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Ab Initio Computations in Atoms and Molecules®

Abstract: The present status of ab initio computations for atomic and molecular wave functions is analyzed in this paper,
with special emphasis on the work done at the IBM Research Laboratory, San Jose. The Roothaan-Hartree-Fock method has
been described in detail for atomic systems. A systematic tabulation of atomic Hartree-Fock functions has been made available
in an extended supplement to this paper.t Techniques for computing many-center, two-electron matrix elements have been dis-
cussed for Slater or Gaussian basis sets. It is concluded that the two possibilities are comparable in efficiency. We have advanced
a few suggestions for the extension of the self-consistent field technique to macromolecules. The validity of the suggestions have
not been tested.

Following the Bethe and Salpeter formalism, the relativistic correction has been discussed and illustrated with numerical results
for closed-shell atoms. A brief analysis of the relativistic correction for molecular systems shows that the relativistic effects can-
not be neglected in ionic systems containing third-row atoms.

The correlation energy is discussed from an experimental starting point. The relativistic and Hartree-Fock energies are used
for determining the correlation energy for the elements of the first three periods of the atomic system. A preliminary analysis
of the data brings about a “simple pairing” model. Data from the third period force us to consider the “simple pairing” model
as a first-order approximation to the “complex pairing” model. The latter model is compared with the geminals method and
limitations of the latter are pointed out.

A semiempirical model, where use is made of a pseudopotential that represents a coulomb hole, is advanced and preliminary
results are presented. This model gives reason to some hope for the practical formulation of a Coulomb-Hartree-Fock tech-

nique where the correlation effects are accounted for and the one-particle approximation is retained.

Introduction

The aim of this paper is to analyze the present status of
ab initio quantum-chemical calculations with emphasis
primarily on the recent work done at the IBM Research
Laboratory, San Jose. By “quantum chemistry” we mean
those aspects of atomic and molecular chemistry and
physics which have been, and likely will be, quantitatively
explained by quantum theory. There are many additional
phenomena which are qualitatively explainable by quantum
theory, but those will not be dealt with in this work since
the emphasis here is on computations. We shall restrict this
paper to computation of wave functions and total energies,
and only brief mention will be made of computations of
different expectation values. As is known, the prerequisite
to an expectation value computation is the availability of
functions and energies. Since the computational com-
plexity in obtaining a wave function by far exceeds the

# Presented in part at Gordon Research Conference, Theoretical
Chemistry Section, June 27-July 3, 1964.

+ The supplement, entitled *‘Tables of Atomic Functions,” is avail-
able upon request to the Editor.

complexity of computing other properties of a system,
and since we are aiming at exact wave functions, which by
definition provide exact expectation values, we feel that
our restriction is justified.

The fact that the field of quantum-chemical computa-
tions is undergoing a revolutionary change due to the
availability of high speed computers is too well known to
be emphasized here. I shail show that this field is now at
its beginning after several years of probing. We have now
reached the “mass production” stage in some simple
aspects of it—atomic and diatomic computations—and
there is very promising work in progress in order to
extend this situation to more complicated systems.

It is customary to divide quantum-chemical computa-
tions into “ab initio” and “semiempirical” types.! The first
refers to computations where one uses the correct Hamil-
tonian for the problem® and operates with such a Hamil-
tonian on a function which satisfies some physical model.

The second type is essentially a curve fitting method.
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In many instances one is not interested in why and how a
molecular binding energy, or a given spectroscopic con-
stant, can be computed from exact models but only in its
value. Therefore, all that is desired is to obtain these
values by a reliable fitting procedure. These calculations
are usually called “semiempirical”, and in the author’s
opinion should be simply called “fitting formulas™ since
they are no more than this. Their practical and even
theoretical value, however, is unquestionable.

Another type of semiempirical computation is obtained
by substituting given quantities (which can be obtained
correctly, but most laboriously) with equivalent quantities
that can be obtained by much simpler techniques. An
example of this is the Mulliken approximation of the
many-center integrals, where it is known from experi-
mental data that they are accurate to within 15-209%, and
are obtained by an extremely simple technique. This type
of “semiempirical work™, if used carefully, can subtract
very little information from an a priori computation.
Indeed, it can often make the latter feasible.

For particularly simple problems one can attempt a
direct solution of the Schrédinger equation. The recent
work of Conroy® for the He, H,*, Li systems is a most
interesting step in this direction. How much the formalism
of Conroy can be extended to more complicated systems
seems to depend directly upon the availability of extra
fast and large electronic computers. We shall not comment
further on this direct approach since it seems to be some-
what premature.

For a more complex system a basic model is provided
by the one-electron approximation. In this approximation
taken in its simplest form one assumes that the total
wave function of N particles is a product of one-electron
functions called “orbitals” (atomic or molecular, according
to the system). In order to satisfy the correct statistics for
the electron, the product is antisymmetrized. There are
good experimental grounds for the one-electron approxi-
mation, i.e., that the total energy of the system is very
largely accounted for by simply adding up the one-electron
energies obtained by neglecting the electron-electron
interaction. Indeed, if one uses the one-electron approxi-
mation in this strict semse, and adopts conveniently
selected orbital exponents, one can obtain as exact an
energy as he wishes. The reason is that variation of the
orbital exponent, as suggested here, is equivalent to a
variation of the screening constants, and this in turn is
equivalent to introducing electron-electron interaction.

A more refined method of obtaining one-electron func-
tions is provided by the Hartree-Fock model. In this
model® the electron-electron interaction is conceived as
the interaction of a given electron with the average field
of the remaining electrons. Clearly this picture is not fully
correct because the electrons act on themselves as in-
dividual interacting particles, as well as a collective system.

VOL. 9, NO. 1, 1965, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000

Therefore, the fine details of electronic structure that are
essential in the spectroscopy of molecules and atoms, as
well as in the binding energy of molecules and many ions,
are poorly explained by the Hartree-Fock model.

In the following, we shall discuss several problems
related to the Hartree-Fock method in molecular com-
putations. Then we shall present numerical results for
the relativistic correction in atoms, and we shall present
arguments which predict that the relativistic correction
should not be ignored in quantum-chemical computations.
Finally, we shall analyze the correlation energy problem.
As is known, the traditional approach to the correlation
energy problem is to propose, from the outset, models,
techniques, and formalism without reference to experi-
mental data. In the author’s opinion, this approach has
not furnished a practical and satisfactory solution to the
correlation energy problem, and a different starting point
will be adopted in this paper. Namely, we shall first
derive correlation energies, based on experimental data,
for a large sample of atomic systems and configurations.
Then we shall analyze these data and derive models and
techniques which explain quantitatively the correlation
energy previously derived from experimental information.

The Hartree-Fock method

o Unsolved computational problems for atoms and molecules

In this section we shall deal with several problems which
have not received sufficient attention in the past literature,
or which have been considered by many but have not yet
been satisfactorily solved.

The first problem to be discussed is related to the
computation of Hartree-Fock functions for heavy elements.
For the moment, we shall neglect the basic difficulties
related to the formulation of an accurate relativistic
Hartree-Fock technique, since we shall deal with the
relativistic correction in the following section of this paper.

We restrict the discussion to the atomic elements with
Z from 37 to 103 since for elements Z = 2to Z = 36 we
have available Hartree-Fock solutions. Let us assume
that we are interested in a systematic collection of the
Hartree-Fock functions for the remaining elements.

As is known, the time-consuming part in atomic com-
putations made by the Hartree-Fock method are in the
optimization of the orbital exponents® of the basis set.
The slow variation of the inner-shell orbital exponents
with successive ionizations, and the possibility of interpola-
tion, should be the two main criteria for the construction
of a “control program”, This program should auto-
matically (a) establish the optimal order of the states to
be computed, (b) optimize only those orbital exponents
which are needed and decide the order of the optimization
and (c) interpolate data and automatically create inputs
for new cases to be computed. For additional comments
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on this point, we will refer to some recent work where
the above suggestion has been analyzed in more detail.

In addition, it might be useful to consider in advance
(a) whether or not one should proceed with the analytical
Hartree-Fock method or whether it is useful to compute
numerical Hartree-Fock functions (which can be expressed
later as linear combinations of a basis set of functions) in
view of the cost involved in the optimization of the orbital
exponents of the basis set, and (b) whether it is possible
to retain sufficient accuracy in the calculation, especially
in the total energy. (It is noted in this regard that ten-figure
accuracy is needed in the very heavy elements if one
wishes to have the total energy accurate to the order of
a few hundredths of an eV.)

In the supplement to this paper’ we have extensively
reported on the Hartree-Fock technique, the main em-
phasis being on the atomic problem; the situation for the
molecular systems is quite similar from a conceptual
standpoint. This is true because (a) both in atoms and
molecules one can express the orbitals as linear combina-
tions of a suitable basis set of functions,’ and (b) the
Hartree-Fock equations are formally identical for the
atomic and molecular cases.

