Pseudorandom
verification
and emulation
of an MPEG-2
transport
demultiplexor

by C. A. Reed
D. J. Thygesen

This paper describes two complementary
approaches to performance verification for

an MPEG-2 transport demultiplexor. The
performance of such devices is difficult to
verify during the design phase because of the
many independent bus interfaces to which
they may be connected and the numerous
operating configurations that may be required.
To address these problems, we have

devised both a pseudorandom verification
“environment,” employing “controlled random”
simulation, and a hardware-emulation platform
based on field-programmable gate arrays
(FPGAs). Actual hardware verification has
shown the effectiveness of using these two
methods together, and the overall approach
can be applied to other design programs.

Introduction

Traditionally designs are verified using a suite of
handwritten test cases, yet this approach is work-intensive
and often limited by the resources and time available. The
IBM MPEG-2 transport demultiplexor design presents a
number of difficulties for traditional verification owing

to its many independent bus interfaces and operating

configurations. The impact of simultaneous interface
requests is compounded by the asynchronous relationship
among many of the bus interfaces. Considering the
difficulties presented, hand-generation of encompassing
tests is an intimidating task. Two complementing yet
controlled verification methods help to address these
problems, the first being a pseudorandom verification
environment which employs random yet controlled
simulation. The design is further verified in an FPGA-
based emulation system. Emulation permits transport
streams to be run with audio and video programs in real
time to ensure operation over periods of time longer than
those that can be feasibly simulated. The emulation system
provides a pre-hardware vehicle for advanced software
design and is an important independent check on the
pseudorandom simulation methodology.

Over the past decade, verification teams around the
industry have employed pseudorandom verification to
address difficult challenges, specifically in processor design
simulation. Significant effort has been driven by the IBM
Israel Haifa Research Laboratory to create and maintain a
model-based pseudorandom processor verification tool.
Named Genesys, the tool has been used for numerous
processor projects, across both X86 and PowerPC*
architectures, and even supporting multiprocessor systems.

©Copyright 1999 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/99/$5.00 © 1999 IBM

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

C. A. REED AND D. J. THYGESEN

533

534

Primary Secondary
processor processor

1 1

1
1
Transport Stream 1 Audio
" byte clock decod
stream 125 MHz ecoder
) System clock
“““ | 12.5-60 MHz
lock !
Clock Cloc | Video
recovery
recovery 27 MHz : decoder
]

l l

Auxiliary Memory

IBM transport macro core input and output ports, showing three
different time domains and simulated frequency ranges.

This effort is described in several published papers [1-4].
A key difference from the described transport approach
is that Genesys determines the final state of the design
before actual simulation occurs. In the transport
verification we must ensure that every byte of data is
delivered correctly, regardless of all input events. By
dynamically applying inputs across asynchronous bus
interfaces, exact behavior cannot be predicted before
simulation. Other companies have used similar
methodologies for processor verification, including the
Digital Equipment Company [5, 6] and Hewlett-Packard
[7]. The DEC efforts most closely reflect our approach
with dynamic testing; however, the overall asynchronicity
of the transport bus interfaces poses a unique challenge
apart from all of these works. But the applicability of
these methods has not been limited to processor
verification, as the ideas developed here grew from prior
work verifying a serial level-2 (L2) cache. The L2 design is
described in [§].

The techniques for finding implementation flaws before
committing the design to silicon are described in this paper.
Specifically, the IBM MPEG-2 Transport Demultiplexor is
the core design referenced, and in-depth background on
this architecture and on the set-top-box environment can
be found in [9]. The MPEG-2 subsystem, including the
transport and the video and audio decoders, is described
in more detail in [10]. Results from actual hardware
verification indicate that this methodology was very
effective, and it is important to note that these verification
techniques are applicable to many other types of design.

Pseudorandom verification
The transport demultiplexor is effectively the postal
worker in a set-top-box system. The transport receives the

C. A. REED AND D. J. THYGESEN

incoming stream from a satellite receiver and separates
the 188-byte packets using a synchronization byte which
appears at the beginning of each packet. The packets are
parsed to deliver data to the appropriate destinations,
which include the video or audio decoders, the system
processor, or the auxiliary port, and unrecognized packets
are discarded.

® Objectives

The IBM MPEG-2 Transport Demultiplexor contains
several independent ports across three unique time
domains. A majority of the ports run off the chip system
clock: the video and audio decoder ports, the system
memory port, the primary and secondary processor ports,
and the auxiliary output port. However, there are two
other time domains within the core. The transport stream
port operates off an independent transport stream clock,
and the clock recovery port is based on a fixed 27-MHz
clock. In addition, neither the system clock nor the
transport clock has a defined frequency, and there is no
fixed ratio between them. Figure 1 illustrates the different
time domains in the design and the range of frequencies
to be simulated.

Asynchronous behavior results from the independent
time domains. For example, the primary processor may
initiate a channel change in the system clock domain;
however, a packet of data from the old channel may
currently be entering the core in the transport clock
domain. Differing functional behavior depends on the
point at which the packet-identifier (PID) filter is updated
and the number of packet bytes that have entered the
core. Another example is the posting of a clock recovery
interrupt to the primary processor, which again is
operating on the system clock. The interrupt is initiated
in the clock recovery domain internal to the core, which
continues to process any new clock information from
incoming packets on the transport clock domain. Any
difference in the ratios between the domains affects the
expected behavior.

Another challenge is the internal array, which not only
buffers up to ten packets but also stores the processor-
initialized configuration for the 32 memory queues and
the internal descrambler. Additionally, the array holds a
scratchpad for queue-management working data. Hence,
there is potential internal contention for access to the
single SRAM.

