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Event
monitoring in
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hardware
systems

This paper presents a novel approach for
monitoring disjunct, concurrent operations
in heavily queued systems. A nonobtrusive
activity monitor is used as an on-chip tracing
unit. For each pending operation the monitor
uses the hardware implementation of an
event-triggered operation graph to trace the
path of the operation through the system. In
contrast to conventional tracing units, which
collect and record information from one or
more functional units for later analysis, the
presented solution directly records the path
taken by the operation through the system,
making possible an immediate analysis of
operation inconsistencies. For each followed
path a unique signature is generated which
significantly reduces the amount of trace data
to be stored. The trace information is stored
together with a time stamp for debugging and
measuring of queueing effects and timing
behavior in the system. The method presented
has been successfully applied to the memory-
bus adapter chips in the S/390® G5 and G6
systems.

Introduction
With the high level of integration in recent computer
systems, it has become necessary to integrate hardware
debugging functions within the system. While development
debugging is typically performed by simulation and formal
verification [1], error analysis on real hardware is possible
only by using trace information that is generated by the
hardware itself.

A system can be divided into different functional units.
Common tracing units, such as the one described in [2]
(further called location-centric; see Figure 1), use a fixed
selection of signals from the different functional units to

● Trace off-chip interfaces.
● Trace interfaces between functional units.
● Record commands and data passing through a certain

unit by copying them into on-chip trace arrays.

The characteristics of such a location-centric approach
are as follows:

● Histories are short because of trace array limitations.
● The view of a recorded trace is limited to a specific

functional unit (isolated view).
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● Tracing and error checking are independent of each
other.

Today’s systems have evolved to include many queues
and buffers in the dataflow in order to allow multiple
simultaneous operations. The control logic of this dataflow
is quite complex, which makes debugging the behavior of
such a system very difficult. Location-centric monitoring
is no longer sufficient for monitoring and analyzing the
behavior of such a system. The amount of data to be
recorded is too great, and the nonlinear growth of time
dependencies between operations makes it very difficult
to analyze queueing effects.

Approach
To overcome this problem, it is necessary to trace and
directly record the path of an operation on its way through
the system. This implies a transition from a location-
centric approach to an operation-centric approach. In such
an approach, the tracing unit has its focus on operations,
not just on a single piece of logic or functional unit. The
path of an operation inside a system is tracked and saved
to an array. This method of tracing is independent of the
boundaries of functional units, and may even reach across
chip boundaries.

● An easy real-life example
Consider the traffic through a city with many traffic
points, such as intersections and parking garages, which
can be regarded as equivalent to functional units. Let
there be different kinds of vehicles (operations) traveling
through the city. In this example, the vehicle types might
include motorcycles, passenger cars, vans, and trucks. The
maximum number of vehicles in the city is limited. The
goal is to trace the traffic through the city in such a way

that the reason for a traffic jam or accident can be
determined after it has occurred.

In a location-centric approach, there would be a camera
installed at each traffic point, transmitting the complete
real-time picture to a central traffic-monitoring station
(tracing unit). The station would have a single tape
recorder (VCR) to selectively record the pictures from
one of the cameras. Even if the VCR input were switched
frequently among the different cameras, it is obvious that
later analysis of the whole traffic system from these
widely scattered snapshots would be a difficult task. An
alternative would be to install a VCR at each traffic point,
but this solution is expensive, and the analysis and
reconstruction of dependencies among the different
recordings would be very complicated.

With operation-centric monitoring, at each traffic point
a camera would take a snapshot of all license plates and
transmit a picture from the vehicle and the license number
to the traffic monitoring station. Here, a separate city map
would be reserved for each vehicle that enters the city.
Each vehicle would receive its own supervisor, who would
know the legal paths for the particular type of vehicle and
monitor its passing through the different traffic points.
When a vehicle passed a traffic point, the supervisor
would check whether the vehicle was allowed to be there
at that time (for example, if it used an illegal “short cut,”
it would leave out intersections or reach them in the
wrong sequence), and would mark the traffic point on the
city map. When the vehicle reached the final traffic point
on its way or if it committed a traffic violation, the
marked path from the city map would be stored in the
central archives, and the supervisor would be available
to monitor the next vehicle to arrive.

