrate. In a typical good conductor, if we are
concerned with variations existing over a distance of several
atomic cells, then we can neglect the term /2V?ny in Eq. (3.4)
and find

Ry = —np, @G.5)
(dn/dU)eV = —np. 3.6
4. Point scatterer

We shall now analyze in detail the case of a point scatterer
embedded in a spatially uniform background scattering.
This is immediately suggestive of an impurity embedded in
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a material which is scattering thermally. As we shall see
later, however, other interpretations are possible.

Before entering into the details of our argument we
would like to clear up one frequent misconception con-
cerned with the relative importance of the physical dimen-
sions, e.g., the radius a of a point scatterer and its quantum
mechanical scattering cross section ¢. We will assume that
both a and /o are small compared to the mean free path.
The localized obstacle will disturb the otherwise uniform
current flow. If we are at a distance several times a from the
center of the obstacle, then the disturbances set up there by
the obstacle will depend only on the number of electrons
that have had their direction changed by the obstacle—
i. e., on the differential cross section of the obstacle. The
physical size of the obstacle and the potential variation
within its physical extension are primarily relevant to an
evaluation of the disturbances in the volume of the obstacle
itself. These will not concern us, except for some auxiliary
discussions.

In solving the problem of the point scatterer, we shall
use Eq. (2.1) in the form

—aQ-E—VN-v4+(dN/0H)p=0, 4.1

where (0N/d7)s denotes the background scattering. Eq.
(4.1) is then satisfied everywhere except at the obstacle
which is taken to be at r=0. We shall satisfy the scattering
conditions at r=0 by superposing two solutions of Eq.
(4.1). One solution represents the motion of the electrons
without the obstacle, and the other represents the correc-
tions due to the changed motion of the carriers after their
incidence on the obstacle.

We shall restrict the nature of the scattering, both for the
obstacle and for (O N/37)s. In both cases the probability of
scattering will be taken as a function only of the angle
through which the electron is deflected, and not as a func-
tion of the incident direction. In that case!, the usual theory
of conductivity which neglects spatial variations permits
the background scattering to be characterized by a single
conductivity relaxation time 75, and also permits the
medium which has only a distribution of obstacles to be
characterized by a single conductivity relaxation time 7.
Furthermore, in that case the combined effects of both
types of scattering can also be described by a single relaxa-
tion time in accordance with Matthiessen’s rule.?

It is to be particularly noted that the assumption of dif-
ferential scattering cross sections which are functions only
of the angle through which the particle is scattered, leads to
a simple timewise exponential relaxation for the disturb-
ance produced by an electric field. For these same scatter-
ing cross sections, there will be many other possible dis-
turbances from equilibrium which do not show a relaxation
characterized by a single time constant.

In the ensuing discussion we shall use the symbol i to
denote a current measured in numbers of electrons crossing
a unit area in unit time. The electrical current j will then be
given by j= —ei. We shall take the particular situation in
which i far away from the obstacle has only a z component
denoted by i.. If v=~A"'dU/dk is the velocity at the Fermi
surface far away from the obstacle, we will have
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N(Q)=3i_cos 8/4rv, 4.2)

where 6 is the angle between Q and the z-axis, This current
is accompanied by a field which can be determined from
Eq. (4.1). Omitting the second term in Eq. (4.1) gives

E = —3i_ /4mvars, 4.3)
which corresponds to a conductivity

o o€kt dU_
E, 3mhrdk "’
If N(Q) and E(r), as given by Egs. (4.2) and (4.3), are
presumed to hold for all r, then Eq. (4.1) is satisfied every-
where. The effect of the localized obstacle will in that case
be ignored. Let us assume that the obstacle has a differen-
tial scattering cross section, f¥0)dQ, for scattering through
the angle 6 into a range d2 of solid angle. If Eq. (4.2) is
correct in describing the number of electrons incident on
the obstacle, then the rate at which electrons are scattered
by the obstacle into an angular range d2 about the direction
Q; is, through the use of (4.2),

dQ[fQ;,QIN(Q)vdQi=
dﬂ%’ fﬂ(ﬂf,ﬂfkos 0:dQ;. 4.5)

