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Finite-Element Analysis of Semiconductor Devices:
The FIELDAY Program

The FIELDAY program simulates semiconductor devices of arbitrary shape in one, two, or three dimensions operating
under transient or steady-state conditions. A wide variety of physical effects, important in bipolar and field-effect
transistors, can be modeled. The finite-element method transforms the continuum description of mobile carrier transport
in a semiconductor device to a simulation model at a discrete number of points. Coupled and decoupled algorithms offer
two methods of linearizing the differential equations. Direct techniques are used to solve the resulting matrix equations.
Pre- and post-processors enable users to rapidly generate new models and analyze results. Specific examples illustrate

the flexibility and accuracy of FIELDAY.

Introduction

The use of Computer-Aided Design (CAD) is generally
recognized as a productivity enhancement method, par-
ticularly in the electronics industry. Very Large-Scale
Integrated (VLSI) circuits require computer simulation at
the process, device, circuit, and system levels to accu-
rately predict cost and function prior to fabrication. In
this paper, we describe the FInite-ELement Device Anal-
Ysis program (FIELDAY), which is used extensively
throughout IBM to simulate semiconductor devices.

FIELDAY is a general-purpose computer program
which numerically solves the semiconductor transport
equations in one, two, or three dimensions for steady-
state or transient operating conditions. A number of
algorithms for device simulation have been reported in
the literature, but most have been designed to simulate a
specific device such as an Insulated-Gate Field-Effect
Transistor (IGFET), Charge-Coupled Device (CCD), or
bipolar transistor [1-8]. Some algorithms do not solve the
complete set of governing equations, while others assume
steady-state operating conditions; or, because they use a
finite-difference technique, have difficulty modeling irreg-
ularly shaped structures [9-16]. Recently, finite-element
methods have overcome the latter limitations [11, 12, 17-

19]. With few exceptions [16, 20], most algorithms as-
sume that the device can be described by a two-dimen-
sional cross-section. The FIELDAY program does not
have these restrictions. FIELDAY can simulate an arbi-
trary metal-insulator-semiconductor structure and can
model a wide variety of physical effects which are impor-
tant for the accurate simulation of bipolar and field-effect
devices. Applications range from the analysis of the effect
of short and narrow channels on the threshold of IGFETs
to the transient simulation of heavily doped bipolar
transistors.

The motivation for this CAD tool is easy to understand
when other options for obtaining the same information
are considered. There are two obvious alternatives: the
best is to fabricate and characterize devices; the other is
to use simpler models which are based either on one-
dimensional approximations or on extrapolations of data
from devices ‘‘similar’’ to those of interest. Both of these
approaches have advantages and limitations when com-
pared to FIELDAY.

Clearly, fabrication and testing of actual devices is the
best way to discover all of the implications and limitations
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of any new technology. While this is required of any
technology seriously considered for development, it is
probably the most expensive and time-consuming option.
A single lot of devices fabricated for a new VLSI technol-
ogy may cost over one million dollars to fabricate and
may take six months to complete. Device simulation is a
cost-effective method of determining whether a new
technology is worth developing. Once that decision has
been made, simulation can substitute for many costly
matrix experiments that are normally required to opti-
mize a new process and device structure. This is especial-
ly important in VLSI technologies because of the statisti-
cal nature of device design. Function must be guaranteed
for the large number of devices in modern electronic
systems. It is impossible to produce enough experimental
hardware to test even the most critical combinations of
parameters and structures. Large numbers of devices and
significant variations in structure from device to device
make a statistical design imperative. Another advantage
that simulation offers is certainty of the structure and
physical parameters of the device; i.e., device design
information can be derived before a new fabrication
process has been stabilized and the device can be opti-
mized early in the product development cycle. A final
advantage is that the internal operation of any device can
be easily examined through multidimensional simulation;
experimental techniques can do this only approximately
and for very few parameters.

Simpler models and the extrapolation of data from
existing device structures cannot accurately predict how
an entirely new device structure will behave. This can
only be determined by a model based on fundamental
physical assumptions. The modeling difficulty is com-
pounded by the near-unity dimensional aspect ratios of
devices used in VLSI technologies; e.g., a minimum-size
n-channel IGFET has a length, width, and depth of
similar dimensions. Thus, three-dimensional modeling is
required to accurately describe this device. It is also
necessary to describe the transient behavior of bipolar
devices, mainly because of three-dimensional effects as-
sociated with small emitters.

