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The CMOS-based IBM S/390 Parallel
Enterprise ServersTM have always employed the
technique of memory caching to bridge the
gap between processor speed and main-
memory access time. However, that
gap has widened with each succeeding
system generation, requiring increasingly
sophisticated, multiple-level cache structures
in order to minimize memory-access latency.
The IBM S/390® G5 and G6 include two-level
caching, with a binodal second-level cache.
This paper reviews the principles of cache
design, discusses the performance
requirements of S/390 relative to caching,
and describes how those requirements are
addressed by the binodal L2 cache in the G5
and G6 systems.

Introduction
So often is it the case that one could call it a computer
design adage—processors ever faster, while main memory
grows ever larger but little faster. With each succeeding
generation, main-memory access takes longer in terms
of processor cycles. For more than 30 years, IBM has

incorporated small (relative to main-memory size),
high-speed level-1 (L1) memory caching in its flagship
computers. L1 caching reduces the number of memory
requests requiring main-memory access, which significantly
reduces average memory access latency. In 1991, the IBM
Enterprise System 9021 introduced a robust, fully shared
level-2 (L2) implementation of memory caching between
L1 and main memory. This further reduced the number
of memory requests requiring main-memory access.
The trend of adding memory caching levels is likely to
continue unless technology or packaging breakthroughs
occur that stem the continually widening disparity between
processor speed and main-memory speed (access time).
The IBM S/390 G5/G6 Parallel Enterprise Servers*
include two-level memory caching. The second
level is implemented in a binodal arrangement. The
microprocessors are divided into two groups, or nodes,
and all of the processors in a node share a second-
level cache. The binodal organization [1] exploits the
modularity of CMOS technology and the packaging benefit
of a multichip module (MCM), while achieving much of
the data-sharing benefit of a fully shared cache. The
following sections discuss some considerations pertaining
to caches in general, as well as the specifics of the G5 and
G6 L2 cache.
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Some cache basics

● Form factor
The form factor of a cache is determined by its “ABCs,”
as shown in Figure 1:

● Associativity – number of cache compartments (or lines)
in each congruence class. The lines in each class are

associated, in that a portion of their main-memory
address bits have the same value for every line.

● Block (or line) size – byte capacity of each cache
compartment. This also defines the memory address-byte
boundary on which each cache line begins, i.e., the
minimum address boundary that a cache directory entry
must maintain in order to distinguish unique lines.

● Congruence classes – number of unique classes (or sets),
typically 2n , i.e., all permutations of n address bits,
where n is a design parameter.

A 3 C 5 number of cache compartments; A 3 B 3 C 5

cache capacity in bytes. If C 5 1, the cache is fully
associative. A cache having A 5 1 is direct-mapped or
fully constrained. If A . 1, each congruence class requires
some sort of replacement algorithm to determine which
line of the associative set to replace when a new line is
loaded into the class as the result of a cache miss. Cache
modeling shows least-recently-used (LRU) to be an
effective replacement algorithm.

A direct-mapped cache ( A 5 1) is the easiest to
implement because there is no choice about which line
will be replaced on a cache miss. With rare exceptions, the
greater a cache’s associativity, the lower its miss rate. For
example, Figure 2 shows the results from some model runs
for an S/390* commercial database workload as described
in [2]. A fully associative cache (C 5 1) provides the
greatest choice when it is necessary to choose a line for
replacement, but is difficult or impossible to implement if
the number of cache lines is large. A cache organized with
modest associativity can still reduce misses considerably.
Cache modeling has shown that a cache organized with an
associativity of 4 can have fewer than half the misses of a
direct-mapped cache of equal size; i.e., the direct-mapped
cache may have to be four times larger to achieve a
comparable miss rate. Modeling also shows that shared
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caches benefit even more from higher associativity than do
private caches. The G5 and G6 have taken advantage of
this associativity benefit by implementing the L1 and L2
with associativities of 4 and 8, respectively.

The G5 and G6 L1 cache ABCs are 4, 256, 256,
respectively (256 KB). The G5 L2 cache (per node)
ABCs are 8, 256, 2048 (4 MB); G6 L2 cache (per node)
ABCs are 8, 256, 4096 (8 MB).