“.4)

In Eq. (4.5), f4(Q,Q;,) denotes f2(6) where @ is the angle
between the incident direction Q; and the scattered direc-
tion Q. §; denotes the angle between the direction of
incidence and the z-axis. 8, will similarly locate the scattered
direction relative to the z-axis. With a little spherical trig-
onometry, the right-hand side of Eq. (4.5) can be put into
the form

dQ%"cos 8,[f2(B)cos 6 dQ, 4.6)
where the integral is now independent of Q. Expression
(4.6) gives the rate at which electrons are scattered into
Q/, but it has not had subtracted from it the rate at which
electrons which were originally moving within a range dQ of
the direction Q; are scattered out of this range. The latter
rate will be

dONQ [ f46)dQ =d9%:°cos 8,f fu6)dQ. @.7
Subtracting the right hand side of Eq. (4.7) from (4.6), we
find that the number of electrons per second leaving the
obstacle in the range dQ exceeds the number specified in
Eq. (4.2) by

—dﬂ%’_?(cos 8,201 —cos 6)dQ. 4.8

The integral in (4.8), in which deflections are weighted by

the factor (1 —cosf), is the scattering cross section found

relevant in the usual theory of conductivity and we will

label it S,,. Then (4.8) can be written

— d92(cos 6,)So. “.9)
4r

We shall now construct a solution of Eq. (4.1) which has
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as its source electrons issuing from the obstacle as specified
by (4.9). Furthermore, we shall require that the solution
Ns(Q,r) generated by this source vanish at infinity. The
superposition, then, of Ns on the spatially uniform solution
given by Eq. (4.2) and (4.3) satisfies both Eq. (4.1) and the
scattering conditions imposed by the obstacle. This is
actually not quite correct. The solution Ng contains elec-
trons which can, after some scattering by the background,
return again to the obstacle at r=0, Since N is a strict
solution of Eq. (4.1), it does not take into account scatter-
ing by the obstacle when the electron returns to the obstacle
a second (or later) time. If, however, the mean free path de-
termined by the background is large compared to the
effective dimensions of the scatterer (i. e., the square root
of its scattering cross section), the probability of multiple
scatterings by the obstacle will be small, and we will there-
fore restrict our further considerations to this case,

We shall deal with the scattered solution Ns(Q,r) by
first treating the purely diffusive motion, thus finding
Nsp(R,r), and then using Eq. (3.6) to find the accom-
panying field.

5. Diffusive motion about point scatterer

The diffusive motion about a point scatterer is schematized
in Fig. 1. Line 4 shows a direction in which the number of
incident carriers exceeds the equilibrium number. Similarly,
line B shows a direction in which fewer than the equilib-
rium number are moving. 4 and B represent the spatially
uniform solution (4.2) which gives the number of electrons
incident on the obstacle. Line C shows a direction along
which there is an excess of scattered electrons. Along line
D there is a deficit. After a number of scatterings by the
background the electrons which initially move away from
the obstacle along C and D will have their velocity com-
pletely randomized. Their motion will then obey the diffu-
sion equation., This diffusion current is schematically
indicated by the broad arcs, which finally show the re-
combination of the electron excess and deficit.

Consider first the diffusion current generated by all the
electrons which start their motion away from the scattering
center in directions that lie within d2, of the direction Q.
Far away from r=0 at a position in space denoted by
(r, ), where r is the distance from the scattering center and
© is a unit vector pointing from the scatterer to the point
involved, the diffusion current will establish a concentration
C(Qy,0,r)d2; of electrons, all of which were originally
travelling away from r =0 in the direction ;. This concen-
tration obeys the steady state diffusion equation y2C=0.
Up to terms of order 1/r2this has the solution

C(Q 0, )=alr+p o/r’ 3.