This paper discusses the FIELDAY algorithm and
describes the associated interactive pre-processor and
post-processor programs which provide a comprehensive
device-design package. The following sections describe
the physical model and the numerical algorithm utilized,
and outline the interactive pre- and post-processing capa-
bilities. Also presented are specific examples of applica-
tions of the FIELDAY program, including the analysis of
short and narrow IGFETs, VMOS (Vertical Metal Oxide
Silicon) transistors, and bipolar transistors.
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Physical model

® Semiconductor transport equations

The characteristics of a semiconductor device are mod-
eled by three coupled, nonlinear partial differential equa-
tions [21, 22]. These semiconductor transport equations
consist of Poisson’s equation, Eq. (1), and the equations
of electron and hole current continuity, Eqs. (2) and (3):
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The three unknown quantities are the space-charge po-
tential () and the electron (n) and hole ( p) mobile charge
densities at each instant of time. N, and N, are the donor
and acceptor impurity densities, N, is the density of fixed
charged particles, the constant g is the magnitude of
electronic charge, e is the dielectric permittivity, and J_
and J, are the electron and hole current densities. R, and
R are the electron and hole recombination rate densities,
u, and p, are the electron and hole mobilities, AV, and
AV, are changes in the conduction and valence band
edges [23] of heavily doped semiconductors, and D, and
D, are the electron and hole diffusion coefficients.

Poisson’s equation relates the space-charge potential to
mobile and fixed charges, with mobile charge densities
given by Boltzmann statistics. The flow of mobile charge
carriers is described by the equations of electron and hole
current continuity. The electron and hole mobilities that
appear in these equations are functions of electric field
strength |7y| and impurity density [24]. The diffu-
sion coefficients D, and D, are related to the electron and
hole mobilities by the Einstein relationship.

In the FIELDAY model, the recombination-generation
mechanisms include carrier generation due to avalanche
multiplication [25}, photo-generation, and Auger and
Shockley-Read-Hall recombination [26-28]. These re-
combination-generation mechanisms couple the two cur-
rent continuity equations and introduce strong nonlineari-
ties, particularly for the case of avalanche multiplication.

® Boundary conditions

The three semiconductor transport equations with three
unknowns require three boundary conditions. Boundary
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conditions are specified at contacts and along the entire
edge of the semiconductor device model. At contacts, the
space-charge potential and the electron and hole densities
are required. At ohmic contacts, thermal equilibrium and
space-charge neutrality determine charge-carrier densi-
ties. Carrier concentrations at Schottky contacts are
either set to fixed values [29] or modulated by a thermion-
ic recombination velocity [30].

At the noncontact boundaries of the semiconductor,
the normal components of the electron and hole current
densities and the electric-field strength are all equal to
zero. In insulator regions, only the space-charge potential
and its normal derivative are considered.

® Bipolar, unipolar, and no current flow

Many devices can be accurately simulated without mod-
eling the current flow of one or both mobile carriers. Hole
current can be ignored in the simulation of an n-channel
IGFET under most operating conditions. In this case, the
equation for hole current continuity is not used. If the
flow of both carrier types can be ignored, as in the
simulation of the capacitance of a reverse-biased p-n
junction, only Poisson’s equation is solved.

The FIELDAY model may operate in one of three
modes. The first assumes bipolar current flow, and three
unknown quantities (, n, and p) must be determined.
The second assumes unipolar current flow with two
unknowns (¥ and »), and the third assumes no current
flow and uses only one unknown (y). In insulator regions,
there are no mobile charge carriers and only Poisson’s
equation is needed.

Numerical approach

The solution of the governing nonlinear, coupled partial
differential equations by classic techniques, i.e., integra-
tion and application of boundary conditions, is impossible
for any except the most basic problems. Instead, an
approximation technique is necessary to transform the
continnum problem to a discrete one. The unknown
variables are determined at a large but finite number of
points in both space and time so that an accurate solution
of the equations is obtained. In FIELDAY, the finite-
element method transforms Poisson’s equation, and a
hybrid finite-difference finite-clement technique trans-
forms the current continuity equations [14]. Euler’s meth-
od approximates the rate of change of mobile charge
density with time. These equations are then linearized by
one of two methods. The first decouples the three dis-
crete equations and solves them iteratively [31]. The
second, more involved, approach solves the equations
simultaneously using Newton’s method [12, 32]. Either
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approach results in large, sparse matrix equations which
must be solved numerous times to obtain the final solu-
tion.

