PLL modeling
and verification
In a cycle-
simulation
environment

G. A. Van Huben
T. G. McNamara
T. E. Gilbert

by

Recent advances in technology, computer
architecture, and automated design
environments have ushered in a new era of
computer design in which large complex
servers such as the S$/390 G5 Parallel
Enterprise Server™ can be delivered with
times to market once reserved for low-end
systems such as single-user workstations and
personal computers. Yet, the time to market is
inversely proportional to customer demand for
reliable and continuously available systems.
Therefore, the need exists to build and
simulate a complete system which
incorporates realistic and accurate behavioral
representations for all design components.
This paper describes a method for modeling
an analog phase-locked loop, interfacing it
with digital sequential logic components,

and simulating the entire system in a
high-performance two-cycle simulation
environment. Further discussion demonstrates
the role this verification has played in the
deployment of an improved design point with a
shorter time to market compared to previous
generations of $/390° CMOS machines.

Introduction

The previous four generations of IBM S/390 Parallel
Enterprise Servers® set the stage for the migration of
mission-critical workloads from the traditional mainframe
“glass houses” to the scalable, economic CMOS
client/server platform. The introduction of the fifth-
generation S/390 G5 Parallel Enterprise Server

shattered the glass by implementing the reliability,
availability, and serviceability (RAS) of the S/390*
architecture on a CMOS chip set exceeding 1000 MIPS
of performance. In order to achieve this, the G5 employs
a number of advanced design techniques. For example,
comparison of the G5 processor with the remainder of the
processor subsystem finds the processor running at twice
the frequency and using a different chip technology, while
the subsystem runs at a frequency comparable to that of
many low-end microprocessors.

At the heart of the processor subsystem is a critically
balanced, high-performance clock-generation and
distribution system. A key feature of the clock system is
the use of a single-reference oscillator distributed to every
major component in the processor subsystem. Located
within each component is the onboard-product clock-
generation (OPCG) function. The OPCG logic consists of
programmable latches which control the frequency of the

©Copyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

915

916

Reference

clock Clock SRLs
MCM PLL - distribution II
wire
Clock
distribution,

SC, MBA chips

Clock SRLs
distribution II

Clock
distribution

CP chip

Reference
clock

Oscillator | | [Clock [-
card chip [~

Reference |
clock

MCM
Crypto chip

Board wire —

Reference
clock

Clock
PLL. distribution l

Memory-redrive chip

Single-chip module

Board Memory card

GS5 clock-distribution network.

network, a phase-locked loop, and a balanced distribution
system for delivering the various clocks to the shift-
register latches. In addition to normal system operation,
the clock-distribution system also controls the scan
operation, which is critical to the system power-on
sequence. The advanced nature of this design, coupled
with the critical time-to-market constraints, mandated
verification of the entire clock-distribution system before
tape-out. Although prior S/390 systems used varying
degrees of simulation on different parts of the clock-
distribution system, the G5 was the first to attempt
consolidation of the entire clock system into a system-
level cycle-simulation model.

Figure 1 shows a high-level diagram of the clock
distribution for six major components of the G5
subsystem: the central processor (CP), the cryptographic
subsystem, the system controller (SC), which contains the
shared Level 2 cache and interfaces to main memory, the
memory bus adapter (MBA), which interfaces with the I/O
subsystem, the main memory, which uses card-on-board
technology, and the system clock chip. As shown in
Figure 1, each major component of the G5 subsystem
uses a phase-locked loop (PLL) to synchronize all
communication within the system. The benefits of utilizing
a PLL-based clock distribution for the high-frequency

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

synchronous G5 server is obvious once one understands
the complexity of designing this high-performance machine.

The G5 system employs a variety of packaging
technologies, including single-chip modules (SCMs),
multichip modules (MCMs), cards, and boards. The
distribution of a reliable, low-skew, high-frequency clock
signal throughout these various package technologies
is difficult at best. The PLL-based design facilitates
distribution of a relatively low-frequency reference
oscillator to each of the components in the processor
subsystem. Each component contains a PLL, which then
multiplies that frequency to the higher frequency that it
requires while maintaining proper phase alignment for a
synchronous design. The ability of the PLL to multiply the
reference oscillator frequency is critical, since the G5
system has a number of components running at different
frequencies. The CP chip runs at the fastest frequency
(eight times faster than the reference oscillator), while the
SC, MBA, and main memory run two times slower than
the CP (four times faster than the reference oscillator).

Another advantage of this design concept is that it
permits the use of programmable ratios among a collection of
system components. The cryptographic subsystem has been
designed to run four or five times slower than the CP.

If the cryptographic coprocessor chips were actually to

run significantly faster or slower, the multiply bits of the
cryptographic PLL could be reprogrammed with a new
“gear ratio.” Since the frequency changes are physically
isolated from one another, the higher-level packages (such
as the MCM, cards, and board) need only maintain proper
distribution of the reference oscillator. As long as the
on-chip clock logic is capable of supporting a different
frequency, the system ratios can be dynamically
reprogrammed without the risk of introducing frequency-
sensitive anomalies into the rest of the system.