with g and p arbitrary. The radial current density (in
electrons/cm2sec) far from the origin due to the a/r term is
dQ sDgajrt where Dy is the diffusion coefficient of electrons
in the presence of the background scattering. The inte-
grated flow out of a large sphere is then 4w Dgad 2, electrons
/sec. The other term p-w/r? does not contribute to the
integrated flow. Equating 4w DgadQ; to (4.9) gives
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_ _3i(cos 6,)So

a(2y) —(4—7")2_-D—B_. (5.2)

To terms of order 1/r2, the right-hand side of Eq. (5.1)
has the form g/ [r—r | with r,=p/a. The term p- w/r2simply
serves to displace the effective source away from the origin
in the direction of p. The average position of the particles
described by Eq. (5.1) is therefore r,=p/a. The average
position of the particles can also be found by following a
beam of particles issuing from r=0 at #=0, and initially
proceeding along . The average position then is:

r;= <¢ /; vdt Yo = ﬁ( v )adt. (5.3)

{(v)w as used in Eq. (5.3) is an average over electrons
which initially left r=0 in the direction €. (v )y is there-
fore a function of Q , but for the sake of typographical com-
pactness this will not be explicitly indicated. { v )a decays
with time because of background scattering. The decay is
generally not a simple exponential, since the initial velocity
distribution, a collimated beam, is not the distribution in-
volved in the usual definition of a relaxation time for the
conductivity process, Since p=ra, combining (5.2) and
(5.3) gives

_3i_(cosB)So "7
W . ( v >Avdf. (5.4

To find the total concentration of diffused carriers we have
to integrate (5.1) over all values of Q s. The integration over
the a/r terms gives a vanishing result since the total number
of carriers emitted at r=0, according to (4.9), is zero.
This leaves

np(@, 1)Y= [dCRQ;, 0, = [dQp-ofr

3i,80 1 f f°°
== 12 _ @ [dQcos 8 v )adl. 5.5
(47r)"DB r2 f( f) 0( >A ( )

After exchange of integrations this becomes

3i.S *
np(w, r)= —(4:',)—21_)08 ,% w'jo'dt dQ(cos 6,) {V)n. (5.6)

p=

The values of (v) s, which result from the electrons
initially proceeding along Q, are now weighted with the
factor cos @, Therefore, Eq. (5.6) represents a timewise
integration over a velocity distribution which is initially
similar to the distribution produced by an electric field.
Hence we can expect [dQ(cos 6;) (V) to decay as exp
(—1t/75), where 7z is the conductivity relaxation time for
the background scattering. At t=0 we have an initial value
A2 ¥ ncos 0, = [dQ; ;- ‘:’1—,‘(’9 08 6 =‘3‘—;%k‘—’zl,

with z, representing the unit vector in the z-direction.
Combining (5.5) with (5.7) gives

i,So 1dU1 >
nD(o),r)=-m Rk ®h 0dte tlrg

6.7

I8 o 1dU cos b,
axDs T dk P 58
8., is the angle between o and the positive z-axis.
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Figure 1 Schematic representation of current flow disturbed by the scatterer S.
Electrons in excess numbers are incident along A, then are scattered to C, then scattered by the background. The
number of electrons incident along B is less than the equilibrium number. The deficit is scattered to D, then scat-
tered by the background. The excess and deficit diffuse together and recombine along the arcs.

The diffusion coefficient Dp, as determined by the back-
ground scattering, and the conductivity oz, determined by
the same scattering, are not independent. By considering
the balance between diffusion currents and conductivity
currents, in an equilibrium situation, we arrive at the
“Einstein” relation for completely degenerate Fermi sta-
tistics in the same way as for semiconductors.? The re-
sulting relation is

De*dn/dU=g. .9)

For our isotropic band structure and isotropic background
scattering the conductivity in (5.9) is given by

—78 €,,dU
TPTImen dk (5.10)

Hence we find

T k? dU(dn -1,

2= 30t it gk \dU 1D
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This value for Dp can be introduced into Eq. (5.8) to give

3mi Soh dn cosb, (5.12)