® Poisson’s equation

The finite-element method transforms Poisson’s equation
from a continuous to a discrete form. Computationally
convenient piecewise approximations over arbitrary re-
gions or elements are constructed. Using appropriate
energy conservation principles, an elemental expression
is obtained which relates the unknown i to element
properties and charge density.

The following functional is used to approximate Pois-
son’s equation [33]:

€ 2
I=J E(Vl#)dv
14

—J q(p —n+ N, — N, + N)dv, 6)
14

where V is the volume of the domain. The functional
represents the energy of the system and may be ex-
pressed as the sum of a large but finite number of energies
for all of the elements. Equation (6) is then applied to a
single element over which a linear variation of ¢ with
respect to position is assumed. At equilibrium the energy
is a minimum, and the first variation with respect to ¢ is
zero. By taking the first variation and integrating over
space, the following expression is obtained:

[A} = [B{p — n+ N, = N, + Ny} . Y

The matrix [A]is symmetric and its terms are a function
of the element geometry and permittivity. The number of
nodes in an element is the order of [A]. For two-
dimensional triangular, and for three-dimensional tetrahe-
dral and right-prismatic elements, the order is 3, 4, and 6,
respectively. The vectors {y} and {p —n + N, — N, +
N,} represent the space-charge potential and charged-
particle densities at each node of the finite element.

The matrix [B] is the element volume distribution
matrix, which relates the portion of area or volume to a
particular node of an element. The form of the distribu-
tion matrix is extremely important. The traditional proce-
dure, common in structural analysis and usually denoted
as the lumped method, assumes equal portions of area or
volume associated with each node. The consistent meth-
od assumes the same approximation for charge density as
for the potential, in this case a linear variation [34). Either
scheme usually results in anomalous oscillations of poten-
tial with respect to position. In the semiconductor prob-
lem, this effect is compounded by the exponential rela-
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tionship between mobile charge density and potential
[35]). To avoid these anomalies, FIELDAY uses a unique
approach. Within an element, the area or volume closest
to a node is associated with that node. For a two-
dimensional triangular element, the area is defined by the
perpendicular bisectors of the sides of the element. For a
three-dimensional prismatic element, the volume associ-
ated with each node is the appropriate portion of the
triangular face times one-half the altitude of the element.
For a three-dimensional tetrahedral element, the volume
associated with each node is described by the intersec-
tions of the planes that are perpendicular bisectors of the
edges of the element. It should be noted that use of
tetrahedra should be limited since they produce asymmet-
ric results; they should be used only where prismatic
elements cannot adequately describe the geometry of the
problem.

The elemental matrix, Eq. (7), is applied to each
element of the domain and all contributions are combined
into a global matrix. The order of the global matrix is the
total number of nodes approximating the domain. Bound-
ary conditions are then applied and solution of the
modified global matrix equation will then yield the value
of y at each nodal point.

® Current continuity equations

The current continuity equations are solved using a
hybrid scheme. The finite element division of space is
used along with a difference approximation to describe
current flow between nodes. The electron continuity
equation is transformed using Gauss’ theorem:

a
IV-J,,dv=JJ,,-dS=Jq(£+Rn)dv. ®
| 4 S | 4

Here, the surface S encloses the volume V. Constant
current density is assumed within each element. The
current flowing between two nodes is the product of the
current density and its flux cross-section. The flux cross-
sections are lines or areas defined by the perpendicular
bisectors of the edges of the elements. Note that this
scheme is consistent with the discrete approximation of
Poisson’s equation. The electron particle current flowing
from node i to node j along side £ is

5= au T % 20 - mz-
k—q”'nq lk{nl(k)_ni(Ak)}’ ®

where d, and [, are the flux cross-section and length of
side k, and ., is the electron mobility for the element. The
Bernoulli function is defined by

A
£ (10)

Z(Ak) = eAk_ l ’
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where A, is the potential difference along the kth side.
Evaluation of the Bernoulli function about the point A =
0 requires special attention.

With the use of Euler’s method to approximate the rate
of change of mobile carrier density with respect to time,
the discrete elemental electron current continuity equa-
tion becomes

1 n(t)
([C] + [B]j;,) {n(t + A0)} = [B] [T - R,.] )

Note that [C] and R, are evaluated at time . The matrix
[C] is nonsymmetric and its coefficients are of the form
w(dinZ(a).

