
by E. M. Schwarz
C. A. KrygowskiThe S/390 G5

floating-point
unit

The floating-point unit of the IBM S/390®

G5 Parallel Enterprise Server represents a
milestone in S/390 floating-point computation.
The S/390 G5 contains the first floating-
point unit (FPU) to support both the S/390
hexadecimal floating-point architecture and
IEEE Standard 754 for binary floating-point
arithmetic. The S/390 G5 FPU supports the
new S/390 floating-point architecture, which
contains six operand formats, including the
IEEE 754 standard singleword, doubleword,
and quadword formats, which are all
supported in hardware. An internal
hexadecimal-based dataflow is implemented to
support both hexadecimal- and binary-based
architectures. The S/390 G5 server is generally
available at 500 MHz. The microprocessor chip
is fabricated in IBM CMOS 6X technology, with
a device size of 0.25 mm as drawn and 0.15 mm
effective length. The design of the G5 FPU is
based upon that of its predecessor, the G4.
All of the custom dataflow macros from the
G4 hexadecimal FPU were utilized with only
minor modifications, and only a few additional
macros for format conversion were required.
This paper discusses the changes that were
required to support the new S/390 binary
floating-point architecture.

Introduction
The IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754) [1] was developed in 1985 to standardize

computation among the various computer manufacturers.
This standard has been adopted by virtually all PC,
workstation, and midrange computer manufacturers.
Mainframes have been using proprietary floating-point
formats which are incompatible with and vastly different
from the IEEE 754 standard. To facilitate participation
in nontraditional markets, the S/390* architecture is
expanding to support multiple floating-point formats. The
new S/390 architecture [2] defines a superset of the union
of the IEEE 754 standard and the S/390 hexadecimal
format.

The floating-point unit of the S/390 G5 server
represents a milestone in the history of IBM mainframe
servers. The G5 is the first S/390 processor to support
IEEE 754. The G5 FPU implements the new S/390
architecture, which has six floating-point formats, 175
instructions, and five rounding modes. Please see the
paper by Abbott et al. in this issue [3] for additional
details on the S/390 binary floating-point facility.

The G5 FPU relies heavily on the design of its
predecessor, the G4 FPU [4]. The floating-point dataflow
was “retrofitted” with a minimal amount of additional
hardware to support the new binary floating-point
architecture. This implementation strategy was chosen to
remain consistent with the overall central processor
(referred to as the microprocessor, or CP) design
schedule. The G5 CP design schedule was relatively short,
which is typical of an incremental design. In evolving from
its G4 predecessor, the G5 CP contains a technology
change to a denser and faster technology, some
performance enhancements, such as increased cache size
and a branch target buffer, and functional enhancements
(most notably, the addition of binary floating point) [5– 8].

rCopyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

707

The G5 processor comprises four units: the instruction
unit, the execution unit, the recovery unit, and the L1
cache unit. IBM S/390 mainframes are more reliable than
PCs and workstations, and this tradition is continued with
the G5 microprocessor. Both the execution unit (E-unit)
and the instruction unit (I-unit) are duplicated on chip
and execute on the same instruction stream, and the
results are compared by the recovery unit and L1 cache
unit. The processor contains a unified cache design
comprising both instructions and operands. The I-unit
fetches, decodes, and dispatches instructions to the E-unit.
The I-unit also fetches operands from storage for the
E-unit. Instructions are fetched with a two-level branch
prediction that uses a branch target buffer. The execution
unit comprises two subunits, the fixed-point unit and the
floating-point unit. The fixed-point unit (FXU) executes
general types of instructions which operate upon integer
data. The G5 E-unit can accept a single instruction for
execution each cycle. The register files are all located in
the FXU, including general-purpose registers (GPRs) and
floating-point registers (FPRs). Since the FXU and FPU
cannot execute in parallel, the FXU is used for the
starting of floating-point instructions to access data from
the register files and align storage data for the FPU. The
G5 FPU receives two operands on 64-bit buses from the
FXU.

The G5 FPU implements most short- and long-precision
instructions in hardware in a pipelined manner. Extended-
precision instructions are also implemented in hardware,
but in a nonpipelined manner [9]. Other nonpipelined but

hardware-executed instructions include divide, square root,
and multiply-then-add. These instructions are executed
in a nonpipelined mode, since the control sequencing
complexity of these instructions would not be worth the
potential performance increase. The only instructions
which are implemented in low-level software called
millicode are the control instructions which operate on the
floating-point control (FPC) word, the divide-to-integer
instruction, and conversion instructions between fixed-
point and floating-point formats. All other instructions
and special cases are implemented directly in hardware.
The FPU also executes fixed-point multiply and divide
instructions. Floating-point store instructions, which were
previously executed in the fixed-point unit on the G4,
are now executed in the FPU. The store instructions are
executed in a pipelined manner and can exploit wrap
paths internal to the FPU to enhance the performance
of data-dependent store instructions.

The key feature of the G5 FPU is its ability to
implement both the hexadecimal and binary floating-point
formats on one FPU. This is accomplished with small
changes to the G4 FPU by adopting an internal format
which is hexadecimal-based but supports the wider-range
numbers of the binary floating-point format [10]. This
feature is described in more detail, along with some of the
other changes which enhanced performance. Also detailed
are subtleties of the IEEE 754 architecture which are
difficult to implement correctly.

In the first section of this paper, we provide a brief
description of the different S/390 floating-point data
formats. The next section reviews the G4 floating-point
dataflow and discusses the modifications that were
necessary to support the binary floating-point facility.
The final section discusses the performance of the G5
floating-point unit.

S/390 floating-point data formats
Six architected formats are supported by the G5 FPU, as
shown in Figure 1. The figure shows the partitioning of
each format into sign (S), exponent (EXP), and fraction
bits. The hex and binary extended formats both utilize a
full quadword format. The hex extended format has two
sign bits and two exponent fields, which differ by 14. This
allows the hex extended-format number to be separated
into two contiguous long-format numbers. The binary
extended format is similar to other manufacturers’ binary
floating-point quadword format, which is a subset of the
IEEE 754 floating-point format double-extended. All
instructions which input an extended-format operand are
implemented in a nonpipelined manner and partition the
operands into multiple parts of 56 or fewer bits. The hex
formats have a fixed exponent size of 7 bits, whereas the
binary format exponents can have 8, 11, or 15 bits.