However, from the computational point of view, there
are differences because the matrix elements in the molecular
cases involve more than one center; in the atomic case,
of course, only one center is needed.

For molecular cases the main difficulty arises in the
solution of matrix elements of the type

_ 1 _
(XaXo | XeXa) = f dv, dsza(l)Xb(l)r— x2%$7, )
12

where a, b, ¢, d may wholly or in part be different centers
(atoms), x: is an analytical function centered on the
ith center, 1 and 2 refer to electrons 1 and 2. The above
integral is a two-electron, in general four-center matrix
element where the centers can be arbitrarily arranged in
space. The solution of the problem is further complicated
by two prerequisites: (a) the integrals must be solved in
an exiremely short time, in order to obtain a Hartree-Fock
molecular function in a reasonable amount of computer
time and (b) the integral should be computed with high

Table 1 Number of two-electron integrals in typical compu-
tation (Slater set)

Slater Number of IBM 7094
System orbitals basis integrals time (hrs)
Si 7(s), 5(p) 1.8 X 108 ~ .05
Cco 18(0), 8(r) 1.7 X 104 ~ .5
CO. 27(v), 12(x) 1.0 X 108 ~3.5
CN, 36(c), 16(x) 2.5 X 1 ~8.0
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accuracy. The simuitaneous satisfaction of the above
two prerequisites is not a trivial problem; indeed it is
one of the main difficulties in quantum-mechanical
computations for molecular systems.

In order to demonstrate the reason for the first pre-
requisite we provide the data in Table 1, where we have
indicated how many two-electron integrals must be
computed in order to obtain a Hartree-Fock solution for
the following systems: Si(atom), CO, CO,, C,N, (linear
molecules). The assumptions are made that the basis set
consists of Slater-type orbitals,® (the size of the basis set
is given in the table), and we have assumed the C.,y
symmetry for the systems’ (except for the Si atom). The
total estimated time for the computation is based on
previous experience and is given for the IBM 7094 com-
puter.®

Several techniques have been put forward in the last
decade for the solution of these integrals.” I is noted that
the interest is not in computing a single integral at a time
but rather in computation of large numbers of integrals.

In the following we shall summarize A. D. McLean’s
method'® for computation of integrals between Slater-type
orbitals. This method has been used extensively in linear
molecules and is now being extended by A. D. McLean
and M. Yoshimine for molecules of arbitrary geometry.
The analysis which is given here is not yet available in
the literature, but has been reported at several meetings.
I shall follow closely the analysis reported by McLean at
the Symposium on Molecular Structure and Spectroscopy
at Columbus, Ohio, June 1958.

The computation for the general four-center integral
can be usefully divided into two stages, first the integration
over the coordinates of electron 1, and second the integra-
tion over the coordinates of electron 2.

o Integration over electron 1 coordinates

The result of this integration, because of the r,, in the
integrand, will be a function of the coordinates of electron
2, and in fact will be the potential felt by electron 2 due to
the average field of electron 1.

There are two possible types of potential, depending on
whether a and b refer to the same nuclei or not, giving
rise to a one-center (spherical) or two-center (spheroidal)
potential.

The radial part of the one-center potential is evaluated
in terms of the simple functions 4,(x) and e\(x) where
x = ({o + D r.,. The quantities {, and {’ are the two
orbital exponents involved and

Nk
A1 -2 x

A(x) = M x% 2 7 2)
ot R

alx) = MxV (1 = ™) 2 (3)
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The angular part of the one-center potential is a linear
combination of spherical harmonics with nucleus a as the
center.

The two-center potential V is evaluated in terms of
spheroidal coordinates £ and % with ¢ and b as foci from
the formula

v=c i, P (ne™ 21 + DI — |mD!]
04 [mDUTPIM ER™ (B) + OV (&K ™ (8],
@)

where C is a constant depending on the orbitals involved
and the internuclear distance m = —m, + m,; m, and
m; are the axial quantum numbers of x, and x,; P.™' and
Q™ are the associated Legendre functions of first and
second kinds

k™) = fe i dxe™*(x* — 1o (x)
2 @b (=B (5)

LET

E?
k') = dxe” **(x* — DY P (x)
1

2 wb™ (=B (6)

LN

1= |mpy

20+ |m)

1
' f dnP™ ()(1 — n)e . (7)
-1

b;"'(8) =

The w,; are numerical coefficients arising from the expan-
sion of the orbital product in terms of the spheroidal
coordinates. These are finite summations. The quantities «
and 8 are defined by

(o + $3)Ra/2 (8)
(§a — $WRw/2. (9)

The most efficient way of computing the potential is by
using an equal-spacing type of integration formula for
computing k|™'(£) and k;'™'(£).

2

B

o Integration over electron 2 coordinates

For a linear configuration of nuclei, the ¢ integration can
be done very simply, and in the current method the
integrations over the other two coordinates are done
numerically. Gaussian-type integration formulas have been
found very useful in this regard.

The method has been tested for linear molecules.
However, little has been done on the case where the
nuclei are not in a linear configuration. From recent work
by A. D. McLean and M. Yoshimine it seems that this
problem can be solved with reasonable speed.
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The advantage of McLean’s analysis is in its complete
generality, where no restrictions are imposed on the
quanturm numbers. It is known that the method works
with high speed and accuracy. Indeed, the large fraction
of accurate functions for polyatomic molecules available
today in the literature has been obtained with the McLean
method. Many alternatives to the McLean many-center
integral techniques have been proposed in the literature,"
but we shall not deal with them since these have not been
tested sufficiently in complex molecular computations.
In this respect, it is noted that for this type of numerical
application a given analysis can be proven convenient
only after the complete coding and testing is done. The
reason is in the speed requirement. For example, the time
factors alone will decide whether it is convenient to replace
the elegance of an analytical expansion in an integration
by the convenience of a direct numerical integration.

In the search for practical methods for solving the
many-center-integral problem a different technique should
be mentioned, i.e., the one which uses a Gaussian basis set
instead of a Slater-type basis set. The suggestion of using
Gaussian orbitals goes back to the original work of
Boys," and has been exploited almost entirely by Boys and
his coworkers.”® After many years it is still difficult to
assess the relative merits of the two integration techniques.
The main difficulty arises from the fact that no exhaustive
attempt has been made in order to compare the two
techniques. For this reason, Huzinaga has recently under-
taken the first systematic comparison.!* The obvious
starting point is the atomic systems. It is noted that the
problem is purely one of deciding between two different
methods of integration. The advantage of Gaussian
functions is that the product of two Gaussians G, and G,
centered on a and b, is a new Gaussian function G, centered
on e. Therefore the four-center problem (GG, | G.G,;)
reduces to the two-center problem (G, | G,). The latter
integral can be computed up to a few hundred times faster
than the integral (x,xs | x.xs) with a Slater basis set.
On the other hand, one needs a much larger basis set in
order to obtain with equal accuracy a given energy, say
the Hartree-Fock energy, by using Gaussian as compared
with Slater-type orbitals. The need of a larger basis set
offsets part or nearly all of the speed advantages. In order
to be more quantitative about this point, let us first
consider Huzinaga’s results for atomic computations.
In Table 2 the size of the Gaussian basis set is given for
some computations on first row atoms. The computed
energy is compared with two different sizes of basis sets
for Slater type orbitals obtained by the author.!®®

Clearly, one obtains better energies with a limited Slater
basis set (set A'°) than with a considerably larger Gaussian
set. Indeed with the extended Gaussian basis set used,
one has by no means reached the energy obtained with
the Slater set B.'® Since the set B gives very closely a

ENRICO CLEMENTI

231



232

Table 2 Comparison of Gaussian and Slater basis sets (En-
ergies in a.u.)

Element Gaussian* Slater (set A)** Slater (set B)***
and state 9s), 5(p) 4(s), 2(p) 5(s), 4(p)
Li (25) —7.432279 —7.432718 —7.432726
Be (1S) —14.57207 —14,57237 —14.57301
B (¢P) —24.52713 —24.52789 —24.52905
C (¢P) —37.68525 —37.68668 —37.68858
N ¢S) —54.39534 —54.39787 —54.40090
O ¢P) —74.80029 —74.80476 —74.80935
O (D) -—74.72010 e —174.72920
0 (1S —74.60159 ven —74.61094
F (¢P) —99.39559 —99.40116 —99.40921
Ne (0S) —128.5267 —128.53480 —128.5470

* Huzinaga set (Ref. 14).
** Double ¢ set (Ref. 15).
#** Hartree-Fock set (Ref. 16).