The global form of the electron current continuity
matrix equation is assembled on an element-by-element
basis. The total number of unknowns may be less than the
Poisson matrix equation, since current flows only in the
semiconductor. A similar development is followed for the
hole current continuity equation. The following is the
discrete representation of the governing differential equa-
tions:

(F) = (AJg} = Bl (p — n + Ny = N, + N}, (1)
1
(7 = (1€ + 181 ;) e + a0}

n(t)

—[B][A—t —R..}.and (13)
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® Linearization scheme

Since the discrete equations are nonlinear and coupled, a
linearization scheme is required to solve them. Two
algorithms have been implemented in FIELDAY. Both
require an initial guess of the solution followed by an
adjustment of the guess according to certain criteria until
Eqgs. (12)-(14) are satisfied to an acceptable degree of
accuracy. The first method, described by Gummel, de-
couples the three equations and solves them serially. The
second technique uses Newton’s method to linearize the
three equations and solves them simultaneously. Each
approach has its own merits.

The decoupled approach, which solves F,, F,, and F,
serially [31], is attractive since portions of the program
can be written and tested independently. The disadvan-
tage of the approach is possible slow convergence, since
for many applications the equations are strongly coupled.

E. M. BUTURLA ET AL.

145



146

Parasitic base resistor

n* guard ring Oxide Emitter
Base
b=
—

p* isolation Substrate n* subcollector

Figure 1 POINTS-generated finite-element mesh used to simu-
late a bipolar transistor. The parasitic base resistor models the
flow of base current around the end of the emitter in the third
dimension, which is not simulated.

Gate Oxide

Silicon

Substrate

Figure 2 TRIM-generated finite-element model of width cross-
section of an IGFET. This model is used to simulate the narrow
channel in devices with recessed-oxide field regions.

The coupled method, which solves F,, F,, and F,
simultaneously [12, 36], first expands the discrete equa-
tions in Taylor-series expansions in terms of ¥, n, and p.
The higher-order terms are neglected and an elemental
equation is obtained which relates the elemental function
derivatives in the Jacobian matrix to the increments of
unknowns and the homogeneous equations F, F,, and F,,
Evaluation of the Jacobian matrix requires computing
derivatives of a large number of complex terms. As a
result, program development is more difficult and time-
consuming.
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® Matrix solution method

With either linearization scheme, matrix equations must
be solved. The matrices are moderately large and their
order is usually between 100 and 4000. They are also
relatively sparse since the number of nonzero terms is
usually less than five percent. The solution of the matrix
equations accounts for most of the computational effort,
and so a judicious choice of technique is very important.

A direct-matrix-solution technique was chosen rather
than an iterative technique since the solving time for
iterative methods strongly depends on the numerical
conditioning of the matrix and may fail to converge in
some situations. Direct methods require much more
storage, but the solution time for different problems of the
same order will not vary drastically and will always yield
a set of results. The approach in FIELDAY is to use a
symbolic and numeric factorization procedure for direct
solution of the appropriate matrix equations [37].

The decoupled approach requires the solution of three
matrix equations of the order N by N. The coupled
approach requires the solution of a single 3N-by-3N
equation. Since the computational work is proportional to
the square of the order of the matrix, the coupled
approach requires more computational effort per itera-
tion. However, the decoupled approach may require
more iterations. The question of which approach should
be used has been addressed in a previous work, where it
was shown that the decoupled approach was more effi-
cient for ‘‘weakly’’ nonlinear problems and the coupled
approach more efficient for ‘‘highly”’ nonlinear and tran-
sient problems [36].

Three-dimensional problems require much more com-
putational resource than two-dimensional problems. For
a mesh of the same degree of accuracy, the three-
dimensional solution requires of order N* more CPU time
and storage where N is the number of planes in the three-
dimensional model. Since N may typically be equal to or
greater than 10, the three-dimensional analyses are signif-
icantly more expensive.

® Modified Newton’s method

A simple modification of the Newton technique can
dramatically reduce the amount of time spent solving the
matrix equations. In the modified method, the Jacobian
matrix is computed and factored only every mth iteration.
The factor m is determined internally within FIELDAY
and is adjusted as the solution proceeds. Significant
computational savings result. In a series of six test
problems, total computation time was cut in half. In fact,
the savings are greatest for larger problems since a
greater part of their execution time is spent solving the
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matrix equations. There are additional savings that result
when using the modified Newton approach for a sequence
of similar problems. This occurs for transient or steady-
state analyses with similar boundary conditions. In these
cases, the Jacobian from the preceding problem can be
reused, which again saves computational effort.