Note that in the second approach the amount of
information that must be stored is much smaller. If only a
finite number of possible paths exist, and if information
about the times at which vehicles pass traffic points is not
needed, it is even possible to record the path information
in a compressed format by assigning a unique code to
each path.

● Application to the system
On entering the observed area of the system, each
operation receives a unique operation identifier (OID),
which it retains for its entire journey through all
functional units. Each functional unit generates events for
a specific operation (one event for each OID). A central
tracing unit collects the events from the functional units
and generates an overall trace of the operation. Only
this central unit has to save information to an array.

The operation flow inside a system is monitored by
a dedicated unit which has knowledge about the subtasks and
their sequence for each operation that can pass through the
system.
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● Operation graph-based-tracing
An operation is typically composed of several subtasks,
which are executed sequentially. Therefore, the sequence
can be represented as a directed graph (operation graph).
Figure 2 shows an example of operation-graph-based
tracing. Consider a system allowing up to n independent
operations. Each operation has a unique operation
identifier OID 5 r, r 5 (0 . . . n 2 1). In every functional
unit FUp , p 5 (1 . . . m), there is event-generation logic
that reports the completion of a subtask Tv , v 5 (1 . . . s),
of an operation OPr to an operation graph OGr . Every
operation has its own dedicated operation graph; for
example, FU1 reports an event “T1 completed for
OID 5 2” to OG2.

● Hardware implementation
The operation graph is implemented as a finite-state
machine (OGFSM), as shown in Figure 3. Note that one
single operation graph may describe the behavior of
different types of operations. For each type of operation,
a sequence of events can be defined that corresponds to
the completion or initiation of a subtask.

The operation graph shown in Figure 3 permits the
monitoring of three different types of operation:

1. The sequence
IDLE 3 State 0 3 State 3 3 IDLE
corresponds to operation type 1, with the subtasks
event A from FU1,
event C from FU2,
event G from FU3.

2. The sequence
IDLE 3 State 0 3 State 1 3 State 3 3 IDLE
corresponds to operation type 2, with the subtasks
event A from FU1,
event B from FU2,
event D from FU4,
event G from FU3.

3. The sequence
IDLE 3 State 0 3 State 1 3 State 2 3 State 3 3
IDLE
corresponds to operation type 3, with the subtasks
event A from FU1,
event B from FU2,
event E from FU3,
event F from FU3,
event G from FU3.

● Implicit error checking
For the different operation types, only a subset of all
possible events is allowed (e.g., for operation type 1 the
events B, D, E, and F are not allowed). For a specific
operation type, an event is allowed only in one specific

state. The operation-graph finite-state machine is designed
in such a way that every illegal event causes the state
machine to branch to an error state. Possible error
indications could be as follows:

● Operation type 1 is in state 0, but event G occurs before
event C.

● For operation type 2 there is an event F, but operation
is not expected to reach state 2.

● Event B occurs twice for operation type 3 (from the
time at which IDLE is left until the time at which IDLE
is reached again).
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● Interference tracing
For the detection of interference problems, the tracing
unit can be switched to a mode in which every state
change in one of the operation-graph finite-state machines
generates an entry in a trace array (Figure 4).

Each entry is marked with a time stamp which allows
the measurement of temporal dependencies among the
subtasks of several operations. The entries in the trace
array contain the following information:

OGFSM for operation 3 in state 3 at time t;
OGFSM for operation 1 in state 0 at time

t 1 5 cycles;
OGFSM for operation 3 in state IDLE at time

t 1 6 cycles.

● Trace data compression
To minimize the cost of additional hardware for buffering
and storing the trace data, the number of trace data
entries must be kept as low as possible. One way to reduce
the number of entries has been realized by recording only
state changes in the OGFSMs. For a further reduction, the

monitoring system can be used in a mode in which a data-
compression mechanism (Figure 5) is used. In this mode,
only one entry is generated for each operation. More
detailed information about the operation can be derived later
from the trace entry itself, which contains in a compressed
format the complete path taken by the operation.