● Leading-edge and trailing-edge penalties
When a requester references a cache but the line is
missing, a line-fetch request is generated to obtain the
missing data. The leading-edge penalty (latency) is the
amount of time the requester waits before receiving the
requested data. Resource contention will lengthen the
leading-edge penalty. The minimum latency each cache
miss must experience consists of the following
components:

● Launching the cache-miss request to the facility that will
begin processing the miss.

● If there are multiple processors, cross-cache
communications (i.e., cache snooping) must take place
to maintain the correct state in all caches.

● Fetching data from the appropriate source.
● Returning the data to the requester.

The trailing-edge penalty is the cost of caching the
remainder of the line. The trailing-edge penalty would be
minimal if the entire line could be returned and installed
in the cache in a single cycle. However, few designs can
afford the implied luxuries of line-wide data-return buses
and cache-write capability. Some contributors to trailing-
edge penalty are the following:

● Line-install cache writes. Typically, several cache-write
cycles are required to install the entire line, any of
which may preempt and delay other cache users.
Implementing a line-fetch buffer to temporarily hold
the returning line allows line-install cache writes to be
delayed, to be done on later available cache cycles or at
less disruptive times. However, disadvantages of a line-
fetch buffer include complication of the line-write
controls and, if fetching from the line-fetch buffer is
allowed, an additional source of data for subsequent
fetches. This can complicate the critical timings
surrounding the logic that controls which one of
multiple data sources to gate to the requester.

● Subsequent fetch-request data in the line being loaded.
Access to this line may be denied until the entire line
is loaded into cache and the directory entry is marked
valid. This delay can be reduced by allowing a partially
loaded line to be accessed if the desired data is in the
cache or line-fetch buffer. A disadvantage is the need

for logic denoting which portion of the partially loaded
line is available. Also, the cache-hit logic is further
complicated. This can complicate critical timings that
often surround the creation of a cache hit and control
which data source to gate to the requester.

● Completion of a previous cache-miss data transfer,
which delays subsequent cache-miss data transfers.
Because cache misses cause line transfers rather than
the transmittal of just the amount of data requested, the
data transfer persists far beyond the point at which data
is returned to the requester. Cache misses occurring in
close time proximity can proceed no faster than lines
can be loaded into the cache. This delay can be reduced
if the requested data from a subsequent miss can
preempt the transfer of nonrequested data from earlier
cache misses. This complicates cache-miss handling by
requiring support for multiple outstanding cache misses
and data tagging.

● Line size
When a cache miss occurs, the requester’s data, along with
all remaining data comprised by the line, is loaded into
the cache. Cache is effective partly because data that is
likely to be referenced in the near future is loaded in
addition to what has been specifically requested. Making
cache lines longer means that even more additional data is
loaded into the cache with each miss, which further
increases the likelihood that subsequent references will get
a cache hit. From this reasoning, why not divide the cache
into just a few long lines, e.g., 8 or 16? One could cite
advantages:

● Fewer cache misses.
● Fewer and shorter cache directory entries.
● A surrogate for next-sequential line prefetch. This

prefetch algorithm operates under the premise that
references to line n 1 1 will occur soon after n is
referenced. If line n 1 1 is missing from cache but is
loaded or being loaded into cache before n 1 1 is
referenced, a cache miss can be avoided or its latency
reduced. The downside is a wasted line load and
additional trailing-edge interference if n 1 1 is not
referenced.

However, longer cache lines may be a poor choice when it
comes to performance; reasons for this include

● Poor payback from loading extra data. For example,
doubling the line size would result in a 50% cache-miss
reduction if the extra data loaded for each line were
referenced just once during its cache residency. Cache
modeling shows the actual reduction to be closer to
30%. From a different perspective, loading twice as
much data per cache miss is about 60% effective for
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many S/390 benchmarks, because the leading-edge
penalty is eliminated. Conversely, 40% of the extra
data fetched is never touched during its cache life.

● Elongation of trailing-edge penalty. Doubling the line
size will degrade performance instead of improving it if
the growth in trailing-edge penalty exceeds the reduction
of leading-edge penalty.

In general, increasing the line size becomes advantageous
when latencies become large.