Pre- and post-processing

Significant time and cost benefits are achieved by using
interactive graphics. A package of interactive programs
has been designed to execute on the IBM 3277 Display
Station Graphics Attachment. These programs are used
to generate complex finite-element models and to analyze
results. For pre-processing, the model-generation pro-
grams fall into three categories: model definition, impuri-
ty concentration designation, and input verification.

Model definition consists of generating a finite-element
mesh, assigning material properties to each element, and
designating contact nodes. The FIELDAY user has sev-
eral options available for model definition. POINTS is a
semiautomatic generation scheme. A rectangular grid
work is defined with uniform spacings, which are changed
as required. The model is synthesized from rectangular
regions, each with a constant permittivity, and then
scaled to the problem dimensions. The user also supplies
information indicating the element material type and
contact position. A bipolar mesh generated with POINTS
is shown in Fig. 1. To create this mesh by hand takes
about one month; to generate it with POINTS and its
interactive graphics capability requires no more than a
few hours of the user’s time. POINTS generates, dis-
plays, and stores the mesh for later use by FIELDAY.
During mesh display, the contact nodes are indicated, and
interactive windowing and node and element numbering
may be utilized.

Another option for model definition is TRIM (TRIangu-
lar Mesh generator). Here, the user specifies the bound-
ary of a region and selects a mathematically regular grid,
such as a rectangular mesh. TRIM generates a conformal
map of that mesh onto the user’s model. The same mesh
may be mapped onto geometrically similar models; thus
the user need not respecify the mesh-generation informa-
tion but only a few details relative to his model. Contact
designation, mesh storage, and display features are simi-
lar to those available for POINTS. Figure 2 shows a
mesh, with an unusual semi-recessed oxide shape, gener-
ated by TRIM. Note the varying density of elements over
the model. This increases the accuracy of solution at
points where the fields are rapidly changing.

A library of FIELDAY models exists for frequently
modeled devices with well-defined structure. With these
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Figure 3 (a) Structure of a short and narrow IGFET device.
Oxide thicknesses are 50 and 800 nm for the active and field
devices, respectively. The source and drain are abrupt, cylindri-
cal junctions 0.5 um deep. The channel doping may be described
by C = C,exp [~(Y — R"28’} + C,, where C, = 2.5 x
10°cm™, 8 =02 um, C, = 1.0 X 10®® cm™, and R = 0.0 pm.

(b) The finite-element mesh used to simulate a 1.5-by-1.5-um
short and narrow IGFET containing 13 planes of 164 nodes each.

(c) Modeled surface potential for Structures A and B at a drain-
to-source bias of 5.0 V and a source-to-substrate bias of 1.0 V.
The device length and width is 1.5 um.

models, the user supplies various parameters such as
oxide thickness and junction depth, and the model is
stretched to reflect the given parameters. Again, mesh
storage and display are possible. For three-dimensional
simulations, a two-dimensional model is created using
one of the previously described techniques and is repli-
cated in the third dimension to produce a mesh of right-
triangular prisms. The user can then delete elements,
change their material properties, or re-assign contacts.
Figure 3 shows a short and narrow IGFET and the mesh
used for simulation.

Impurity concentration is designated by assigning an
electrically active impurity ion density to each node of the
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(b)

Figure 4 (a) Perspective plot of the log IN, — N,| for a bipolar
transistor. (b) Perspective plots of log (n) following a base
voltage step. The gradual increase of electron density under the
emitter shows that base ‘‘pinch’’ resistance is limiting the
device’s switching speed.

finite-element mesh. This is accomplished by specifying
measured values, employing a process simulator, or
describing a profile as the sum of analytic expressions.
The pre-processing program, DOPING, allows viewing of
the impurity concentration profile prior to FIELDAY
execution to ensure that the device being modeled is the
desired one. The impurity concentration can be displayed
with contour plots, line graphs, or perspective plots.
Figure 4(a) shows a perspective plot of the doping profile
for a bipolar transistor.

Input verification consists of mesh checking and input
consistency checking. During mesh checking, the finite-
element mesh is examined for errors and poorly shaped
elements. The areas of the mesh in which problems occur
are highlighted, and the user can interactively window to
determine how to modify the mesh. The types of errors
that can arise include overlapping elements and dangling
nodes. Poorly shaped elements are obtuse triangles or
elements with large aspect ratios. Other input is examined
for completeness and consistency.