Finally, because the G5 is a synchronous system, it is
critical to keep the clock skew between the various system
components very low. Returning to Figure 1, we see that
the PLL for each component phase-aligns its on-chip
clock distribution with the common reference clock that
arrives at each PLL independently of the on-chip clock
distribution delay. This delay can vary significantly, since
the G5 system comprises chips from different technologies
(CMOS 5X, 652, and 6X) and the chips have different die
sizes. Furthermore, since yield sorting plays an important
role in the manufacturing of the G5, and parts of the
system are cooled while other parts are not, the phase-
alignment attribute of the PLL is critical in allowing these
various components to communicate synchronously with
each other at these high frequencies.

The need for improved PLL simulation

Historically, S/390 has relied on cycle simulation as the
primary means of functional verification of the hardware.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Since the vast majority of the processor subsystem
contains digital logic and SRAMs, it permits the creation
of a system-level model comprising one or more
processors (CPs), the system controller (SC), various
main memory configurations, the memory bus adapter
(MBA), the system clock chip, and even the cryptographic
subsystem. Final verification typically involves exercising
all of these components in several configurations and
modes of operation, including power-on reset, logic built-
in self-test (LBIST), array built-in self-test (ABIST), initial
millicode load (IML), and mainline system operation.
With the advent of the G4 Parallel Enterprise Server,

the S/390 cycle-simulation methodology was enhanced to
include two-cycle simulation in order to verify the actual
gate-level design [1].

However, throughout the evolution of the S/390 cycle-
simulation methodology, the phase-locked loop function
was always excluded. In its place was a very simplistic
macro, which created a constant and (always) correct
reference clock for distribution to the latches. During the
engineering debug of the G4 hardware, a problem was
found in the way the OPCG logic was interacting with the
PLL. Analysis determined that inclusion of an accurate
PLL behavior in the system-level simulation model could
have detected the problem. At the beginning of the G5
program, the postmortem of the G4 problem prompted
further reviews, which disclosed several potential design
escapes that could be verified with an accurate PLL
representation in the model.

The first item on the list of potential problems was
the G4 escape. This problem was related to the OPCG
logic, which controls the PLL during the initial stages of
powering-on the machine. The design of the G4 and G5
machines is such that each PLL in the system must
successfully lock onto the reference oscillator and
distribute a multiplied output to that portion of the
OPCG logic that is responsible for generating a pair
of scan clocks.

One of the key functions of the clock-distribution
system is to control the scanning of the shift-register
latches (SRLs) in all of the chips. This scan operation is
the means by which the machine’s registers are initialized
to a known state during the power-on reset (POR)
sequence. In contrast to earlier generations of the S/390
CMOS machines, the PLLs in the G5 play a direct role in
the scan operation. The local PLLs generate the on-chip
oscillator, which drives the clock-distribution circuitry that
creates a pair of scan clocks. The first scan clock ingates a
data bit into the L1, or master, half of the SRL, followed
by a second, out-of-phase scan clock which transfers the
data bit into the L2, or slave, portion. The relationship
between the L1 scan clock and the data bit is crucial, since
a misaligned L1 clock could cause unstable data to be
captured into the master latch. Furthermore, since all of

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Scannable Nonscannable PLL Scan-
SRLs latches =
Reference CIOCk. -3
Select — lclock generation %
Multiply(0:3) System E
PLL output A clock 8
PLL output B generation o
Bypass
Range A(0:2)
Range B(0:2) SYNC_
Sync CP_SC
SYNC_OUT [.
generation
Select r Feedback clock

Interaction between PLL and on-chip product clock-generation logic.

the chips in the machine scan in parallel, it is imperative
that all of the scan clocks be properly phase-aligned. Thus,
if just one chip in the processor subsystem contains a
design error that impedes its PLL from establishing the
necessary phase alignment with the data bit, it could
render the machine incapable of a successful power-on
reset.

Figure 2 depicts the interaction between the PLL and
the OPCG logic responsible for the scan operation. The
range and multiply inputs of the PLL are controlled by a
series of nonscannable L3 latches. These L3 latches are
loaded from a multiplexor whose source is either a set of
tied inputs or a set of scannable SRLs. The selection of
the multiplexor is controlled by signals from the system
clock chip. When the machine first powers on, the PLL
must run in bypass mode to initialize the internal circuitry
to a known good state. In addition, the PLL bypass signal
also controls the loading of the nonscannable latches.
Upon exiting bypass mode, the PLL will attempt to lock
using the range and multiply settings. Once the PLL
successfully locks, a signal is returned to the clock
chip. Since the initial state of the scannable SRLs is
undetermined at this time, the system clock chip selects
the leg of the multiplexor whose inputs are tied. The
inputs are tied (either to the supply voltage or to ground)
in the proper arrangement to cause the nonscannable
latches to be loaded with safe range and multiply values.
Once the PLL initialization is complete, the bypass signal
goes inactive, which in turn locks the range and multiply
bits into the nonscannable latches. At this point, the range
and multiply bits begin driving the PLL to produce an
output, which is distributed to the scan-clock generator.
The scan-clock generator uses the PLL output to create a

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

917

918

pair of latch and trigger-scan clocks, which control the
shifting of scan data bits into all of the system latches
under the control of the system clock chip. Once all of the
latches (including the scannable SRLs in front of the PLL)
are initialized, normal system operation can begin. Normal
system operation can continue using the default values
loaded into the nonscannable latches, or the system

clock chip can invoke a sequence which transfers the
programmable range and multiply values from the
scannable SRLs into the nonscannable latches. This ability
to reprogram the machine to run at different frequency
ratios or ranges is especially valuable in dealing with the
sorting anomalies associated with new chip technologies.

