
by M. A. Check
T. J. SlegelCustom S/390

G5 and G6
microprocessors

Compared with the G4 microprocessor, the
S/390® G5 microprocessor contains many
architectural and performance enhancements.
The G6 microprocessor represents a
technology performance improvement over G5,
with system support for additional processors.
The G5 processor uses IBM CMOS 6X
technology and has a clock frequency of
500 MHz in its fastest models. The G6 uses
CMOS 7S technology with a clock frequency
up to 637 MHz. The processors include a new
IEEE binary floating-point architecture and
additional reliability–availability–serviceability
(RAS) improvements. The processor has
significant performance improvements,
including a larger level-1 (L1) cache,
enhancements to the instruction fetch buffers,
a branch target buffer (BTB), enhancements
for a number of instructions, a new quiesce
mechanism for instructions that modify
translation lookaside buffer (TLB) entries,
and a new level-2 (L2) cache and memory
subsystem.

Introduction
In 1994 the S/390* Division of IBM began the
transformation from bipolar technology to CMOS. The
fourth-generation G4 system was generally equivalent in
performance to the fastest IBM bipolar systems. The G5,
the fifth generation of CMOS machines, has a design goal
to provide a significant performance improvement to the
S/390 customers, as well as new architectural features to

enable new applications. The G5 system increases
performance more than twofold over that of the G4
system. It also provides an IEEE-compatible binary
floating-point architecture for S/390 in addition to its
existing hexadecimal format. The S/390 system platform
has provided customers state-of-the-art RAS. These
generations offer additional improvements, the most
significant of which is transparent processor sparing. The
G6 generation offers an additional processor performance
improvement due to the technology improvement and
additional system performance from two more processors.

The processor improvements will be coupled with a
new L2 cache and memory subsystem. This new L2
and memory structure provides a much-improved
multiprocessor efficiency and system extensibility over that
in the G4 system. For further information, please see the
paper by Turgeon et al. [1] in this Journal issue, which
describes the design of the L2 cache and memory
subsystem.

The design of the G5 and G6 microprocessors is based
on that of the G4 [2, 3]. The processor design is relatively
simple in that it is optimized for a very high clock
frequency to obtain excellent performance. A high-level
diagram in Figure 1 shows the functional unit partitions
and functional contents of these microprocessors.
The processor executes the ESA/390* instruction set
architecture [4]. This is a rich Complex Instruction-Set
Computer (CISC) architecture that requires some unusual
tradeoffs in the design of a processor. For example, the
processor is not superscalar but instead tries to reduce
the number of clock cycles required for the long-running
complex instructions. To simplify the logic design, the
processor uses millicode [2] (a form of Licensed Internal

rCopyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 M. A. CHECK AND T. J. SLEGEL

671

Code), which is the vertical microcode that executes on
this family of processors to implement many complex
elements of the architecture. Millicode consists of all of
the hardwired ESA/390 instructions plus 102 hardwired
assist instructions that can only be executed by millicode.

Performance improvements
Providing significant performance improvements for the
S/390 systems from generation to generation required
improvements in many areas, including technology, cycles
per instruction (CPI), multiprocessor efficiency, and
size of the multiprocessor structure. The new memory
subsystem structure provided much-improved finite cache
effects for multiprocessor efficiency in the G5 and G6
systems, as well as extensions for the G6 system to provide
for two additional processors. Each successive processor
generation exploited one newer CMOS technology

generation. The G5 processor has numerous CPI
enhancements, with a small amount of additional tuning
for the G6 processor.

● Technology
The G5 [5] system is fabricated with IBM CMOS 6X
technology. It is a 0.25-mm technology with an 0.15-mm
Leff (on the n-FET) and operates at 1.9 V. The processor
runs at a clock rate of 500 MHz in the fastest versions,
which have a self-contained chiller unit. The rest of the
cache and memory subsystem is fabricated with CMOS 6S
technology and operates at 250 MHz. The CMOS 6X
process has six levels of aluminum wiring and one
local wiring level. The G6 processor and L2 cache are
fabricated with IBM CMOS 7S technology, which is a
0.20-mm technology with a 0.12-mm Leff and uses copper
wiring.