For post-processing, a program called FEMPLOT per-
mits rapid interpretation of the FIELDAY analysis with
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the ability to interactively view the results. FEMPLOT
will display nodal values of potential, electron density, or
hole density with contour plots, line graphs, or perspec-
tive plots. The elemental values of electric field and
current density may also be displayed. Contour plots are
a means of displaying nodal data values. Lines of equal
value are drawn through points of equal value interpolat-
ed along the sides of the elements. Perspective graphs are
a means of displaying all the nodal data from a two-
dimensional surface of a model. Figure 4(b) shows a
series of perspective plots of the log of the electron
concentration at various times during the transient re-
sponse. The gradual increase of electron density under
the emitter shows that base *‘pinch’’ resistance is limiting
the device’s switching speed.

Model definition using interactive graphics replaces the
time-consuming task of meticulously defining every node
and element in the finite-element mesh, which formerly
took 65-70% of the total analysis time. FEMPLOT mini-
mizes the time the FIELDAY user spends searching
through results on a node-by-node or element-by-element
basis. Device designers are able to optimize designs by
rapidly viewing simulation results and noting activity
within the device that cannot be measured experimental-
ly. Therefore, the use of interactive graphics results in
higher engineering productivity by reducing development
time, lowering development costs, and making more
resources available for product optimization.

Device simulation results

In this section, several applications of the FIELDAY
program are described which illustrate its features, accu-
racy, and flexibility. First, a model of the effect of short
and narrow channels on IGFET thresholds is presented.
Separate two-dimensional models simulate the short-
channel effect for wide devices and the narrow-channel
effect for long devices. The accuracy of these simulations
is demonstrated by the close agreement between the
model and experimental data. A three-dimensional model
of an IGFET is also presented. Comparisons of two- and
three-dimensional results show the need for this approach
for short and narrow devices. A VMOS transistor was
optimized using the program. In this case simulation
showed that a superior device could be designed. Simula-
tion of the transient response of a bipolar transistor is
described, and again excellent agreement between data
and model is demonstrated. Three-dimensional transient
capability of the program is illustrated by simulation of
reverse recovery of an ellipsoidal junction.

e Short- and narrow-channel effects in IGFETs
The FIELDAY program has been frequently used to
model short- and narrow-channel effects in IGFETs

VOL. 25, NO. 4, 1981, REPRINT

IBM J. RES. DEVELOP. VOL. 44 NO. 1/2 JANUARY/MARCH 2000



[20, 32, 38-41]. The short-channel effect reduces the
threshold of an n-channel IGFET. As the drain approach-
es the source, its positive bias raises the surface potential
near the source and thus increases the amount of current
flow in the device at a given gate voltage. Narrow
channels have the opposite effect. The threshold in-
creases as the edges of the high-threshold field region
move toward the center of the lower-threshold active
device. Since channel length and width vary from device
to device across a VLSI chip, and to a larger extent from
chip to chip, a statistical analysis of the effect of these
parameters on threshold is required. Variation in channel
length may contribute more than 50% to the total thresh-
old tolerance of a well-designed IGFET.

These competing effects are modeled independently for
long and narrow, or for short and wide, devices by
simulation of mid-channel two-dimensional cross-sec-
tions. Short and narrow devices must be simulated by a
three-dimensional model. Here, applications of the model
to devices as short as 0.7 um and as narrow as 1.5 um are
discussed.

The effect of short channels was modeled and mea-
sured on wide devices designed for a process with mini-
mum feature sizes of 1.0 um. The oxide thickness and
doping profile of a capacitor with the same structure as
the FET device were measured by a pulsed capacitance
technique. This capacitor was simulated with a one-
dimensional transient model. Figure 5 shows the agree-
ment between measured capacitance values for this de-
vice and those derived from the displacement current
density predicted by simulation. The simulated capaci-
tance has been adjusted by a constant value of gate bias.
This shift is the sum of the voltage equivalent of the
charge found in the insulator and the work function
difference between the actual gate material and that
assumed in the model. The excellent agreement between
the model and the data confirms the accuracy of the
model and reinforces the validity of the transient capaci-
tance measurement technique.

Devices with the above structure were simulated for
channel lengths of 10.0, 2.0, 1.3, 1.0, and 0.7 um with a
two-dimensional model having 1620 nodes. Also modeled
was the inversion charge of the capacitor as a function of
gate voltage. Figure 6 shows the modeled and actual
threshold as a function of source-to-substrate bias for a
10.0-um-long device. The effect of decreasing channel
length on threshold is illustrated in Fig. 7.