With more than 10000 different configuration and
status register bits within the IBM MPEG-2 Transport
Demultiplexor, coverage of the different functional modes
demands automation. It is simply too difficult a task to
develop design confidence through a traditional suite of
hand-generated tests.

Automation is also necessary when considering the
infinite possibilities of the transport stream content. A

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

stream contains several multiplexed programs of audio and
video data, along with the necessary system data, and each
packet of data is identified by a unique tag or PID. A
section of the stream could be heavily biased in a
particular PID, or evenly weighted across many PIDs, or
could contain a high percentage of stuffing packets, and
the transport core must be stimulated with as many
different stream compositions as possible.

Errors, known and unknown, are inherent in transport
stream delivery and can occur at any time. The known
errors are signaled either through an indicator bit within
the incoming packet or by a dedicated pin from the
stream driver, each resulting in predictable transport
behavior. Unknown errors such as bit corruption or data
loss can occur at any bit position of the stream, and may
mislead the transport into unusual behavior.

Core delivery of data to the destinations occurs in
a handshaking arrangement, and the receivers could
introduce delay to the data throughput by stalling the
delivery. The core must handle reasonable amounts of
delay and backup in an appropriate manner and in any
kind of operating situation.

Accommodation to design changes is important in a
competitive world in which customer-driven architectural
enhancements occur throughout the design cycle. Changes
have the potential to introduce significant delay into
traditional verification, since the accrued hand-generated
tests may have to be individually rewritten.

® [mplementation

A pseudorandom verification environment addresses all
of these concerns. The idea is to have a self-contained
environment in which new and unique tests are
automatically generated and checked. Thus, regression
capability is not constrained by manpower issues (writing
and rewriting each test), but rather by material issues
(availability of verification machines and simulation
licenses). Each possible environment variant, be it a
configuration bit, a clock ratio, a stream type, or a
dynamic processor activity, is assigned a proper operating
range and is randomly selected within that range for each
new test case. The resulting core behavior is monitored
by a software representation of the architectural
specification—the golden software model expectations
generator.

Figure 2 is a high-level flowchart of our pseudorandom
verification environment. Several tools and significant
effort are required in order to implement this
pseudorandom verification environment efficiently. An
important component is the mechanism which randomly
creates valid test cases, e.g., a core configuration file, an
input-stream-content parameter file, and a simulation-
driver parameter file controlling bus-model behavior.

The IBM MPEG-2 Transport Demultiplexor has over

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

Random test parameter generation

Bus-model
behavior

Macro configuration Transport-stream
~10000 bits content

!

» | Transport-stream
generation

‘ ' |

Simulation driver |

A

Y ¢

Behavioral Golden
description software model

!

N Y
Save for Discard
debug

Test process flowchart of the pseudorandom transport simulation
environment.

10000 different configuration and status bits which

must be initialized in order to create a valid operating
environment. Most initialization choices are independent;
however, some require knowledge of other chosen values.
For example, two different PID filters cannot be initialized
to the same enabled value. The transport-stream-content
parameter file controls the overall flavor of the stream to
be created, such as the ratios of video-to-audio-to-system
packets and proportions of certain data fields. At this point
the MPEG-2 transport stream can be created, providing
the data stimulus to the transport. The stream generator
uses the chosen core configuration along with the stream-
content parameters to create a desired data stream.

The simulation-driver parameter file determines
environment stimulus, such as transport control and
configuration updates, decoder availability, transport-
clock-to-system-clock ratio, and other environmental
behavior. A simulation driver and test bench are needed
to apply the test case by driving the inputs and reacting
to the outputs. The driver and test bench incorporate
behavioral descriptions for the transport and external
interfaces, and in cases where no bus functional model
exists, the necessary behavior is modeled by driver
software.

A golden software model of the architectural
specification that runs in real time with the logic is
required to predict and then compare expected results

C. A. REED AND D. J. THYGESEN

535

536

against those of the behavioral model. Hence the model

is a key element of the verification process and can take
on the additional role of being a regression monitor. The
simulation driver simultaneously applies the test to both
the behavioral description and the golden software model,
which are independently derived. This approach ensures
that both the hardware and software models are presented
with the same operating conditions.

A regression tool ties the entire test flow together by
automatically looping through the process to continue
maximum verification per machine over a given time
period. The regression vehicle calls the test-case-creation
tools in the appropriate sequence, sets up the simulation
environment, and kicks off the simulator. At the end of a
test, the tool monitors the simulation log, and only failing
tests are saved for further debug. Passing tests can be
discarded because they provide little value to the designer,
since new tests can be created in seconds. Once processing
is cleaned up, the test-process cycle starts again.

® Test creation

To create effective and interesting test cases,
consideration is given to all types of events that might
occur, while ensuring that the test is of reasonable length
to rerun if necessary for debug. Examples of possible
events are channel changes and PID filter updates,
descrambling key updates, other configuration changes,
and soft resets, and these can occur at any point in the
input stream. While the order and frequency of events
should be somewhat realistic, it is also important to
overemphasize the worst-case scenarios, such as a majority
of the stream packets hitting the PID filter and system
events occurring frequently. Techniques to bias certain
events and the ability to easily disable certain features
are very helpful. In regression, a two-level hierarchy of
randomness is applied: one level to create the test-case
parameter input files, and a second level within the
transport stream generator itself. Program seeds should be
recorded and saved, so that all test-case input files can be
recreated or rerun in the same manner. Feedback from
monitors within the golden model helps suggest changes
to the test-generation programs.