Table 3 Number of two-election integrals in typical compu-
tations (Gaussian set)

System Gaussian basis Number of integrals
Si 15(s), 9p) 1.4 X 10¢
CcO 30(0), 12(x) 2.3 X 108
CO, 45(s), 18(x) 1.1 X 108
CN. 60(c), 24(w) 3.6 X 108

Hartree-Fock energy, one can be disappointed by the
performance of the Gaussian basis. On the other hand,
if we are interested in spectral differences, the results with
Gaussian orbitals are as good as the results with Slater
orbitals. Indeed the Gaussian set gives the energy differ-
ences OCP) — O('D) and OCP) — O(S) as 0.080187 a.u.
and 0.198699 a.u. which compares well with the equivalent
values of 0.080147 a.u. and 0.198415 a.u. for the Hartree-
Fock functions (set B). In addition, it should be pointed
out emphatically that the correct results are 0.072283 a.u.
and 0.153949 a.u., respectively, and therefore the differ-
ence between the Gaussian set and the Slater set is of
relatively little importance if we are interested in exact
calculations.

Let us proceed to molecular computations, and give
the equivalent of Table 1, this time using a Gaussian
basis set instead of a Slater basis set. Again we wish to
obtain Hartree-Fock energies for the systems Si, CO, CO,
and C.N, (Table 3). The examples given are not yet com-
puted and are presented only as a comparison. The basis
set selected for this sample computation likely will not
give a good Hartree-Fock wave-function whereas the best
basis set in Table 1 will. On the other hand, the Gaussian
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set will give an energy which will differ from the Hartree-
Fock energy by no more than about one eV for the above
molecules.

Comparison between Tables 1 and 3 indicates that the
number of integrals needed in a Gaussian set is certainly
much larger than the number of integrals needed in
comparable Slater basis sets, and that Gaussian integrals
can be computed up to 100 times faster than the Slater
integrals. On the other hand, the Hartree-Fock matrix
dimension in the Gaussian case is larger than the matrix
dimension for a Slater basis and thus requires additional
computer time. The net conclusion of these conflicting
factors is that probably the two techniques are comparable,
and it will be difficult to positively state which method is
better until actual program performance can be compared.
1 feel at present, however, that the use of Gaussian orbitals
for many-center integrals might offer some advantage over
the Slater set. One could consider the possibility of a
mixed set where Slater orbitals of 1s type are used with
Gaussian sets. This possibility, if practical, would eliminate
the poor behavior of the 1s Gaussian functions at the
origin. It is noted that this behavior is the reason for the
unsatisfactory performance (Table 2) of the Gaussian
functions for the atomic systems.

With molecular problems of the size we have been
mentioning, and especially for systems much larger than
C.;N,, one should look for new methods within the
Hartree-Fock technique. Up to now one constructs the
Hartree-Fock orbitals by obtaining the best linear com-
bination of a given basis set. For large molecules (which
require very large basis sets) it might be convenient to
work with larger blocks than the initial basis set of Gaus-
sian or Slater functions, for example, with Hartree-Fock
atomic orbitals. This will reduce the computational
difficulty in the solution of the Hartree-Fock equation.
As an alternative, one could use Hartree-Fock orbitals
for the inner shells and Slater (or Gaussian) orbitals for
the valence electrons. This might be useful not only for
molecular cases but also for atoms with many electrons
(say more than 80 electrons).

For large systems one might be compelled to resort to a
much more drastic departure from the present standard
technique. Let us consider, for example, the porphyrin
system (see Fig. 1). In order to simplify the problem, one
could consider the pyrrole group as starting blocks. In this
case, the porphyrin symmetry orbitals will be a linear
combination of the pyrrole radical symmetry orbitals, and
the self-consistent technique will optimize the expansion
coefficients of the basis set of pyrrole symmetry orbitals.
This is equivalent to introducing a perturbation (or
polarization) on the original pyrrole symmetry orbitals.””
In turn the pyrrole symmetry orbitals can be obtained by
using a symmetry-adapted set where the basis is not in
terms of Slater orbitals, but of Hartree-Fock orbitals.
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Figure 1 The pyrrole molecule is part of the metal-porphyrin
and is indicated inside the area limited by dashed lines. Key:
O hydrogen atoms, @ carbon atoms, A nitrogen atoms,
B a metal atom of the II or III period.

The proposal essentially is to do a repetitive set of
self-consistent computations. First for the atoms as such;
this will freeze the coefficient for the Slater-type orbitals
into atomic Hartree-Fock orbitals, Then for the symmetry
adapted orbitals of the pyrrole group; this will freeze the
linear combination of the Hartree-Fock orbitals into the
pyrrole radical symmetry-adapted orbitals. Finally, the
porphyrin symmetry-adapted orbital will be obtained by
the SCF technique as an expansion of pyrrole orbitals.
Schematically, if ¢p indicates a porphyrin orbital, ¢, a
pyrrole orbital, ¢, a Hartree-Fock orbital for atom A4, ¢*
a Slater (or Gaussian) type orbital on atom A4, we shall have

@4 = 2 c'io? First SCF cycle for atoms
@y = E d.¢.4 Second SCF cycle for groups of atoms
A

> e, + 2 digl  Third SCF cycle for the
4 4

whole system,

(24

where ¢, d, e and d’ are the expansion coefficient (with
proper symmetry), and ¢/ represent those additional
atoms in the porphyrin molecule not accounted for in
the pyrrole molecules.

Since much time is required for computing the integrals
in a macro-molecular computation, we shall mention two
possibilities that should reduce the amount of computer
time.

First, many four-center integrals have exceedingly small
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values, such that two- to three-figure accuracy is all that
is needed. Most of the past programs compute all the
integrals, small or large, with the same method. It seems
that this could amount to a waste of computer time and
one should test, by some approximation (for example the
Mulliken approximation) the value of the integral before-
hand, and compute it accurately only if its value exceeds
a certain threshold, whereas the integral would be com-
puted approximately if the value is below the same
threshold. Alternatively, if electron 1 is located on centers
far removed from the center of electron 2, then we can use
the dipole-dipole approximation in the 1/r, expansion,
since then r, < R and r, << R where R is the distance
between the two centers for electrons 1 and 2, and ny, »,
are the distances of electrons 1 and 2 from their origin.
The decision on when to shift from the usual calculation
to the dipole-dipole approximation can be left up to the
computer, which is provided with simple testing rules
involving the value of R and the values of (r;) and {r.).

Second, for large molecules (or even for atoms with
many electrons), it seems more likely that one could do
a set of computations on the same system in different
excited states or various geometrical configurations. For
example, one could be interested in several electronic
states or in analogous systems where new atoms or
chemical groups are added or removed from the original
system. In this case it seems to be wasteful to compute
repeatedly for each individual computation a large
number of integrals, which could and should be saved
from one computation to the next.

The practicality of most of the suggestions put forward
in this section has not yet been tested. On the other hand,
it seems to us that the “traditional” setup of past programs
should not be merely extended for large molecules, but
the above points should be carefully considered, unless
one wishes to perform computations at a very exorbitant
cost.

o Atomic Hartree-Fock computations

Up to now the first three periods of the periodic table
have been carefully studied by the Hartree-Fock tech-
niques. Results on the positive, negative and neutral
elements from He to Kr are available in the literature.'**®
The collection of the functions computed at our laboratory
is given in the supplement to this paper.” It has given
reliable functions, ionization potentials, electron affinities,
screening constants,'® and basis sets very useful for molec-
ular and solid state calculations. From a theoretical point
of view, the main value of this work has been in providing
a large series of accurate data on atomic correlation
energies, totally absent from the available literature. For a
detailed analysis of the atomic Hartree-Fock method we
refer to the introduction to the supplement of this paper.”
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e Molecular Hartree-Fock computations

Most of the molecular computations obtained up to date
have been performed as “test” computations. There is a
considerable number of functions which have been done
in the self-consistent-field framework, but have not
reached the Hartree-Fock limit. For a complete bibli-
ography we refer to Allen and Karo’s review paper”® and
to the Slater volume on molecular structure.” Recently,
we have reached the stage of mass production of Hartree-
Fock diatomic functions; this work, done at the Labora-
tory of Molecular Structure and Spectroscopy (University
of Chicago), is not yet published, but preliminary infor-
mation can be obtained from their technical reports.*®
Previous computations which obtained an approximate
Hartree-Fock solution® for a few diatomic molecules have
clearly demonstrated that: (a) the computed electronic
charge distribution well represents the experimental electric
multiple moments, (b) the computed equilibrium inter-
nuclear distances are within a few percent of the ex-
perimental distances, (c) the computed vibrational and
rotational constants are accurate to approximately 15%,,
and (d) the directly computed binding energies are generally
very poor (see the discussion on the molecular correlation
energy at the end of this paper). The new data, now
available from Chicago, confirm the above conclusions.
For molecular systems with more than two atoms, the
progress has been limited by the difficulty in the many-
center integral computations, and by the lack of sufficiently
fast and large computers. In view of the progress made in
computer technology in the last few years, it is now feasible
to consider computations at the Hartree-Fock level for
systems much larger than diatomic molecules. The greatest
remaining difficulty is in the treatment of the correlation
energy>* This will be discussed later in the paper.