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

708

A floating-point number can be represented in hex
floating-point (HFP) format by the equation

Xhex 5 ~21! Xs z 16 Xc2bias16 z Xf 0.0 # Xf , 1.0,

where Xhex is the value of the hex format number, Xs is
the sign bit, Xf is the fraction which is less than 1.0, Xc is
the biased hex exponent referred to as the characteristic,
and bias16 is the hex bias, which is fixed at 64.

A floating-point number can be represented in
normalized binary floating-point (BFP) format by the
equation

Xbinary 5 ~21! Xs z 16 Xc2bias2 z ~1 1 Xf! 1.0 # ~1 1 Xf! , 2.0,

where Xbinary is the value of the binary format number,
Xc is the biased binary exponent, bias2 is the binary bias,
which equals 127, 1023, or 16 383; and the 1 is implied if
the biased binary exponent is nonzero. Special numbers of
the IEEE 754 standard are supported in hardware without
trapping to software. Even handling of denormalized input
and output operands is implemented under hardware
control.

Both the HFP and BFP formats are supported by a
single internal format. With the use of a single internal
format, the execution dataflow can be the same for both
formats. The internal format is optimized for hexadecimal
performance, which also allows for minimal changes to the
base G4 FPU dataflow, which is hexadecimal-based. The
internal format has a 56-bit fraction, which is the same as
the HFP format, and the BFP short and long formats can
easily be supported. BFP long format requires 53 bits of
significand. In transforming the exponents from binary- to
hex-based, which adjusts the significand from binary
normalization to hex digit normalization, there can be up
to three leading-zero bits. A 53-bit binary normalized
significand requires 56 bits to represent in a hex-
normalized format. Thus, both BFP and HFP long
significands require at most 56 bits.

The exponent range of BFP format (15 bits) is greater
than that of HFP format (7 bits). A hex unbiased
exponent (16X) can be represented by a binary unbiased
exponent by multiplying it by four (24X). This shows that
the hex exponent notation requires two fewer exponent
bits to represent numbers of the same magnitude. If
biased exponents are considered, an additional bit is
needed in the hex notation to account for the slight
biasing differences. The BFP format chooses its zero
exponent point differently than the HFP format. The BFP
format bias has the form 2X 2 1 (i.e., 127), whereas the
HFP bias has the form 2X (i.e., 64). To account for this
centering point of the exponent range being different,
an additional exponent bit is added. This bit also helps
for some of the range of overflow and underflow of
intermediate results but does not completely account for
the full range of intermediate results. Thus, a 14-bit

exponent format is chosen for the internal format
(15 2 2 1 1). The following equation shows the format:

Xinternal 5 ~21! Xs z 16 Xc2bias internal z Xf 0.0 # Xf , 1.0,

where X internal is the value of the internal format number.
The internal bias has a fixed value of 8192, which is
similar to the HFP format. The transformation of a
number from the binary format to the internal format is
discussed in detail in the section of this paper on format
conversion.

G5 FPU dataflow
The G5 FPU fraction dataflow is illustrated in Figure 2.
As mentioned earlier, this dataflow is essentially that of
the previous G4 FPU, with some additional hardware to
support the BFP architecture. The dataflow is five stages
deep and supports computation on 56-bit hex-format
fractions. The dataflow contains a floating-point multiplier
which utilizes a radix-8 Booth encoding algorithm [11–15].
The dataflow also contains a 120-bit carry-propagate adder
which is utilized in both multiplication and addition
instructions.

The first stage of the pipeline contains the input
registers, the input multiplexing, the Booth encoding, and
the formation of the 33 multiple of the multiplier, as well
as the compare and swap and aligner for the adder. The
input registers receive the input operands from the FPRs,
GPRs, and operand buffers, and the output of FPU
dataflow. The MAL, AAL, and BL bypass multiplexors
are used to allow wrapping of the output of the dataflow
back into the first stage of the dataflow. This stage also
contains the format-conversion hardware for binary
operands. The details of this hardware are discussed
subsequently.

The second stage of the dataflow contains the 3X, X,
and Booth encode registers which are used to stage the
intermediate results of the multiplication process. The
Booth multiplexors and the 19-to-2 counter tree are also
in this stage. The Booth multiplexors are controlled by the
Booth encode register to select the proper multiple of the
multiplicand, X. These 19 multiples are then reduced to
two partial products in the counter tree.

The third dataflow stage contains the carry and sum
registers, which are 120 bits in length. These registers
receive either the final two partial products of a
multiplication operation or the two operands for an
addition operation which originate from the first add-cycle
hardware. These two registers drive the input to the
120-bit carry-propagate adder. The output of the adder
is driven to the FC1 and FC3 registers.

The fourth stage of the dataflow comprises the FC1
register, the leading-zero detect (LZD), the post-
normalizer with sticky detection, and the store rotator.
The FC1 register drives 117 bits to the post-normalizer for

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

709

the third addition execution cycle. The post-normalizer
determines the shift amount by performing a leading-zero
detect of the fraction, and then the fraction is shifted and
the exponent is updated in parallel. The normalizer output
is driven to both the FC2 and FC3 registers. The store
rotator is a 64-bit-wide byte rotator, and its input is driven
by a multiplexing of either the FC1 or FC3 registers. The
store rotator is used to byte-align the source of the store
within a doubleword, 64-bit memory boundary. The FC3

register input is used for early data dependency resolution
with the previous instruction.

The fifth stage of the dataflow consists of the FC2
register and the binary rounder. The FC2 register drives
to a binary rounder, which performs the rounding function
for the binary architecture. The rounder also is used to
convert the internal hex data format back to a binary
format. The binary rounder can also shift the fraction up
to 3 bits left or right and is controlled by an LZD of the

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

710

most significant digit or by a forced shift amount from
controls. This stage is used by all binary format
instructions; hex division and square root also use its
binary shift capability. The rounder output is connected
to the FC3 register.

The FC3 register receives the result of the arithmetic
computation and drives the results to the register files or
back to the FPU dataflow by way of the FPU_C bus.