To each OGFSM a multiple-input signature register
(MISR) is added which generates a signature from the
state codes s t by polynomial division. The signature is
saved to the trace array under the following rules:

● The MISR is initialized when the OGFSM is in the
IDLE state.

● The MISR is updated with every state change in the
OGFSM.

● A branch back to IDLE causes a “save-to-trace-array”
operation.

● A branch to the error state causes a “save-to-trace-
array” operation.
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Signature-monitoring schemes for FSMs are used
primarily to detect permanent and transient faults that
lead to sequencing errors. To achieve this, the signatures
obtained by polynomial division of the state codes with the
selected polynomial must be identical for all states having
the same successor [3]. In the approach presented here,
the opposite method of generating the signature is used:
The state assignment for the OGFSM and the polynomial
are chosen in such a way that each existing sequence
starting from the IDLE state has its own unambiguous
signature. If loops are avoided within these sequences, a
finite number of possible signatures exist that describe
exactly the path taken by the OGFSM.

Example
Consider the operation-graph FSM shown in Figure 6.
It consists of an IDLE state, the 13 event states SPLC,
SNSC, UPDT, DCHK, CBSY, CCHK, CMDT, REQS,
RQL2, L2GR, L2CX, and L2DX, and the error state ERR1.

Let there be two types of errors: unexpected events that
force the OGFSM into the error state (type 1), and errors
causing the OGFSM to stay in some given state because
the expected event in that state does not happen (type 2).
This leads to 197 possible sequences through the OGFSM,
as shown in Table 1.

If we choose the four-bit OGFSM state encoding shown
in Figure 6 and divide the state value by using a MISR
with the polynomial 1 1 x 3 1 x 10 (Figure 7), we obtain
the 197 unambiguous signatures listed in Table 1.

Experimental results
The approach described above has been successfully
applied to the memory bus adapter (MBA) chip in the
IBM S/390* G5 and G6 systems. The MBA can be
basically described as a bidirectional router for commands
and data traveling between the processing units or memory
and the I/O subsystem. Historically, the MBA was attached
to the bus between the PU and the memory. In the present
systems (see Figure 8) up to four MBAs are connected to
the twelve PUs and four memory cards by two system
controllers (SCs). The I/O subsystem is connected by up
to 24 self-timed interfaces (STIs), six for each MBA.
Three basic types of operation are executed by the MBA:

● Storage operations
Storage operations are initiated by the channel,
Integrated Cluster Bus (ICB) [4], etc., and transfer data
from the channel to the memory (store operations), or
from the memory to the channel (fetch operations).

● PU sense/control operations
These operations are initiated by the PU and modify or
read register contents in the MBA and from all chips in the
I/O subsystem. For I/O, the MBA passes the operations
on to the I/O subsystem and receives their responses.
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● Internal sense/control operations
These operations are initiated by the I/O subsystem
to sense, set, or reset certain bits in the MBA.

● On-chip hardware support
Figure 9 shows a block diagram of the MBA chip.
Operations from the I/O subsystem or the Integrated

Table 1 Possible sequences and their MISR values.

Sequence
number

MISR
value

State sequence Error
type

0 275 SPLC IDLE
1 235 SPLC ERR1 1
2 1DA SPLC SNSC IDLE
3 035 SPLC SNSC 2
4 19A SPLC SNSC ERR1 1
5 1AD SPLC SNSC UPDT IDLE
6 0DA SPLC SNSC UPDT 2
7 1ED SPLC SNSC UPDT ERR1 1
8 31A SPLC DCHK IDLE
9 1B5 SPLC DCHK 2