The relativistic correction

For the He atom (Z = 2) the relativistic energy is 107°
smaller than the Hartree-Fock energy, but for the Zn
atom (Z = 30) is only 107* smaller than the Hartree-Fock
energy. This is due to the weil known high-Z dependency
of the relativistic effects. Therefore, for high Z the rela-
tivistic correction cannot be any longer considered as a
simple perturbation and L-S coupling is no longer a
satisfactory quantization scheme for the system. All this
is known, but there are still several problems of theoretical
nature. The essential point is that, at present, the many-
electron relativistic Hamiltonian is only partially known
and very few numerical computations have been made to
verify the accuracy of the approximated Hamiltonian
proposed. This seems to be the main difficulty that lies
ahead in the computation of systems containing heavy
elements. In the following we shall present some results
of computed relativistic energies. Since we have considered
low-Z cases, the perturbation technique is adequate.

ENRICO CLEMENTI

The relativistic energy has been defined in the literature
in a number of different ways and for the purpose of this
paper the formulation and notation given by Bethe and
Salpe’cer25 of the relativistic energy of a two-electron system
based on the Breit equation is extended to the N-electron
system. The Breit equation describes the interaction of
two relativistic electrons with each other and with an
external electromagnetic field. The Hamiltonian of this
system can be expanded in powers of (Za) (Pauli’s ap-
proximation, where Z is the nuclear charge and « is the
fine structure constant) and consists of both one-particle
and two-particle operators. We assume that the Hamil-
tonian for an N-electron system can be obtained by
summing all one-particle operators over all N electrons
and summing all two-particle operators over all pairs of
electrons in the system. A great simplification occurs for
closed-shell atomic systems. Up to and including the
order of o, the relativistic correction to the Hamiltonian
for such a system depends on three terms:

H., = H, + H, + H;, (10)

where

g = —L . 1
1 = 8mscz & D, (1 )

and

H, = = S o, 4 vv.v) (12)
4 (2 m)? “~ L 3 i/

AR (-—-87r)3
H5—4( c)ZZS".Si 3 8 (ris)

2 m i
eh \*f —8x
- () (55) T seswen o

Here e is the absolute value of the electronic charge.
The Hartree-Fock orbitals are taken in the form of

W) = T U, (14)

where U,(x)’s are the single-particle wave functions of
the type

U = X Cos 20 1,0, 9900 (15)

7 is the spin wave function o or 8. The value i runs
from 1 to N = the number of electrons. Y;,, = normalized
spherical harmonics and f,,(r)/r is the radial part of the
exponential function in the form proposed by Slater?®
The coefficient of the expansion of the Slater-type basis
set, C, ;, is determined by the self-consistent field tech-
nique.

If we define

L(nl) = f 123 dr,
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Table 4 Relativistic energies (in a.u.) for closed-shell systems

Atom E(1s) E(2s5) E(2p) E(3s) E(4s) EQGd) E(REL) E(Hartree-Fock)
He —0.000070 —0.000070 —2.8616801
Be —0.002033 —0.000165 —0.002198 —14,573021
Ne —0.106628 —0.013845 —0.010737 —0.131210  —128.54701
Mg —0.228050 —0.034385 —0.031252 —0.001363 —0.295049  —199.61458

Ar —1.220578 —0.235288 —0.257411 —0.025311 —1.760981 —526.81730
Ca —1.884626 —0.380956 —0.428731 —0.051217 -—0.051264 —0.002907 —2.798701  —676.75801

Zn —9.900744 —2.284792 —2.802329 —0.368432 -—0.447182 -—0015103 —0.100389 —15918970 —1777.8471

L(nl) = f:_zf:l dr,

13(nl) = f%if"l;fnl dr:

I(nl) = f}%fﬁz dr, (16)
and
Is(nl) = Z[rl fﬁo]m. %)

where f' and f” are the first and second derivatives of
fa(r) then one can show that

=1 2 @+ D) — 210 + Dis(r)
+ P + 1)’ I(n])] (18)
and

E.+ Es =131 Ino) + 1 ZI (21 + 1) I(nD) (19)

and, in general,
E. = E + E,+ E; = —% Z dnlili(nl)9

n, 1.

=1,2,3,4,5 (20

The coefficients d,;; that are needed for the computation
of the relativistic energies of closed shell states of 2, 4, 10,
12, and 18 electron systems are available from Hartmann
and Clementi”’

The error in the computed relativistic energy can be
estimated by computing the next higher-order correction,
that is, the Lamb shift, of orders Z%? and Zo® In .. For a
two-electron atom in its ground state, the lowest order
Lamb shift is given in a.u. by*

E. . + Ep.» = i3Z0¢3(¢5(71) + 5(’2»00
k, 19
-[2 In (l/a) - ln;; -+ ﬁ:l

- 1-3‘1 *(8(ri2))oo In (1/a) au., (1)
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where k, is the average excitation energy.
Estimates of the Lamb shift can be obtained by using™

ko= 805Ry for Z = 2,
= 191.6 Ry for Z = 3,
= 19.77Z® for Z > 4, (22)

and

[ 0. 653 8:| 23)

1. 877 1. 189]

<5("1) + 5("2»00

3
(5(’ 12))00 = [ (24)

The relativistic energy corrections for the Hartree-Fock
functions for He, Be, Ne, Mg, and Ar atoms are presented
in Table 4. The relativistic energy corrections are computed
for each subshell of electrons E(ls), E(2s), etc., and then
summed to give the total relativistic energy E..,.

The lowest order Lamb shifts are computed, using
Egs. (23) and (24), for the two-electron isoelectronic series
and tabulated in Table 5

Because of the quasiadditivity of the E(n/) contributions
to the relativistic energy (Eq. 20) it is not difficult to
improve the computed values of the relativistic energy
in the following manner: Instead of using the computed
values of E(ls) from the Hartree-Fock functions, one
could use the E(1s) obtained from the exact function of
Pekeris®® and add to it the E(nl) for n > 1 from our
computations. Pekeris’ relativistic energies are available
up to Z = 10 and have been extrapolated by Scherr et al*°
to Z = 20. These values have been tabulated in Table 6
along with our computed values. The difference between
our values for E(ls) and those of Pekeris and Scherr are
tabulated in the third column of the table and can then
be used as a correction to all the terms in Table 4. It
should be noted that if this correction is used, the results
for 4, 10, 12, and 18 electron systems will include Lamb-
shift corrections for the 1s electrons, but not for the other
electrons. This is justified because the Lamb-shift correc-
tions are small compared with the main relativistic
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Table 5 Lowest-order Lamb shifts for two-electron atoms
(In a.u.)

z Ers+ Ep s z Ep,+ Ep o
2 0.000022 19 0.064270
3 0.000106 20 0.073933
4 0.000323 21 0.084081
5 0.000740 22 0.094600
6 0.001439 23 0.105350
7 0.002500 24 0.116174
8 0.004000 25 0.126887
9 0.006015 26 0.137283
10 0.008614 27 0.147130
11 0.011856 28 0.156165
12 0.0'5791 29 0.164110
13 0.0°0460 30 0.170665
14 0.025887 31 0.175480
15 0.032085 32 0.178194
16 0.039051 33 0.178422
17 0.046765 34 0.175742
18 0.055190 35 0.169699

Table 6 Relativistic correction for a two-electron system

zZ a b A
2 —0.000049 —0.000060 —0.000011
3 —0.000433 —0.000500 —0.000067
4 —0.001767 —0.001878 —0.000111
5 —0.004914 —0.005092 —0.000178
6 . —0.011086 —0.011345 —0.000259
7 —0.021807 —0.022166 —0.000359
8 —0.038918 —0.039395 —0.000477
9 —0.064576 —0.065202 —0.000626
10 —0.101276 —0.102075 —0.000799
11 —0.151820 —0.152847 —0.001027
12 —0.219385 —0.220655 —0.001270
13 —0.307451 —0.308996 —0.001545
14 —0.419797 —0.421671 —0.001874
15 —0.560656 —0.562833 —0.002177
16 —0.734444 —0.736965 —0.002521
17 —0.946076 —0.948891 —0.002815
18 —1.200515 —1.203750 —0.003235
19 —1.503578 —1.507060 —0.003482
20 —1.860704 —1.864620 —0.003916

8 Qur results including E(rel) +E;,,+ EL,,’
b Pekeris’ relativistic energies up to Z = 10 and their extrapolations
by Scherr et al. for Z > 10,

contribution, (compare Tables 4 and 5), and the main
contribution to the Lamb shifts should come from the 1s
electrons. Table 6 indicates that the estimates of Scherr
et al. agree with our theoretical computations within 19,
except for low Z, where the discrepancy is larger.