M. A. CHECK AND T. J. SLEGEL IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

672

To take advantage of the full capability of the
technology, significant emphasis was placed on the timing
analysis [6] to ensure that the processor is not limited by
paths that are dominated by wire delay. This is important
to make it possible to use line tailoring of the final
product release, allowing the silicon paths to run faster
than originally designed. This would not be possible if
the limiting paths were wire-delay-dominated, because
the faster transistors do not reduce wire delay. In
addition, small adjustments have been made to VDD and
temperature to achieve the frequency at the high end of
the family of systems. The initial modeling of the circuit
design is done to allow the exploitation of these
adjustments near the end of the design cycle.

● Cache structure improvements
The unified L1 cache size has been quadrupled to 256K
bytes, with an increase in the line size from 128 bytes to
256 bytes. The line size has been increased to keep the L1
and L2 line sizes consistent and limit the timing effect on
the size of the L1 directory arrays. It also allows for some
access patterns to bring fewer lines into the cache at the
cost of longer transfer times of the line from L2 to L1,
which overall had a slight improvement in performance.
With this also came increases in the size and associativity
of the TLB from a 256-entry two-way to a 1024-entry
four-way. In addition, the entire L2 cache and memory
structure has been redesigned for the G5 system. The
change from a bus-based to a point-to-point switch-based
memory subsystem improved the finite cache effects
significantly.

In order to process a request for data from the cache,
the following steps must be completed: Generate the
virtual address; translate the access-list-entry token
(ALET) to a segment table origin (STO) using the access
register translation lookaside buffer (ALB); translate the

virtual address to an absolute address using the TLB;
access the cache directory to see where the data is located
in the cache; and read the data from the cache. For
performance considerations, these steps must not be
performed sequentially. As can be seen from Figure 2,
which shows the instruction pipeline, several of these steps
are done in parallel. In the G4 system, a structure called
an absolute address history table (AAHT) [2, 7] was
used to allow several of these access functions to occur
simultaneously. The AAHT structure is used to solve the
problem of synonyms. Synonyms occur when bits of a
virtual address that are subject to translation are used to
address an absolute-addressed cache, because different
virtual addresses may map to the same absolute address.
Since it is not known what the virtual-to-absolute
translation will produce, there are multiple possibilities.
The AAHT provides an initial prediction of the value that
will be returned from translation, and that value is used
for the cache access. Storage pages are 4K in size, and
thus bits 1 to 19 of the virtual address are subject to
translation. The G4 processor had 64 KB of L1 cache that
was four-way associative, with even and odd doubleword
interleaves, which required bits 18 to 28 to address it. Bits
18 and 19 were subject to translation. The AAHT predicts
the absolute address bits for the cache request before the
lookup in the TLB would be completed. This structure has
been enhanced for G5 and G6 as in Figure 3, including a
separate AAHT for instruction fetching.

In this mechanism, bits from registers that form the
virtual address are used to index an array which contains a
guess for the absolute address bits for that page index
value. Improvements have been made to the mechanism
that was used in G4 to improve its accuracy. The original
G4 design used bits from the base or index register values
for operand requests and a value based on the current
instruction stream for instruction requests. From

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 M. A. CHECK AND T. J. SLEGEL

673

performance analysis of operation from the G4 system,
it was found that improvements could be made to the
operand index value. The inclusion of the BTB would
require further changes to the instruction absolute address
bit prediction. In the G4 system there were only two
absolute address bits that had to be predicted. In the L1
cache system of the G5 system there is a 256KB cache
that is four-way associative with two interleaves. This
requires that bits 16 to 28 be used to address the cache.
Now there are four bits, 16 to 19, that are subject to
translation, requiring four bits to be predicted. Predicting
a greater number of bits requires these improvements
in order to enhance processor performance.

For instruction fetching in the G4, the two bits were
predicted on the basis of the bits for the current

instruction stream. For most branches, which are normally
short, this would be correct. If the branch distance were
longer and to a different line, there would still be a 25%
chance of guessing correctly. However, with four bits to
guess, there would be only a slightly greater than 6%
chance that it would be correct for long branches. The
BTB would thus be trying to predict the targets of branches
and prefetch those targets. If the current absolute bits of
the instruction stream were to be used for these branches,
the prediction would often be wrong when the branch
target was to another line. This would use directory cycles
which are already in high demand because of the unified
cache.