In the case of the G4, an escape occurred because of an
unexpected inversion in the PLL bypass signal. As a result,
the nonscannable L3 latches were unable to lock in their
values when the PLL exited bypass mode. This failure to
secure the values into the latches meant that with every
pulse of the scan ring, the range and multiply bits in the
PLL were switching, thus causing the PLL to unlock,
potentially making the machine unscannable. This type of
problem, along with other faults such as incorrect ties at
the input of the multiplexor and errors between the PLL
output and scan-clock generators, served as a sufficient
rationale for emulation of the PLL in a system simulation
model.

Once the machine is successfully initialized, mainline
system test can begin. Since the processor operates at
twice the frequency of the rest of the processor subsystem,
two areas related to these multifrequency interfaces were
identified as potential test-floor escapes. The first involved
a synchronization signal between the processor and the
storage subsystem, which alerts the processor to the
correct clock cycle for launching data to and capturing
data from the system controller (SC). This synchronization
signal originates in the processor’s clock-generation logic
and is derived from the PLL output. A design error in
the synchronization logic could result in the processor
operating 180 degrees out of phase with the storage
subsystem. The second area focused on the clock-
distribution logic responsible for providing the
multiplication controls which determine the frequency that
each on-chip PLL must supply. In both cases, improper
interaction between the PLL and the rest of the clock-
distribution system could severely hamper hardware
debugging.

Incorporation of an analog component such as a PLL
into a digital simulation environment is typically done
using mixed-signal simulation techniques. This usually
requires the analog components to be described using an
analog hardware description language (AHDL) such as
VHDL-A. Many electronic design automation (EDA)
vendors offer mixed-signal simulators which exercise the
analog behaviors in parallel with the digital components

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

and synchronize them in the time domain. Until recently,
these mixed-signal simulators were relegated to small or
simple designs because their event-driven nature throttled
the overall throughput. However, recent advances in
algorithms have enabled mixed-signal simulators to

break new ground in the VLSI verification arena. Sony
successfully employed mixed-signal simulation in the
verification of a PRML controller which comprised

12 000 analog transistors and 10 000 gates [2].

Despite all of these recent advances in the EDA
industry, S/390 processor subsystems are so large and
complex that they mandate the use of very-high-speed
cycle simulators. Beginning with the S/390 G4, two-
cycle simulation was introduced into the verification
methodology. This type of simulation allows the gate-
level design to be exercised on the same high-speed cycle
simulator used for functional verification of the register-
transfer-level (RTL) design. A typical S/390 system-level
model contains hundreds of thousands of SRLs and
memory elements, which must be exercised for millions of
cycles to achieve a meaningful amount of real-time system
operation. Although the use of mixed-mode simulation
would permit a far more realistic representation of the
PLL, it could only be done at the expense of unacceptable
overall performance degradation. Another approach would
have been to build a smaller mixed-signal simulation
environment comprising only the digital components
that interact with the PLL, but this had two drawbacks.
First, time and resources would have had to be spent
establishing such an environment, since no portion of the
existing S/390 verification process utilizes mixed-mode
simulation. Second, the overall system-simulation model
is also used to verify the firmware and the millicode
responsible for power-on reset. The incorporation of more
realistic PLL behavior into this model could assist in
detecting firmware or millicode errors while awaiting the
arrival of the hardware.

VHDL description of the PLL
Inclusion of the PLL in the S/390 two-cycle simulation
environment meant that a VHDL description had
to be written to behave properly in a cycle-simulation
environment, yet emulate the PLL with sufficient accuracy.
For example, a real PLL relies heavily on feedback loops
to achieve proper phase alignment. Unfortunately,
feedback loops are not permissible in a cycle-simulation
model. With challenges like these in mind, the decision
was made to create a VHDL behavior which emulates
the PLL without replicating its implementation. In
other words, the VHDL behavior maintains the same
input/output relationship, but achieves it using a digital
method.

The obvious disadvantage and risk to this approach
is that the test vectors used by the PLL designers for

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

circuit simulation cannot be used to verify the functional
equivalence of the PLL VHDL. Because of the absence of
any formal way to verify the VHDL, coupled with other
resource constraints, a further decision was made to
support only a subset of the entire PLL function. By
starting out simply, the VHDL could be independently
simulated and the results manually verified using timing
diagrams.

