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As the Internet becomes the basis for
electronic commerce, and as more businesses
automate their data processing operations,
the potential for unauthorized disclosure of
sensitive data increases. On-line databases
are becoming increasingly large and
complex. Sensitive data is transmitted

on communication lines and often stored
off-line. As a result, the efficient, economical
protection of enterprise-critical information is
becoming increasingly important in many
diverse application environments. The
protection required to conduct commerce on
the Internet, provide data confidentiality, and
provide user authentication can be achieved

only by cryptographic services and techniques.

The high-speed, physically secure IBM S/390°
CMOS Cryptographic Coprocessor for S/390
Parallel Enterprise Servers™, together with the
IBM Integrated Cryptographic Service Facility
(ICSF), an IBM licensed program for the
0S/390® operating system, provides the ability
to encrypt and decrypt data, generate and
manage cryptographic keys, perform PIN
operations, and perform other cryptographic
functions dealing with data integrity, digital
signatures, and key exchange.

Introduction

The IBM §/390* CMOS Cryptographic Coprocessor for
S/390 Parallel Enterprise Servers® [1], herein called the
S/390 Cryptographic Module (SCM), is an extension to the
S/390 central processor unit (CPU) and can be considered
as an additional execution element. It is implemented

on a single CMOS chip that connects both physically

and logically to a CPU, and is supported by the IBM
Integrated Cryptographic Service Facility (ICSF) [2].
Depending on the model, one or two SCMs are provided.
Figure 1 shows a S/390 system architecture with two
SCMs.

The SCM hardware implements the S/390 cryptographic
architecture, which is an extension of the S/390
architecture [3]. Available only in the ESA/390* mode,
it is an upward-compatible extension to the Integrated
Cryptographic Facility (ICRF) provided on the bipolar
S/390 Enterprise Servers. All functions to support data
privacy, message authentication, personal identification,
and key management (along with many extensions) are
provided as they were for ICRF. These functions and
the associated instructions are referred to as the direct
attached crypto (DAC) operations. For DAC operations,
each SCM appears to be attached to only one CPU in the
configuration and functions as an integral part of that
CPU. That is, the DAC instructions are performed
synchronously with the instruction processing of that CPU.
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The SCM also includes a crypto asynchronous processor
(CAP), which can perform operations concurrently with
the DAC operations. These asynchronous operations
include public key algorithm (PKA) functions, intended
for use by application programs; and public key security
control (PKSC) functions, which replace the physical
security controls provided on ICRF. Communication with
the crypto asynchronous processor is accomplished by
means of a queued-message interface which provides
communication among all CPUs and all crypto
asynchronous processors in the configuration. This
interface includes separate crypto asynchronous message
(CAM) queues for each crypto asynchronous processor
and instructions which permit all CPUs in the
configuration to send and receive messages to and
from all CAM queues.

The SCM implements the following cryptographic
algorithms and functions to support the DAC architecture:
Data Encryption Standard (DES) [4], Message
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Authentication (MAC), message digest, Secure Hash
Standard (SHS) [5]; personal identification number (PIN)
processing, pseudorandom number generation, key
management functions, and control functions.

The SCM implements the following cryptographic
algorithms to support the PKA and PKSC architecture:
Rivest-Shamir-Adelman (RSA), Digital Signature
Standard (DSS) [6], and Diffie-Hellman key agreement.

This paper discusses the key innovations in the design
of the SCM:

¢ Cryptographic engine integration.

e Simultaneous synchronous and asynchronous operation
execution.

¢ Logical and physical security.

¢ Key storage.

Fault-tolerant design.
FIPS 140-1 [7] validation.
¢ Performance.
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Overview

Figure 2 represents a high-level overview of the SCM data
flow. As is shown, the SCM chip attaches to the CPU
through a dedicated hardware interface. Logically, the
SCM is an execution-element extension of the CPU. The
SCM is contained entirely in a single 12.7-mm X 12.75-mm
CMOS 5X chip. This includes all instruction execution
logic, nonvolatile key storage, and tamper-detection
circuitry. The following are embodied on the chip:

o CPU-SCM interface This interface consists of a 36-bit
(32-bit data, 4-bit parity) bidirectional data bus and 23
control lines.

o Self-test and clock This interface consists of 69 data
and control lines.

e Power and ground This interface consists of two
battery-backed-up unit (BBU) power pins, 376 power
pins, and 351 ground pins.

As illustrated in Figure 2, within the secure boundary
reside the input and output data buffers, execution
controls, cryptographic algorithmic engines, and key
storage, which includes DES master and auxiliary keys,
signature keys, key part queues, and export control data.
The entire implementation consists of hardware state
machines. No imbedded software exists that contributes
to instruction execution, key management, or security
controls.

Cryptographic engine integration

The three major elements in the SCM dataflow as shown
in Figure 2 are the CPU interface, cryptographic engines
(PKA, DES, SHA, and PIN), and key storage.