(o)== 4k* AU 2

Eq. (3.6) permits us to go from the above to the potential
distribution

_ _npfdn\"'_3mi, Soh cosﬂw.
gt -t

Eq. (5.1) which we used in the derivation of (5.12) and
(5.13) is only an asymptotic expansion, and therefore we
cannot on the basis of the above derivation expect (5.13)
to be valid close to the scatterer. Consider the electrons
close to the scatterer as specified by (4.9) and before they
have been appreciably scattered by the background. The
density np(w, r) due to these electrons is easily evaluated
and leads again to the expression (5.12). Since (5.12) is
correct when we are much closer to the scatterer than a
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mean free path, and also when we are many mean free
path lengths away from the scatterer, and since further-
more it is easily shown from (4.9) that np(w, r) must vary
as cos 8., for all values of r, we can expect that np(w, ) is
closely approximated by (5.12) for all r values. In com-
puting an average field or conductivity, however, it is only
the asymptotic behavior of (5.13) that matters, and this
has been accurately justified.

Eq. (5.13) gives a potential associated with a dipole of
moment

p=3mi Sohdk’. (5.14)

If we have a density of M obstacles per unit volume
which are sufficiently far apart to be non-interacting, there
will be a polarization Ip, and the space average of the
dipole fields will be

E.=—47nP.=—37% _SofiN/k’%. (5.15)

The mean free time 7 as used in the usual conductivity
theory, and associated only with scattering by the obstacle
is given by

To= 1/%5011. (5.16)

This makes the space average field, as given in (5.15),
equal to

.= —37n%_hlk%evro. .17
In terms of the electric current j,,= —ei,,, we find
_3m(dU ) -1,

= m ak Joos (5.18)

which is exactly the field associated with the obstacles, as
found by the usual approach [e. g., compare with Eq. (5.10)
which gives the connection between ¢ and 7 resulting from
the usual considerations]. The field given by (5.18) exists
in addition to the background field of Eq. (4.3). Matthies-
sen’s rule is satisfied; (5.18) does not depend on 75.

We would like to stress the extreme extent to which
these dipole fields are really localized. To do this we must
consider how the charges that are responsible for the
dipole moment given by (5.14) are actually distributed.
Let us assume for the moment that the charge density, in
the (spherical) volume of the scatterer is of the form
p(r)cos 8, and vanishes outside the scatterer. In computing
an average field for the whole specimen we must evaluate
JEdr, where the E includes the contributions of the par-
ticular dipole moment under discussion. Under the con-
ditions specified above, 2/3 of this dipole contribution to
JEdr comes from the volume of the scatterer. Actually, of
course, the dipole charges cannot be as well localized as
we have assumed. [The screening length / of Eq. (3.4) is
finite, the uncertainty principle also prevents an excessively
localized charge. Furthermore, Eq. (5.12) is derived from a
point model and cannot be expected to hold true up to the
actual surface of the scatterer.] Therefore, only perhaps
1/3, instead of 2/3, of the voltage drop associated with the
residual resistance is contained in the volume occupied by
the impurity atoms.
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Since such a large portion of the field is located where the
crystalline potential has been disturbed, the use of the usual
electron acceleration equation, dk/dt = —eE/k, becomes
questionable, Note that in our arguments the field is found
as a result of screening considerations. The exact nature of
the screening close to the impurity atom, is not relevant
to the evaluation of an average field. That is, the nature of
the first term in Eq. (2.1) can be modified, close to the
impurity atoms, without appreciably affecting our asymp-
totic evaluation of the dipole potential. It is only necessary
that (dn/dU), in Eq. (3.6) represent the actual density of
states, in the dilute alloy, rather than the density in the
pure solvent.