The execution of instructions in this pipeline is
shown in Figure 3. There are seven states: FS0, FS1,
FS2, FS3, FS4, FS5, and FS6. FS0 corresponds to the E0
cycle, FS1 corresponds to the E1 cycle, FS2 corresponds
to the E2 cycle of multiplication, FS3 corresponds to the
120-bit adder cycle, FS4 corresponds to the normalizer,
FS5 corresponds to the rounder cycle, and FS6
corresponds to the write cycle. The primary difference
between this diagram and one for the G4 FPU is
the addition of feedback paths in the FS1 cycle for binary
format conversion and the addition of the FS5 stage for
rounding. The pipeline for hex operations remains the
same as in the G4 FPU, and binary operations add two
pipeline stages to avoid major design changes.

● G5 FPU dataflow modifications for BFP support
As mentioned earlier, the G5 FPU evolved directly from
the G4 FPU, which implements only HFP format and is
optimized for long operands. The G4 FPU performs
many common operations, such as shifting to hex digit
boundaries in support of the HFP format. To utilize this
dataflow without affecting critical timing paths and area,
most operations for the G5 continue to operate on hex
digits. These operations include alignment, leading-digit
detection, and post-normalization. This presents the
challenge of implementing the binary floating-point
instructions with minimal impact to the existing dataflow.
The overall implementation strategy of transforming the
BFP into hex data also has an impact on the HFP format.
The resulting hex internal format must differ from the
architected HFP format to allow for the greater range of
binary floating-point numbers. The hex internal exponent
is 14 bits versus the 7-bit HFP format, requiring a
transformation for even HFP format to be represented
in this internal format. However, this operation will be
shown to be trivial.

Once the data is converted to the internal format, most
of the computation is carried out as though the data
were a hex-based number. A minimal number of changes
during computation are necessary to satisfy the increased
precision required by the binary floating-point facility in
comparison to its hex-based counterpart. At the end of the
dataflow, the result data must be transformed back into
its binary representation. This process entails being able
to normalize the result within the hex boundary and
converting the hex-based exponent back to a binary

exponent. The dataflow changes for binary support are
designed not to affect the execution of the hex-based
input data.

Given our implementation strategy, six additional
dataflow functions for BFP support are identified:

1. Format conversion of hex-architected data to internal
format and back.

2. Format conversion of binary-architected data to
internal format and back.

3. Loss of precision detection or sticky detection.
4. Binary rounding.
5. Binary floating-point special number handling.
6. Binary exception detection and handling.

The changes to the dataflow are highlighted in Figure 2.
At the top of the dataflow are two format converters,
which receive data from the two input registers. The
primary responsibility of the format converters is to
transform the binary-based data into the hex-based
internal exponent and fraction formats. These format
converters also perform special binary number detection,
which is used to control the execution of instructions when
special numbers are encountered as input data. Farther
down in the dataflow, sticky detection is added to the
fraction aligner. This logic detects loss of precision during
the pre-alignment operation that is typically required
during the execution of addition and subtraction. Sticky
detection is also added to the fraction post-normalizer,
since this process can also produce a loss of precision. In
the final stage of the pipeline, a binary rounder is added
to perform the rounding function and to transform the
result from the hex-based internal format back to the

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

711

binary format. The rounder also has the capability of
creating special number results. Finally, binary exceptional
conditions such as exponent overflow and underflow are
detected through the combined use of the post-normalizer
and the rounder.

Format conversion of hex data
The format conversion from hex-based architected format
to internal hex format is trivial and can be performed
within the input multiplexor of the input operand register.
The only difference between the hex-architected and hex-
internal format is the bias and widths of the exponents.
The transformation of exponents from architected to
internal is similar to a sign extension, as shown by the
following equations:

16 ~Exponentinternal2biasinternal! 5 16 ~Exponentarchitected2biasarchitected!;

16 ~Exponentinternal28192!
5 16 ~Exponentarchitected264!;

Exponentinternal 2 8192 5 Exponentarchitected 2 64;

Exponentinternal 5 Exponentarchitected 1 2 13
2 2 6.

The term 213 2 26 is a string of ones from bit 1 of the
internal exponent representation (bit 0 being the most
significant bit) to bit 7. Bit 7 is the location of the most
significant bit of architected exponent, as shown by the
following:

Exponentinternal 5 0000000E0E1E2E3E4E5E6 1

011111110000002

5 E0 E0 E0 E0 E0 E0 E0 E0E1 E2 E3 E4 E5 E6 .

Only the most significant bit of the architected exponent
participates in the addition. This range-expansion
operation is similar to a sign-extension operation in which
the most significant architected exponent bit becomes the
most significant internal exponent bit followed by its
complement replicated seven times. This is a simple
operation to perform, requiring only an inverter and
additional fan-out on the most significant exponent bit.

This function of taking a signal and placing its true
phase in bit 0 of the exponent followed by its complement
replicated several times will be seen to be useful for
other format conversions. Therefore, it is defined to
be SIGNEXT(X, Y), with SIGNEXT representing its
similarity to sign extension; let X equal the number of bit
positions occupied by the sign-extension encoding, and let
Y equal the input signal. In the case above, the operation
can be described as SIGNEXT(8, E0) i E(1;6). In a
further simplification, we let SE(Y) represent the overall
function of sign-encoding the most significant bit, followed
by a concatenation with its least significant bits. In
this case, the following is the reduction in notation,

SE[E(0;6)], or SE(E). This simplifies the notation for
further discussion.

To convert from internal format back to hex-architected
format is also simple. It can be shown that an internal
exponent within the valid range of HFP format will have
the exact same relationship; the most significant bit is
followed by its complement repeated in seven bit
positions. Thus, the resulting most significant bit of the
HFP exponent can be created by using the most significant
internal exponent or complementing any of the next seven
exponent bits. It is preferred to invert the least significant
of these seven exponent bits because it gives the correct
result for exponent overflow or underflow. For this case,
the resulting exponent should wrap, and only the least
significant of these upper exponent bits is affected by an
overflow or underflow. Note that the least significant six
bits of the internal exponent are directly equal to the
least significant bits of the hex-architected exponent. To
simplify notation, let RSE(Y) be the reverse sign encoding
to the target format. Thus, the transformation back to
hex-architected format is also trivial.