The above analysis has been made by direct extension

ENRICO CLEMENTI

of the Bethe and Salpeter two-electron Hamiltonian.
This is certainly an oversimplification of the problem.
Unfortunately, a “correct” Hamiltonian for N-particle
systems in a central field is not available. For additional
references on the relativistic correction we refer to the
work of Hirschfelder et al.*' Slater?® Brown?* Breit®
and Grant*

I should add that the quantum-chemical literature on
the relativistic correction is practically nonexistent, despite
the importance of the correction in those molecular systems
with heavy atoms.

The correlation energy

o Atomic correlation energy from spectral data

The correlation energy is commonly defined as the differ-
ence between the exact nonrelativistic energy and the
Hartree-Fock energy*'*®

It is worth while to note that there are several Hartree-
Fock schemes?®® each leading to a somewhat different
energy and, consequently, to different values of the
correlation energy. For this reason we state from the
beginning that in the following, when we refer to the
Hartree-Fock energy, we refer to the best energy one can
obtain by the analytical self-consistent field method as
put forward by Roothaan.® The reason for this choice is
simply that by now this method has been used to obtain
many atomic functions and energies and a large number
of molecular functions and energies.

From a conceptual point of view one might prefer to
define the correlation energy as the difference between
the exact nonrelativistic energy and the Hartree energy,
since the Hartree-Fock method presents an unbalanced
situation when we look at the way in which electrons
with like spins and those with different spins are con-
sidered® The Hartree-Fock method partially correlates
electrons with the same spins. This correlation present in
the Hartree-Fock method will be hereafter referred to as
precorrelation, where we define the precorrelation energy
as the difference between the Hartree-Fock energy and
the Hartree energy. This energy difference is a correlation
energy, but in view of the accepted definition of correlation,
we might say that it is a correlation energy ante literam.

We note that the emphasis on the nonrelativistic exact
energy in the definition of the correlation energy has
mainly a practical value. The relativistic energy itself can
be partitioned into a correlated and an uncorrelated
relativistic energy.

It is well known that there are, in principle, several
methods available in order to obtain correlated wave
functions.®' 3 3% % At present it seems that a common
characteristic of these methods is that they are not easily
applicable and are often outside of today’s computational
capabilities. For these reasons, it is of interest to give
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estimates of the correlation energy for the isoelectronic
series of atomic systems with 2 to 22 electrons.

Since electrons with parallel spins are somewhat
correlated in the Hartree-Fock method and since parallel
spins occur to a varying extent in the low energy states
of atoms, one can expect that the correlation energy in
the ground states of neutral atoms is not a linear function
of the number of electrons. The Hartree-Fock method
uses antisymmetrized wave functions; this is done to
satisfy the Pauli principle, and brings about the exchange
energy which is the origin of the precorrelation energy.
Electrons with the same spin find themselves encircled
by a Fermi hole which prevents electrons with the same
spin from approaching each other.

We can expect a large correlation energy for pairs of
electrons of the same shell (intrashell correlation), a
smaller correlation energy between electrons of different
shells (intershell correlation), and a quasi-constancy for
the correlation of given types of pairs of electrons with
opposite spin.

With the Froman®® and Linderberg-Shull® work in
mind, one will predict that the correlation energy of the
ground-state first-row atoms will behave as follows:
There is a given correlation for the pair of electrons in
the He atom. For the Be atom, the correlation is about
twice that of helium. Lithium will have an intermediate
correlation energy between He and Be. Since the extra
electron (compared with He) is a 2s electron, which has
a maximum radial probability far from the 1s electrons,
its correlation with the 1s electrons is certainly small.
In fact, from the Linderberg and Shull®® values, we know
it to be very small (the intershell correlation for 1s-2s
is much smaller than for the 1s (or 2s) intrashell correla-
tion). The correlation energy of B, C, and N in their
ground states can be estimated by keeping in mind that
the 2p electrons have all parallel spins and consequently
the precorrelation existing in the Hartree-Fock energy
will take care of most of the correlation for the 2p electrons.
There will certainly be some intershell correlation of
1s-2p type and 2s-2p type. Since the 2s electrons are in
the same spatial neighborhood as the 2p electrons, one is
tempted to assume that (1s-2p) intershell correlation
<(2s-2p) intershell correlation.

The correlation energy for O, F, and Ne should increase
sharply. With those atoms we build one, two, and respec-
tively, three pairs of unparallel spin electrons in the same
shell (the 2p shell). The sharp increase is due to the lack
of precorrelation for those newly added electrons.

It is fairly simple to be more quantitative about all
the above reasoning. Accurate Hartree-Fock energies are
available!® The necessary relativistic energies were
available from our work;”” and the total energy can be
obtained experimentally by adding the ionization potentials
from Moore!® Then the correlation energy is simply the
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total energy minus the Hartree-Fock energy minus the
relativistic energy.

With these data we obtain an accurate estimate of the
correlation energy for 2 to 10 electrons in atoms and in
positive ions with Z from 2 to 10. The results are con-
densed into a diagram (Fig. 1) where the correlation
energy is plotted against Z.

This diagram, we feel, reveals the essential features
of the correlation energy problems for atomic systems
in the L-S coupling. In order to compute the correlation
energy of excited states we again make use of Moore’s
tables or of an extrapolation of the data of Moore by
means of a power expansion in Z, and we can calculate
the total energies of excited states. Thus, we have the
total energy, E(TOT), the relativistic energy, E(REL),
and the Hartree-Fock energy, E(HF), for the ground and
the excited states. We note that the Hartree-Fock energy
is computed in the approximation of infinite nuclear mass.
Consequently, the Hartree-Fock energies must be mass
corrected. (See for example, Bethe and Salpeter, Reference
25, page 253.) The correlation energy is simply E(COR) =
E(TOT) — E(REL) — E(HF). A sample of the results
we have obtained is given in Table 7 (in atomic units;
one atomic unit equals 27.2097 eV). The Hartree-Fock
energies are computed with seven significant figures and
the relativistic and the total energies are computed with
the same number of figures. In Table 7 the correlation is
given to the number of figures we feel are correct (plus one
in order not to introduce roundoff error). One can notice
that the number of significant figures we give varies from
four to two. This is done in view of the uncertainty in
the relativistic energy and the extrapolations of the total
energy.

In Figure 2 we have also given the correlation energy
for excited states of the ground-state configuration for
neutral atoms. The correlation energy for excited states
of the positive ions was not indicated, to avoid confusion
on the diagram. The dot-dash lines connect states with
the same multiplicity and total angular momentum.
Linear dependency on the number of electrons for the
correlation energy of 'S(Be), 'S(Ne), excited 'S(C), and
1S(O) was obtained. The same is true for the 2P(B), 2P(F),
and excited 2P(N).

There are cases in which the correlation is directly
known from computations of the Hartree-Fock and
correlated functions. For the two-electron cases, the data
of Weiss® and those of Pekeris®® give us accurate correla-
tion energies up to Ne®*. The computations by Weiss™
and Kelly*® of three- and four-electron systems up to
0% and O*, respectively, give us data for the correlation
energies for three and four electrons. There are no other
data of comparable accuracy available. In Table 8 the
Pekeris, Weiss and Kelly data for two, three and four
electrons are given. It is noted that for the three- and
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Table 7 Experimental correlation energy for atomic isolectronic series with 2 to 22 electrons (In a.u.)