An important first step in the test-case-generation
process is creation of the transport core configuration
file. This data is used by the simulator for initialization
purposes and also by the transport stream generator in
order to create appropriate streams.

The number of enabled PIDs for a given test can be
anywhere from none to the maximum allowed in the
architecture. A number between one and five is generally
chosen, with a higher concentration of the tests enabling
only one or two PIDs. The number of packets in the
transport stream parameter file is a function of the
number of enabled PIDs needed to produce an interesting

C. A. REED AND D. J. THYGESEN

amount of activity for each PID throughout the test. For
each enabled PID filter, the following information must be
chosen: PID value, auxiliary port enable, descrambling
enable and key index, and the corresponding memory data
queue enable. For each enabled memory data queue, the
following information must be determined: the type of
data to be unloaded to memory, filtering control words if
appropriate, the designated address space for the data in
memory, and other associated controls to further tailor
management of the queue. All configuration, mask, index,
and address space registers must be initialized. Also, all
information necessary to perform descrambling must be
created.

The core configuration generator requires no input
parameter file, and the code is monitored and updated
frequently to redistribute the types of tests being generated.
After this first step in the test-case process, the resulting
core configuration file is referenced for interdependencies
as the parameter files for both the stream generator and
the simulation environment are created.

® Pseudorandom transport stream generator

The goal of the transport stream generator is to create
MPEG-2 test streams. For detailed information on

the MPEG-2 transport layer protocol, see [11]. The
independence of this tool allows it to be of use not only
in our pseudorandom verification environment, but also

in other deterministic environments such as system
simulation, transport emulation, and real hardware
verification. The generated streams are compliant with
specification issues that are relevant to the function of the
transport demultiplexor. Issues that are irrelevant to the
transport function are created with the intent of rendering
debug as straightforward as possible [e.g., audio and video
program elementary stream (PES) data and system table
section data between the table filter and the 32-bit cyclical
redundancy check (CRC) tail]. The generator supports
the option to incorporate real PES data.

The generator takes two files of data as input. One file
includes relevant core configuration, such as enabled
PIDs, memory queues, and table section filters, and the
second controls the stream content. Nearly all decisions
that the generator makes are random within appropriate
limits; however, the user can steer the generator with
event percentage control. For example, the content
parameter file specifies the occurrence percentage of items
in the transport stream header, of adaptation data and
associated fields, of packets containing payload and
associated content, and for insertion of packets that will
not be processed, such as duplicates and nulls. If a user
specifies that 10% of the packets should include an
adaptation field, each packet has a 10% chance of doing so.

While the occurrence percentages of enabled PIDs are
chosen in the parameter file, the actual order of the

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

multiplex is random. This is an important distinguishing
point from hand-created streams. The decision process
begins at the start of each packet, where first a PID is
chosen for the current packet. Weighted percentages for
stream content of video and audio are first considered, as
are insertions of null and duplicate packets, and if a PID
has still not been selected, a randomly enabled PID is
chosen. The PID’s history in the stream and applicable
input parameters help to determine the remaining packet
content. If the amount of PES data delivered is not fixed
by the nature of that packet, it is always random.

The data portion of system packets, or the payload, is
syntactically correct and can be split across nonconsecutive
packets. The contents of the table section are dictated
by the core’s configuration of payload data. The stream
generator creates all different combinations of applicable
filters, and can easily create any variety of filter misses.

A random valid section length is calculated and presented
in the second and third bytes. The length may be chosen
such that the section will not be fully contained within the
packet (even the header could be split), or such that the
section will end before the filter is complete.

If the length does allow the filter to complete, all but
the final four remaining bytes of the section are filled
with a random nonstuffing byte repeated throughout the
section. The last four bytes are the valid 32-bit CRC for
the table section, where again it is easy to insert a CRC
error at any time in the test. If a section completes, either
a new section header will begin or the remaining payload
bytes will be stuffing. This decision is based on the
existence of a payload unit start and a user control
concerning multiple sections per packet.

The generator can take user-supplied scrambled
datasets with corresponding keys to create an input stream
which will produce known descrambled data at the output
of the transport. This is to allow for verification of the
descrambling function without having to incorporate the
scrambling algorithm into the generator. The driver feeds
the scrambled packet to the behavioral model and the
descrambled packet to the software model expectations
generator; thus, both the stream generator and the
golden model are scrambling/descrambling-algorithm-
independent.

A running program clock recovery value (PCR) is
maintained and inserted on a percentage basis into
packets of the PCR PID. The user can also introduce
jitter into the PCR, which also can be designated to start
at any nonzero value in order to test PCR wrapping.

These are just a few of the many features of the stream
generator, all user-controllable via a parameter file. One
of the more interesting items in the stream-generator
parameter file is the number of packets that should be
created per test. In order to create a substantial test that
is not prohibitively long for debug, the number of packets

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

depends upon the number of different PIDs that are
enabled, the number of packets that will be ignored before
synchronization is achieved, the percentages of injected
errors, the maximum table length if tables will be created,
and packet content if certain types will not be loaded.

® Simulation driver

The verification environment consists of a simulation
driver that through a test bench and a traditional
simulator applies the test case to both the behavioral logic
and the golden software model expectations generator. All
test cases minimally require a transport stream, core and
driver configuration information, a test vehicle, and an
analysis mechanism. Our test vehicle is a test bench with a
driver, and analysis is performed by the golden model
expectations generator.