The narrow-channel effect was investigated for the
SAMOS (Silicon and Aluminum Metal Oxide Semicon-
ductor) transistor [39, 41, 42]. The threshold of this de-
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Figure 6 Measured (O) and modeled (@ capacitor model, x
IGFET model) long-channel threshold. The simulated threshold
has been adjusted by —0.56 V to account for work function and
effective oxide charge difference between the actual devices and
the model. The threshold of the 10.0-um device is defined at
40 nA of normalized source current. The threshold of the IGFET
as modeled by the capacitor is defined at 10" electrons of
inversion charge per square cm. The vertical and lateral junction
depths are 0.25 and 0.15 pm, respectively.

E. M. BUTURLA ET AL.

149



150

1.0
08~
06
Source-to-substrate bias (V)
04
2
;
-g 021
%
E 0 )
0.5 1.0 1.5 20 2.5
Channel length ( gun)

Figure 7 Measured (®, X, O) and modeled (=) re-
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simulated threshold has been adjusted by —0.56 V to account for
work function and effective oxide charge difference between the
actual devices and the model.
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Figure 8 Measured (O, ®) and modeled (—) increase in thresh-
old with decreasing device width for a long-channel SAMOS
transistor.

vice was determined by modeling the width cross-section
of the transistor. The threshold was calculated by linearly
extrapolating the variation of inversion with gate bias to
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zero charge. Figure 8 shows the agreement between the
empirical and modeled threshold at two substrate biases
for long devices.

A three-dimensional simulation [20] of the threshold of
a short and narrow device was made on two devices with
structures defined in Fig. 3. The difference between the
two structures is the shape of the diffused source and
drain. In Structure A these diffusions extend under the
field oxide, while in Structure B they are terminated at
the edge of the thin-oxide region. Figure 3(b) shows the
2132-node finite-element mesh used to model these de-
vices. Simulated subthreshold characteristics were used
to define the threshold of a device 1.5 um long and wide.
The sensitivity of this threshold to increasing source-to-
substrate bias is shown in Fig. 9. Also shown is the
threshold as predicted by a composite of separate, two-
dimensional, short- and narrow-channel models. For the
composite model, the threshold is defined as the algebraic
sum of the threshold changes predicted by the indepen-
dent short- and narrow-channel models and the threshold
of a long and wide device. In this case, the width and
length cross-sections were taken at mid-channel. The
composite model is inadequate because it fails to predict
the effect of relatively minor differences between Struc-
tures A and B. In addition, the result of the composite
model produces a threshold dependence on source-to-
substrate bias that bears little functional resemblance to
the actual characteristics.

The different behavior of Structures A and B can be
easily explained. The extension of the diffusions raises
the surface potential in the field-oxide region near the
active device. This reduces the impact of the narrow-
channel effect and results in a lower threshold for the
device with Structure A. Figure 3(c) shows a perspective
plot of the surface potential for Structures A and B. Here,
the influence of the extensions of the source and drain
under the field oxide can be readily seen.

Separate analysis of the short- and narrow-channel
effects of a device over a range of sizes and operating
conditions takes several weeks of work and approximate-
ly 20 CPU hours on an IBM System/370 Model 168. This
expense results in about 800 values of current as a
function of bias and device size. These can be reduced to
80 values of threshold. It is well worth the cost and effort,
as it could take up to six months to obtain similar results
empirically, at over 100 times the cost.

® Simulation of VMOS field-effect transistors

VMOS transistors are being investigated for use in one-
device random access memories [43, 44]. A VMOS mem-
ory cell uses devices which have the shape of inverted
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pyramids to charge and discharge the buried-diffusion
storage capacitor. A typical cell structure is shown in Fig.
10. The threshold of this transistor must be high enough
to prevent discharge of the capacitor when the surface
diffusion is grounded and low enough to adequately
charge the capacitor when the surface diffusion and the
gate are positively biased.

Meeting these criteria with a VMOS device is difficult
because of its asymmetric structure. The p-type region
above the buried n* diffusion raises the threshold of the
device when charging the capacitor. This reduces the
stored charge. The doping level in this p-type region
cannot be reduced because the decreased capacitance of
the buried diffusion would also reduce the stored charge.
The presence of this layer has an additional effect. It
causes the threshold of the transistor to decrease rapidly
with increasing voltage on the buried diffusion. This
requires an additional increase in the nominal threshold
so that the capacitor will not discharge, when the surface
diffusion is grounded, and further degrade the stored
charge. These effects can be described by a single figure
of merit defined as the sum of a holding and a charging
loss. As shown in Fig. 11(a), the charging loss is the
increase in threshold with increasing surface-diffusion-to-
storage-capacitor bias. The holding loss, shown in Fig.
11(b), is the decrease in threshold with increasing storage-
capacitor-to-surface-diffusion bias. This loss represents
the inefficiency of the transistor caused by dependence of
the threshold on source and drain bias.