The AAHT index and array for operand requests
existed in the G4 processor, and a similar structure for

M. A. CHECK AND T. J. SLEGEL IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

674

instruction requests has been added in the G5 processor.
Once the structure exists, it can be used to predict
absolute bits for surprise branches. In the case of
branches, the branch address is rarely based on both a
base and an index register. For these surprise branch
target instruction fetches, only the base or index register
contents are used, depending on which register the branch
instruction used. The BTB entry incorporates the virtual
target address. Thus, the value of the instruction AAHT
table index is based on bits of the virtual address of the
current instruction address, BTB target address, or part
of the target address.

For the operand absolute address history array index,
the G4 used only bits from the base or index register. If
the instruction used a base register, only bits from the
base register were used. If a base register was not used,
only bits from the index register were used. This method
was found to be less than optimal for several important
cases. The first is when the effective address uses both
base and index values, or when a large displacement value
is used, such as in a table lookup. For this problem, the
ideal case would be to have the full effective address for
the table lookup. However, the effective address is being
calculated during the same cycle as the AAHT array
access and is not yet available. Thus, a quick hash function
based on the bits of the base, index, and displacement
fields is performed during the instruction decode cycle,
which is the cycle prior to the AAHT array access. The
second important case concerns an instruction which
updates a general register (GR) that is still pending
execution when a subsequent instruction that requires the
use of that register to generate its storage address is
decoded. For performance reasons, the processor allows
data from internal buffers for LOAD (L) or LOAD
ADDRESS (LA) instructions to be used to generate the
correct storage address before one of these instructions
completes execution. In this case, the data for the
effective address add is not coming from the general
registers but is being passed from the internal buffers
from a previous instruction. This data must be used in
place of the general register output values.

● BTB and instruction fetch buffers
Significant improvements in performance have been
gained with the inclusion of a BTB (Figure 4) and more
instruction fetch buffers in the G5 processor. The BTB
contains 2048 entries in a 2 3 1024-entry two-way
associative format. The instruction buffers are increased
from four 32-byte buffers in G4 to six 32-byte buffers in
G5. This allows the G5 processor in all but the tightest
loops to find branches and fetch their target instruction
streams before the branches are decoded.

The BTB in the G5 holds only taken branches and uses
a two-bit algorithm to indicate strongly taken, weakly

taken, and changing target branches. This enables the
BTB to deal with branches that change direction or target
frequently. When a taken branch is first encountered, the
branch is installed as strongly taken. If a branch in the
BTB currently marked strongly taken is subsequently not
taken, it is moved to weakly taken. If a weakly taken
branch is not taken, it is removed from the BTB. A
branch that is currently weakly taken is changed to
strongly taken if the branch is taken again. This allows
better prediction in cases where the branch is alternating
between taken and not taken. For changing target
branches, the entry is marked as such. In this case,
instruction fetching is not started to an unreliable address,
since more time would be required to move to the correct
stream when the real target is known. Instead, instruction
fetch waits until the branch reaches the address
computation stage and fetches the correct target address.

The G5 BTB also holds branch information on all types
of instruction code, including normal S/390 code and all
forms of Licensed Internal Code (LIC) such as millicode.
This information is carried with the entry and allows the
internal code to benefit from branch prediction of the
BTB in the same way as S/390 code. In the past, either the

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 M. A. CHECK AND T. J. SLEGEL

675

internal forms did not benefit from the BTB, since it could
not distinguish between the different branches, or two
different structures would have to be created. A single
control bit is used to distinguish between the S/390 and
all forms of LIC.

The array contains 2048 35-bit entries which are
indexed by 10 bits of search address that each contain 13
bits of current instruction address, 19 bits of branch target
address, and three control bits. There is a least-recently-
used (LRU) bit for each of the set entries. Special
attention is given to the handling of the LRU bit when a
tight loop is encountered. It is not desirable to have the
same branch written into both sets for a given entry
address. LRU updates are also performed each time
an existing branch is encountered. In the G6 system, a
mechanism has been added so that instruction decode is
prevented for a few cycles when a tight loop is detected
that the BTB is not able to search and predict soon
enough. This allows the BTB to predict the branch loop.
The performance gain from this step is greater than the
cost of the delayed decode cycles. To limit the size of the
array, the number of instruction address and branch target
address bits is less than the full address. The number split
between current instruction address and target address
was determined on the basis of performance modeling.
The remainder of the bits are assumed to be the current
instruction address bits in order to generate the predicted
target address.