Regardless of the origin of the test, the simulation
driver is the moderator between the behavioral functional
description of the transport and the golden software
model expectations generator of the architectural
specification. And at a higher level, the driver is the glue
between a given test and the model being tested. Via a
test bench, the driver presents the test case to both the
behavioral and golden software models by performing core
initialization and by methodically applying the transport
stream and clocks to the transport. The test bench
includes the behavioral descriptions for the transport
demultiplexor and any external bus models that interface
with the transport core.

Outputs of the transport are sensitized to be read for
the golden model expectations generator upon any change
in status. Since there is no communication between the
behavioral and golden models, all coordination is
controlled by the driver.

Software bus models are written into the driver. The
bus-model-behavior parameter file determines which
activities the driver will initiate during the test, and also
how the driver and interfacing bus models will react to
any given transport behavior. For example, as dictated
by the bus-model parameter file, the driver can initiate
various dynamic processor activities such as channel
change (one or more per test), memory queue resets,
stops, and filter updates, and control activities such as
soft reset and disable of the transport synchronization
function. Reactive processor activities include interrupt
servicing and various associated activities such as external
clock recovery.

The two processor ports are modeled by the driver with
a request queue for each. These queues are filled and
drained interactively as the test progresses, as opposed to
being filled before the test is run. This allows for dynamic
multiplexing as needed between the processor-initiated
requests and the processor-reactive servicing requests.
For example, the user does not know ahead of time if

C. A. REED AND D. J. THYGESEN

537

538

the channel change will occur before or after a specific
interrupt that will require servicing. And the secondary
processor port can be enabled to drive random cycles,
which may elicit a transport response.

The driver models the transport stream source, feeding
stream data to the transport in the manner specified by
the test case. This model provides us with a convenient
mechanism for simulating channel changes with an
efficient stream. If two or more video PIDs were
multiplexed into the transport stream, the packets for
the nonactive video PIDs would result in PID misses
throughout the life of the test. We can avoid this wasted
time by incorporating only one video PID into the stream
and letting the driver manipulate the PID before
presenting the channel-changed video packets to the
transport. In a similar manner, the driver can also create
duplicate packets, null packets, PID misses, invalid cycles,
and data corruption as desired.

The video and audio decoder ports are also modeled,
in order to simulate potential data throttling and channel-
change handshaking. The decoders cannot always receive a
continuous stream of data, so the capability to deactivate
their respective requests for data is important. We can
additionally target the deactivation to occur in the midst
of a data transfer, which is the most interesting time.

The driver provides the clocks to the test environment,
and the system clock frequency parameter creates various
asynchronous system-to-transport-stream and system-to-
clock-recovery clock ratios. This allows us to easily vary
operating conditions for the core ports across the three
different time domains to create all types of asynchronous
activity.

These are just a few of the capabilities of the simulation
driver. An important point is that any combination of
these events is possible, except when events or
configurations are mutually exclusive by the architectural
specification. An invalid example is a system-to-transport-
byte-clock ratio less than 4:1 if descrambling is to occur.

® Golden software model expectations generator
The expects generator is a complete software
representation of the architected behavior of the transport
demultiplexor. The software model receives the same
initial configurations and inputs from the test bench and
driver as does the behavioral model, with only a few
internal logic hooks to synchronize activities. The software
model determines what should be occurring on the basis
of event history, and it monitors the behavioral model via
the driver to ensure compliance.

Since the expectations generator runs with the event
simulator, the activities that occur throughout the test
do not have to be spelled out ahead of time. Another
important point is that the software model predicts
outputs without demanding exact cycle correlation. While

C. A. REED AND D. J. THYGESEN

some synchronization mechanisms are added for the
golden model, they are limited. This allows the design to
be radically changed with respect to the occurrence of
events with minimal impact on the golden model.

The golden model acts as the test-case referee, since it
has knowledge of all events that have occurred and what
is expected to occur from architected protocol. Notable
events and varying degrees of running commentary are
available to a user log. At the end of a test, a summary of
bus compares and miscompares is displayed; also, the final
state of the memory model is read and compared against
the software model’s contents. If a discrepancy is noted
during or at the conclusion of a test, various severities of
error flags are raised.

If desired, output dump files can be created for any of
the input or output ports, as well as for the final image of
memory. These files are useful in other test environments,
such as emulation and hardware labs. In such
environments, the running expectations generator is not
available, and more traditional, predetermined test cases
are desired.

One of the more difficult aspects of matching the
software representation to the behavioral description is
due to the sequential nature of coding as opposed to the
simultaneous nature of logic simulation. For example,
when two monitored signals in the logic both switch state
in the same cycle, the software still sees one occurring
before the other. Another challenge concerns the time-
domain crossings, since the expectations generator is
cycle-independent wherever possible. The sequential
nature of software and the time-domain crossings present
difficulties, particularly in the areas of interrupt reporting
and processor-initiated configuration changes. To aid in
coordination, the simulation driver includes a few internal
logic monitors to reflect exactly when certain events were
occurring. Every attempt was made to minimize the
number of internal hooks in order to maintain overall
verification confidence and control.

® Checking the pseudorandom test environment

An important item in the control of this simulation
structure is to have separate parties create and maintain
the components. There are several distinct jobs to be
performed: architectural definition, behavioral description,
and creation of the simulation environment, which
includes the golden software model expectations
generator. Since both the behavioral and software
descriptions are based on the architectural specification,
independent coders provide protection against designing
and modeling the same mistake. Care is taken to keep the
golden software model and the behavioral description as
independent from each other as possible; however, a great
deal of coordination is necessary in order to emulate the
internal order of events.