6. Interaction of obstacles

The preceding section has been concerned with a localized
obstacle of cross section Sy embedded in a medium with a
relaxation time 7g. This is obviously applicable to the case
of a single obstacle in a medium which otherwise has only
thermal scattering. If we consider a medium which has a
density of obstacles such that the obstacle scattering is
comparable to the uniform scattering or larger, then we
must invoke some supplemental considerations, First of
all, the radial current scattered by a particular obstacle, as
given by Eq. (4.9), will now be subject to scattering by other
obstacles as well as by the uniform background. Let us
confine our considerations to the most common case, that
in which the mean free path (as determined by the com-
bined scattering) is large compared to the distance between
obstacles. Only a small portion of the radial current will
then be scattered by any one obstacle and the radial current
will therefore see a relaxation time 7z which depends on
both kinds of scattering. Therefore, as the density of
obstacles is increased, the effective value of rp changes.
The value of 7z, however, does not affect the dipole field
brought in with each additional obstacle. As the number of
obstacles is increased, therefore, the space average of the
electric field changes just as it does in the usual theory.
We have assumed in the preceding section that the elec-
tron velocity distribution incident upon the obstacle is
equal to the average velocity distribution which exists far
away from the obstacle. A localized scatterer disturbs the
velocity distribution. Close to the obstacle there are the
scattered radial currents as given by Eq. (4.9). Further
away there are the diffusion currents, Both of these kinds
of currents constitute deviations from the average velocity
distribution. A second obstacle placed near the first will
be exposed to the deviations caused by the first obstacle.
An obstacle, however, will generally see the deviations
caused by many obstacles, not just those caused by one.
If we add the disturbances due to the many obstacles ran-
domly placed within the vicinity of a given one, then we
are doing the same thing as adding the disturbances due to
a particular obstacle over many points in its environment,
as long as the obstacles are uncorrelated in their positions,
The mere fact that the obstacles are finite in extension will
give them some correlation. Let us temporarily neglect
this. It is easily shown that if we consider the deviations
caused by a single obstacle, in a particular velocity class,
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these deviations vanish after integration over all space.
Hence, an obstacle which is exposed to the deviations
caused by many other obstacles is exposed to the average
velocity distribution.

The argument which has just been given relies on an
integration which in turn strictly requires a point scatterer,
as we have assumed. Let us take a more realistic view and
give the scatterer an extension in space. Then the scatterers
exclude (or diminish) the current within a small volume,
and the average value of the current density at locations
which are outside of the excluded regions is larger than the
average taken over all space, It is this larger current density
which an additional scatterer, placed among the previously
existing ones, will see. In principle, therefore, one should
apply corrections to find the correct “internal” velocity
distribution in a manner similar to the use of Lorentz cor-
rections in dielectric theory. If the volume occupied by the
scatterers is small, as in a dilute solution, this is presumably
a small effect. If the scatterers occupy an appreciable frac-
tion of the volume, these corrections will very likely be
overshadowed by the direct effect of the scatterers on the
electronic structure of the medium. In the extreme case
where the complete volume of the metal is occupied by the
scatterers, as in the case of high temperature scattering by
independently vibrating atoms, then again the incident
velocity distribution must be the average velocity distribu-
tion,

7. Degree of localization required

The argument we have used in arriving at our dipole field
relies upon the localization of the scatterer. Since the quan-
tities entering into the transport equation vary on a scale
comparable to the mean free path (associated with the
background), it is only necessary that the scatterer be small
compared to the mean free path. This condition will gen-
erally be satisfied for impurity scattering.

Actually, the localization of the background scattering
is as relevant as that of the obstacle scattering. The use of
Eq. (4.1) implies that the scattering depends only on the
disturbance Np(Q, r) at the point r under consideration.
Therefore, the obstacle and the background must be
“localized” to the same extent. Scattering of electrons by
phonons is generally sufficiently localized, since a wave
packet of the representative thermally excited phonons is
usually short compared to the electronic mean free path.
The only apparent exception is the case of electron scatter-
ing by phonons at extremely low temperatures in an alloy
where the scattering is almost completely determined by the
lattice defects. At a sufficiently low temperature, the typical
phonon wavelength will then exceed the mean free path.
In this case, however, the phonon scattering will be an
extremely small portion of the total scattering. Further-
more, this is a case in which any other theory would pre-
sumably have difficulties in correctly evaluating the con-
tribution of the phonon scattering.