Figure 3(a) depicts a block diagram of the PLL. The
inputs consist of the reference oscillator, the multiply bits,
the range bits, the feedback clock, and the bypass signal.
The outputs consist of the PLL output and the sync out
signal. Figure 3(b) illustrates through timing diagrams how
the outputs behave with respect to the reference clock
input for various settings of the multiply bits.

Two things about PLL emulation should be noted at the
outset. First, the PLL used in the G5 has dual outputs,
because some chips in the G5 system contain logic
running at two frequencies. Since only the primary output
(PLL_OUTA) is fed back to the input, this output has the
only correlation to the reference oscillator. The secondary
output (PLL_OUTB) is more complicated, since it is
proportional to the ratio of the two input range settings.
However, difficulties arise in trying to model these ratios
in a cycle-simulation environment, since they can be
fractional and nonbinary. Thus, for the sake of simplicity,
the function involving the range inputs was omitted.
Second, the S/390 microprocessor PLL must also drive
a special Sync_out signal which is used to synchronize
the CP with the system controller running at half the
processor frequency. Without this signal, the CP would
not know whether it was in the first half or second half of
the SC clock period, and could therefore launch data at
an inappropriate time to be captured by the SC latches.
Therefore, it was imperative that this signal be properly
modeled.

The method chosen for emulating the PLL was to
describe a function generator capable of producing the
required output waveforms as a derivative of the multiply
bits and another key variable, the cycles per reference
clock period (CPR period). The CPR period denotes the
number of simulation cycles required to equal one period
of the reference clock. The period of the reference clock
is controlled by the simulation environment because it is
determined by the system configuration. For example, a
typical system configuration consists of the CP running
eight times faster than the reference clock, and the
remaining components running four times as fast (8:4:1).
However, in order to maximize simulation throughput, it
is often desirable to use the least common multiple that
maintains the same ratio. Therefore, this same system
configuration would actually be simulated using a ratio
of 4:2:1, which requires a reference clock period of eight
simulation cycles instead of 16. Thus, the CP PLL would

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

PLL ReFCLK [| [L
gf)f:kre"w MULT = 2
reLouta I L[L[LT
Multiply(0:3) MULT =2 1 1T
PLL output A SYNC_OUT
o oo LML
Bypass PLL_OUTA
MULT =4
SYNC_OUT —l
Range A(0:2)
RangeBO2) | OO T,
PLL_OUTA
S t
Ol muLT =8 1 M
Feedback clock SYNC_OUT

(@ (b)

(a) PLL block diagram; (b) PLL input—output relationships.

produce an output with a period of two simulation
cycles, while the PLLs in the remainder of the processor
subsystem would produce a period of four simulation
cycles. Although the simulated components are running
twice as fast as the “real-life” components, the logical
timing relationship between them is still identical, and
therefore logic design problems can be uncovered with
greater efficiency.

Some time was devoted to deciding between two
approaches for handling the CPR period. The ultimate
goal was to load this value into an internal register where
it could drive the core function generator. The original
method relied on the simulation application program
interface (API) manually loading a precalculated value
into the CPR register. At first, this approach seemed
advantageous, since it did not require the reference clock
to run for a minimal number of cycles prior to activating
simulation. However, the timing of when to load this
register with respect to the rising edge of the reference
clock proved to be prone to simulation escapes. In one
case the register was loaded in a manner that produced
desirable PLL outputs throughout the system, but actually
masked a real design problem.

After running with the initial implementation for a
while, the first approach was abandoned in favor of a
second, and more common, approach of monitoring the
reference oscillator for one full period and using VHDL
statements to calculate the CPR period. This value is then
loaded into the CPR register, where it drives the core
function generator beginning with the second reference
oscillator period. One additional benefit of this approach
is that it allows the reference clock period and multiply
bits to be dynamically altered during a simulation run.

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

919

920

signal refclk_g

signal cpr_q

signal cpr_cnt_gq
signal fall_edge_cyc_g
signal fall_edge_cyc
signal target_sync_cyc

signal pll_lock_g

signal last_sync_in_g
signal last_sync_in

signal rising_edge_detect :

fall_edge_detect

SRLS: BLOCK (free_clk = '1')

BEGIN

refclk_qg <= GUARDED refclk;

END BLOCK SRLS;

: std_logic register;

: std_logic;

signal fall_edge_detect : std_logic;

rising_edge_detect <= NOT refclk_g AND refclk;