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

Ideally, the golden software model and the simulation
environment driver should be complete and stable before
the logic implementation begins. In our case, these
activities occurred in parallel and facilitated quick changes
to the architectural definition as it evolved. One side
effect of this approach is that a failing test is not
necessarily indicative of a bug in the implementation, but
may be caused by an invalid test condition or by a bug in
the golden model. The correction adds to the overall
strength of the test environment, and in some cases to a
clarification or elaboration of the architectural specification.

The hardware emulator to be described later gives an
important check into the validity of our verification
methodology. The pre-silicon prototype allows for the
ability to view a program with synchronous audio and
video on a television screen, thus providing invaluable
design confidence.

A limited number of event monitors were inserted in a
variety of places, including the simulation driver, the
golden software model, and the regression tool, to provide
a glimpse of verification coverage. However, future work
in this area would certainly enhance the strength of
this methodology, and could provide more feedback
for biasing weights of event parameters. Test coverage is
understandably an important measure of any verification
procedure, yet it is a difficult measure to quantify,
particularly in a pseudorandom test-generation
environment. We relied on our intimate knowledge of
the tools and models to maintain our confidence in this
strategy. However, justification to others is more difficult,
and more focus on test coverage would certainly
strengthen this debate.

® Pseudorandom verification conclusions

In light of the challenges presented in verifying the design
of the transport demultiplexor, many advantages of our
pseudorandom test generation with simultaneous modeling
are apparent. Windows of conflict between competing
interfaces on perhaps different time domains that could
not be anticipated are exercised by allowing all valid
events at all pertinent clock ratios. For example, a channel
change request could be made while a program filter for
that channel is being parsed in the model. Scores of time-
domain ratios can be tested, with the correct behavior
dictated as the test unfolds. With all other inputs and
configurations unchanged, two tests with different clock
ratios can behave in a radically different manner.

The monotony of manual test generation and event
sweeping is avoided, yet the user is able to hand-code a
test if desired. If a test exposes a design bug, it can easily
be tweaked to test similar scenarios. Also, the test can be
saved to create a regression bucket of tests that have
reached trouble spots in the design. This method is more
flexible and more adaptive to major design changes than

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

traditional verification with handwritten test cases. With
large change, many traditional test cases would potentially
have to be rewritten, which could take a significant
amount of time. With a pseudorandom environment, the
design change is reflected in the golden software model
and the test-case-generation tools; the number of tests
run on the new design is limited only by the number of
simulation licenses and machines available. (For example,
with eight machines and simulation licenses, more than a
thousand new tests could be created and run in one
night.) This point is also stated in [1].

Invalid transport stream conditions are easily created to
verify appropriate transport response, such as random
single-bit error corruption, transport-stream-error
indicator activity, short or long packets, program ID filter
misses, continuity counter misses, table-section filter
misses, short table sections, and cyclical redundancy
check errors in table sections.

All types of event monitors are easily incorporated into
the golden software model, since by definition everything
that happens in the logic happens in the model. These
monitors aid in the immediate determination of events in
a particular test case, and also can provide a collective
view of the overall regression coverage.

Since the golden model expects generator runs
simultaneously with the test driver, the expected outputs
need not be determined before the test is run. This
permits dynamic reactive test-bench processing to be
interspersed appropriately among premeditated simulation
events.

There is no need to save a repository of passing tests,
since new test cases can be created in a short amount of
time. Aside from overall regression coverage, passing test
cases are not very interesting. We can automatically scan
the passing logs for statistical purposes and then discard
them from the database.

As mentioned earlier, pseudorandom verification has
been successful for other scopes of design, namely
microprocessors. It can also be effective on smaller-
scale designs, such as a serial level-two (L2) cache.

For example, processor cache/memory requests can be
dynamically intertwined with asynchronous system “snoop”
events.

Pseudorandom verification successfully prepared the
transport design to enter the emulation-verification
process, where design updates begin to take a larger toll
in both time and cost. The emulator allows the design to
be tested with longer streams containing real audio and
video programs as well as the clock recovery data in
order to verify the portions of our design not adequately
covered by short test streams. And the pseudorandom
regression can easily be continued through hardware build
and test, since it requires little manual intervention or
resource.

C. A. REED AND D. J. THYGESEN

539

540

Bus
403 translation
PowerPC logic
PPC Evaluation
ok card <> -
—
Secondary processor bul Set-top-box
- functions
Primary processor bus
vV
sysen
1 1 memory
1 1 > [:]
| [I—
1 Transport 1
MPEG-2 I FpGAs | .
input stream | ! Video bus Decoder
P— Audio bus
Stream clk : :
> 1 VCXO
System clk 1 27-MHz clk | | Digital
______ encoder
172 System clk
Frequency

Diagram of transport emulator system.

Hardware emulation

A hardware-based system to emulate the core design

was developed in conjunction with the pseudorandom
verification system. Emulation complements the
pseudorandom verification method by using actual
MPEG-2 streams in a real-time set-top-box environment.
Events such as system power-up, real-time host control of
the transport hardware, and transport features exercised
by extremely long MPEG-2 streams are ideally suited for
verification by emulation.

® Objectives

Our goals for emulation were to integrate a functional
representation of the transport core in a set-top-box
subsystem. The subsystem used a host processor for
control and was capable of processing MPEG-2 streams.
By maintaining uniformity between the transport hardware
description language (HDL) and the emulator HDL,

we could provide feedback to the design team that

was directly related to their logic. To be useful in

the product cycle, the emulation process had to provide
fast turnaround capability for design updates.