Once a matching entry is found in the BTB, the target
address is forwarded to the instruction fetch logic, which
requests the target instruction stream from the cache. At
the time the branch is decoded, the correct target address
is calculated; it is then used to ensure that the predicted
address is correct. If so, the target has already been
fetched, and decoding of the target stream occurs during
the next cycle. If the target was incorrect, a branch wrong
target is indicated with the branch execution, and the
correct target stream is then fetched.

The array is searched at a rate of 16 bytes per cycle.
The search is conducted on the current 256-byte line and
the next sequential line. The search can be started from
a number of different locations including the current
instruction address, the next sequential line of the current
address, the target address of a surprise branch predicted
as taken (one that is not BTB-predicted), a BTB-predicted
target address, the correct address of a branch that was
predicted as taken but with an incorrect target, or the
target address of a branch predicted as not taken that
was actually taken.

The BTB also has a mechanism to turn itself off and on
under millicode control. This is done because there are
some functions that require tight control on cache activity
while operations to the rest of the system structure occur.
Since the BTB searches and fetches branch targets on its

own, it is temporarily turned off in order to prevent these
unexpected fetches. There are also a few specific loops
in certain performance-sensitive millicoded instructions
for which, because of the nature of their function,
performance is better with the BTB turned off. The
presence of this mechanism allows millicode to exploit
this capability.

The instruction buffers in this family of processors
are each 32 bytes in length and are assigned one per
instruction path by cache line. As a doubleword of
instruction text is consumed in instruction decode, further
doublewords are fetched into the buffer. As fetching nears
the end of a line, a different instruction buffer is assigned
to fetch the next sequential line. In the G5 system, the
number of instruction buffers has been increased from
four buffers to six to provide the best use of predictions
from the BTB. In the four-buffer G4 system, one would be
used for the current line, one for the next sequential line,
and one each for two possible outstanding branch paths.
Thus, the BTB would predict a future branch, but it would
not be possible to fetch the target stream in some cases.
With two more buffers added, the targets of predicted
branches can be fetched or allow sequential lines of
branch targets near the end of lines to be fetched as well.

● Instruction performance enhancements
The G5 processor includes performance improvements
for two classes of instructions. The first is the set of
instructions that operate on decimal data. Many
applications used on S/390 systems, particularly in the
financial industry, require good decimal performance.
The G4 system included an eight-digit decimal adder and
performed add/subtract/compare operations in hardware.
The remainder of the decimal instructions were
implemented using millicode. The G5 design includes a
decimal multiplier that uses a lookup table to generate
partial products, with the entire decimal multiply
instruction done under hardware control. For decimal
divide, a hardware assist instruction is included which
produces one digit of the quotient. Millicode uses this
assist instruction iteratively to produce the full quotient.
Finally, there is dedicated hardware to implement the
convert to/from integer instructions and the pack/unpack
instructions under complete hardware control. The two
instructions CONVERT TO BINARY (CVB) and
CONVERT TO DECIMAL (CVD) switch an operand
between binary and decimal formats. The PACK (PACK)
and UNPACK (UNPK) instructions convert from one
to the other of the two decimal data formats (“zoned
format” and “packed format”) described in Chapter 8
of the ESA/390 Principles of Operation [4].

The other class of instructions that achieve a significant
performance improvement over G4 are those that
manipulate the program status word (PSW), including

M. A. CHECK AND T. J. SLEGEL IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

676

LOAD PSW (LPSW), SET SYSTEM MASK (SSM),
STORE THEN OR SYSTEM MASK (STOSM), STORE
THEN AND SYSTEM MASK (STNSM), SET ADDRESS
SPACE CONTROL (SAC), SET ADDRESS SPACE
CONTROL FAST (SACF), and SET PSW KEY FROM
ADDRESS (SPKA). These instructions change the
fundamental state of the processor in one or more of
the following areas: enablement of dynamic address
translation, address space where subsequent instructions
and/or operands will be fetched, and enablement of
interruptions. These instructions are architecturally
complex, and the G4 design used millicode to implement
them. Avoiding the process of entering and exiting
millicode for these instructions can save seven to ten
cycles for each execution. For a few of these instructions,
determination of certain conditions via millicode
instructions can take multiple cycles, whereas the
hardware-executed implementation can be performed
in a single execution cycle.