The CPU-SCM interface comprises the bidirectional
data bus, control signals, and data input and output
buffers. The CPU-SCM interface is controlled by the
CPU'’s Licensed Internal Code (LIC). The CPU LIC
initiates the cryptographic instructions and controls the
data going into and out of the SCM; it does not control
the execution of the instruction or the internal hardware
state machines.

The majority of the dataflow logic is contained in the
interfaces to the cryptographic engines. This includes
working data registers and control logic that move
data between engines and the CPU interface. The key
logic contains working key registers which feed the
cryptographic engines and perform key management
operations. Integrated with the key logic is the key
storage, which consists of battery-backed-up custom
SRAMs that store keys, key parts, and configuration
information.

Each of the cryptographic engines lies within the single
chip and is controlled entirely by hardware state machines
on the chip. For this reason, the SCM provides the
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maximum in security. The instruction execution cannot be
altered and is embedded within the secure boundary of
the chip. The state machines have also been optimized for
hardware execution and provide a faster and more secure
solution than a software implementation.

Functionally, the SCM chip can be divided into two
parts: the direct attached crypto (DAC), and the crypto
asynchronous processor (CAP), which encompasses the
public key security control (PKSC) and public key
algorithm (PKA) functions.

The DAC performs the synchronous SCM functions,
which include DES-based encryption, hashing and
MAC functions, PIN operations, key management and
acceptance, and other key control functions. The DAC
includes the CPU interface and the main controls and
dataflow in the SCM. Once a cryptographic instruction is
initiated by the CPU LIC, the data sent is stored in the
input data buffer, and the main hardware state machine
will control sending the data and keys (if needed) to the
appropriate engine for processing. When the instruction is
completed, the resulting data is loaded into the output
data buffer and sent to the CPU when it is requested by
the CPU LIC.

R. J. EASTER ET AL.
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The crypto asynchronous processor (CAP) performs all
of the public key security control (PKSC) and PKA
operations. The CAP functions are performed
asynchronously on the chip because of the large amount of
time required to process these operations. Data is sent to
and from the CAP via CPU LIC commands, which is a
slightly different way of transmitting data from that used
for the synchronous functions. Since these functions are
run asynchronously, an interrupt is raised so that the CPU
LIC recognizes when the CAP is done processing. The
CPU LIC then requests that the resulting data be sent to
the CPU directly from the CAP.

DAC cryptographic engines

* DES

The core synchronous encryption engine found in SCM is
based on the Data Encryption Standard, or DES. The
DES algorithm ciphers a 64-bit block of plaintext into a
64-bit block of ciphertext under the control of a 56-bit
cryptographic key. The process of encryption consists of
16 separate rounds of encipherment, each round using a
product cipher approach, or cipher function. These series
of steps of substitutions and permutations in the algorithm
determine its strength. Each round consists of three steps:

e The input block is split into two parts, a left half and a
right half.

e The right half is then operated on using a cipher
function.

 This output is combined (via XOR) with the left half.

The logical functions performed by the SCM DES
hardware include the following:

e Encode and decode (electronic code book).

e Encipher and decipher (cipher block chaining).

e Translate.

 Triple encipher and triple decipher (two- and three-key
CBC mode).

e MDC-2 and MDC-4.

» Message authentication (two- and three-key).

The DES algorithm is implemented entirely in hardware
and performs two rounds in one machine cycle, for a total
of eight machine cycles to cipher one doubleword of

data. The DES engine for SCM has been validated

under FIPS 46-2.

® PIN

A personal identification number (PIN) is a secret number
assigned to or selected by the holder of a debit or credit
card used in an electronic funds transfer (EFT) system.
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The PIN serves as the cardholder’s electronic signature
to authenticate his right of access to an account. In an
interchange of EFT transactions, the PIN must be
transmitted securely from the acquirer (the institution
accepting the PIN) to the facility of the issuer for
validation. Specific security requirements are placed on
the acquirers in an interchange environment to ensure
that an issuer’s PINs are not compromised.

The PIN engine is designed to perform the basic
banking functions of PIN generation, translation, and
verification:

e PIN generation refers to the algorithmic creation of a
PIN using the DES engine and a specific financial
algorithm. The PIN is created from account data such
that it can be consistently recreated, given the same
input data.

PIN translation refers to the electronic communication
of a PIN from one institution to another for verification
purposes. The PIN is embedded in a PIN block, which is
the vehicle for transporting a PIN from one node to
another. Once a PIN has been inserted into a PIN block,
the block is enciphered under a PIN transport key
before it is sent to the outside world. PIN blocks exist in
many different formats. PIN translation allows the PIN
block format, the enciphering key, or the format-padding
parameters to be changed while translation occurs. The
translation function allows two different institutions to
communicate PIN information even though they may
incorporate completely different security schemes.

¢ PIN verification refers to the authentication of a
received PIN. This process involves extracting the
received PIN from the PIN block and comparing it to a
PIN algorithmically generated from associated account
information.