We also wanted to provide a software development
platform for constructing and debugging software drivers,
and a demonstration tool for customers, marketing, and
development teams. An added benefit would be to use the

C. A. REED AND D. J. THYGESEN

emulation system to verify the simulation tool. This could
be done by running the contrived MPEG-2 streams from
simulation into the emulator and comparing the results.
Consideration of these design goals forced us to address
trade-offs between the technology and the methodology
used to implement the emulator.

One of the first considerations in any design including
an emulator is the design goals. By stating the design
goals we were forced to address trade-offs between the
technology and the methodology used to implement the
emulator.

® System features

Emulation of the IBM transport demultiplexor is based on
a printed-circuit board populated with field-programmable
gate arrays (FPGAs). The emulation platform was created
as an integrated set-top-box (STB) subsystem, with the
transport core partitioned into multiple FPGAs. This
produced a realistic environment for verification of the
core, as well as the ability to change the design as
development proceeded. With this system it is possible to
connect a live unscrambled MPEG-2 stream to the input
port and watch the decoded audio/video output on a
television.

To emulate the transport core as it would operate in a
set-top box, we designed the system board with some STB
functions included. This allows the core to function in
a realistic systems environment. The major system
components, shown in Figure 3, include a PowerPC 403*
evaluation card. This IBM product offers the user an
IBM PowerPC 403 microcontroller set up with a memory
subsystem and some ROM boot code. It interfaces with
either an Ethernet port or a serial port. The card provided
a programmable control interface for the emulation system.
An interface was designed between the 403 processor bus
and the transport bus. Using FPGAs enabled us to add
function as the core design required it. We did not have
to wait until the design was done to implement logic.

We added an MPEG-2 transport stream port to allow
processing of real and contrived streams. To make
comparisons between pseudorandom simulation results
and the hardware, we provided 0.5 MB of system memory
at the output of the transport core. To verify real-time
operation with industry components, the output of the
transport was also passed to a set-top-box back-end
subsystem, allowing visual verification on a television
monitor and speakers.

® HDL design portability

Most large designs today are written in a high-level design
language (HDL) such as VHDL or Verilog. In order for
the emulation system to aid in the development of the
logic design, it is important to be able to periodically
capture the design changes made in the HDL and update

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

the FPGA configurations. This process provides feedback
on design functionality throughout the development cycle.
In order to update the FPGAs with minimal impact to the
emulation system or the core logic, it is important that
the emulation team be involved early. There are several
important steps for the team to perform that will aid in
the design update process.

Early on, functional blocks of the design HDL should
be synthesized to verify that the coding style being used by
the designer provides reasonable results in the FPGA.
This also flushes out any library-dependent circuits being
used by the designer. These library-specific functions have
to be mapped to generic HDL blocks in order to be
properly synthesized into an FPGA library element. It
helps to keep the HDL design style as generic as possible.

System logic blocks should be sized and partitioned
among FPGA modules, allowing room for logic and I/O
expansion. This makes processing design snapshots quicker
and requires less rework. A rule of thumb is to initially
populate any FPGA module to no more than 50-60% of
its logic and I/O capacity.

® Partitioning on the basis of density and I/O
For an emulator to be a valuable tool in the verification of
a logic system, it must be available for use before the core
logic is frozen. This requires an early start in order to get
boards designed and any special interfaces laid out. In
the transport emulator, we began defining logic and I/O
partitions as soon as there was enough HDL code written
to start core simulation. At this point in the design
development, the connectivity between logic blocks is
established, and much of the logic function is defined.
Our first considerations in developing logic partitions
are the different core functions, the size of the buses that
connect them, and the time domain in which they exist.
We chose logic functions that related to one another and
had the most interconnections. Doing this reduced the
amount of external I/O needed for each FPGA. Next, we
tried to keep partitions in one time domain. This is not an
FPGA timing requirement, but it helps in understanding
the overall system timing. Once a partition was chosen on
the basis of logic function, we needed a way to determine
the I/O requirement for a possible partition; to do this, we
created a software tool. The nature of the different types
of connections that can exist between logic blocks in a
design and the way they are coded in an HDL forms the
basis for text comparison. Figure 4 shows a potential logic
partition and the kinds of interconnections that can exist
between logic blocks. The only connections we want to
identify are the ones that enter or leave the partition. In
this diagram the FPGA would need only two inputs and
two outputs. Our tool determines that signal_A did not
leave the partition; therefore, it should not be counted as
an I/O on the FPGA. By using the HDL to create a data

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

i
I Logic partition :
|

|
} 'PO_B
|
|
|
|
|
! !
: Logic block Logic block I

PLA — A Signal A C _1‘ PO C

|

|
|

|
|

|
|
! !

PLB | |
! l
: Signal B :
|
l Logic block :
: B —— TieO l
l — Tiel :
: — Open :
|

|

| Logic partition example.

file of all declared inputs, outputs, and signals for the
logic blocks in a potential partition from the HDL, we can
perform text analysis to determine whether a signal enters
or leaves the logic partition. By using this tool, we are
able to create “what if” partitions of logic and quickly
determine whether they exceed the FPGA I/O limit.