<= refclk_qg AND NOT refclk;

fall_edge_cyc(0 to 7) <= cpr_cnt_g WHEN fall_edge_detect = 'l' ELSE
fall_edge_cyc_q:;

target_sync_cyc(0 to 7) <= (fall_edge_cyc(l to 7) & '0') - *00000001";

last_sync_in <= ((target_sync_cyc = cpr_cnt_g) AND NOT pll_lock_g) OR

((per_cnt_g = mult_g) AND NOT hi_lo_g AND flip);

cpr_cnt_g <= GUARDED "00000001" WHEN rising_edge_detect = 'l' ELSE

(cpr_cnt_g + "00000001");

cpr_q <= GUARDED cpr_cnt_gq WHEN rising_edge_detect = 'l1' ELSE
cpr_g;
fall_edge_cyc_qg <= GUARDED cpr_cnt_g WHEN fall_edge_detect = 'l' ELSE

fall_edge_cyc_g;

last_sync_in_g <= GUARDED last_sync_in;

pll_lock_qg <= GUARDED 'O' WHEN (tau = "1111") ELSE
last_sync_in_g WHEN (rising_edge_detect = '1') ELSE
pll_lock_g;

std_logic register;
std_logic_vector(0 to 7) register;
std_logic_vector (0 to 7) register:
std_logic_vector (0 to 7) register;
std_logic_vector (0 to 7);

std_logic_vector(0 to 7);

std_logic register;

std_logic;

-- internal registers

VHDL description of CPR period calculation.

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

signal ref_per_gq : std_logic_vector (0 to 7) register;

signal mult_gq : std_logic_vector (0 to 3) register;
variable tau_var : integer;
signal tau : std_logic_vector(0 to 3);
Process (ref_per_g, mult_q)

tau_var := ref _per_q / (2 * mult_q);

End process;

tau <= tau_var;

VHDL code for divider.

Since the VHDL constantly recalculates the reference
oscillator period, the new combination of reference period
and multiply bits can be converted into a new output
waveform at the beginning of any reference oscillator
period. The VHDL code shown in Figure 4 describes the
method for calculating the CPR period and locking the
PLL.

This code presumes a reference oscillator with a 50%
duty cycle. Since the G5 simulation environment usually
runs the fastest clock using two simulation cycles per
period (one cycle high, one cycle low), this assumption is
valid. Basically, the input oscillator is monitored, and the
rising and falling edges are detected. The cpr_cnt_q
counter begins incrementing at the rising edge. Once
the falling edge is detected, the value of this counter
is transferred to the fall_edge_cyc_q register, which
remembers it until the next falling edge. At the end of the
oscillator period, the cpr_cnt_q counter is loaded into the
cpr_q latch, which drives the core function generator. The
fall_edge_cyc_q latch drives the last_sync_in signal prior
to PLL locking. Once the PLL locks, a combination of
registers within the core function generator is used to
activate it. The last_sync_in signal drives all of the latches
within the core function generator, and it must therefore
be activated at the end of the initial reference oscillator
period to ensure that the function generator will “kick-
start” properly.

Regardless of which approach is used to get the PLL
started, the remainder of the emulator works the same. It
consists of four main components: the divider, the period
generator, the output selector, and the reference clock
monitor. The purpose of the divider is to calculate the
number of simulation cycles in one half of the desired

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

signal ref_per_gq : std_logic_vector (0 to 7) register;

signal mult_g : std_logic_vector (0 to 3) register;

signal div : std_logic_vector(0 to 11);

signal tau : std_logic_vector(0 to 3);

div <= ref per_q & mult_q;

WITH div(0 to 11) SELECT

-- ref_per mult

- [s===== 1--1

tau <= "0010" WHEN *"000001000001*, -- ref: 4 mult: 1 1:2
“0001* WHEN *000001000010*, -- ref: 4 mult: 2 1:2
0011 WHEN "000001100001*, -- ref: 6 mult: 1 1:3
"0001" WHEN "000001100011", -- ref: 6 mult: 3 1:3
0100 WHEN "000010000001", -- ref: 8 mult: 1 1:2:4 1:4
0010 WHEN "000010000010", -- ref: 8 mult: 2 1:2:4
*0001" WHEN "000010000100", -- ref: 8 mult: 4 1:2:4 1:4
*0101" WHEN *000010100001", -- ref: 10 mult: 1 1:5
"0001* WHEN "000010100101", -- ref: 10 mult: 5 1:5
0011 WHEN "000011000010", -- ref: 12 mult: 2 1:2:3 2:3
*0010" WHEN *000011000011*", -- ref: 12 mult: 3 1:2:3 2:3
*0001" WHEN *000011000110", -- ref: 12 mult: 6 1:2:3
1000" WHEN "000100000001, -- ref: 16 mult: 1 1:4:8 1:2:8 1:8
0100 WHEN "000100000010", -- ref: 16 mult: 2 1:4:8
"0010" WHEN "000100000100*, -- ref: 16 mult: 4 1:2:8
"0001* WHEN "000100001000*, -- ref: 16 mult: 8 1:4:8 1:2:8 1:8
0101" WHEN "000101000010, -- ref: 20 mult: 2 1:2:5 2:5
*0010" WHEN "000101000101", -- ref: 20 mult: 5 1:2:5 2:5
0001 WHEN "000101001010*, -- ref: 20 mult: 10 1:2:5
0100 WHEN *000110000011*, -- ref: 24 mult: 3 1:3:4 3:4
“0011" WHEN "000110000100", -- ref: 24 mult: 4 1:3:4 3:4
*0001" WHEN "000110001100", -- ref: 24 mult: 12 1:3:4
"0101* WHEN "000111100011*, -- ref: 30 mult: 3 1:3:5 3:5
0011" WHEN "000111100101, -- ref: 30 mult: 5 1:3:5 3:5
0001 WHEN "000111101111*, -- ref: 30 mult: 15 1:3:5
"0101* WHEN "001010000100*, -- ref: 40 mult: 4 4:5
0100" WHEN "001010000101, -- ref: 40 mult: 5 4:5
*1000" WHEN *001100000011", -- ref: 48 mult: 3 3:8
0011" WHEN "001100001000, -- ref: 48 mult: 8 3:8
1000 WHEN "010100000101*, -- ref: 80 mult: 5 5:8
0101 WHEN *010100001000%, -- ref: 80 mult: 8 5:8
"1111* WHEN OTHERS; -- sets invalid combo checker

Alternative VHDL code for divider.