Format conversion of binary architected to hex internal
There are two format-convert macros in the first stage
of the dataflow. These format converters are used to
transform the input operand from the architected binary
format to the internal format. The format conversion from
an architected binary-based format to the internal hex-
based format is not trivial, since both the fraction and
exponent require modification. The transformation of the
binary exponent to the hex exponent is equivalent to
dividing the binary exponent by 4, which is equivalent to a
right shift of 2. The fraction is then shifted by an amount
equal to the remainder of the division. The following
illustrates this transformation if the unbiased exponents
are considered rather than the biased exponent:

~1 1 Xf! z 2 0
z 2 4X f ~0.00012 i Xf! z 16 X11,

~1 1 Xf! z 2 1
z 2 4X f ~0.0012 i Xf! z 16 X11,

~1 1 Xf! z 2 2
z 2 4X f ~0.012 i Xf! z 16 X11,

~1 1 Xf! z 2 3
z 2 4X f ~0.12 i Xf! z 16 X11,

where the binary exponent equals 4X 1 y and y is
between 0 and 3.

However, in reality the conversion is more difficult,
since the exponents are biased by unequal amounts.
The following equations illustrate the conversion for
normalized nonzero BFP numbers when biased exponents
are considered where r 5 binary biased exponent mod 4,
the binary bias is represented by 2N 2 1, and X if is the
internal hexadecimal format fraction.

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

712

~1 1 Xf! z 2 binary exp.2bias f Xif z 16 x28192 and 0.00012 # Xif , 1.0

5 ~1 1 Xf! z 2 @binary exp.2~2 N21!#

5 ~1 1 Xf! z 2 z 2 ~binary exp.22 N!

5 ~1 1 Xf! z 2 z 16 @~binary exp/4!22 ~N22!18192#28192

5 ~1 1 Xf! z 2 z 2 r
z 16 @binary exp./422 ~N22!18192#28192

5 @~0.001 i Xf! z 2 r # z 16 @binary exp./41112 1322 ~N22!#28192.

The 213 2 2(N22) results in a sign-extension term of
SIGNEXT{[14 2 (N 2 2)], Y}. Below is a table for these
conversions, where .. represents a right-shift operation:

~1 1 Xf! z 2 binary exp.2bias
5

~0.0001 i Xf! z 16 @SE~binary exp...2!12#28192 for r 5 3,
~0.001 i Xf i 0! z 16 @SE~binary exp...2!11#28192 for r 5 0,
~0.01 i Xf i 00! z 16 @SE~binary exp...2!11#28192 for r 5 1,
~0.1 i Xf i 000! z 16 @SE~binary exp...2!11#28192 for r 5 2.

Figure 4 displays the design of the fraction format
conversion macro. In the first stages of the fraction format
converter, the format is multiplexed to separate the
exponent bits from the fraction bits. The multiple fraction
formats are multiplexed, and the implied one is added if
the exponent is not all zeros. The fraction is then shifted
depending on the least significant two bits of the
exponent.

Figure 5 is a high-level illustration of the exponent
format conversion macro. First the exponent is sign-
extended to a 16-bit format, in which the least significant
two bits are examined to determine the fraction shift
amount and the exponent increment amount. These bits
can be overridden for extended-precision operations such
as binary multiply extended (MXBR). The output of the
first format multiplexor drives the adder, and 0, 1, or 2
is added to the exponent upper 14 bits. In parallel, the
exponent is examined to detect the special case in which
the exponent equals all ones or all zeros.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

713

Format conversion of hex internal to binary architected
The conversion back to binary architected format from
hex internal is performed in the rounder and involves the
following formulation:

Xif z 16 exponentinternal28192 f ~1 1 Xf! z 2 exponentbinary2b9,

Xif 5 Xif z 2 r
z 2 2r,

Xif 5 ~1 1 Xf! z 2 2r;

Xif z 16 exponentinternal 28192

5 ~1 1 Xf! z 2 2r
z 2 4zexponentinternal24z8192

5 ~1 1 Xf! z 2 2r
z 2 4zexponentinternal22 15

z 2 ~2 N21!
z 2 2~2 N21!

5 ~1 1 Xf! z 2 2r
z 2 4zexponentinternal22 1512 N212~2 N21!

5 ~1 1 Xf! z 2 4zexponentinternal22 1512 N2~r11!2b9;

exponentbinary 5 4 z exponentinternal 2 2 15
1 2 N

2 ~r 1 1!;

exponentbinary 5 RSE@4 z exponentinternal 2 ~r 1 1!#.

Exponents within the range of representable numbers
are guaranteed to have E0 followed by E0 for the bit

locations from the most significant exponent position of
the internal format to the bit weighted by 2N . Thus, the
reverse sign extension can easily be accomplished by just
wiring the most significant bit of the hex internal exponent
to the most significant bit of the binary architected format.
Or the subtractor width can be minimized to the target
exponent length and the most significant bit can be inverted,
since it will be one of E0 bits. Here is the mapping between
formats for different binary normalizations within the hex
format, or, stated another way, various values of r:

~0.0001 i Xm! z 16 exponentinternal28192

f ~1 1 Xf! z 2 RSE~4zexponentinternal25!2b9,

~0.001 i Xm! z 16 exponentinternal28192

f ~1 1 Xf! z 2 RSE~4zexponentinternal24!2b9,

~0.01 i Xm! z 16 exponentinternal28192

f ~1 1 Xf! z 2 RSE~4zexponentinternal23!2b9,

~0.1 i Xm! z 16 exponentinternal28192

f ~1 1 Xf! z 2 RSE~4zexponentinternal22!2b9.

Sticky detection
Sticky detection is necessary with the inclusion of the new
rounding modes of the S/390 binary floating-point

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

714

architecture. The binary architecture dictates that the
operation must appear as if infinite precision is
maintained throughout the execution. Since it is physically
impractical to maintain infinite precision, a sticky bit
is utilized during execution to represent any loss of
significance. When a number is represented in a
binary format, shifting out any nonzero bit is a loss of
significance. However, since our internal format is hex-
based, all shifting is on a hex-digit boundary, and loss of
significance is detected on a hex-digit boundary. Loss of
significance can occur when significant bits of an operand
are not carried throughout the entire calculation. In G5
FPU dataflow, this can occur in three places: during the
pre-alignment process and during the truncation of the
intermediate result which occurs in the post-normalizer
and the rounder.