10 35A SPLC DCHK ERR1 1
11 08D SPLC DCHK CBSY IDLE
12 29A SPLC DCHK CBSY 2
13 0CD SPLC DCHK CBSY ERR1 1
14 046 SPLC DCHK CBSY CCHK IDLE
15 30D SPLC DCHK CBSY CCHK 2
16 006 SPLC DCHK CBSY CCHK ERR1 1
17 1A3 SPLC DCHK CBSY CCHK CMDT IDLE
18 0C6 SPLC DCHK CBSY CCHK CMDT 2
19 1E3 SPLC DCHK CBSY CCHK CMDT ERR1 1
20 3B1 SPLC DCHK CBSY CCHK CMDT REQS IDLE
21 0E3 SPLC DCHK CBSY CCHK CMDT REQS 2
22 3F1 SPLC DCHK CBSY CCHK CMDT REQS ERR1 1
23 178 SPLC DCHK CBSY CCHK CMDT REQS RQL2 IDLE
24 171 SPLC DCHK CBSY CCHK CMDT REQS RQL2 2
25 2FC SPLC DCHK CBSY CCHK CMDT REQS RQL2 L2GR IDLE
. . .
. . .
. . .
. . .
. . .
. . .

178 0ED SPLC CBSY CMDT REQS RQL2 L2GR L2DX IDLE
179 25B SPLC CBSY CMDT REQS RQL2 L2GR L2DX 2
180 0AD SPLC CBSY CMDT REQS RQL2 L2GR L2DX ERR1 1
181 177 SPLC CBSY CMDT REQS RQL2 ERR1 1
182 0EE SPLC CBSY CMDT RQL2 IDLE
183 25D SPLC CBSY CMDT RQL2 2
184 037 SPLC CBSY CMDT RQL2 L2GR IDLE
185 3EE SPLC CBSY CMDT RQL2 L2GR 2
186 077 SPLC CBSY CMDT RQL2 L2GR ERR1 1
187 33B SPLC CBSY CMDT RQL2 L2GR L2CX IDLE
188 1F7 SPLC CBSY CMDT RQL2 L2GR L2CX 2
189 31D SPLC CBSY CMDT RQL2 L2GR L2CX L2DX IDLE
190 1BB SPLC CBSY CMDT RQL2 L2GR L2CX L2DX 2
191 35D SPLC CBSY CMDT RQL2 L2GR L2CX L2DX ERR1 1
192 37B SPLC CBSY CMDT RQL2 L2GR L2CX ERR1 1
193 29B SPLC CBSY CMDT RQL2 L2GR L2DX IDLE
194 2B7 SPLC CBSY CMDT RQL2 L2GR L2DX 2
195 2DB SPLC CBSY CMDT RQL2 L2GR L2DX ERR1 1
196 0AE SPLC CBSY CMDT RQL2 ERR1 1
197 12A ERR1 1
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Cluster Bus (ICB) are received at the STI interfaces and
pass the ICB/DMA logic and the STI path logic (SPL).
For each STI there may be four operations outstanding at
the same time, which means that there are 6 3 4 5 24
possible concurrent operations on the MBA. A switch
routes the operations from the STIs to a speed-matching
buffer, where up to 16 operations can be stored, grouped
separately as commands or data. Two storage bus adapters
(SBAs) and a request/grant allocation unit (RGA) form
the interface between the speed-matching buffer (SMB)
and the SC chips. A central sense/control unit (SCU)
handles all sense/control operations.

The OGFSMs reside in the tracing unit and track all
operations coming from the STI interfaces. These are all
storage operations, including the related “northbound”
and “southbound” data transfers and the responses to PU
sense/control operations returning from the I/O subsystem.
Each OGFSM is responsible for one distinct operation
outstanding on the MBA. The OGFSM itself is divided
into two parts, one for the northbound traffic (master),
and one for the southbound traffic (slave). The master
part has already been shown in Figure 6.

For northbound operations (store, PU sense/control
responses), the monitoring begins when a new operation
arrives at the STI interface, and ends when the operation
leaves the MBA at the MBA/SC interface (store, fetch,
PU sense/control responses), or when the central
sense/control logic has received the operation (internal
sense/control).