PLL output period. The period generator uses this value
to determine the number of cycles for which the output
must remain high or low before changing state. The
algorithm for calculating this value, hereafter known as
Tau, is to divide the cycles per reference clock period by
the multiply bits, and further divide this in half as follows:

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

921

922

signal free_clk : std_logic;

signal new_cpr_value : std_logic;

signal flip : std_logic;

signal hi_lo_gq : std_logic register := '0';

signal cnt_g : std_logic_vector(0 to 3) register := "0000";
signal per_cnt_q : std_logic_vector(0 to 3) register := "0000";

free_clk <= '1';

flip <= (tau = cnt_q);

SRLS: BLOCK (free_clk = '1l')

BEGIN

hi_lo_gq;

(cnt_g + "0001");

per_cnt_q;

END BLOCK SRLS;

new_cpr_value <= (cpr_qg /= "00000000");

-- internal registers

hi_lo_qg <= GUARDED 'l' WHEN last_sync_in = 'l' ELSE

NOT hi_lo_qg WHEN flip

cnt_g <= GUARDED "0001" WHEN (flip = 'l' OR last_sync_in = 'l') ELSE

per_cnt_q <= GUARDED "0001" WHEN (last_sync_in = '1"') ELSE

(per_cnt_q + "0001") WHEN (flip = 'l' AND hi_lo_qg = '0') ELSE

=1 ELSE

VHDL description of period generator.

Tau = (cycles per reference clock period)/(2 X multiply bits).

In a system where the reference clock period requires
eight simulation cycles, and the PLL has to run four times
as fast, Tau would be equal to 1. This means that the PLL
output will change state each simulation cycle.

The example shown in Figure 5 can be used to code the
divider in simulation environments which support the full
set of VHDL language constructs. Unfortunately, the
S/390 two-cycle simulation model build process contained
a restriction which prohibited the use of certain sequential
VHDL process statements such as integer division, so the
concurrent alternative shown in Figure 6 was substituted.
Although the first approach is more desirable, since it is a
general-purpose implementation capable of handling any

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

combination of frequency ratios, the second approach
was more than adequate for the G5 simulation plan.

The second major component of the VHDL behavior is
the period generator. The VHDL code shown in Figure 7
describes this implementation. The last_sync_in signal
drives each of the registers, which are clocked every
simulation cycle. This signal is activated at the very
beginning, when the cpr_q register is first loaded
(either by monitoring the incoming reference clock and
calculating its period or by manually loading the register
through the simulation API), and each time the period
generator believes that the last cycle of the reference clock
period has been reached. This signal serves advance notice
that the reference period is about to expire, which means
that the internal counters must be reset on the next cycle.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Although the two counters appear similar in nature,
they do have separate purposes and are both required.
The per_cnt_q register counts the number of output
periods produced during one reference clock period. This
counter exists to drive the sync_out output. The other
counter, cnt_gq, is compared against Tau to determine
when to flip the state of the hi_lo_q register. The hi_lo_
register drives the PLL output high and low when it is not
running in bypass mode.

The output of the hi_lo_q register is sent to the output
selector, which is described in Figure 8. The output
selector simply selects either the output of the period
generator (when running in normal system mode) or the
input reference clock (when running in bypass mode). The
sync_out signal refers to the synchronization signal, which
is produced on the CP PLL. It is active during the last
PLL output period of the reference clock period. This
output drives that portion of the OPCG logic which
generates the synchronization signal between the
processor and SCE.

Another subtle detail is the use of a special register
known as the inv_pll_q latch, whose job is to adjust for
180-degree phase shifts in the clock-distribution network.
The PLL output traverses the clock-distribution system
and ultimately returns as a feedback clock input to the
PLL. In a real PLL any phase misalignment caused by
delay in the clock-distribution system will be detected by
the phase differentiator and corrected by the voltage-
controlled oscillator. Thus, if an inverter is introduced in
the clock-distribution logic, it will appear as a 180-degree
delay in phase and will be handled accordingly. In a cycle-
simulation environment, the only two possibilities are for
the feedback clock to be in phase or inverted with respect
to the reference clock. In those functional units where
an inversion has been introduced, this latch is set by the
simulation API as a means of canceling out the inversion.
If for any reason the inversion has disappeared from the
clock-distribution network, the reference clock monitor
will trigger an error condition requiring investigation.
Assuming that the design change is intentional and
desired, the simulation environment will flip the state of
the latch, and the PLL behavior will be synchronized with
the clock network again.