A common thread that runs through the implementation
of many of these instructions is whether or not processor
operations must be serialized after their execution. In the
processor, serialization is defined as discarding partially
executed instructions that have not yet completed and
any instructions that may have been prefetched. Since a
serialization action costs approximately 12 clock cycles
in the G5 processor, it must be avoided if possible.
Serialization may be required either for ESA/390
architectural reasons (although it may be possible to avoid
it in many cases, given certain characteristics of the G5
microarchitecture for which it is known that the ESA/390
architectural requirements have been met in other ways),
or for practical reasons based on the implementation.

The SPKA instruction changes the storage protection
key used to access subsequent instructions and data. In
the G5 processor, serialization is normally not required
following the SPKA in order to meet the ESA/390
architectural requirements, since instruction decode and
therefore operand fetches are inhibited after an SPKA
decodes and until it completes. The problem is that a
subsequent instruction is likely to have been prefetched
and already in an instruction buffer. The L1 cache would
have checked for I-fetch data for protection exceptions
against the old PSW key and would not be aware that it
has been changed. The G5 includes logic to carefully
monitor prefetched instructions against changes made to
the key via an SPKA instruction. If it detects a possible
conflict, it serializes the processor to allow a protection
exception to be taken when the data is refetched.
However, this serialization is now a rare occurrence
and does not affect performance.

The STOSM and STNSM instructions modify the system
mask portion of the PSW and receive special treatment
to avoid unnecessary serializations. Although these

instructions can modify any portion of the system mask,
they are typically used to enable and disable I/O and
external interrupts. If one of these instructions modifies
any other portion of the system mask, the logic
unconditionally serializes the processor. If the instruction
modifies only the interrupt mask bits, serialization is
normally not performed. However, the ESA/390
architecture requires an interrupt to occur immediately
following an STOSM if an asynchronous interrupt is
pending. Therefore, there is logic in the G5 which detects
that an interrupt may be pending regardless of the current
interrupt mask settings. If one is, the processor is
serialized to allow the asynchronous interrupt logic to
correctly present the interrupt. In addition, owing to a
delay of several clock cycles in the “handshaking” between
the PSW logic and the asynchronous interrupt logic,
interrupts are artificially blocked, and the processor is
serialized if a pending interrupt is detected during this
time.

● Quiesce mechanism
The ESA/390 architecture contains two relatively
frequently used instructions that can have a significant
performance impact on larger SMP systems. These are
INVALIDATE PAGE TABLE ENTRY (IPTE) and SET
STORAGE KEY EXTENDED (SSKE). In both cases, the
ESA/390 architecture requires local copies of page table
entries or storage keys, typically kept in the TLB, on other
processors to be invalidated before the instruction
completes on the issuing processor.

IBM has used several different implementations in past
systems to achieve the architectural requirements. A
commonly used one (and the one used on the G4 system)
worked on the principle of quiescing operations on
all processors during the execution of one of these
instructions. When a processor, called the master, began
executing an IPTE or SSKE instruction, it would first
notify the system control (SC) element that it wanted to
quiesce the system. The SC would then broadcast this
quiesce request to all processors in the system, called slave
processors, as an interrupt. When each slave processor
reached an interruptible point, it would inform the SC
that it was now quiesced and would wait in a millicode
loop for further commands. Only when all slave processors
reached a quiesce point would the master processor issue
a command to have them make the appropriate changes to
their TLBs. The master processor, after modifying its own
TLB, would then modify the common facility: a page-table
entry in storage for IPTE or a storage key for SSKE.
Finally, the master processor would issue a command to
all slave processors informing them that the quiesce had
completed and they were free to continue normal
operations.

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 M. A. CHECK AND T. J. SLEGEL

677

This scheme meets the architectural requirements for
IPTE and SSKE but has one major drawback: All
processors in the system must wait, doing no useful work,
until the last processor in the system responds to the
quiesce request. The performance impact of this effect
becomes worse for larger SMP systems. The problem can
be mitigated, to some extent, by optimizing the hardware
and millicode by checking for pending system quiesce
requests more frequently, and this has been done on the
G4 system. However, when the design of the G5 system
was begun, this system quiesce penalty was a significant
impediment to the improvement to CPI, and a better
solution was desired.