PIN offset is another function provided by the PIN
engine. If the cardholder selects his own PIN, the offset
function mathematically relates the user-selected PIN to
the PIN created by PIN generation. This is done to
ensure that the PIN verification process works correctly.

Each of the PIN functions provides a number of variations
to support current EFT systems throughout the world. The
SCM supports IBM, VISA, Interbank, ECI, ISO, and
ANSI PIN formats.

® SHA-1
The Secure Hash Standard, or SHS, specifies a secure
hash algorithm (SHA-1), which is implemented on the
SCM.

In operation, a request for the SHA-1 engine may come
either from the CPU via the Generate SHA-1 function or
from the CAP for public key functions.
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The 512 bits of request data arrive at the SHA-1 engine
after passing through a staging register 64 bits at a time
before being loaded into the 16-element-deep, 64-bit-wide
register array. The register array not only serves as an
accumulator for the incoming data, but also is used in the
generation and accumulation of W0 through W79, as
defined in the SHS standard. This generation is done
while data is being fetched out for processing into the
message digest in a pipelined fashion. The resulting
160-bit message digest is then sent to the SCM main
dataflow to be sent back to the CPU or to the PKA
engine for further processing. The SHA-1 engine for
SCM has been validated under FIPS 180-1.

® PRNG

The SCM contains unique hardware for pseudorandom
number generation (PRNG). Pseudorandom numbers can
be requested by explicit instruction requests or for any

of the other SCM DAC or CAP functions requiring a
random number. Random numbers are used for many
purposes such as key generation and padding. The PRNG
algorithm employed is detailed in [8, 9]; this PRNG
hardware includes

¢ A state machine.

e A free-running 64-bit incrementer (T register) running
at the SCM clock frequency (approximately 110 MHz)
that is also stored in battery-backed-up nonvolatile
memory.

e A 128-bit randomization state register (S register) that
is also stored in battery-backed-up nonvolatile memory.
This 128-bit register is updated during idle times and
during execution of a PKSC query command.

The PRNG state machine begins in any of four situations:

e During the pseudorandom number (PRN) initialization
sequence initiated by ICSF.

e When one of the SCM functions that requires a
pseudorandom number is received. This includes the
DAC GPRN instruction and CAP operations that
request a pseudorandom number.

e When the SCM is idle, the PRNG will run and update

the S register continuously until another function

request is received. The idle operation of the PRNG
can be interrupted at any point; that is, if the PRNG
is running while the SCM is idle, and a cryptographic
instruction comes from the CPU, the PRNG is turned
off and the cryptographic instruction is executed. The

PRNG therefore has no performance impact on any of

the other instructions.

Following a power-on reset of the SCM, the S and T

registers are restored from nonvolatile memory and

the PRNG is launched. The contents of the T and
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the resulting S registers are then stored back into
nonvolatile memory. This is a refresh of the PRN and
occurs only if the PRN has been previously initialized.

® CAP

The CAP engine performs both the PKSC instructions,
which provide the physical security controls, and the PKA
instructions, which are used in implementing a public key
infrastructure (PKI). The PKSC and PKA instructions rely
on public key encryption and share the heart of the PKA
engine, the modular multiplier.

PKSC instructions

There are two basic types of PKSC instructions, queries
and signed requests. The queries request information from
the SCM but do not change its state. Signed requests do
alter the state of the SCM by performing such operations
as creating transport keys, loading DES key parts,
exporting encrypted keys, and setting permissions.

Signed requests are unique in that they may not
necessarily complete when issued. The user can set up the
PKSC engine to require multiple co-sign (COS) requests
before completing the signed request. Signed requests are
held in the pending command register (PCR) until either
the required COS requests arrive or a new signed request
is received. This wait could be as short as a few seconds
or as long as several years (although in practice signed
requests do not remain in the PCR for long.)

Prior to being placed in the PCR, all signed requests,
including COS, must pass several tests: A valid RSA
signature must be present, required fields must contain the
proper values, and arithmetic fields must contain legal
values. If any of the tests fail, the request is aborted, and
a reply code indicating the failure is returned to the
processor.

Query instructions always return data once the SCM is
properly initialized. When a query instruction returns
data, the reply message is signed so that the user can
ensure that the reply came from the desired SCM and
not from a malicious attacker.

PKA instructions

The PKA instructions, while using much the same
hardware as PKSC instructions, execute quite differently.
PKA instructions contain all of the data necessary to
perform the operation; no data contained inside the SCM
is required. Since the PKA instructions do not change
the state of any architected facility, pre-testing of the
instruction is not necessary. When a PKA instruction is
received, its execution begins immediately. Tests are
performed as convenient during the execution. If a test
fails, the failure is recorded and execution continues. This
has allowed the control logic for the PKA instructions to
be simplified. A PKA instruction goes through the same
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sequence of states, independently of the results of the
tests.