It might be thought that the spatial variations discussed
here must disappear at very low temperatures since the
small energy range of the order kT over which the probabil-
ity of occupation varies from 1 to 0, does not permit the
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construction of very localized wave packets. This is, how-
ever, not relevant. One can, in principle, form stationary
states which represent the multiple scattering of electrons
by many obstacles, and thus find the probability of direc-
tional changes at various points in space. Such a solution
specifies the scattered intensity as a function of direction
of scattering within a few wavelengths of the scattering
center. The relevant dynamic parameters for our theory
are thus obtainable from solutions of the time-independent
wave equation for a particular energy. (At least this is
true for the cases where the time-wise variation of the
lattice vibrations is not significant.)

The condition that one can construct highly localized
wave packets, small compared to the mean free path, is the
condition fi/r < kT, given by Peierls! long ago for the
validity of the Bloch theory. This criterion was introduced
as a consequence of the use of time-dependent pertur-
bation theory and is a criterion only of the validity of
time-dependent perturbation theory. If the probability of
scattering is known correctly from some other treatment,
this criterion has no relevance.

8. Reflecting walls

When there is a current impinging on a reflecting wall one
can expect a voltage drop confined to the immediate vicin-
ity of the reflecting plane, This is, in fact, taken for granted
in the treatment of the contact resistance at the junction of
two metallic conductors.® We have in mind a situation in
which the current flow is perpendicular to the wall, and
assume that the reflection is specular. A density of 9 such
planes per cm will be assumed without any additional
source of electron scattering. These walls can be considered
to be models of grain boundaries or of stacking faults.
The reflection coefficient r will be assumed to be a function
of the angle, 8, between the wall normal and the direction
of incidence. We shall take the wall normal to be in the
positive z-direction and 8 to be the angle with this direction
so that r(6) =r(w —0), and shall first compute the conduc-
tivity according to the usual non-local viewpoint.

An electron travelling in a direction at an angle 6 with
the z-axis will pass t|cos 8] walls per cm of its travel, and
will therefore be incident upon 9t|cos 8|/v walls per second,
where v is the velocity at the Fermi surface. At each of these
collisions only a fraction r(8) of the electrons are reflected.
If there are n electrons per unit volume moving in a
certain direction, and n_electrons in the reflected direction,
we can expect that

dnldt = —n,N|cos 8|r(®lv+n_MN|cos 6|r@B)iv, 8.1)
dn_|dt= —n_N|cos 0|r(O)lv+n,N|cos 0|r@)I0. 8.2)

If n,is the number of electrons travelling in the two direc-
tions concerned, in the absence of a current, then symmetry
requires

Ry—Ro=No—HN_, (8.3)
If (8.3) is substituted in (8.2) and (8.1), we find

zd;(n+—no)= — (1~ 12N cos Blr)lv, 8.4
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g;(n_—no) = —(n_—ne)2Ncos O|rO)v, (.5
and therefore a relaxation time 7(6) =v12N|cos 6|r(6). The
usual conductivity theory then gives us a conductivity

o==SK_ [19Icos 8l1r@ 8.6
STNA 1COS ll"( ), ( B )

where the integration is over all directions of motion. Note
that this value for the conductivity cannot be exact. As
r(6) is permitted to approach unity for all 8, all current flow
must cease, yet Eq. (8.6) still yields a finite conductivity.
This finite conductivity results from a finite relaxation
time. The latter, in turn, is a result of the assumption of a
uniform field. If the accelerating electric field is taken to be
uniform, and the current flow is generated equally at all
points in space, then it will take a finite time for portions of
this current to reach the nearest reflecting barrier, and this
is the relaxation time which can be obtained from (8.4)
and (8.5), even if r =1.