● Cache state information in SMP
In a shared multiprocessor (SMP) system, cache lines are
classified to distinguish permitted uses. A frequently used
classification is “MESI”: modified, exclusive, shared, or
invalid [1]. Modified lines contain changed information;
exclusive lines can be modified by only one processor; and
shared lines can be used, but not modified, by more than
one processor simultaneously.

S/390 reliability requirements and performance
implications

● Write-through and write-back L1 cache
Although the choice between a write-through and a
write-back L1 cache is usually based on reliability and
availability considerations, it can have significant
performance implications.

In a write-back L1 cache design, all fetch and store
references are installed in the L1 cache. Modified lines are
sent to the next level in the storage hierarchy only when
the L1 line is replaced. S/390 data reliability expectations
would necessitate error-correction codes (ECC) in the
write-back L1 cache and directory, since the write-back is
the only copy of the modified data. There are certain
unrecoverable error situations which, without ECC, are
not acceptable under S/390 reliability requirements.
One such event is a faulty directory entry when the
corresponding line is modified.

In a write-through L1 cache design, store references are
not installed in the L1 cache. In addition, modified data is
transferred immediately to the next level of cache. The
next level of cache must have enough bandwidth to handle
all of the individual store requests. Parity protection on
the L1 cache is sufficient, because the modified data has
been forwarded to a more data-secure level. On an L1
cache or directory parity error, the corrective action is to
invalidate the line in the L1. The data will be fetched into
L1 only if referenced again. If necessary, a processor may
be restarted without incident once any queued stores are
completed. Of course, to restart the processor without
incident requires coordination and close cooperation
between the hardware and operating system.

A performance consideration in deciding whether to
implement a write-through or a write-back L1 cache is the
impact of stores on the processor-to-L2 data bus. In a
write-through scheme, each store occupies the processor-
to-L2 data bus for a single cycle. In a bidirectional bus
implementation, this has little effect on fetch requests on
the bus. At most, a store can delay the transfer of fetch
data by one cycle. If a priority mechanism is implemented,
the fetch data transfer will always receive higher priority,
removing any impact caused by store data transfers. In a
write-back scheme, the entire line is stored. When the line
size of the L1 cache is large and the bus width is several
times smaller than the line size, these stores can interfere
with fetch data returns. This translates into longer
demand-fetch latency and degraded performance.

In a system with a write-through L1 cache, all cache-to-
cache (intervention) transfers are between L2 caches.
Except for stores which are waiting for bus priority at the
L1, all modifications are reflected in the L2 cache.

Since modifications are accumulated in a write-back L1
cache, the L1 cache must provide cache-to-cache data for
modified lines. This additional interference can impede
both the source and destination processor performance.
The impact on the processor-to-L2 bus depends on the
bus width and the line size.

On a system with 16-byte-wide processor-to-L2 data
buses, a line size of 256 bytes, and a write-back L1 cache,
an L1 write-back operation takes 16 data transfers. This
could cause significant system performance degradation.
Hence, G6 implemented a write-back-managed write-
through L1 cache.

● Write-back-managed write-through L1 cache
A variation on the write-through scheme is a write-back-
managed write-through L1. The G5 and G6 L1 uses this
scheme. As with write-back, all fetch and store references
are installed in the L1 cache, but modified data is
transferred immediately to the next level of cache as with
write-through. Although it appears at first that such a
scheme incorporates the disadvantage of each of these
disciplines, this scheme does have advantages. Write-
through permits error detection rather than detection and
correction at the L1. The error detection is implemented
as byte parity on G5 and G6. A byte is the smallest store
granularity allowed by the architecture. With byte parity,
no merge of modified and unmodified data is required.
Error recovery is accomplished by invalidating the L1 line.

G5 and G6 implement single-error-correct, double-
error-detect ECC protection in the L2 cache [3]. This
complicates store operations that modify fewer bytes than
the ECC word size. These store operations require
merging of unmodified and modified data in the ECC
word. Ordinarily, the unmodified bytes must be read and
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ECC-checked, and corrected if errors are found. The
modified bytes are merged, and the ECC code is
generated and stored with the new merged data. This
requires a cache-read and a cache-write operation.