After the execution portion of the instruction
completes, the reply message is built. When one of the
execution tests fails, a failing reply message is generated.
If all of the tests were successful, a normal reply message
is returned with the final data. The normal reply message
for PKA instructions includes all of the results of the
operations which were performed. The instruction, when
complete, leaves no data in the SCM.

Modulo arithmetic

RSA and other public key algorithms depend on modular
arithmetic. Modular multiplication and modular
exponentiation are the functions required.

To generate A X B mod(N), a modulo multiplier is
used, in which the product A X B is reduced as the
multiplication proceeds. Exponentiation, 4” mod(N), is
performed as repeated multiplications using a square and
multiply algorithm.

Modulo multiplier

The multiplier is based on a paper by E. Brickell [10].
This multiplier calculates 4 X B mod(N) in a single
multiply calculation, rather than calculating 4 X B and
then reducing this product modulo N with a separate
calculation. The multiplier is a delayed carry-save-type
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multiplier with some compare circuits that allow for the
modulo reduction to take place during the multiply
calculation.

Each register in Brickell’s multiplier is split into a pair
of registers containing the sum and carry bits from the
addition operations. Brickell’s design requires both sum
and carry registers for the operands A and B and the
intermediate results D. In order to save space in the SCM
multiplier, operands 4 and B are not split into sum and
carry registers. Instead, a carry-lookahead adder is used
to add the sum and carry registers of D prior to reloading
A and B. The effect is a savings of 2048 register bits at a
cost of 16 cycles.

Figure 3 shows the organization of the multiplier. The
operation of the multiplier is based on the basic principle of
modulo reduction; that is, if Y is the modulo reduction of
X modulo Nand X > N, then X = Ymod N, Y =N -1
can be calculated by repeatedly subtracting N from X
until the result is less than N.

If N is the modulus, an integer number represented
in k bits, and A and B are integer numbers that are each
represented in k bits, then the product A X B is formed
by using the binary representation of B in k bits:

B=b,b2,b2% - b, 2",
and using the A value,

— 2 k=1
A=a,a2,a2° - a,_2"",

the result is accumulated in the accumulator D as follows
(< indicates a left shift of one bit):

D=0

doi=1tok
ifb,=1,thenD =D+ 4
D= <D

end

As the product is accumulated, its magnitude approaches
and eventually increases past the magnitude of the
modulus N. If the appropriate point can be determined

as the product magnitude increases past the magnitude

of the modulus, the modulus value can be subtracted, thus
reducing the product value modulo N at each appropriate
point.

Subtracting the modulus is accomplished by
precomputing a value K = 2" — N, or the two’s
complement of N. When the compare circuitry determines
the appropriate point at which to subtract the modulus,
the K value is added to the product.
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Modulo multiplication and exponentiation

The functional flow of the modulo engine is shown in
Figure 4. The engine incorporates a modulo multiplier,
and some conversion and cleanup hardware. The
multiplier performs the modulo multiplication and
exponentiation functions, and the convert and cleanup
hardware converts the result into the proper binary format
to return to the application. Note that the convert and
cleanup are done only at the end of an exponentiation or
multiply calculation, not during the intermediate steps

of a calculation.

Multiply and exponentiate

The modulo multiplier uses the carry-save adder described
previously in the subsection on modulo arithmetic. The
adder is 1035 bits wide and accepts input from the 4, B,
and K registers as well as the previous results, in carry-
save format. The adder performs

D,=2(D, + B +K)

fori =j + 1, and compares D to K as one step. The
compare involves the high-order four bits of the D register
and the appropriate value of K.

The exponentiation (M") is performed using the
following algorithm. If M'* is to be calculated,

E =14, or '1110' b,
and the powers
M’ M°, M°, M, and M"

would be calculated. Note that all of the calculations
involve either multiplying the previous result by itself
(squaring) or multiplying the previous result by M (for
example, M = M* X M). This is shown in Figure 5.
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Convert and cleanup

The convert hardware, as shown in Figure 6, takes the
carry-save representation of the result and converts it to a

binary string. This is done by adding

the result sum and

carry values to form a single binary value. This result may

be one bit larger than the block size

because of overflow.
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The cleanup hardware ensures that the result formed by  there will be an overflow and R = R1; otherwise, there is

the binary conversion, R0, is smaller than the modulus. no overflow, and R = RO.
The result R0 may contain the real answer R and the
modulus M, R + M. The check is done by adding K to PKA engine dataflow
the value RO and checking for the overflow of 2°: Figure 7 illustrates the PKA engine dataflow. The engine
R1=RO+K performs the necessary arithmetic, as indicated previously,
or to perform the algorithmic operations of RSA, Digital
Signature Standard, and Diffie-Hellman key agreement.
R1=R0+ 2" — M;
then, Simultaneous synchronous and asynchronous
R1=2"+R0—M, executi.on
As described, the SCM may perform two types of
so that if operations: DAC and CAP. The DAC operations include
768 RO-M=0, 95 functions defined under ESA/390*. All DAC functions
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are performed synchronously with respect to the issuing
CPU. The SCM acts as an integral execution unit of the
CPU. The CPU hardware, along with the CPU LIC,
performs the initial instruction decode, setup, exception
testing, and operand fetching. The instruction operation
code and all operand data (general-purpose register data
and/or storage data) are then transferred to the SCM over
the data bus for actual instruction execution within the
SCM. Depending on the operation, the CPU LIC will
receive and store any results from the SCM and wait for
an end-of-operation signal from the SCM which signals
that execution is complete. CPU LIC will then complete
any CPU ending steps before signaling that execution is
complete and the CPU is available for execution of
additional instructions.