Various transistor designs were investigated using the
FIELDAY program [45). It was found that the transistor
characteristics were very sensitive to the variation of the
doping level and position of the p-type region. A very
steep profile, along with an additional implanted p-type
region under the gate oxide, produced a nearly optimum
device. The loss-versus-signal characteristics of this im-
planted VMOS device, a conventional VMOS transistor,
and a planar device with similar oxide thickness and
channel length are shown in Fig. 12. With a 5-V power
supply, the conventional VMOS device can store only
75% of the charge of a planar device, while the implanted
device can store 90%. Thus, a 20% increase in efficiency
was predicted through simulation. This may be translated
directly into increased memory performance or reduced
chip area and cost.

o Transient simulation of bipolar transistors

In most cases the performance and function of IGFET
devices can be predicted from their steady-state behav-
ior. The intrinsic speed of these devices exceeds the
speed at which practical IGFET integrated circuits can
operate. This is because IGFETs are majority-carrier
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Figure 10 VMOS dynamic memory cell structure.

devices with no significant minority-carrier injection. On
the other hand, bipolar devices are minority-carrier de-
vices and their performance in an integrated circuit
depends on the transient response of individual devices.
Thus, transient simulation of bipolar devices is most
important.
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age for a conventional VMOS transistor (Curve A), an implanted
VMOS transistor (Curve B), and an implanted planar transistor
(Curve C).
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An npn bipolar transistor was simulated in two dimen-
sions with the FIELDAY program [46]. The response of
the collector current to a rapidly increasing base voltage
was measured and modeled. Figure 13 shows the predict-
ed and actual transient response of the collector voltage.
Good correlation is shown between experimental and
modeled characteristics.

The transient three-dimensional capability of FIEL-
DAY is demonstrated with the simulation of the reverse
recovery of an ellipsoidal junction. A structure similar to
that shown in Fig. 14 may be found at the four corners of
every integrated bipolar transistor. The reverse recovery
of this structure will play an important role in the per-
formance of bipolar devices as the area of emitters is
reduced. The results are shown in Fig. 14. To first order,
the recovery time is in agreement with that predicted by
classical theory:

T = W22D, = 0.45ns .

Although detailed transient analysis of three-dimen-
sional structures is presently quite costly, this example
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illustrates the feasibility of such a capability and serves to
guide further development of algorithms which should
allow routine use.

Summary and conclusions

The capabilities and methods of the FIELDAY program
have been described in this work. Several specific exam-
ples of one-, two-, and three-dimensional steady-state and
transient applications have been presented to illustrate
the flexibility of the program. Close correlation of simula-
tion results and experimental data illustrate the accuracy
of the model and the credibility of its underlying assump-
tions and computational methods. Pre-processors speed
the creation of new models through interactive mesh
generation. Post-processing programs allow rapid exami-
nation of the internal operation of devices and subsequent
improvement of design.

These capabilities form a comprehensive device CAD
tool which allows prediction of the characteristics of new
devices and rapid response to problems affecting device
function and reliability. In its predictive role, FIELDAY
can be used to evaluate new device concepts and to
optimize device design prior to fabrication. This is ex-
tremely important because of the time and cost involved
in evaluating new ideas for integrated devices. FIEL-
DAY, and similar programs, fill a gap in the development
of integrated circuits. This gap is between the generation
and design of new device concepts and the simulation of
circuits using those devices. This role is important for any
CAD tool because significant changes and improvements
in design can often be made only at the early stages of
development. In addition, these tools can replace costly
matrix experiments and allow device design and process
stabilization to occur simultaneously. Careful simulation
can avoid disastrous and costly mistakes that often plague
new product development.

In a responsive role, FIELDAY can offer rapid and
definitive analysis of device phenomena that limit circuit
function or affect the reliability of a product. In this case,
a hypothesis can be proposed and tested without fabricat-
ing devices, thus reducing by an order of magnitude the
time required to solve this type of problem. Simulation
allows examination of the internal operation of devices,
and the resulting insights often spark innovative solu-
tions.
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