The G5 uses a novel approach to the system quiesce
problem for IPTE and SSKE which is shown in Figure 5.
The first improvement is the reduction of handshaking
between the master processor and the SC by combining
the command to quiesce the system and the command to
perform the actual operation on the slave processors.
When the SC receives this command from the master
processor, it initializes a state machine and broadcasts the
request to all slave processors. A slave processor which
receives this quiesce interrupt notifies the SC that it has
reached a quiesce point. In contrast to the G4 system, a
slave processor immediately makes the updates to its own
TLB and is then free to continue normal execution of

instructions, subject to certain limitations. If the slave
processor requires any updates to its TLB, it must stop
further execution and wait until the quiesce operation
completes. The most important examples are a TLB miss
requiring translation, or a required access to a storage
key. The SC tracks the slave processors to determine when
all of them have reached a quiesce point. When they have,
it notifies the master processor so that it can change the
common facility. It then informs the SC that this quiesce
operation is complete and normal system operation can
resume without limitations. Any slave processors that were
stopped because of a TLB miss can now continue. Since
the typical time between TLB misses is longer than the
typical time required to perform an IPTE or SSKE
operation, this design eliminates most of the “quiesce
wait” penalty on the slave processors.

● Other performance enhancements
In addition to the major performance enhancements in the
G5 processor that have already been discussed, there are
many smaller improvements. Each one, by itself, provides
a relatively modest increase in CPI. However, the sum
of all of them yields a significant CPI improvement.

In the G4, G5, and G6 processors, integer multiply and
divide operations are actually performed in the floating-
point unit (FPU) rather than in the fixed-point unit

M. A. CHECK AND T. J. SLEGEL IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

678

(FXU). The FPU already has the dataflow logic in place
to perform these operations and requires only a small
amount of additional control logic to perform the integer
counterpart of these instructions. However, because the
general registers (GRs) are located in the FXU, the data
must be first sent to the FPU for processing and the
results returned to the FXU. In G5, this handshaking
between the two units has been optimized and is one
clock cycle shorter than in G4.

Two types of store instructions have also been improved
in G5. First, the MOVE CHARACTER (MVC)
instruction with one-byte destructive overlap and the
EXCLUSIVE OR CHARACTER (XC) instruction with
exact overlap are commonly used to clear areas of
memory (or to set all bytes to the same value). In G5,
logic has been added to detect this special case and
perform the stores at 16 bytes per clock cycle. In addition,
floating-point store instructions may now be pipelined
with other types of floating-point instructions to further
improve performance.

Another area of improvement involves the hardware
assists and setup that are done to make millicode
operations more efficient. The G5 provides assists
for millicode to use for the TRANSLATE (TR),
TRANSLATE AND TEST (TRT), EDIT (ED), and EDIT
AND MARK (EDMK) operations. These allow hardware
to perform the time-consuming parts of these instructions
while millicode is, essentially, a shell around the hardware
assist iterating through the overall ESA/390 instruction.
Also, for many ESA/390 millicoded instructions, to
optimize performance the G5 hardware performs much
more extensive setup of millicode working registers
and detects various conditions that cause millicode to
branch.

The G6 processor contains hardware support for up to
14 physical processors in a system. It has also optimized
the overlapped fetching of subsequent operand data
following the return of data misses in the L1 cache.

Architectural extensions
The S/390 architecture has undergone many improvements
and additions over the years to allow new applications and
workloads to be handled by the platform. A major new
architectural function that was added to the G5 system is
the IEEE 754 binary floating-point (BFP) architecture.
This architecture has enabled the S/390 platform to
provide support for new applications such as Java.**
In addition, the S/390 platform is now able to provide
compatibility for floating-point data from non-S/390
platforms. For further details on this architecture,
please see the papers on the S/390 BFP facility by
Schwarz and Krygowski [8] and Abbott et al. [9] in this
Journal issue.