The CAP operations include the functions of the
public key security control and public key algorithms.
Some of these operations may take milliseconds
to execute; if run synchronously, they would severely
impede the performance of the CPU. For this reason,
the PKA and PKSC operations are run asynchronously.
Communication between the CPU and the SCM for these
asynchronous operations is executed by means of messages
which pass through a queue and are sent to and from the
SCM. The CPU LIC uses special commands to send an
asynchronous request message to the SCM and receive the
reply message when the execution of the operation is
complete. While the CPU LIC does use the same interface
as the DAC in sending/receiving these messages, these
special commands route the messages to the asynchronous
processor. This implementation supports simultaneous
processing of both synchronous and asynchronous
operations in the SCM.

All asynchronous functions are initiated by the CPU
through the synchronous DAC. Once all data has been
sent to the CAP for asynchronous processing, the DAC
enters a state in which it may again accept synchronous
operations. Within asynchronous operations, the CAP will
request services of the DAC to perform functions such as
hashing, DES encryption, random number generation, and
other synchronous operations. The DAC must be idle (not
performing a synchronous function) to be able to accept a
CAP request for service. If the DAC is busy, the CAP will
wait for services until the synchronous operation has
completed.

The same is true for synchronous requests from the
processor. If the DAC is busy with a request from the
CAP, the DAC will reject all synchronous operations from
the processor with a busy (inhibit) status. The processor
will attempt to reissue the synchronous operation to the
SCM until it is accepted (after the DAC has completed
the CAP request).

There is a delicate balance between the synchronous
and asynchronous functions. The design of the SCM
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controls was carefully devised so that synchronous and
asynchronous functions do not interfere with each other.
This is extremely important because the functions share
the DES engine, SHA-1 engine, PRNG, dataflow, and
interface with the processor unit. This sharing of elements
is important in order to optimize area usage and to reduce
redundancy in logic. However, this arrangement posed
several challenges, such as sharing resources to minimize
performance degradation, restoring working registers to
the correct state, and maintaining the integrity of the
operation such that they are logically independent. Any
collision between synchronous and asynchronous functions
would be catastrophic.

Key storage

Integrated within the chip are six custom nonvolatile
arrays (C-SRAMs). These arrays must prevent the critical
data contained in them from being lost when power is
interrupted on either a scheduled or an unscheduled basis.
In addition to the 2.5 volts supplied from the power
supplies while ac power is active, two signal I/O lines carry
external regulated battery voltage to the C-SRAM array
cells, maintaining the data even when the system power
drops. The system power supply uses a switch to alternate
between battery power and the normal standby power
supply. The switch selects the highest voltage, so that if
the standby supply is active, it always supplies power. If
the standby power supply fails, the battery supplies the
power. A lithium battery cell is used to achieve the necessary
shelf life. There is a low-battery-voltage sensor to

signal the need for battery replacement. The power
implementation includes the redundancy of two power
cards, each with batteries to reduce the probability of a
total power failure.

There are two sizes of C-SRAM: The first is 64 elements
by 73 bits and is used for the key buffer, key part,
signature-object master key, and receive-object master
key arrays; the second is 512 elements by 73 bits,
which is used twice to make a logical 1024-element
PKA array. Each element contains 64 data bits, 8 error-
correction code bits, and a complement-indication bit. To
protect against ionizing radiation attacks, the data held in
the nonvolatile arrays is periodically complemented, that
is, read, inverted, and rewritten to the array. This method
ensures that no imprinting of data can occur in the
array cells. Complementing occurs approximately
every 1.5 hours.

The C-SRAMs contain customer keys, key parts,
configuration, export control, and other substantial data.
This data may be stored for long periods of time and may
be stored under battery power. Since it is essential that
errors in the array be detected to prevent data integrity
problems, a strong method of error detection is employed.
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To deter unnecessary outages due to array failures, a
technique of correcting the error improves reliability.
The error-correction code (ECC) implemented for the
C-SRAMs corrects single-bit errors and detects two-bit
errors. The ECC is generated on the 64-bit data in the
array plus the complement indication bit and the array
address parity. All elements in the array are checked,
including the address decoder. The ECC is generated and
stored for each element in the array as it is written. When
an element is read from the array, the ECC from the
array is checked with the ECC generated on the output
data of the array.