The pre-aligner is used in the execution of addition and
subtraction instructions. The fraction of the operand with
the smaller exponent is aligned to the operand with the
larger exponent. Since the dataflow has a width which is
much smaller than the maximum exponent separation,
there is the possibility that some significant digits of the
smaller operand might be lost during the right shifting of
the smaller operand. The infinitely precise result of the
addition might be slightly larger than the result of the
reduced-precision dataflow. However, the infinitely precise
result will be rounded to a finite-precision result. The loss
of these shifted bits is remembered in a sticky bit so that
they can participate in the rounding process operation
which yields the final result. The generation of the pre-
aligner sticky bit is the logical OR operation of all of the
bits that are lost in the pre-aligner.

Figure 6 illustrates the pre-aligner sticky detection.
SMALL_OUT(0:55) is the smaller operand of the addition
and comes from the fraction swapper. EXP_DIFF(0:3) is
the exponent difference as calculated by the exponent
comparison. So as not to create a critical path, the sticky-
bit detection is performed in parallel with the alignment
of the fraction. Each digit of SMALL_OUT is checked
to see whether it is nonzero; this forms the signal
Sticky_Digit(0:13). When the exponent difference
is determined, it is converted to a 14-bit mask,
Sticky_Mask(0:13), which is input along with the
corresponding sticky-digit information to a 2-input by
14-bit logical AND gate. Then a logical OR of the
resulting vector shows whether there is any loss of
significance during this addition alignment cycle.

Loss of significance can also occur when the infinitely
precise result is truncated to the target format. The
rounder requires the sticky-bit and guard-bit information
to determine whether the intermediate result requires
incrementation. To achieve cycle time in the rounder, it is
better to perform the majority of the stickiness calculation
of the intermediate result (which is lost to truncation) in

the post-normalizer, the cycle prior to the rounder. The
post-normalizer performs a leading-zero detect on the
intermediate result, generates the corresponding shift
amount, and then left-shifts the result by that amount. In
parallel with the shifting of the result, the post-normalizer
sticky logic receives the shift amount and the target
format length to determine which bits will participate in
the sticky calculation. Figure 7 illustrates the high-level
hardware design of the post-normalizer sticky calculation
[16]. Effectively, the sticky bit is determined for all of
the possible shift amounts; once the shift amount is
known, selection of the sticky information is similar to
multiplexing of the fraction for normalization. The first
level of logic performs a hex-digit sticky calculation which
is a 4-bit logical OR for each hex digit of the result from
digit 7 to digit 30. Then several groups of sticky detects
are created for the different binary formats. The binary
short format creates six 4-bit sticky groups, S0, S4, S8,
S12, S16, and S20. Each group represents the four
possible degrees of stickiness for the four possible
shifts within the group of four digits. For example, S0(0)
represents the stickiness of digits 7 through 30, S0(1)
the stickiness of digits 8 through 30, and S0(2) and S0(3)
the stickiness of digits 9 through 30 and 10 through 30,
respectively. The binary long format has five 4-bit sticky
groups, and the binary extended format has just one sticky
group. The 4-bit format-specific sticky groups are then
selected on the basis of the target format of the result and
are then multiplexed on the basis of a coarse shift amount
from the leading-zero detection in the post-normalizer
which is available earlier than the lower bits of the shift

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

715

amount. Then, in the second multiplexing level, a finer
sticky selection is done on the basis of the least significant
two bits of the shift amount.

Rounder
The rounder macro has two main responsibilities: The first
is to perform the binary rounding as specified by the S/390
binary floating-point architecture. The second is to convert
the internal hex data format back to the binary architected
format.

The S/390 binary floating-point architecture specifies
five rounding modes: round to nearest, round toward zero,
round toward positive infinity, round toward negative
infinity, and biased round toward nearest. The first four
are controlled by bits 30 and 31 of the 32-bit floating-

point control word (FPC). There are a few instructions
such as conversion to and from fixed-point format and the
divide-to-integer instructions which can explicitly use any of
the five rounding modes overriding the FPC rounding mode.

A high-level illustration of the rounder macro is found
in Figure 8. The rounder calculates an incremented value
of the result in parallel with the determination of whether
the result should be truncated or incremented. Since the
incremented value of the result may require an increment
to the exponent, an incremented value of the exponent is
also precalculated. The rounding action is dependent on
the least significant digit, the guard digit, the pre-aligner’s
sticky bit, the normalizer’s sticky bit, and a sticky bit
within the least significant hex digit, which is determined
within the rounder itself.

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

716

The rounder fraction dataflow also has a multiplexor to
shift right or left up to 3 bits. This is used to perform the
binary alignment of the hex internal fraction. The final
fraction 8-to-1 multiplexor is used to create multiple
output formats such as binary short, long, extended first
part, and second part. It can also select a forced special
number such as zero or infinity. The rounder exponent
dataflow converts the internal exponent to binary by
reverse-sign-extending it and then adding a constant to it.
Note that the expected exponent is calculated and it is
also incremented by 1 in case the rounding of the fraction
results in incrementing the exponent. There are also buses
between the exponent and fraction rounder macros to
support overwriting the fraction with exponent data and
vice versa. Thus, the rounder performs rounding and
format conversion of hex internal format to binary
architected format.

Binary floating-point special number handling
The S/390 binary floating-point architecture specifies four
special numbers: zero, infinity, not-a-number (NaN), and
denormalized numbers. These special numbers are
represented uniquely with specific exponent and/or
fraction characteristics. The S/390 binary floating-point
facility requires that the floating-point dataflow be able
to operate upon these special numbers and also be able
to produce these special numbers. Most arithmetic

instructions are defined by the S/390 binary floating-point
facility to treat these numbers specially. For example,
NaN input operands are typically preserved throughout
execution. The floating-point dataflow contains hardware
to perform special number detection at the top of the
dataflow within the format converters. This early detection
allows the execution of the instruction to be controlled
correctly.

Figures 4 and 5 show the format-conversion logic that is
utilized for input special number detection. The exponent
is checked for the all-zeros or all-ones case, and this
information is sent to the fraction format conversion
macros, where it is used with the results of a ones
detection on the fraction field to determine whether the
input operand is a zero, infinity, NaN, or denormalized
number. In most cases when the input is an infinity or a
NaN, the operation is treated as an effective load in which
one of the input operands is forwarded through the
dataflow.