Once logic is partitioned from an I/O perspective, it is
necessary to determine the number of FPGA gates that
will be required in each partition. FPGA manufacturers
define device sizes differently. Some use gates, logic cells,
or logic elements. Most FPGAs consist of an array of logic
blocks surrounded by programmable interconnections.
Each logic block has a combinatorial function and one or
two flip-flops. This does not allow a one-to-one correlation
between an FPGA gate count and the IBM technology
gate count for a piece of logic. The FPGA resource
required for a logic partition can be estimated by
determining the ratio of FPGA logic cells to IBM gates.
This is done by synthesizing a cross section of logic blocks
and coding styles that are used in the core design to the
FPGA library and to the IBM library. Comparing the
number of FPGA logic cells required by a block of logic
to the number of IBM gates for that same logic block
gives the ratio of FPGA cells to IBM gates. The logic-cell
ratio can then be used to approximate FPGA logic
capacity throughout the partitioning process. Otherwise
each potential partition would have to be synthesized
using the FPGA tools to determine whether the partition
fits. In the transport core, we found the ratio to be six
IBM gates to one Altera™* logic cell. By determining the

C. A. REED AND D. J. THYGESEN

541

542

S-S TS ToTTTTTTTTTTTTTTTTT T T I
l Transport core I
: FPGAs :
I I
| A0 A2 |
I I
I Control Auxiliary I
: clock :
I I
| Recovery |
I I
I I
I I
I I
I I
I I
|
: Al A3 I
I I
! Front end Back end :
I
I I
I I
I I
I I
I I
I I
| A4 1
I I
: Memory :
| management I
I I
I I
I I
I I
I I
I I
b e e o - i

| Transport FPGA partitions.

I/O required for a logic partition, and estimating the
number of FPGA logic cells required, we can create logic
partitions (Figure 5) that use only 50% or 60% of an
FPGA'’s logic cell and I/O capacity. This ensures that the
design can change and still place and route in the FPGA.

® Multiple time domains
The transport system contains multiple time domains
consisting of the transport clock, the system clock, and
the program clock recovery time domains. The emulator
system clock must run at a frequency that allows enough
time for the front-end processing of the MPEG-2 stream
and keeps enough audio/video data flowing to the
decoders. Through simulation, we found that maintaining
this data rate requires a minimum 1:1.5 ratio between the
transport clock and the system clock. For example, with an
8-MHz transport clock, we have to run the emulator system
clock at 12 MHz. In a customer set-top-box environment,
the ratio would be at least 1:4. The ability to run the
transport so close in frequency to the transport clock and
maintain data flow is a tribute to the design robustness of
the transport core.

The program clock recovery (PCR) logic operates at
27 MHz. This unit processes PCR values from the MPEG-2

C. A. REED AND D. J. THYGESEN

stream and feeds adjustments to a voltage-controlled
oscillator (VCXO). This adjustment is necessary to keep
the decoding set-top-box 27-MHz clock as close as
possible to the 27-MHz clock that was used in generating
the MPEG-2 stream on the provider end.

The following timing restrictions dictated our minimum
operating clock frequencies: 8§ MHz for the MPEG-2
transport clock, 12 MHz for the system clock, and 27 MHz
for the program clock recovery. On the basis of these
frequency requirements, parts of the design were
synthesized, and a performance bottleneck was found
in the PCR logic. This unit did not achieve the 27-MHz
clock performance target in the FPGA because of the path
lengths of some of the combinatorial logic. When using
FPGAs, there is a trade-off between design speed and
HDL tweaking. Obtaining maximum performance on large
pieces of logic requires tailoring the HDL to the FPGA
technology by running synthesis, recording logic, and
running FPGA place-and-route tools. This reduces the
number of logic levels in critical paths. To obtain the most
control over timing and performance in some FPGAs,
schematics are required. Schematics facilitate the tuning
of logic placement in the FPGA. To maintain a short
FPGA processing cycle and preserve the transport HDL,
we decided to reduce the accuracy of the emulated PCR
logic by halving the PCR clock speed. Now our target for
the program clock recovery unit was the same as our
system clock rate—13.5 MHz. This allowed us to share
one frequency with the system clock, greatly simplifying
the overall clock design. For each new design pass, the
clock sharing allowed us to make runs through synthesis
and to place and route the FPGAs without spending a lot
of time tweaking the PCR logic.

o System debug features

To help in the debug process, the emulation system board
was designed with connectors placed on all of the major
buses. These were designed with proper spacing and
orientation to mate with logic analyzers and oscilloscopes.
When dealing with hundreds of I/O elements, this can
save many hours of setup. Additional connectors were
placed around each FPGA, with 40 FPGA I/Os connected
to them. This provided a means for accessing internal logic
signals during debug. In order to use the emulator

early in the transport design cycle, the printed-circuit
board (PCB) had to be designed to accommodate future
changes resulting in additional signals between FPGAs.
To allow for this, a ten-signal bus was added between each
FPGA and the adjacent one in the emulator printed-circuit
board. We also added extra buffers on the PCB to handle
changes to the clock tree. Clock control logic was added
so that clocks to certain partitions could be shut off. We
put pads on the faster signals near the inputs to the
FPGAs. This ensured that the net would be accessible

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

from the top or bottom layer of the PCB if signal tuning
was necessary.

An interface to the 403 evaluation card was added from
the system memory so that we could read and verify data
written by the transport core. FIFOs accessible from the
403 control bus were placed on the audio and video data
buses so that if necessary we could capture data coming
from the transport core to the decoder.

For early system bring-up, we added a bypass
multiplexor to allow the controlling processor to write
audio and video data directly to the decoder FIFOs. This
gave us the opportunity to verify the back-end set-top-box
functions separately from the front-end transport functions.