RAS improvements
The S/390 systems have long provided excellent reliability,
availability, and serviceability to our customers. From the
start of all designs, such provisions are part of the system
design. In particular, the G4/G5/G6 systems are designed
to detect and recover from errors and protect the
architected state of the system. These processors have
duplicated copies of the instruction unit (IU), fixed-point
unit (FXU), and floating-point unit (FPU). There is a
single copy of the cache and the register unit (RU). The
cache uses error-correcting codes (ECC) on unique data,
and parity on all other data that resides elsewhere in the
system. The RU also uses ECC protection on the state of
the processor. The cache and RU check all results coming
from the replicated units for mismatches that indicate a
possible error. When an error occurs, the processor is reset,
the protected state is restored, and processing resumes.

● Millicode update
The cache also received an improvement in serviceability.
The G4 system contained a 32KB millicode read-only
array that holds the 64 most commonly used routines to
improve performance. In the G5 this has been replaced
by a 32KB writable storage area that is loaded at system
initial millicode load (IML) time. This Licensed Internal
Code may be updated to allow for functional enhancements
until the final version is ready for shipment or even after it
has been shipped. The G5 and G6 microprocessors, like
the G4, are able to update the millicode stored in the
system area concurrently with normal system operation.

● Transparent processor sparing
A major new recovery function called transparent processor
sparing has been added in the G5 microprocessor. When a
processor encounters a permanent failure, the current state
of the application that was executing at that time is
relocated to a spare processor in the system if one is
available. More details of exactly how this works are
available in the paper by Spainhower and Gregg [10]
in this Journal issue concerning the fault-tolerant design
and recovery of the system.

● BTB array errors
The cache arrays in the system have robust error detection
and the ability to function with hardware errors. This has
also been brought into the BTB array design. With the
replicated copies of the instruction unit, it is possible to
cross-check the values coming from the array. If an error
is detected, the processor goes through a recovery action
that will clear the entire array. If it is a transient error,
this action alone will correct the problem. If it is a
permanent array failure, this is detected if a second error
has been detected within a time period determined by
array failure information for the technology. With the

IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999 M. A. CHECK AND T. J. SLEGEL

679

checking performed by the mirrored instruction units, the
copies of the BTB must provide identical results. This
requires the disabling of any portion of the BTB that has
failed. Once detected, one and/or both sets in the array
can be disabled, allowing the processor to operate
correctly but in a performance-degraded mode. At the
next IML, a spare processor is automatically brought on
line to replace the defective one.

Conclusions
In the early 1990s a strategy was put in place to move
the S/390 system line from bipolar to CMOS technology
to provide a better price/performance curve for our
customers. The G4 system provided performance
comparable to that of the last IBM bipolar system. The
G5 system represents a major performance and functional
enhancement to the G4 system. The system delivers more
than twice the performance of G4. The G6 system provides
our customers an additional 32% processor and 51% system
performance improvement over the G5 system. They
complete the transformation of the mainframe systems from
the bipolar technology to the CMOS technology. With
support for the IEEE 754 binary floating-point architecture,
new application support is enabled and continues to provide
new functionality for our customers. Additionally, the G5
microprocessor introduces new RAS features which provide
greater system stability to the customers.

Acknowledgments
The authors wish to recognize the other logic design
leaders, Barry Krumm, John MacDougall, and Eric
Schwarz. Key technical leaders were John Liptay and
Charles Webb. Other key members of the design team
included James Andre, Michael Campbell, Carl Dorestant,
Bruce Giamei, Chris Krygowski, Wen Li, Thomas
McPherson, Jennifer Navarro, Ashok Shenoy, Kevin
Shum, and Scott Swaney. The logic design team would
also like to acknowledge the contributions of the
microcode, verification, and physical design teams.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems, Inc.

References
1. P. R. Turgeon, P. Mak, M. A. Blake, M. F. Fee, C. B.

Ford III, P. J. Meaney, R. Seigler, and W. W. Shen, “The
S/390 G5/G6 Binodal Cache,” IBM J. Res. Develop. 43,
No. 5/6, 661– 670 (1999, this issue).

2. C. F. Webb and J. S. Liptay, “A High-Frequency Custom
CMOS S/390 Microprocessor,” IBM J. Res. Develop. 41,
No. 4/5, 463– 473 (July/September 1997).

3. C. F. Webb, C. J. Anderson, L. Sigal, K. L. Shepard, J. S.
Liptay, J. D. Warnock, B. Curran, B. W. Krumm, M. D.
Mayo, P. J. Camporese, E. M. Schwarz, M. S. Farrell,
P. J. Restle, R. M. Averill III, T. J. Slegel, W. V. Houtt,
Y. H. Chan, B. Wile, T. N. Nguyen, P. G. Emma, D. K.