V4 218, 3~ 381 4 —15, 5 =Py 6 — 3P, T — 14812 8 —3p,

2 —0.0421

3 —0.0435 —0.0453

4 —0.0443 —0.0475 —0.0944

5 —0.0448 —0.0489 —-0.1123 —0.125

6 —0.0451 —0.0498 —0.1268 —0.139 —0.158

7 —0.0453 —0.0505 —0.1412 —0.151 —0.167 —0.188

8 —0.0455 —0.0510 —0.1551 —0.162 -0.175 —0.193 —0.258

9 —0.0456 —0.0513 —0.1684 —-0.173 —0.182 —0.197 -0.260
10 —0.0457 —0.0516 —0.1814 —0.182 —0.188 -0.200 —0.267
11 —0.0458 —0.0519 —0.1941 -0.191 —0.193 —0.203 -0.274
12 —0.0459 —0.0521 —0.2066 —0.200 —0.199 —0.205 —-0.279
13 —0.0459 —0.0523 —0.2190 —0.208 —0.204 —0.207 —0.285
14 —0.0460 —0.0524 —0.2313 —0.216 —0.209 —0.209 —0.291
15 —0.0461 —0.0525 —0.2435 —0.225 —0.214 —0.211 —0.296
16 —0.0461 —0.0527 —0.2556 —0.232 —0.218 —0.213 —0.301
17 —0.0462 —0.0528 —0.2677 —0.240 —0.222 —0.214 —0.305
18 —0.0463 —0.0529 —0.2797 —0.248 —0.227 —0.215 —0.309
19 —0.0463 —0.0529 —0.2917 ~0.2555 —0.231 —0.217 —0.313
20 —0.0463 —0.0530 —0.3037 —0.263 —0.235 —0.218 —-0.317
21 —0.046 —0.053 —0.316 —0.270 —0.24 —-0.22 —-0.32
22 —0.046 —0.053 —0.327 —0.278 —-0.24 —-0.22 —-0.32
23 —0.047 —0.053 —0.339 —0.285 —0.25 —0.22 —0.33
24 —0.047 —0.053 —0.351 —0.293 —0.25 -0.22 —0.33
25 —0.047 —0.053 —0.363 —0.300 —0.25 —0.22 —0.34
26 —0.047 —0.053 —0.375 -0.31 —0.26 —0.23 -0.34
27 —0.047 —0.053 —0.387 —0.32 —0.26 -0.23 —0.34
28 —0.047 —0.053 —0.398 —-0.32 —0.26 —-0.23 —0.35
29 —0.047 —0.053 —-0.411 —0.33 —0.27 —0.23 —-0.35
30 —0.047 —0.053 —0.423 —0.34 —-0.27 —0.24 —-0.35
zZ 9 —?p 10 - 1S 11 — 32§ 12 -1§ 13 —3p 14 —3p 15 —4«§
9 —0.324
10 —0.328 —0.393
11 —0.336 —0.396 —0.403
12 —0.344 —0.402 —0.411 —0.451
13 —0.350 —0.409 —-0.420 —0.464 —0.482
14 —0.358 —0.417 —0.429 —0.482 —0.504 —0.522
15 —0.366 —0.426 —0.438 —0.499 —0.523 —0.54 —0.561
zZ 16 — 3P 17 — P 18 — 18 19 - 2§ 20 —18 21 —D 22 —3F
16 —-0.60
17 -0.71
18 —-0.79
19 —-0.82
20 —0.84
21 —0.85
22 —-0.86
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Figure 2 Correlation energy for the first row elements. The
dashed lines connect isoelectronic series in the ground state;
the solid lines connect ground states of the first row neutral
elements; the dot-dashed lines connect excited states of neu-
tral elements with some symmetry. The ground states for the
neutral elements from He to Ne are 1S, S, S, °P, °P, ‘S, °P,
2P and 'S, respectively.

four-electron cases the Weiss computations give only a
lower limit of the correlation energy since the exact
nonrelativistic energy was not fully obtained.

It is quite interesting to note that not only the 152s*
isoelectronic series has a strong Z dependency, but also
the 2p(n) isoelectronic series shows large Z dependency.
One notices that the Z dependency is pronounced in the
Be('S) series, and progressively less in B¢P), CCP), and
N('S) series. In the series from OCP) to Ne('S) the de-
pendency is about constant. We note that Linderberg
and Shul®® have discussed the Z dependency of the
15°25° configuration in terms of 2s, 2p near degeneracy.

We can comment on the excited states correlation
energies somewhat further than that done earlier. The
correlation energy for the multiplet components of a
given term is approximately the same. The difference in
correlation energy, for example, between B(°P,,,) and
B(CP;,.) is very small and within the error of the estimate.
For this reason no such data are reported.

For different states of the same electronic configuration
the correlation energy has the following characteristics.
First, the lowest correlation energy is for the state of
highest spin multiplicity. For example, in the °P, 'D,
and 'S series beginning at C (or O), E(COR. *P) <
E(COR. 'D) and E(COR. ®P) < E(COR. 'S). This is, as
mentioned previously at length, a consequence of the
spin precorrelation in the Hartree-Fock method. Second,
for states with the same spin multiplicity the correlation
energy is smaller for the states of highest angular momentum.
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For example, E(COR. 'D) < E(COR. 'S) for the carbon
and the oxygen series, and E(COR. ’D) < E(COR. 2P) for
the nitrogen series. Since states with the same spin multi-
plicity but different angular momenta do not have the
same correlation energy (for given Z and number of
electrons), one concludes that in the Hartree-Fock method
we have not only spin-related precorrelation but also
angular precorrelation. The angular precorrelation being
in the sense that the higher the angular momentum
(total angular momentum) the higher the angular pre-
correlation. This is quite interesting because it tells us
that we cannot obtain excitation energies of the correct
magnitude with the Hartree-Fock method even for states
of the same multiplicity. A simple explanation of the
differences of the correlation energies between states of
the same multiplicity but different total angular mo-
mentum is that the larger the angular momentum, the
more ‘“‘preferential” is the electron’s motion about the
nucleus.

o The two-particle model

Up to now the results we have obtained for the correlation
energy in the first,'® second,’ and third*® row have indicated
a remarkably simple picture, where one can simply divide
the correlation energy into “strong” and “weak” pairs,
the former for intrashell electron pairs, the latter for
intershell electron pairs. In addition, for the first and
second row, the “weak pairs” have much smaller correla-
tion where the electrons in the pair have different principal
quantum numbers, for example, the 1s-2s pair correlation
is smaller than the 2s-2p correlation.

There seems to be evidence that the above simple
pairing model®® is only the limit of a more complex situa-
tion, which we have called the complex pairing model.
For this we mean that the simple division between “strong”
and “weak” pairs is inadequate, that the “weak” inter-
actions increase not only in number (simply because

Table 8 Correlation energies from ab initio computations

Case Pekeris* Case Weiss* * Case Weiss**
He —0.0424 Li —0.0444 Be —0.0869
Lit —0.0453 Bett  —0.0462 B*! —0.1038
Be*t —0.04427 Bt® —0.0472 Ct2 —-0.1177
B+ —0.04474 CHs —0.0479 Nts —0.1305
CHe —0.04506 Nt —0.0483 O™ —0.1424
N+ —0.04529 Ot —0.0486 Kelly***
O+t —0.04546 Be —-0.92
F+7 —0.04558

Nets —0.04570

* See Ref. 29.
** See Ref. 41.
*##% See Ref. 42,
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there are more electrons in the systems) but also in strength.
In other words, the new situation is that the correlation
energy to a first approximation is not the simple sum of
the *‘strong” pairs correlation, but, one should add to
this the contribution of the intershell correlation; this
contribution is comparable in value to that of the “strong”
pairs. One reason for this behavior is that the n, /, m, and s
quantum numbers (L-S coupling) do not describe ade-
quately the atomic system. If the atomic system under
examination is partially described by j-j coupling, then this
prevents assigning strong and weak pairs to the valence
electron configuration. This point can be simply stated in
the following way: “If a system is, for example, not a
pure singlet, but a mixture of singlet, triplet and quintet
states, then why consider the correlation as due entirely
to its singlet component? Further, if the system does not
possess a well-defined total orbital or spin angular mo-
mentum, what is the meaning of pairs based on the
assumption of a well-defined total orbital or spin angular
momentum?”’ A second reason is that the number of
subshells is more important, for example, in the third
group we have 4s, 4p, 4d and 4f degeneracy as compared
with only 2s and 2p, the case for the first period. These
two reasons affect the correlation energy picture in the
same way, namely, they emphasize the role of the “weak
pairs” of the “simple pair model”. We might say that the
larger the number of electrons, the more linear the cor-
relation behavior becomes with respect to the number of
all possible strong and weak pairs. This is tantamount to
saying that we see the emerging of a statistical picture
which is very likely the final limit of the complex pairing
model.

Let us examine, for example, the scandium atom,*® and
consider the correlation energy for the Sc(*D), Sc*CF),
Sc**(*D) and Sc*®('S), with corresponding configura-
tion..... 45*3d", 4s"3d°, 4s°3d" and 4s°34°. The correlation
energy difference from Sc to Sc*, from Sc* to Sc** and
from Sc*® to Sc*® are 0.037, 0.034 and 0.031 a.u., respec-
tively. In the first step, Sc to Sc’, a “strong pair” is
destroyed and the 4s electron promoted to the 3d shell can
bring about only “weak pairs”. In the second and third
steps, we leave unaltered the number of “strong pairs” and
we vary only the number of “weak pairs”. But the corre-
lation energy is very insensitive to such distinction of
“weak” and “strong’ pairs and behaves as if the 4s and
3d electrons do not depend on the n, /, m, and s quantum
numbers at all. (The remarkable linearity of the computed
values 0.037, 0.034, 0.031 a.u., should not be taken too
literally, because of the angular momenta, near degeneracy,
uncertainty in ionization potentials, lack of accuracy in
the computation of the relativistic effects, etc.) Un-
fortunately, the lack of reliable data for higher ionization
potentials for many cases prevents a final conclusion.
It is noted that the highest ionization potentials available
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in the literature are likely to be in error, because of the
heavy reliance on extrapolation and analogy which
characterizes the determination of the high order ionization
potentials for the third group.