By having a write-back-managed write-through L1, the
unmodified bytes are available from L1 to form a full
ECC word. At the same time the modifications are made
to the L1 line, the L1 supplies the unmodified bytes. ECC
is generated on the merged data before it is sent to L2.
The length of this data is a full ECC word; i.e., only ECC
generation and write operation are required. With a write-
through L1, the L2 with ECC performs a read operation,
ECC check, data merge, ECC check, and write operation.
The write-back-managed write-through L1 removes the
need for the read on behalf of the ECC operation, the
associated ECC check operation, and the data merge at
L2. This reduces L2 resource utilization.

L2 cache topology

● Private vs. shared L2 cache
L2 caches in an SMP can be implemented either as
private to each processor or as shared among multiple
processors. In a private L2 cache system, there is a one-
to-one correspondence between a processor and an L2.
A fully shared L2 cache has all processors sharing one
common L2 cache. S/390 commercial database workloads
typically perform best with a fully shared L2 cache.

The performance of a cache is determined by the
cache hit rate and the time required to return data from
that cache to the processor (latency). The IBM S/390
commercial database workloads show consistent results
with respect to cache hit rates: Fully shared caches are
best. Operating system and database management code
and structures are often shared by multiple processors. In
a shared L2 cache, a line exists only once, regardless of
the number of processors sharing that line. In a private L2
cache implementation, a shared line must be installed in
the L2 cache of each requesting processor. For the same
total L2 size, the private cache implementation is less
efficient.

Private L2 caches nevertheless have some benefits. Since
there is a one-to-one correspondence between each L2
cache and the associated processor, the L2 cache can be
placed close to the processor. This reduces the latency
from the local L2 cache. The bandwidth between the
processor and the L2 cache may be larger, since the
connections are limited to one processor and L2.
However, the bandwidth constraints may be at the L2-to-
main-memory interface instead, since each L2 cache
requires addressability to all of memory in an SMP
system.

In a fully shared implementation, there is no one-to-one
correspondence between the processor and the L2 cache.

Therefore, the system can be optimized for cost and
performance by changing the total number of L2 cache
chips. The system chip count for a large SMP with a fully
shared L2 cache implementation may be less than that for
a private L2 cache implementation.

● L2 cache latency tradeoffs
Although a fully shared L2 cache has a better hit rate
than a private L2 cache implementation, the L2 cache hit
latency may be worse in a fully shared L2 system. The
placement of the L2 cache chips may not be optimized for
all processors. For very large SMP systems, it is impossible
to place all processors adjacent to the fully shared L2
cache. This contributes to longer latency. Additional cycles
may also be needed to determine which request will be
serviced when multiple requests are waiting.

Private L2 caches can be implemented on the processor
chip, since there is a one-to-one correspondence between
the processor and the L2. Fully shared L2 caches are
restricted to separate-chip implementations. This further
distinguishes the latencies between fully shared and
private L2 cache implementations.

In a fully shared L2 cache system with a write-through
L1 cache, there is no notion of a cache-to-cache transfer;
i.e., L2 and memory are the only sources for processor
fetch requests that miss the L1 cache. Further, cache
snooping is handled at the L2 cache directory. Some cache
snoops must be broadcast to the L1 cache(s). Because
state changes are handled at the L2 cache, the average L1
miss-fetch latency is minimized in a fully shared L2 cache
system.

Private L2 cache systems require some form of cache-
to-cache transfer mechanism between L2 caches. The
volume of these transfers depends on the intervention
scheme that has been implemented. Private L2 caches
must be interconnected to allow the transfer of snoop
signals and data between caches. If the interconnection
is through a common system bus, the latency for cache-to-
cache data transfers can approach or exceed main-memory
latency. An alternative is to provide a cross-point switch.
Data is transferred from the source cache through the
cross-point switch to the destination cache. Cross-point
switches are typically implemented on separate chip(s),
which adds additional system cost. Cache-to-cache latency
depends on the structure, the technology implemented,
and the state of the line in the source L2.