Beece, T.-C. Ching, and C. Price, “A 400MHz S/390
Microprocessor,” IEEE J. Solid-State Circuits 32, No. 11,
1165–1175 (November 1997).

4. Enterprise Systems Architecture/390 Principles of Operation,
Order No. SA22-7201; available through IBM branch offices.

5. T. J. Slegel, R. M. Averill III, M. A. Check, B. C. Giamei,
B. W. Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay,
J. D. MacDougall, T. J. McPherson, J. A. Navarro, E. M.
Schwarz, K. Shum, and C. F. Webb, “IBM’s S/390 G5
Microprocessor Design,” IEEE Micro 19, No. 2, 12–23
(March/April 1999).

6. D. E. Hoffman, R. M. Averill, B. Curran, Y. H. Chan, A.
Dansky, R. Hatch, T. McNamara, T. J. McPherson, G.
Northrop, L. Sigal, A. Pelella, and P. M. Williams, “Deep
Submicron Design Techniques for the 500MHz IBM S/390
G5 Custom Microprocessor,” Proceedings of the 1998
International Conference on Computer Design (ICCD ’98),
Austin, TX, October 1998, pp. 258 –263.

7. K. Hua, A. Hunt, L. Liu, J.-K. Peir, D. Pruett, and
J. Temple, “Early Resolution of Address Translation in
Cache Design,” Proceedings of the 1990 International
Conference on Computer Design (ICCD ’90), Austin, TX,
September 1990, pp. 408 – 412.

8. E. M. Schwarz and C. A. Krygowski, “The S/390 G5
Floating-Point Unit,” IBM J. Res. Develop. 43, No. 5/6,
707–721 (1999, this issue).

9. P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone,
J. R. Ehrman, G. W. Ewart, C. A. Goodrich, M. Hack,
J. S. Kapernick, B. J. Minchau, W. C. Shepard, R. M.
Smith, Sr., R. Tallman, S. Walkowiak, A. Watanabe, and
W. R. White, “Architecture and Software Support in IBM
S/390 Parallel Enterprise Servers for IEEE Floating-Point
Arithmetic,” IBM J. Res. Develop. 43, No. 5/6, 723–760
(1999, this issue).

10. L. Spainhower and T. A. Gregg, “IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective,” IBM J. Res. Develop. 43, No. 5/6, 863– 873
(1999, this issue).

Received November 18, 1998; accepted for publication
May 28, 1999

Mark A. Check IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (check@us.ibm.com).
Mr. Check received a B.S.E.E. degree from the University of
Wisconsin at Madison in 1988 and an M.S.C.E. from Syracuse
University in 1993. He joined IBM in 1988 at the IBM
Product Development Laboratory in Poughkeepsie in the
Processor Development organization. Mr. Check has worked
on the ES/9000 and the G4 CMOS processor families in the
instruction unit; he was the instruction unit leader for the
G5 and G6 processors. He has received a Fourth-Plateau
IBM Invention Achievement Award, an IBM Outstanding
Innovation Award, and an IBM Outstanding Technical
Achievement Award. Mr. Check is an Advisory Engineer and
a member of the IEEE. He is currently working on the design
of future IBM microprocessors.

Timothy J. Slegel IBM System/390 Division, 522 South
Road, Poughkeepsie, New York 12601 (slegel@us.ibm.com).
Mr. Slegel received his B.S.E.E. and M.S.E.E. degrees from
Lehigh University in 1980 and 1982, respectively, joining IBM
in 1982. He has worked in many areas of processor design,
including arithmetic units, vector processors, and caches, and
was the overall team leader for the G5 and G6 processors.
Mr. Slegel has received a Fifth-Plateau IBM Invention
Achievement Award, an IBM Outstanding Innovation Award,
and two IBM Outstanding Technical Achievement Awards. He
is a Senior Technical Staff Member, currently working on the
design of future IBM microprocessors.

M. A. CHECK AND T. J. SLEGEL IBM J. RES. DEVELOP. VOL. 43 NO. 5/6 SEPTEMBER/NOVEMBER 1999

680