The net outcome of the analysis of these data is that
we see the emerging of the “complex pairing model” and
the collapse of the “simple pairing model”.

The above considerations on the two-particle model
are obtained by analyzing the correlation energy data.
It should be pointed out that the two-particle method has
been proposed and analyzed by Hurley, Lennard-Jones
and Pople,” and later by others.*® Their analysis is not
within the self-consistent framework. Recently, Huzinaga*®
derived a set of coupled Hartree-Fock type equations
to determine the two-electron geminals.

Presently there are no numerical computations to prove
that the two-particle model functions (called geminals)*®
represent a general answer to the correlation problem.
However, the numerical results on the correlation energy
which we have reported seem to indicate that this model
will work well for the Be atom, less well for the Ne atom,
and poorly for atoms with more than 20 electrons. The
reason is the large amount of correlation energy due to
the intershell correlation. In addition, we note that the
model at present makes no provision for those cases where
one should work in terms of j-j coupling. On the other
hand, it is expected that the two-particle model will give
a satisfactory answer for saturated molecules with strongly
localized bonds.

e Coulomb hole and correlation energy

The Hartree-Fock (HF) models assume that each electron
experiences the average field of all the remaining electrons
and that the total wave function can be expressed as an
antisymmetrized product of one-electron orbitals. Thus,
the exact function is replaced by a single determinant of
one-electron orbitals (at least for closed shell systems) and
the 1/r,; operator of the exact Hamiltonian is replaced by
Coulomb and exchange operators, representing the average
field interaction.

Formally, the Hartree-Fock model can be equated to
an ‘“‘unperturbed system” and the difference between
the exact and the average electron-electron interaction
will be a “perturbation potential”’. This much is well-
known from the Méller and Plesset® analysis of the
correlation problem. As a consequence, one can attempt
to obtain the exact function by taking the HF function
as a zero-order function and then add some correction
via perturbation and/or variation techniques.

Physically, one can equate the Hartree-Fock model to
a system where the “Coulomb hole” for electron pairs
with antiparallel spin is not accounted for. We refer to
Wigner’s work on this point.™

We shall attempt to introduce in the Hartree-Fock
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potential an additional term which directly represents
the “Coulomb hole”. Since we are interested in the
quantum chemistry of molecular systems, we are concerned
with not increasing the mathematical complexity of the
problem beyond the Hartree-Fock formalism.

The “Coulomb hole” is introduced directly as a modifi-
cation of the Coulomb integrals J;,, .r..""" This modifica-
tion consists in replacing the integration range of the
first electron from zero to r and from r to infinity, (the
usual limits of the Jy,,, .., €lements) with the integration
range from zero to (r — ) and from (r + ) to infinity.
Since at the integration limit r the two electrons of the
Coulomb element occupy the same radial position, the
effect of replacing r by (r — 6) and (r + &) introduces a
discontinuity in the potential. Thus, we have a “Coulomb
hole”. In our method there are as many é as J integrals,
thus & is designated as 6ypq, uree

It is not difficult to obtain an expression for the 85, urs-
In our work®® we have made use of two empirical para-
meters, one for the case of 8 with A = u and the second
for the case & with A ® u. The first parameter has been
obtained by fitting the He atom ('S state), the second by
fitting the Ne atom ('S state).

With these two fittings we have analytically computed
the J'\,q,.r. clements which differ from the standard
Japa.urs because of the discontinuity in the integration
range.

In summary, the technique of computation is as follows:

Table 9 Correlation energy from the CHF method (In a.u.)

(a) compute a Hartree-Fock function, (b) compute the
Orpq,urs and then the J'5,,, .., matrix elements, and
(c) compute again the self-consistent field function, but
with the newly obtained J’ matrix elements.

The resultant energies (in a.u.) for the first and second
period are given in Table 9. The first column gives the
Hartree-Fock energy for the functions we have used as a
starting point; the second column gives the Coulomb-
Hartree-Fock (CHF) energies (we shall call this the
Coulomb-Hartree-Fock method, CHF). The third column
gives the difference between the CHF and HF energies
(i.e., the correlation energy computed by the CHF method).
The results are in substantial agreement with the “experi-
mental correlation energies” presented in Table 7 (see
Fig. 3).

We note that the CHF functions may represent an
improvement or a step backward as compared with the
HF functions. In order to test this important point, we
have computed the dipole polarizability of the Be atom.
The Hartree-Fock dipole polarizability®® is 9.94 X
107 cm®, the Coulomb-Hartree-Fock dipole polar-
izability”® is 4.5 X 107 cm®, the latter agrees well with
the correct value™ of 4.5 X 107> cm®. We are presently
testing more extensively the validity of the CHF functions.
The same improvement over the Hartree-Fock functions
has been obtained for the polarizability of Li, F~, Ne, Na,
Mg and Ar.

The main results of this work seem to indicate that:

System Hartree-Fock CHF EC(comp)* ECQ(exp)**
He(:S) —2.86166801 —2.9037222 —0.0420421 —0.0421
Li(zS) —17.4327257 —17.4850509 —0.0523252 —0.0453
Be(1S) —14.649920 —14.573070 —0.076860 —0.0944
BCP) —24.529052 —24.632040 —0.102988 —~0.125
CGP) —37.688611 —37.829531 —0.140920 —0.158
N(“S) —54.400911 —54.590641 —0.189730 —0.188
OGP) —174.809359 —175.055357 —0.245998 —0.258
F(:P) —99,409284 —99.725809 —0.316521 —0.324
Ne('S) —128.54636 —128.94431 —0.39795 —0.393
Na(S) —161.85734 —162.26045 —0.40311 —0.403
Mg(*S) —199.61430 —200.05139 —0.43709 —0.451
AlGP) —241.87625 —242.35842 —0.48217 —0.482
Si¢P) —288.85109 —288.38888 —0.53779 -0.522
PGS) —340.71846 —341.30388 —0.58538 —0.561
SGP) —397.50460 —398.14259 —0.63799 —0.60
Cl(eP) —459.48169 —460.20544 —0.72375 —0.71
Ar(lS) —526.81703 —527.64943 —0.83240 -0.79
Bet2(1S) —13.611256 —13.654058 —0.042802 —0.0443
CH(LS) —32.361154 —32.404169 —0.043015 —0.0451
O*(LS) —59.111119 —59.154215 —0.043096 —0.0455
Ne*4(1S) —93.861103 —93.504409 —0.043306 —0.0457
Kr+4(1S) —1273.6110 —1273.6543 —0.0433 —0.047

* Difference of E(CHF) — E(HF).
** From Table 7.
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Figure 3 Comparison of the correlation energy obtained from
Hartree-Fock energies (see Table 7) with the correlation
energy computed directly in the Coulomb-Hartree-Fock semi-
empirical method (see Table 9).

(a) the HF method can be improved within the spirit of the
one-electron approximation (notice that the HF model is
a direct extension of the Hartree model, via introduction
of the Fermi hole; in an analogous way the CHF model
is an extension of the HF model, via introduction of the
Coulomb hole); (b) the CHF semiempirical method
proposed and tested here gives correlation energies in
rough agreement with the experimental values; and
(c) the empirical CHF functions seem to be as good as
the HF functions, but this point must be studied further.

At present we are expanding our analysis”® and we are
attempting to obtain the &’s directly from some physical
model without making use of empirical parameters.
Simultaneously, we are attempting to extend the CHF
method to molecular systems.

We note that the CHF method could be reformulated
by referring to the F integrals, (introduced by Slater'*®) in
place of the J integrals (as defined by Roothaan®).

o Molecular correlation energy

From the previous discussion one could be led to the
hurried conclusion that the “simple pairing model”
should hold well for those molecules with component
atoms of low Z value (say, Z less than 15). Indeed, for
such molecules the spin-orbit effect (at least at the equi-
librium distances) is small and the complications due to
the near-degeneracy in the atoms are removed, because of
symmetry requirements in the molecule. It is noted that
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the above conclusion might be in error because in muitiple-
bonded molecules the intershell effect can be substantial.