The slave part of the OGFSM looks similar. It begins
when the master part returns to the idle state. Responses
to store and fetch operations are monitored from their
arrival at the MBA/SC interface until all data and status
information has been sent to the I/O subsystem by the STI

interface. For internal sense/control operations, the path
of the returned data and status is traced.

As Figure 9 shows, a large number of functional units
must be monitored. Table 2 shows the events reported by
the event-generation logic of the different units. There can
be up to four operations outstanding at each of the six
STI interfaces. On the basis of these 24 outstanding
operations, the total number of events is calculated as
follows:

SBA: 24 * 6 * 2 5 288
SCU: 24 * 7 5 168
SPL: 24 * 13 5 312
SMB: 24 * 4 * 2 5 192
Switch: 24 * 3 5 72

Total: 1032

The 1032 events are monitored by 24 independent
OGFSMs. For each OGFSM, there is one compression
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unit that generates a unique signature for the path the
operation has followed.

The tracing unit has its own 1KB on-chip trace array.
It can be configured such that the buffer is cyclically
overwritten, stored to memory after the tracing stops
(e.g., due to an error), stored to memory after the trace
data has reached the size of a memory line, or stored
to memory by microcode activation.

To transfer the data from the on-chip-trace array into
memory, the trace unit behaves like an additional SPL
unit, as shown in Figure 9. This allows the use of
existing hardware for tracing and limits the hardware
overhead.

● Software support
A software program has been developed that eases the
analysis of the on-chip trace buffer content, or the trace
data stored to memory. The program translates the saved

signatures back to a readable description of the operation
paths. An example of the program output is shown in
Figure 10.

Conclusions
In this paper, a novel approach has been presented for the
monitoring and tracing of concurrent operations in heavily
queued systems. The major advantages of this approach
are as follows:

● The whole (sub)system is traced, not just some units on
chip boundaries.

● The unique operation ID allows the entire course of an
operation to be traced, even across chip boundaries.

● For concurrent operations, the timing behavior is traced
(e.g., for analysis of overtakes, hangs, etc.).

● The operation graph is specified as a finite-state
machine, with the possibility of real-time error checking.

Table 2 Trace events from the functional units.

Source Number Event

SBA 6 SBA raises req to SC
SBA receives grant from SC
SBA has sent the command
SBA has transferred the store data
SBA receives response from SC
SBA sends status to SPL

SCU 7 SCU decodes I CTRL/R CTRL
SCU decodes I SNS/R GSNS
SCU Acknowledgment for vector update
SCU sense data to SPL
SCU DSNS response cross-check successful
SCU DSNS response cross-check unsuccessful
SCU received a DMA path reset

SPL 13 SPL receives a command
SPL CMD req to switch
SPL DSNS-rsp-valid to SCU
SPL command for SCU
SPL header sent from response array to STI
SPL command abort by FIB
SPL F ACK to switch
SPL has data request (store, DSNS)
SPL has activated HS ERR
SPL has sent out the data of an IP (fetch)
SPL has sent a status to ISC_DMA
SPL deletes the response array
SPL did HS PURGE

SMB
(one side)

4 set slot busy
Request to SBA
set slot empty
SMB fetch data available

Switch 3 Bad early status
Good early status
Switch has request for fetch data
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● Only one trace array is needed; multiple arrays with
redundant data are not required. The amount of traced
data is kept to a minimum.

● The amount of data to be stored in a trace array is
further minimized by the generation of unambiguous
signatures for each possible course of an operation.

The application of this method to the MBA chip has
shown that it significantly reduces the time required for
hardware debugging. In particular, the analysis of complex

queueing effects is much easier than with the conventional
location-centric approach used in previous systems.

The time required to analyze and solve problems,
whether they occur during system bringup or after the
customer begins to run applications, is a critical factor in
time-to-market and customer satisfaction. The approach
presented here is another important step to improve
performance in those areas. The method described
here can be used in a wide variety of applications that
use multiple queues for the transport of concurrent
operations. Examples of such systems are computer I/O
subsystems, field buses, ATM switches, and OSI-based
network and communication devices (routers, bridges,
gateways, etc.) from layer 2 to 4, etc.
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