Machines in other architectures such as PowerPC* have
been able to modify the internal register file to keep
special number information bits. This is possible in a
load/store-type architecture, but is much more difficult in
the S/390 architecture, which is optimized for register and
memory (RX-type) input operands. The critical path of
loading in data from memory would be affected by this
type of design. Also, S/390 allows six formats for numbers,

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

717

and the loads and stores are generic and do not specify
the format type but only the length of the operand. To
avoid any complex conversions between internal data
types, special number detection results are not saved in
the register file. Instead, special number detection is
performed on any input binary data.

The dataflow is also capable of producing special
numbers as a result of execution. The operation on certain
special input operands is defined to result in a special
number. For example, multiplication of zero and infinity
is defined to produce a result which is a default not-a-
number, dNaN. Also, the result of rounding may create a
special number result. The largest normalized number,
NMax, or the smallest denormalized number, DMin, may
be produced when the result prior to rounding is within
certain ranges. These special numbers are produced by
the rounder macro. The rounder macro is capable of
producing infinity, zero, NaNs, NMax, and DMin. The
creation of these numbers can either be forced explicitly
by the floating-point control or created from the rounding
table.

A binary floating-point calculation can also result in a
denormalized result, which provides a means for gradual
underflow. A denormalized floating-point number is a tiny
number whose exponent is smaller than the smallest
representable exponent. Unlike binary normalized
floating-point numbers, denormalized numbers do not
have an implied 1. The dataflow detects exponent
underflow in the post-normalizer and rounder, as is
subsequently discussed in detail. The dataflow does
not include special hardware to denormalize the result,
but instead reuses existing shifting capabilities in the
normalizer. Denormalization presents an additional
pipeline sequencing complexity, since the need for
denormalization is not known until the final stage of the
dataflow, and the data must be wrapped around to the top
of the dataflow. This action must be performed without
interfering with other instructions which may also coexist
simultaneously in the other stages of the dataflow.

In order to minimize this complexity, a simple control
method is used to produce a denormalized result. This
control method utilizes two different control sequences.
The first is chosen if there are no other instructions in the
dataflow. The second is chosen if other instructions are
detected inside the floating-point dataflow or possibly
entering the dataflow when the need to denormalize a
result arises.

If there are no other instructions in the dataflow,

1. The normalizer indicates a possible exponent
underflow, and the exponent and fraction are held
in the FC2 registers.

2. The rounder confirms the exponent underflow
condition, and the floating-point dataflow accepts no

further instructions until the current instruction
completes.

3. The rounder then truncates the fraction and passes the
resulting fraction and exponent to the FC3 register.

4. The fraction is moved to the B input register at the top
of the dataflow, and the exponent is passed to the
controls.

5. The fraction is then moved to the FC1 register.
6. The controls examine the exponent and perform an

effective right-shifting of the fraction in the normalizer.
The denormalized fraction is then moved to the FC2
register.

7. The fraction in the FC2 register is then rounded and
the exponent is forced to all zeros. The result is placed
in the FC3 register.

8. The denormalized result is written to the FPR, and
the floating-point dataflow begins accepting new
instructions.

If there are other instructions in the dataflow,

1. The normalizer indicates a possible exponent
underflow, and the exponent and fraction are held
in the FC2 registers.

2. The rounder confirms the exponent underflow
condition. The presence of other instructions is
detected in the floating-point dataflow.

3. The floating-point unit then forces an interrupt request
for serialization. The execution of the denormalizing
instruction and all other instructions in the dataflow
are canceled.

4. The denormalizing instruction is then decoded and
executed alone following the sequence outlined above.
Subsequent instructions are not dispatched to the FPU
until the denormalizing instruction completes.

The instruction unit is able to issue instructions in a
nonoverlapped mode. This method preserves sequential
execution order of the instruction stream. It is robust in
that the normal path for execution does not require
auxiliary registers, and only the control-issuing and
canceling mechanisms are modified. The feedback path,
in taking the result from the rounder back to the shifter,
uses existing paths that are used for data dependencies
between instructions. This mechanism ensures that a
feedback path even to the first execution pipeline stage
is acceptable, since there will be no other instructions
executing in the pipeline if the wrap is allowed to take
place.

Exception detection and handling
The S/390 binary floating-point facility defines five types of
exceptions that can result from binary execution: invalid
operation, divide by zero, exponent overflow, exponent

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

718

underflow, and inexact result. Each of these exceptions
is maskable to cause a trap through five bits of mask
contained in the floating-point control (FPC) word. If the
exception does not cause a trap, execution is completed,
and a corresponding flag bit in the FPC is set to record
the occurrence of the exception. Invalid operation and
divide-by-zero exception detection rely on the special
number detection, which is performed in the format
converters. Exponent overflow and underflow are detected
with a combination of the post-normalizer and the
rounder. The inexact result exception is detected in the
rounder and utilizes the sticky information collected
during execution.

Exponent underflow and overflow detection is a two-
step process. The first step in this process is performed by
the post-normalizer. Since the leading-zero-detection logic
in the post-normalizer operates on hex digits, the binary
alignment within the leading digit is not known. This is
necessary for performing accurate exponent underflow
detection and is not determined until the rounder. Since
exponent overflow detection is performed on the rounded
result, it is also finalized in the rounder. The post-
normalizer creates multibit signals for the different
binary exponent decrement values and sends these to the
rounder. The rounder then uses these signals along with
the binary normalization of the leading digit of the post-
normalized fraction to precisely determine underflow and
overflow.

The post-normalizer also outputs a signal to the
controls which indicates the potential for overflow or
underflow because of the maximum binary shift and
incrementation condition in the rounder. The controls use
this signal to cause the following rounder cycle to stall.
Stalling the rounder cycle is necessary for overflow and

underflow conditions, because special results may have to
be generated. For example, in the event of underflow, the
rounder may be required to produce a denormalized result
if a trap does not occur. The first rounding cycle is used
to confirm that a definite overflow or underflow condition
exists. Subsequent rounder cycles are then utilized to
produce the special result.

Performance
Table 1 shows the performance of common floating-point
instructions. Both the latency (L) of execution and the
throughput (T) are listed for HFP and BFP formats.
Hex short and long, add and multiply are fully pipelined
three-cycle latency operations. The binary short and long
operations are slower because of the format-conversion
and rounding cycles. The throughput of binary operations
is also lower than hex because of the bus-wiring strategy
of the format converter. The wiring of the input operand
buses is timing-critical, and it was decided not to fan
them out to multiple registers. This resulted in A and B
registers driving the format converters rather than another
staging register. The cost is one cycle of throughput to
BFP operations so as not to affect the cycle time.