In the following, we shall clear up a few points about
the relations of atomic correlation and molecular corre-
lation energies. Up to a few years ago, there had been
sufficient numerical computations in atomic systems that
one could advance the hypothesis that the correlation
energy in atoms is simply a function of the number of
electrons. For molecular computations, the situation was
such as to predict molecular correlation incorrect even in
the order of magnitude (for example the correlation energy
per bond in CH was estimated to be a few tenths of an
eV instead of somewhat more than one eV). With im-
proved accuracy in molecular computations and the
increasing number of accurate atomic computations, a
somewhat better situation started to emerge. Roothaan
and Kolos® pointed out the equality of the correlation
energy in the He, H™ and H, problems. Karo and Allen®®
made use of approximate atomic correlation for the
fluorine neutral atom (P) and negative ion ('S) in order
to estimate a limit for the molecular extra correlation
energy of the HF molecule. Since their computation is
somewhat far from an Hartree-Fock function, any definite
answer on the possibility of computed dissociation energy
was prevented. Most puzzling was the suggestion that
the correlation energy for a 2p pair in F~ should be at
least 1.5 eV (later from our work, it turned out to be a
correct suggestion) about one-third more than expected
from previous available atomic work. A new calculation
by the author on the HF molecule®™ approximately
reached the Hartree-Fock function. The molecular cor-
relation energy was, therefore, defined within about 0.1
eV and the concept of molecular extra correlation energy
was first defined and its value determined within 0.1 eV.
This was done by explicitly using the known value of
the dissociation energy. Since the computed function
was not an accurate Hartree-Fock function, and since
we were lacking accurate data on atomic correlation
energy, it was concluded that the problem of computing
exact dissociation energies was not yet under control.
A later computation on the HF molecule was reported
by Nesbet.”® However, this new work did not improve our
computed total energy despite the use of a larger basis set.
The dissociation energy was estimated, following the
same argument presented by Allen and Karo.*® The net
correlation energy contribution was put between 2.0 eV
and 1.6 eV, and the hope was expressed that the correlation
energy for simple atoms and molecules would behave
very regularly as a function of the number of electrons.”

The availability of the correlation energies for the first
three periods of the atomic system proved that we can use
atomic correlation data for predicting the correlation
energy in molecules. This was done first in our works on
LiF (Ref. 59) and CH,, (Ref. 60) then in A. D. McLean’s
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work on LiF (Ref. 61) and subsequently in the CH,
computations by Carlson and Skancke,*® the N,, CO, BF
analysis by Nesbet,*® and the BeO analysis of Yoshimine.**

It seems worthwhile to define a few quantities somewhat
more critically than was previously done.’” First, we shall
partition the correlation energy. The total correlation
energy in a molecule is defined in the same way as for
the atoms, namely, it is that energy needed to reach the
exact energy in a molecular system, as an addition to the
Hartree-Fock energy and to the relativistic energy.

As a practical first step, we shall assume for now that
the relativistic energy in the molecule is the same as in
the constituent atoms. But this needs some judgment.
Namely, if we have a molecular compound built up of
atom A4 and atom B, with resulting molecule 4-B, we shall
use the atomic data on the relativistic energy, with attention
to the fact that if the compound is of type 4" B™, then the
relativistic data for the separated atoms 4 and B must be
that for the ions 4" and B™. However, since very few
compounds are totally ionic, the relativistic energy of the
ions should be corrected by some appropriate weighed
factor. It is noted that the relativistic energy difference
between 4 and 4" is up to 5 kilocalories in the third row
elements.

The total molecular correlation energy as was defined
is clearly a function of the internuclear separation and we
shall use the notation TMCE(r) to indicate this fact in
diatomic molecules, where (r) is the internuclear distance.
For polyatomic molecules, TMCE will be a function not
only of the internuclear distances, but also of the bond
angles, in addition. In this regard, we refer the reader to
the numerical results obtained by A. D. McLean for the
H; and LiF molecules. We finally are in a position of
partitioning TMCE(r). If we have a system of N atoms
designated as A4,, - -- , 4,, then the first partition is

TMCE(r) = i (AC); + MECE(r).

Namely, TMCE is the sum of the correlation energy of
the component atoms, AC, --- AC, plus a remainder
which was called the molecular extra correlation energy,
MECE. It is important to point out the need of having
exact Hartree-Fock functions in order to make any
meaningful analysis of the molecular correlation energy.
Naively, one could assume that an approximate self-
consistent field computation on a molecule and an approx-
imate self-consistent field computation on the separated
atoms are sufficient in order to determine the molecular
correlation energy. However, this is not the case, since the
above assumption can bring about up to several tenths of
one eV of error in the estimate of the binding energy.

In Table 10 we present the value of the molecular
extracorrelation energy for several diatomic molecules.
The Hartree-Fock energies at the equilibrium internuclear
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distance are available from the L.M.S.S. Technical
Reports.?” The quantity denoted as D,(HF) is the Hartree-
Fock dissociation energy; the last column of Table 10
gives the experimental dissociation energy. By simple
inspection of the MECE data given in the table, one
realizes that there are several regularities. For example,
the LiH value is approximately the same as expected for
the creation of a new s-type pair, the HF value is ap-
proximately the same as expected for the creation of a
new p-type pair. The four new pairs needed to obtain the
CH, molecule from C(*P) and four H('S) atoms are 1.3 eV,
again approximately the value for the formation of an
s-type pair.

With some ingenuity one can account for a large percent
of the MECE, and build up empirical rules which should
help in predicting the MECE as was done in several cases.
However, it is still an open question as to how reliable
these empirical rules will be.

The possibility of extending the Coulomb-Hartree-Fock
method to molecular cases seems to be a more attractive
technique, than building up empirical rules as previously
done®*

On the other hand a limited amount of configuration
interaction might provide somewhat better energies and
a close agreement with experiments for vibrational and
rotational constants. But configuration interaction will
not provide an adequate answer to the molecular quantum
chemistry computations, nor will the Hartree-Fock method
alone, Configuration interaction applied to the geminals
could in principle, give very accurate results, but at
present no such formalism is available and the computa-
tional difficulties could be very substantial.

The recent work by Sinanoglu™ is now in the testing

Table 10 Molecular extra correlation energy, MECE, and
dissociation energy, D., for diatomic heteronuclear molecules
(In eV)

MECE D (HF)* D (exp)
CO 1z+ 3.406 7.836 11.242
BF 13+ 2.397 6.183 ~8.58
LiH 1z+ 1.040 1.476 2.516
FH 1z 1.682 4.378 ~6.06
CH, 14y, ~5.20 ~13.0 ~18.20
N, 1z, 4.631 5.271 9.902
Li, 124, 0.884 0.169 1.050
G, 1z, 5.469 0.781 ~6.25
N, 1z4, 4.631 5.271 9.902
(0 ) 327, 4.910 1.227 5.178
0O, 1A, 4.171 -0.520 4.171
0. 1z4, 3.951 —1.392 3.518
F. 1z, 3.047 —1.374 1.679

* The Hartree-Fock function for diatomic molecules have been ob-
tained at the University of Chicago, The value of this column is the
computed Hartree-Fock dissociation energy.
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stage for atomic systems but it is not of simple applicability
even for closed shell atoms. In the author’s opinion this
method will not provide a practical working solution for
chemical systems. Perhaps it is too optimistic to think of
present and past techniques as being practical and satis-
factory methods for molecular computations when these
same techniques fail for simple atomic cases.

In the author’s opinion, we shall have to resort to
semiempirical methods for several years. On an extremely
crude basis, for example the Hiickel theory, one can
obtain a remarkable insight for spectral assignment in
compliex molecules. With quite simple theoretical com-
putations, one can understand and sometimes make
reliable predictions in such complex systems as the
charge-transfer complex. Most of the theory of the
molecular structure, available to date, has been provided
with much intuition and little computation by R. S.
Mulliken.

It is not difficult to extend the list of these cases which
all have one common factor: much of the chemistry can
be explained and, to some extent predicted, without
exact wave functions. On the other hand, exact quantitative
understanding of chemistry can be achieved only via exact
computations. The net conclusion of these contrasting
comments is, in the author’s opinion, that exact com-
putations should be done whenever technically and
economically feasible. “Testing” computations of exact
nature should be done for very complex systems only in
order to provide models for “routine” semiempirical
computations, or in order to prove or disprove theories
and models based on experimental or empirical evidence.

These “test” computations possibly will provide the
prototypes of routine computation, if the computer
technology continues at the present astonishing pace.

Conclusions

In the past ten years we have seen the realization of the
computation, with some accuracy, of atomic and small
molecular systems. Hartree-Fock functions for atoms and
diatomic molecules are now mass produced. There still
remain the correlation energy problem, which is a
formidable and practical one for macromolecular com-
putations but has been fairly accurately understood. Few
exact computations are available for atomic systems but
a large number of accurate estimates have been presented
in recent literature. The next few years will probably see
equivalent development for small molecular systems and
a few pilot computations for large molecules.

In this paper we have not underestimated the existing
difficulties. On the other hand, the progress in quantum-
mechanical computations has been extremely rapid and
this gives hope for the future.

In this work we have made little attempt to present
the entire development of ab initio computations in a
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systematic fashion, and we have made no attempt to
offer a complete set of references. A recent review of the
field has been made by R. Parr®®, where heavy emphasis
has been put on semiempirical methods and on the
Sinanoglu pairing theory?* We refer the reader to this
work for such subjects. Promising attempts have been
made at the Wisconsin University and at Upsala University
to obtain good functions via perturbation methods. These
are additional examples of very interesting approaches,
not covered in this paper, since here our emphasis is on
the Hartree-Fock technique.
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