Logical and physical security

Regardless of a chip’s architectural function, the chip
must support basic infrastructure requirements; therefore,
these support functions are typically found in any VLSI
chip design. For SCM, many of these functions are
modified to meet FIPS 140-1 security requirements,

as described in the following subsections.
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® Resets

For most VLSI chips, resets are performed using the basic
scan chain structure. For SCM, however, the majority of
the registers are hardware-reset, and scan-chain operations
are inhibited.

® Chip scan and test security
The SCM chip has unique security requirements for its
scan and test design. Figure 8 gives an overview of the
SCM from a chip-scan and self-test perspective. The
design must allow for debugging of problems during early
system bringup. However, data processed on chips that
have been shipped to customers must be incontrovertibly
secure. Additionally, these chips must achieve the same
high manufacturing test coverage level as the rest of the
chips in the S/390 systems.

The first step in achieving the required security
was to carefully identify the latches which may contain
information that must be protected (called secure latches)
and the latches which will always contain data that it is
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permissible to access for debug (called unsecured latches).
The scan chain of the chip is divided such that all of

the secure latches are in one section and all of the
unsecured latches are in a separate section. A chip that is
“shippable” to a customer has unique personalization
embedded during manufacturing that will cause it to treat
these two scan rings quite differently. However, a chip
built for use in internal bringup treats both scan rings as if
they were unsecured. No unsecured chip can be shipped,
because the manufacturing test patterns produce
completely different signatures for secure and unsecured
chips. An unsecured chip would therefore fail the
manufacturing test.

The SCM arrays that contain secure information can be
accessed by scanning secure latches that connect to their
data, address, and control pins. They are therefore
accessible for debug, but are not accessible on a chip
that has been built to be shippable to a customer.

Thorough manufacturing tests require access to all
SRLs and arrays. To enable these tests, the chip has
facilities that precisely monitor whether it has been put
into one of the test modes. When the chip passes into or
out of a manufacturing test mode, these facilities create
reset signals and generate clocks that clear out all latches.
While these resets are in process, the chip “fences oft”
the usual input pins controlling clocking and other basic
operations, so that external manipulation of these pins
cannot prevent the resets from completing. In concert with
this security reset mechanism, there are controls that
fence off the arrays under all conditions except system
operation and array test. Array test is performed by an
on-chip engine that never latches array data values, only
pass/fail results. Finally, clocks are gated off directly when
the chip is put into various test modes to ensure that test
observation registers can never load customer data.

The SCM uses this combination of fencing, resetting,
and clock blocking on the basis of the mode and any
transitions of modes to enforce rock-solid security
practices while allowing extensive manufacturing test
coverage.

® Clocking

The SCM chip has unique requirements in its clocking
design. It is attached to a CPU chip which runs on clocks
that are higher in frequency than the SCM chip clocks.
The temperature, sort points, and design vintage of the
attached CPU may be quite different in the various
machines to which the SCM chip is attached. The SCM-
chip-to-CPU-chip interface must be synchronous, however,
so that both chips will start and stop together. We
therefore designed the SCM chip to run at programmable
“gear ratios” which allow it to operate at a clock
frequency that is a multiple of the clock frequency of

the corresponding CPU.
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The SCM, the CPU, and other central chips in an S/390
system receive a reference oscillator signal (REF_OSC).
Each chip then uses a phase-locked loop (PLL) to
generate a higher-frequency clock, which rises in sync
with the REF_OSC signal. This design results in tightly
synchronized clocks across all chips. The system clock chip
drives the basic critical signals to all chips that control
their clocking and scanning. The challenge for the SCM
chip was to use the same existing signals as any other
chip, but to interpret them in a way that allows
synchronous operation with no data integrity exposure
at a frequency that may not be an integer divisor of
the REF_OSC signal.

The PLL in a chip that does not implement gearing has
only one output frequency. The REF_OSC frequency is
multiplied by a programmable control to create an
internal PLL frequency, and is then divided down by a
programmable integer to create the output frequency.
The output frequency is sent through a typical clock
distribution path and routed back to the PLL feedback,
where it arrives at the same time as the trigger clock
signal would arrive at a typical latch/trigger pair (SRL).
The PLL uses the phase difference of the rising
REF_OSC versus this feedback clock to control the
oscillator that creates the internal PLL frequency, thereby
driving the phase difference to zero. The SCM PLL, in

contrast to this, was designed to drive out two frequencies:

the nest frequency, which is generated in exactly the same
manner as on other chips in the system, and the SCM
frequency, which is simply a different multiple of the
internal PLL frequency. Only the nest frequency is
actually routed from a typical end distribution point to the
PLL feedback pin, so only the nest frequency is precisely
tuned to the REF_OSC. However, the SCM-frequency
clock distribution is carefully designed to closely match
the nest clock distribution on an SCM chip, so that the
skew between the two clocks is minimized.