Another interesting design decision is the implementation
of multiply-then-add, which is sometimes referred to
as fused multiply add. From the performance figures it
would appear that this function is not useful, but it was
designed as a preliminary step to allow compilers
to include this as an optional instruction. Also, its
performance is faster for the case in which only one
rounding can be tolerated. The equivalent operation
would require a multiply long to extended, followed by an
add extended, and a load rounded back to long format.
The latency of multiply-then-add is much faster than this,

Table 1 Latency and throughput performance of common floating-point instructions.

Instruction Execution cycles

Short Long Extended

L T L T L T

Load 2 1 2 1 — —
Store 3 1 3 1 — —

Add HFP 3 1 3 1 12 12
Add BFP 5 2 5 2 20 20

Multiply HFP 3 1 3 1 16 16
Multiply BFP 6 2 6 2 27 27

Multiply/Add BFP 13 13 18 18 — —

Divide HFP 20, 27 20, 27 24, 30 24, 30 135 135
Divide BFP 23, 27, 30 23, 27, 30 27, 31, 34 27, 31, 34 135 135

Sqrt HFP 27, 34 27, 34 36, 43 36, 43 129, 131 129, 131
Sqrt BFP 27–36 27–36 37– 46 37– 46 133, 135 133, 135

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

719

but it is not faster than a multiply long followed by an
add long.

The execution times are also given for division and
square root, which use a Goldschmidt algorithm [17–24]
for short and long operands and a restoring radix-2
scheme [14, 15] for extended operands. This has been
detailed for the G4 FPU [4, 24]. Several numbers or a
range is given for these operations, since the latency is
variable. It is dependent on the guard-bit combinations
of the intermediate result; in most cases, extra cycles to
perform a remainder comparison are eliminated. Also,
certain exponent values close to overflow or underflow
may take additional cycles.

The binary floating-point implementation gives
reasonable performance, a little less than half the
equivalent in HFP format, for the arithmetic operations.
However, in many workloads the performance of the
arithmetic operations is overshadowed by the loads, stores,
and branches, and in this case the performance of BFP is
much closer to that of HFP. The BFP implementation is
intended to replace a software implementation of BFP
for such applications as Java**, and for this case it is
substantially faster, approximately 100 times faster. This is
to be expected for a hardware implementation compared
to a software implementation, especially when the basic
data types are not available in hardware. In the future, it
is expected that BFP performance will be as important as
or more important than HFP, and this will determine how
future machines will be designed. Currently, the main
workload is still in HFP format; for this reason the BFP
design was added in a manner that would not affect the
HFP performance.

Summary
The IBM S/390 G5 Parallel Enterprise Server is the first
S/390 machine to implement the IEEE 754 standard in
hardware. The S/390 G5 FPU adds the functionality of the
121 new instructions to support the IEEE 754 standard.
Because the development cycle of the G5 microprocessor
was very short, a full redesign of the FPU was not
possible. Instead, the G5 is an incremental change to the
G4 microprocessor core. Most of the G4 FPU custom
dataflow macros were reused without modification. Given
this design limitation, a strategy of using an internal
format that has hexadecimal properties such as the
traditional hexadecimal format was key to minimizing
design changes. This new internal format supports six
floating-point formats—three formats of both hexadecimal
and binary. The few macros that were added to the design
were the format converter macros and the rounder macro.
The custom macros requiring changes included the pre-
aligner and normalizer to support sticky-bit detection. The
G5 FPU implements almost all operations in hardware,
including some of the most difficult subtleties of the IEEE

754 standard. This includes an interesting hardware
mechanism for denormalizing an intermediate result which
is very robust and simple. Also, the G5 FPU implements
quadword precision hex and binary arithmetic in
hardware, including all special number handling. Given
these aspects of handling special cases and quadword
precision operands in hardware, which are not commonly
found in other processors, the G5 FPU is arguably the
most complete hardware solution to implementing the
IEEE 754 standard.

Acknowledgments
The authors wish to acknowledge the contributions of the
circuit design team of Leon Sigal, Robert Averill, Thomas
McPherson, Sean Carey, Fanchieh Yee, Barry Winter,
Rick Dennis, and Dave Webber. They would also like
to acknowledge system technical guidance from Charles
Webb and Timothy Slegel; the verification work of
Michael Mullen, Mark Decker, and Jeff Li; and the
implementation help of Kai-Ann Mueller and Ashok
Shenoy.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc.

References
1. “IEEE Standard for Binary Floating-Point Arithmetic,”

ANSI/IEEE Standard No. 754-1985, The Institute of
Electrical and Electronics Engineers, Inc., New York,
August 1985.

2. IBM Corporation, Enterprise Systems Architecture/390
Principles of Operation, Order No. SA22-7201-05,
September 1998; available through IBM branch offices.

3. P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone,
J. R. Ehrman, G. W. Ewart, C. A. Goodrich, M. Hack,
J. S. Kapernick, B. J. Minchau, W. C. Shepard, R. M.
Smith, Sr., R. Tallman, S. Walkowiak, A. Watanabe, and
W. R. White, “Architecture and Software Support in IBM
S/390 Parallel Enterprise Servers for IEEE Floating-Point
Arithmetic,” IBM J. Res. Develop. 43, No. 5/6, 723–760
(1999, this issue).

4. E. M. Schwarz, L. Sigal, and T. McPherson, “CMOS
Floating-Point Unit for the S/390 Parallel Enterprise
Server G4,” IBM J. Res. Develop. 41, No. 4/5, 475– 488
(July/September 1997).

5. D. E. Hoffman, R. M. Averill, B. Curran, Y. H. Chan,
A. Dansky, R. Hatch, T. McNamara, T. McPherson, G.
Northrop, L. Sigal, A. Pelella, and P. M. Williams, “Deep
Submicron Design Techniques for the 500MHz IBM S/390
G5 Custom Microprocessor,” Proceedings of the 1998
International Conference on Computer Design, Austin, TX,
October 1998, pp. 258 –263.