The final component of the PLL model is the reference
clock monitor. Since the whole premise of this VHDL
behavior is to assume the shape of the reference clock
based on the combination of the cycles per reference clock
period and the multiply bits, a means must exist to
validate this assertion. Without it, the reference clock
could oscillate wildly, yet as long as the cpr_q and mult_q
registers held legitimate values, the PLL VHDL would
continue to produce a desirable output. Therefore, this
piece was designed to catch three kinds of errors:

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

signal pll_out, pllout : std_logic;
signal inv_pll_s : std_logic;
signal inv_pll_gq : std_logic register := '0';

pll_out <= refclk WHEN (bypass = 'l') ELSE

hi_lo_q;
pllout <= NOT pll_out WHEN (inv_pll_q = 'l') ELSE
pll_out;

sync_out <= (per_cnt_g = mult_g) OR bypass;

inv_pll_s <= inv_pll_q;

SRLS: BLOCK (free_clk = '1')
BEGIN
inv_pll_g <= GUARDED inv_pll_s;

END BLOCK SRLS;

VHDL description of output selector.

1. A design error in the system clock chip, which results
in the failure of the reference clock to oscillate at
the proper frequency continuously throughout the
simulation.

2. An invalid combination of values in the cycles per
reference clock period (cpr_q) and multiply bits
(mult_q), which could result from an unexpected load
of these registers at some point in the simulation run.

3. Some problem in the clock-distribution network which
prevents the rising edge of the feedback clock from
aligning with the rising edge of the reference clock.

The pll_lock_q, described above, serves as the reference
clock monitor. As long as the feedback clock has a
matching rising edge and the last_sync_in signal was active
on the previous cycle, the period generator is presumed to
be synchronized with the reference clock. The simulation
environment constantly monitors the pll_lock_q signal

and flags an error condition if this latch ever resets.

Exercising the PLL in the system-simulation
environment

System simulation of the G4 was performed using a
nonfunctional piece of VHDL as a placeholder for the
PLL. This meant that the clock chip logic was unable
to generate a usable reference oscillator for the chips

in the processor subsystem. Therefore, the simulation 923

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

924

environment employed a macro to override the reference
clock input of all of the chips with an artificially generated
oscillator. When done properly, this served as sufficient
means for verifying the digital OPCG logic; however, since
the frequency of each chip had to be controlled by the
simulation macro, the possibility existed for a mistake in the
simulation environment to mask out a real design problem.

Introducing a PLL behavior into the model was done
primarily to minimize as much of this exposure as
possible. The ideal solution would be a simulation macro
which only drives the oscillator into the system clock chip.
From that point forward, all reference oscillator and clock
signals would be naturally produced by the combination
of the real gate-level design and the PLL behavior.
Unfortunately, differences in design methodologies
and tools prohibited the PLL behavior from being
incorporated into the system clock chip. However, it was
assimilated into all of the other processor subsystem chips.
This liability resulted in the continued use of a simulation
macro to generate a reference clock, but now a single
reference clock, running at the proper frequency, was
deployed to each chip input. The required frequency
ratios and system clocks were generated entirely by the
design interacting with the PLL behavior.

The PLL behavior participated in three aspects of the
system-simulation test plan. First, normal system operation
was conducted by setting the multiply bits for each PLL
and running the system assurance kernel (SAK). The
SAK runs small programs which exercise all of the
functional units within the processor subsystem, and any
problem in the clock distribution network or the CP-SC
synchronization logic would likely surface here. The
second major area exercised at the system level comprised
the various clock functions. These consisted of starting
and stopping the clocks to ensure that all of the chips
ceased and resumed operation in tandem. Another
important task involved switching the machine into several
nonmainline modes of operation such as logic built-in self-
test (LBIST), array built-in self-test (ABIST), and stop-on-
count-or-error (SOCE). All of these modes require the
OPCQG logic to generate a precise sequence of clocks, and
the addition of the PLL behavior to these tests further
increased the realism of the verification environment.

Finally, specific exercises were performed to verify the
setup and initialization of the PLL. One test was designed
to run the machine through a self-test sequence, which
requires the nonscannable PLL input latches to be loaded
from the default inputs of the multiplexor while the PLL is
running in bypass mode. Then the PLL was switched into
normal system mode, and if the resulting PLL output was
driven by the values in the L3 latches, the setup was verified
to be correct. The other test verified that different multiply
values could be programmed into the scannable SRLs and
forwarded to the PLL to dynamically alter the frequencies.