The SCM uses the nest-frequency clock section to
interpret signals to and from the clock chip. The nest
clock is also used for a single signal to each attached CPU
that allows the CPUs to predict the proper cycles during
which to transfer information on the SCM interface. The
SCM frequency is used for all cryptographic processing
and for command and data communications to and from
the attached CPUs. The SCM uses both clocks to
determine the relative alignment of the clocks and
thereby control the gearing.

The alignment of the two clocks is determined through
a series of SRLs that look for a signature sequence
pattern of the value of the REF_OSC when observed at
SCM latch-time points. When the signature sequence is
detected, indicating the concurrent rising-edge alignment,
a ring-shift register is preset to a single 1 in the proper
position. This ring shifter is clocked by nest clocks.
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The position of the single 1 indicates the current clock
alignment at any time. The state of this ring-shift register
is used to interpret the clock controls in the proper way
to ensure that clocks are never chopped short, and never
occur when they would cause a data integrity exposure
due to clocks having already stopped on the CPU side
of the interface.

The CPU chip uses the synchronizing signal from the
SCM to preset its own ring shifter, and then decodes the
state of its ring shifter to determine the proper cycle to
load its SCM interface registers.

This gearing design, through the mechanisms outlined
above, provides the flexibility required to include the
SCM chip in systems of highly varying performance
characteristics.

Reliability, availability, and serviceability

The reliability/availability/serviceability (RAS) strategy is
to continue the S/390 objective of providing continuous
reliable operation (CRO). The SCM, as part of the S/390
hardware structure, incorporates many mechanisms to
fulfill the objective of CRO.

Error detection is fundamental in ensuring the integrity
of data. Errors must be detected at the time of failure,
contained, and isolated to the smallest entity possible to
make recovery reasonable and to enable accurate field-
replaceable unit (FRU) isolation. Error detection and
fault isolation (ED/FI) mechanisms must detect either
stuck or intermittent hardware faults. Once an error is
detected, effective recovery mechanisms ensure continued
functional availability. Isolation of an error to an FRU
ensures rapid field serviceability.

The S/390 Parallel Enterprise Server design requirement
for hardware logic chip design and implementation is to
have an error-detection coverage of single bit faults of
at least 95% and isolation to a single chip.

For the SCM, the coverage requirement of 95% was
exceeded, with a coverage of 97.3%. This coverage was
implemented using various well-known logic design error-
detection concepts [10-12]:

Byte parity on all internal and external data buses.
Sequence, invalid states, and duplication on logic control
state machines.

Duplication of DES engines.

Parity prediction and carry checking on adders and
ALUs.

Residue checking on the modular exponentiation engine.
Parity on general register arrays.

Double-bit error detection and single-bit correction on
C-SRAM arrays and fuse arrays.

Single-bit error scrubbing every three hours on C-SRAM
arrays.

100% fault isolation on chip logic interface.
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Starting with G5, the physical connection of each SCM
to two CPUs (as indicated in Figure 1). If the primary
CPU to which the SCM is attached fails, the recovery
action will logically reassign the SCM to the second
physical CPU.

All of the above tests are continuous; at every machine
clock cycle, the various hardware error checkers check

the entire complement of hardware logic. For internal
isolation purposes, the SCM contains more than 600
individual error latches. Therefore, when an error is
detected, examination of the active error latches can assist
in isolation of the source of the error. This is useful
information for post-error failure analysis.

® LError injection

Implementation of ED/FI is critical to meet CRO, but
mechanisms must be implemented as well to test and
verify the logic. Starting with the G5 Enterprise Server,
additional hardware was implemented in the SCM to
enable the injection of different types of errors for
recovery testing and validation. This error injection
provides the ability during hardware test to verify that
the hardware and external machine-level recovery code
are designed and implemented correctly in reporting,
recovering, and responding to errors.

The setup for error injection uses the same CPU-
to-SCM interface and is set up using various options
available via the CPU LIC. A setup is done such that an
error (stuck or intermittent) is encountered and reported
when certain preset conditions are met. This can be based
on a trap event, a multiple occurrence of the trap event,
and a cycle offset as well. Single- and double-bit errors
can be loaded into the C-SRAMs to test both correctable
and noncorrectable situations.

® Recovery

Once an error is detected, various recovery actions can
be taken to clear the error. For intermittent errors, it
is important that the hardware can be recovered and
continue to be used within the system. The SCM

has numerous recovery actions. Errors are of the
following types:

e Arrays
* Single-bit correctable error, either intermittent or
stuck.
e Multibit error, either intermittent or stuck.
* Non-array logic
* Single-bit intermittent or stuck error.
* Hang condition.

When an error is detected, the SCM enters a failure state.
Logging of entries in the hardware trace array is stopped,
hardware state machines are quiesced, the CPU/SCM
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interface is fenced, and the error state is reported to

the CPU. The CPU LIC will initiate a recovery action.
Depending on the activity of the SCM at the time of the
error, it may be able to reset and recover the SCM. If this
is possible, it is done in a way that is transparent to the
application. If the error is such that the SCM cannot be
recovered, the SCM will remain in the failure state and be

removed from the CEC configuration, and a maintenance TM A Certification Mark of NIST, which does not imply product
action will be requested. endorsement by NIST, the U.S. or Canadian Governments

If the error is a correctable error, this information is
automatically logged and recorded for threshold activity.
If numerous correctable errors occur within a set period
of time, the SCM will enter the failure state and a IFIPS 140.1 certification logotype.
repair action will be requested.