6. G. Northrop, R. Averill, K. Barkley, S. Carey, Y. Chan,
Y. H. Chan, M. Check, D. Hoffman, W. Huott, B.
Krumm, C. Krygowski, J. Liptay, M. Mayo, T. McNamara,
T. McPherson, E. Schwarz, L. Sigal, T. Slegel, C. Webb,
D. Webber, and P. Williams, “600MHz G5 S/390
Microprocessor,” International Solid-State Circuits
Conference Digest of Technical Papers, February 1999,
pp. 88 – 89.

E. M. SCHWARZ AND C. A. KRYGOWSKI IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

720

7. M. A. Check and T. J. Slegel, “Custom S/390 G5 and G6
Microprocessors,” IBM J. Res. Develop. 43, No. 5/6,
671– 680 (1999, this issue).

8. T. Slegel, R. Averill, M. Check, B. Giamei, B. Krumm,
C. Krygowski, W. Li, J. Liptay, J. MacDougall,
T. McPherson, J. Navarro, E. Schwarz, K. Shum, and
C. Webb, “IBM’s S/390 G5 Microprocessor,” presented
at Hot Chips 10, Stanford, CA, August 1998.

9. S. Vassiliadis and E. M. Schwarz, “Controlling Unit for a
Pipelined Floating Point Hard-Wired Engine,” Proceedings
of the IFIP Third International Workshop on Wafer Scale
Integration, June 1989, pp. 343–351.

10. E. M. Schwarz and C. Krygowski, “The S/390 G5 Floating
Point Unit Supporting Hex and Binary Architectures,”
Proceedings of the Fourteenth Symposium on Computer
Arithmetic, Adelaide, Australia, April 1999, pp. 258 –265.

11. E. M. Schwarz, B. Averill, and L. Sigal, “A Radix-8
CMOS S/390 Multiplier,” Proceedings of the Thirteenth
Symposium on Computer Arithmetic, Asilomar, CA, July
1997, pp. 2–9.

12. S. Vassiliadis, E. M. Schwarz, and D. J. Hanrahan, “A
General Proof for Overlapped Multiple-Bit Scanning
Multiplications,” IEEE Trans. Computers 38, No. 2,
172–183 (February 1989).

13. S. Vassiliadis, E. M. Schwarz, and B. M. Sung, “Hard-
Wired Multipliers with Encoded Partial Products,” IEEE
Trans. Computers 40, No. 11, 1181–1197 (November 1991).

14. K. Hwang, Computer Arithmetic: Principles, Architecture
and Design, John Wiley & Sons, Inc., New York, 1979.

15. S. Waser and M. J. Flynn, Introduction to Arithmetic for
Digital Systems Designers, CBS College Publishing, New
York, 1982.

16. E. M. Schwarz, T. McPherson, and C. Krygowski, “Carry
Select and Input Select Adder for Late Arriving Data,”
Proceedings of the 30th Asilomar Conference on Signals,
Systems, and Computers, November 1996, pp. 182–185.

17. R. E. Goldschmidt, “Applications of Division by
Convergence,” Master’s thesis, M.I.T., Cambridge, MA,
June 1964.

18. S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and
D. M. Powers, “The IBM System/360 Model 91: Floating-
Point Execution Unit,” IBM J. Res. Develop. 11, No. 1,
34 –53 (January 1967).

19. S. Dao-Trong and K. Helwig, “A Single-Chip IBM
System/390 Floating-Point Processor in CMOS,” IBM J.
Res. Develop. 36, No. 4, 733–749 (July 1992).

20. M. J. Flynn, “On Division by Functional Iteration,” IEEE
Trans. Computers C-19, No. 8, 702–706 (August 1970).

21. E. V. Krishnamurthy, “On Optimal Iterative Schemes for
High-Speed Division,” IEEE Trans. Computers C-19, No.
3, 227–231 (March 1970).

22. M. Darley, B. Kronlage, D. Bural, B. Churchill,
D. Pulling, P. Wang, R. Iwamoto, and L. Yang, “The
TMS390C602A Floating-Point Coprocessor for Sparc
Systems,” IEEE Micro 10, No. 3, 36 – 47 (June 1990).

23. C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim,
“Some Properties of Iterative Square-Rooting Methods
Using High-Speed Multiplication,” IEEE Trans. Computers
C-21, No. 8, 837– 847 (August 1972).

24. E. M. Schwarz, “Rounding for Quadratically Converging
Algorithms for Division and Square Root,” Proceedings of
the 29th Asilomar Conference on Signals, Systems, and
Computers, October 1995, pp. 600 – 603.

Received November 20, 1998; accepted for publication
May 24, 1999

Eric M. Schwarz IBM Server Division, 522 South Road,
Poughkeepsie, New York 12601 (eschwarz@us.ibm.com). Dr.
Schwarz received a B.S. degree in engineering science from
The Pennsylvania State University in 1983, an M.S. degree in
electrical engineering from Ohio University in 1984, and
a Ph.D. degree in electrical engineering from Stanford
University in 1993. He joined IBM in 1984 in Endicott, New
York, and in 1993 transferred to Poughkeepsie. Dr. Schwarz
is a Senior Engineer; he was Execution Unit Logic
Technical Leader for the G5 processor. Currently, he is
the Central Processor Logic Technical Leader for follow-on
microprocessors. His research interests are in computer
arithmetic and computer architecture. He is the author of 18
filed patents, eight pending patents, and several journal
articles and conference proceedings.

Christopher A. Krygowski IBM Server Division, 522 South
Road, Poughkeepsie, New York 12601 (cakryg@us.ibm.com).
Mr. Krygowski received a B.S. degree in electrical engineering
from Clarkson University in 1989 and an M.S. degree in
electrical engineering from the National Technological
University in Fort Collins, Colorado, in August 1999.
He is an Advisory Engineer with the IBM Server Division
in Poughkeepsie, New York. Mr. Krygowski joined IBM
in 1989 and has had various logic design and simulation
responsibilities in development of the IBM S/390 CMOS and
bipolar central processor units. He is currently leading the
logic design of the execution unit of a future S/390 CMOS
microprocessor. His current research interests include
floating-point arithmetic, high-frequency microprocessor
design, and fault-tolerant computing. He is the author of one
filed patent and one pending patent; Mr. Krygowski has
received two IBM Outstanding Technical Achievement
Awards.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 E. M. SCHWARZ AND C. A. KRYGOWSKI

721