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

Results and conclusions

During the verification process, one task involved
manually inspecting the waveforms of the latch and trigger
clocks on all of the chips in the processor subsystem, and
comparing them to a written specification. The inspection
revealed a 180-degree phase mismatch between one of the
chips and the spec. A misunderstanding concerning the
operation of the PLL behavior resulted in altering of the
simulation test case. Although it was not known at the
time, this turned out to be an erroneous action which
corrected the phase mismatch. Unfortunately, the phase
mismatch was due to an extra inversion in the design of
the clock-distribution system, and this flaw was released
with the initial tape-out. The potential disaster was
averted by keen foresight on the part of the lead clock
designer. Prior to the advent of the PLL behavior, a
scannable latch was implemented in the clock logic to
permit the output to be altered by 180 degrees. This
binary phase-shifting switch was controllable by firmware
and ultimately circumvented the design escape.

A postmortem of the G5 system simulation cited several
areas for improvement. The foremost improvement
was aimed at the cause of the previously mentioned
misunderstanding: the mechanism for “kick-starting” the
PLL output. This led to the decision to change the PLL
behavior from the first approach of manually loading the
CPR register to the second approach of monitoring the
reference oscillator and calculating the CPR period. Since
the simulation environment is no longer required to
initialize any part of the PLL, the only remaining causes
of incorrect clock distribution are design errors or an
error in the PLL VHDL behavior. Additional means are
being investigated for verifying the VHDL against the
actual circuit design test vectors, and it is expected
that this can be implemented on a future design.

Future S/390 servers will be designed using a common
cycle-simulation process for the entire processor
subsystem, which will permit the PLL behavior to be
incorporated into the system clock chip. This will remove
the need for the simulation environment to override
the real reference clock with an artificially generated
oscillator. In addition, deployment of a new simulation-
model build process is underway, which may permit
sequential VHDL statements such as integer division.

If this can be achieved, it will result in a more efficient
emulation of the PLL, since the VHDL will be generalized
to handle any frequency multiplication.

Finally, methods are being examined to emulate the
function of the range bits, which are ignored in the
current verification process. This is becoming increasingly
important, because future S/390 designs will use the dual
outputs of the PLL in more portions of the machine. Since
the potential for design escapes increases with increasing
usage of this function, work is already underway to

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

improve the VHDL to handle the second set of range
inputs.

As the complexity of large-system designs and time-to-
market requirements continue to act as opposing forces on
the verification process, improved simulation accuracy will
be a necessity. Diminishing numbers of designers, working
under escalating time pressure, only increase the chances
of design escapes into manufacturing. When these design
escapes cannot easily be circumvented with a software
or microcode patch, the result can be a disastrous
delay in product deployment. Hence, a new verification
environment is emerging in which no exercise can be
considered too trivial for simulation. In such an
environment, the use of high-performance cycle simulation
to verify the digital, analog, firmware, and software
components of these large systems is a desirable means
for achieving success.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. Gary A. Van Huben, “The Role of Two-Cycle Simulation
in the S/390 Verification Process,” IBM J. Res. Develop. 41,
593-599 (1997).

2. K. Ogawa, Yuji Gendai, and Eric Filseth, “Mixed Signal Ics
Need Top Down Design,” EE Times, May 13, 1996.

Received January 8, 1999; accepted for publication
June 21, 1999

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

Gary A. Van Huben IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (vanhuben@us.ibm.com).
Mr. Van Huben joined IBM in 1986 and is currently an
Advisory Engineer. He has held various design assignments
involving the S/390 storage controller, central processor,

and I/O subsystem. His most recent assignment is overall
responsibility for the Level 2 cache and subsystem data flow.
In addition to logic design, Mr. Van Huben has also worked
on various design processes and methodologies within the
$/390 organization, including his present position as technical
leader for the data management and design control process
governing S/390 hardware design. Mr. Van Huben received
his B.S. degree in electrical and computer engineering from
Clarkson University in 1986; he currently holds seven U.S.
patents, has received three IBM Invention Achievement
Plateau Awards, and has authored several technical papers.

Timothy G. McNamara [BM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (tmcnamar@us.ibm.com).
Mr. McNamara is a Senior Engineer in S/390 custom
microprocessor design. He received his B.E. degree in
electrical engineering from the State University of New York
at Stony Brook in 1983 and his M.S. degree in computer
engineering from Syracuse University in 1990. He is currently
working on high-performance clock system designs for the
$/390 CMOS microprocessors. Mr. McNamara has authored
or co-authored a number of technical papers; he holds three
U.S. patents.

Thomas E. Gilbert IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (tgilbert@us.ibm.com).
Mr. Gilbert joined IBM in 1974 and has held many technical
and management positions. He is currently an Advisory
Engineer in IBM S/390 design verification, working on the
CMOS clock chip and system integration of the S/390 G5
system. His previous verification experience includes team
leader and verification of areas on various S/390 systems and
CMOS channels. He has been working in design verification
since 1984. Mr. Gilbert received an IBM Outstanding
Innovation Award in 1988 for his work on I/O subsystem
drivers, an IBM Outstanding Technical Achievement Award
in 1990 for his work on scan-ring modeling, and an IBM
Team Award for his work on the S/390 G3 common chip
verification. Most recently he has received IBM Outstanding
Innovation Awards for his clock chip and LBIST verification
on S/390 G4 and G5.

G. A. VAN HUBEN, T. G. McNAMARA, AND T. E. GILBERT

925