Instead of the treatment leading to Eq. (8.6), we can
handle the problem by the methods we have already de-
scribed. This requires that we have an expression for the
distribution of electrons incident upon the wall. For any
incident velocity distribution we can calculate a scattered
current and a compensating charge. In general, however,
these will be such that a second plane, parallel to the first,
would be exposed to a different incident velocity distribu-
tion. We must therefore choose an incident velocity distri-
bution such that the final resultant velocity distribution is
the same on both sides of the plane at distances which are
more than a screening length away from the plane. This
leads, with a little calculation, to a velocity distribution
(including incident electrons, reflected electrons, and com-
pensating charge), of the form

r@\ cos @
r@® / [cosé|

®.7

M@= ;3(1

where $ is independent of . The conductivity resulting
from the detailed localized treatment is

o=t mh ﬁﬂlcos 0|1—(;()0) O ®88)

This differs from (8.6) through the appearance in the inte-
grand of the factor (1 —r(6)). This factor serves to make the
conductivity vanish as #(6) approaches unity for all 4. The
difference between (8.6) and (8.8) is therefore only impor-
tant if the reflection probability is comparable to unity.
In this connection it is interesting to note that some of the
calculations for the reflection coefficient of stacking faults
predict values for » which are not very small compared to
unity.’

Note that the velocity distribution (8.7) does not vary
with @ as cos 0. Therefore, there is no single relaxation time
for the whole conduction process. If reflecting walls exist
simultaneously with thermal scattering, Matthiessen’s rule
will not be satisfied. Even without thermal scattering, if we
have a number of such walls with differing orientations,
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the scattering probabilities cannot just be added, since each
orientation by itself would result in a different shape for the
velocity distribution.

9. Multiple reflections by a single obstacle

In the treatment of point obstacles in Sections 4 and 5 we
ignored the possibility of repeated reflections by the same
localized obstacle, and found that the field associated with
the point obstacles was linear in the scattering cross section
So. In the treatment of plane reflectors in Section 8, our
method did not ignore the multiple reflections and the
resultant field was not linear in r, but varied as r/(1—r).
We shall here give a very rough argument to show that a
more careful treatment of the point scatterer, taking into
account the possibility of repeated reflection by the same
obstacle, also leads to a resistivity which is non-linear in
the scattering cross section So.

Consider the scattered current as given by Eq. (4.9).
The z-component of the scattered current (measured in
carriers per sec) is obtained by multiplying (4.9) by cos 9,
and integrating over d€2. The resulting current has only a
z-component given by I,= —Soi.. This scattered current
consists of electrons moving away from the obstacle in a
radial direction for a distance of about A\, where X is the
mean free path determined by the background scattering.
After moving through this distance A, the electrons have
their velocity randomized and follow a diffusive motion.
After this randomization a fraction of them will be scat-
tered again by the original obstacle. This fraction is
roughly So/d4mA2.

The total current incident on the obstacle at any one time
is due to electrons which are incident for the first time and
also due to electrons which have previously been scattered
by the obstacle one or more times, The scattered current,
integrated over all directions, is therefore of the form

i, = Soi(1 +SofATN2 +-(So/4TA)2+. . )
= Soi /(1 — So/4mA?).

The diffusion charges, Np, and the resulting potential will
then vary with S as So/(1 —So/4wA%). This is comparable
to the factor r/(1—r) in the case of plane reflectors. It seems
plausible, then, that in situations in which the mean free
path is large enough so that multiple scatterings are negli-
gible, we can expect the resistivity to vary linearly with
scattering cross sections and can expect the usual formalism
to be applicable. Thus, for example, in the case of highly
localized, well separated cylindrical obstacles, we would
expect that most of the carriers which are incident upon a
given obstacle will be scattered only once by it, and that
therefore the usual relations between resistance and scat-
tering cross section are valid.

.1

10. Conclusions

A detailed solution of the transport equation has shown
that spatially localized scatterers produce spatially localized
electric fields in the presence of current flow. In the case of
point scatterers, these localized fields are dipole fields, one
for each scatterer. The resistivity calculated on this basis
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is the same as that given by the more usual calculations.
The resistivity calculation has, however, been put on a more
secure footing since the discussion that has been presented
does not rely as intimately as the usual theory upon the
only for uniform fields in strictly periodic crystals. In the
case of a reflecting plane, the resistivity calculated from the
localized fields is higher than that calculated from the usual
equations, but the difference is significant only if the re-
flection coefficient is comparable to unity.
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