FIPS 140-1 security compliance

Federal Information Processing Standard 140-1, Security and services provided. A number of unique characteristics
Requirements for Cryptographic Modules [7], “specifies differentiate the SCM with respect to the validation:
the security requirements that are to be satisfied by a
cryptographic module utilized within a security system 1. The SCM contains no software, firmware, or operating
protecting unclassified information within computer and system. Implementation is entirely in hardware.
telecommunication systems (including voice systems). The ~ 2. The SCM is a single-chip module implementation.
standard provides four increasing, qualitative levels of 3. Power-up tests and conditional tests are implemented
security: Level 1, Level 2, Level 3, and Level 4. These using the internal RAS characteristics of the module
levels are intended to cover the wide range of potential rather than explicit known-answer tests.
applications and environments in which cryptographic
modules may be employed. The security requirements Performance
cover areas related to the secure design and The first design objective for the SCM was to meet the
implementation of a cryptographic module. These strict security requirements for cryptographic operations
areas include basic design and documentation, module and a rich set of functions. The second design objective
interfaces, authorized roles and services, physical was to meet the S/390 RAS requirements. The third
security, software security, operating system security, key design objective was to equal and exceed the performance
management, cryptographic algorithms, electromagnetic criteria set by the previous bipolar Integrated Cryptographic
interference/electromagnetic compatibility (EMI/EMC), Facility (ICRF) for symmetric key functions and obtain
and self-testing.” reasonable performance for the new asymmetric key

The SCM was successfully validated to comply with the functions. Performance was optimized in the following
rigorous requirements of the FIPS 140-1 standard and ways:
was awarded certification on January 7, 1999, at an
overall Level 4 (Figure 9). The entire list of validated e CPU direct-attach coprocessor Rather than an 1/O-
products can be found at the referenced URL [13]. The attached coprocessor, the SCM is attached directly to
cryptographic module physical boundary defined by FIPS the host CPU. This direct connection to the CPU,
140-1 as it applies to the SCM is indicated in Figure 2 as and integration as a logical execution engine, ensures
all of the logic and function encompassed within the red minimal latency to instruction decoding, setup, operand
boundary. As a prerequisite to FIPS 140-1 validation, all fetching, and storing and execution. The high-
FIPS-approved implemented cryptographic algorithms performance Generation 6, 637-MHz S/390 CPU
must also be validated against their respective standards. provides the direct storage interface and CPU LIC
The SCM implements and has had validated the FIPS services for the SCM.
standard algorithms of DES, SHS, and DSS. As part of e Hardware-only design ~ As described, execution of all
the validation, a rigorous number of defined tests must be operations within the SCM is controlled and managed by
passed [14]. hardware state machines. This provides highly optimized

The SCM security policy [15] provides a description instruction execution with minimal idle or setup cycles.
of the cryptographic module, including all hardware, o Cryptographic engine integration ~As described, the

software, and firmware components, and defines the roles integration of the various cryptographic engines with 773
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Photograph of the S/390 SCM, showing relative size.

very tightly controlled data-path structures provides
optimum channeling of data between I/O and engines
within the SCM.

Technology The SCM is manufactured in IBM

CMOS 5X [16] technology. This is a high-performance
technology whose attributes include the following: supply
voltage, 2.5 V; 0.25-um L ; lithography generation,

0.5 pm; five metal levels. For I/O the chip uses a solder-
ball grid-array die for high-performance packaging
configurations.

Cycle time  As the CPU design has progressed using
newer technologies, the SCM has remained in CMOS
5X technology. This has created a cycle-time differential
between the CPU and the SCM. Therefore, the SCM
internal cycle time varies as an integer multiplier of the
direct-attached CPU. For the recently announced S/390
Generation 6 Parallel Enterprise Server, the SCM
operates at 127 MHz.

Some examples of algorithmic function execution rates at
the SCM hardware level at 127 MHz include

DES encryption CBC mode: 102 megabytes per second.
RSA 1024-bit signature generate: 78.5 transactions per
second.

RSA 1024-bit signature verify: 53000 transactions per
second (3-bit exponent).

RSA 1024-bit signature verify: 23000 transactions per
second (17-bit exponent).

Summary

The SCM (Figure 10) provides a complete set of
cryptographic algorithms within a secure architecture on
a single-chip implementation. It has been designed and
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validated to meet the highest level of security, Level 4, as
defined in NIST FIPS 140-1. With its introduction on the
IBM G3 Enterprise Server, the SCM became the fastest,

smallest, and most secure coprocessor ever developed.
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