In addition to cache-to-cache data transfers, cache
snoops can have a detrimental effect on system
performance. Every request for an exclusive line that was
found to be shared or invalid in the L2 cache may result
in a snoop to all processors. For a large SMP with high
store rates, this degrades performance even if the line
misses all other L1 caches.
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A significant benefit of a private L2 structure is the cost
and scalability of the design. The multiprocessor-to-single-
processor performance ratio (MP ratio) is a measure of
SMP efficiency. In a private L2 cache system, single-
processor systems have one L2 cache; n-processor systems
have n L2 caches. In a fully shared L2 system, the L2
cache size is usually optimized for the maximum number
of processors. Either special controls are needed to
support different-size caches for different numbers of
processors, or the same size L2 cache is used for single-
processor through many-processor systems. Either case
adds to the cost of low-end systems.

Another consideration with regard to a fully shared L2
cache is the number of associativity sets. For a single
processor, four sets are usually sufficient. In a large SMP

system, more sets may be necessary to avoid thrashing
within a congruence class. This can add to the L2 cache
hit latency and to the design complexity. Figure 3 shows
the effect of varying the associativity on an eight-processor
SMP system running an S/390 commercial database
workload.

● G5 and G6 binodal L2 cache
A fully shared L2 cache performs best for S/390
commercial database workloads. However, because of
pin limitations, a fully shared L2 cache design was not
possible on the G5. A reasonable compromise was the
binodal cache design [1], in which the microprocessors
are divided into two groups, or nodes. Each node
has a maximum of six microprocessors on G5; seven
microprocessors on G6. All processors on a node share an
L2 cache. However, the two L2 caches are private to one
another. This binodal L2 cache design provides many of
the advantages of both the private and the shared-cache
designs.

Since each L2 is connected to only half of the
processors, the bus bandwidth between the L2 and the
processors can be larger. Additionally, the processors and
the L2 cache can be close to one another, reducing L2
cache-hit latency. The L2 cache-hit rate in the G5 and G6
binodal implementation is better than that of a private L2
cache implementation of similar size, but worse than that
of a fully shared L2 cache. Figure 4 shows the L2 cache-
hit rates for fully shared, binodal, and private L2
caches. The model results are for an eight-processor
SMP system running an S/390 commercial database
workload [2].
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The binodal L2 cache system has buses between the two
nodes for snoops and cache-to-cache line transfers. A
cross-point switch mechanism is implemented within the
system controller (SC) [1] to minimize cache-to-cache
latency. By maintaining a high bandwidth between the
nodes, the system can support modified, exclusive, and
shared intervention. This reduces main-memory fetches.
Figure 5 shows the relative number of main-memory
fetches for shared, binodal, and private L2
implementations. To minimize the impact of snoop
requests on each processor, the G5 and G6 L2
maintains information on L1 lines. While this puts
additional burden on the L2, it greatly reduces the
impact on the processors.

Figure 6 shows the cycles per instruction (CPI) [(cycles
per event) 3 (events per instruction)] for fully shared L2
cache, binodal L2 cache, and private L2 cache systems
with different intervention schemes. The binodal L2 cache
design with modified, exclusive, and shared intervention is
the next best approach to fully shared. The L2 cache-hit
portion of the CPI is best for private L2 because of the
reduced latency. However, the cache-to-cache and main-
memory portions exceed those for both binodal and fully
shared L2. Only the private L2 cache with modified,

exclusive, and shared intervention gives results close to
those for the binodal L2 cache.

Conclusions
Cache modeling shows that increased associativity increases
cache effectiveness, and both G5 and G6 exploit this.

In comparison with G4, which had 128-byte lines, longer
lines were beneficial in this design. The reduction in
misses from the longer line size outweighs the additional
trailing-edge penalty.

Fully shared caches are best for most OS/390*
environments, but are difficult to implement with the
technology available today. In an SMP environment with
large numbers of processors, the binodal approach was the
only acceptable alternative to a fully shared L2 cache. It
also has the benefit of allowing additional processors to be
added on each node to take advantage of incremental
technology density improvements. Smaller improvements
in technology density can be exploited. The binodal
approach is as close as one can get with current
technology to a fully shared design and will continue to
meet S/390 performance needs for the foreseeable future.

*Trademark or registered trademark of International Business
Machines Corporation.
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