® Emulation results

There were many benefits to emulating the transport core.
Confidence in the design and enthusiasm from marketing
grew as we progressed and saw more functions working.
We were able to show potential customers progress as it
was made. We also had the option of sending systems to
customers or other development groups for evaluation and
feedback.

The clock recovery portion of the transport core could
not be verified with simulation patterns alone. The output
of the clock recovery unit in the transport drives a
voltage-controlled oscillator in a set-top box. Due to the
analog nature of this signal it was verified in emulation.

Software development was probably the biggest
beneficiary of the emulation system. Months were saved by
developing code before system hardware was available and
thus reducing time to market. We found several design
bugs, but not of the magnitude that was expected. This
can be attributed to the design/simulation team and
the effectiveness of our pseudorandom simulation
methodology. Using the emulation system, we were
able to verify the simulation tests in a real environment
by comparing output from the emulator to output
from simulation. This allowed a cross-check of our
pseudorandom verification process with real hardware.

Deriving a ratio of IBM gates to FPGA logic cells
saved considerable time during the interactive process of
partitioning. Instead of synthesizing, placing, and routing
each potential partition to see whether it used too much
logic for the FPGA, we knew when creating the partition
how much logic it would require. When emulating a core
designed with a high-level design language, emphasis
should be placed on portability of the design to the
FPGAs. We found that doing a few trial synthesis runs
during design development and keeping to fundamental
HDL constructs showed that the design was portable but
still required some modification. Changes were required
when designers accustomed to using a much faster
technology allowed combinatorial paths to grow too long.
In these cases, the logic paths were shortened in order to

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

accommodate emulation. The time it took to update the
design in the FPGAs depended on the magnitude of the
changes that were made in the core. Toward the end of
the project, some of the FPGAs were at 70% of logic
capacity and 80% of 1/O capacity; this translated into
longer place-and-route times in the FPGA tools.

Summary
A unique pseudorandom verification approach was chosen
to verify the transport demultiplexor core because of the
asynchronous nature of possible events and the enormous
collection of operating configurations. This method
allowed us to successfully verify unforeseen scenarios and
sequences in an automated yet meaningful manner.

Hardware emulation provided an important independent
verification of the transport design, not to mention the
simulation environment itself, and it gave us an early
real-time vehicle on which to begin advanced software
development. The calculations for logic I/O and density
proved accurate. We were able to absorb major transport
design changes without significant impact to the emulation
system or the transport design. Trade-offs that were made
in clock performance to keep from disturbing the original
design and reduce processing time benefited each logic
update in the emulator. Emulation systems can provide
benefits to many groups in a design project, but it is
important to identify the scope and limitations involved
in reproducing a system in another technology.

It is impossible to measure the number of design
bugs exposed by this verification environment, since the
architecture, design, and environment tools were all new
and were developed simultaneously. Also, it is often
difficult to prove productivity and success without easily
quantified measurements. However, we can use the success
of the hardware as an indication of the overall validity and
coverage of these methods. The types of minor issues that
escaped the pseudorandom simulation were primarily in
the areas of interface modeling: bits swapped on buses or
protocol misunderstandings. Many of these were caught in
the emulation system, and no significant problems were
built in silicon.

This combined verification methodology enabled our
team to release a solid design to manufacturing, and
it also provided invaluable extra time for developing
the necessary product software applications. The
complementing verification techniques described in this
paper could be applied outside the realm of transport
demultiplexor design.

Acknowledgments

The authors wish to acknowledge the following for their
contributions toward the development of the topics in this
paper: Richard E. Anderson, Susan F. Bueti, Richard
DesRoches, Eric M. Foster, Ian R. Govett, Jay G. Heaslip,

C. A. REED AND D. J. THYGESEN

543

544

Donald S. Plosila, George W. Rohrbaugh, Bruce W. Singer,
and Timothy J. Vonreyn.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Altera Corporation.

References

1. L. Fournier, Y. Arbetman, and M. Levinger, “Functional
Verification Methodology for Microprocessors Using the
Genesys Test-Program Generator,” DATE99 Proceedings,
Munich, Germany, March 1999, pp. 434-441.

2. A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein,
Y. Malka, C. Metzger, M. Molcho, and G. Shurek, “Test
Program Generation for Functional Verification of
PowerPC Processors in IBM,” Proceedings of the 32nd
Design Automation Conference, San Francisco, June 1995,
pp- 279-285.

3. Y. Lichtenstein, Y. Malka, and A. Aharon, “Model-Based
Test Generation for Processor Design Verification,”
Proceedings of the Sixth Innovative Applications of Artificial
Intelligence (IAAI) Conference, AAAI Press, Menlo Park,
CA, 1994, pp. 83-94.

4. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman,

M. Leibowitz, and V. Schwartzburd, “Verification of the
IBM RISC System/6000 by a Dynamic Biased Pseudo-
Random Test Program Generator,” IBM Syst. J. 30, No. 4,
527-538 (1991).

5. M. Kantrowitz and L. M. Noack, “Functional Verification
of a Multiple-Issue, Pipelined, Superscalar Alpha
Processor—the Alpha 21164 CPU Chip,” Digital Technical
Journal of Digital Equipment Corporation 7, No. 1, 89-99
(Winter 1995).

6. J. H. Zurawski, J. E. Murray, and P. J. Lemmon, “The
Design and Verification of the AlphaStation 600 5-Series
Workstation,” Digital Technical Journal of Digital
Equipment Corporation 7, No. 1, 136-144 (Winter 1995).

7. S. T. Mangelsdorf, R. P. Gratias, R. M. Blumberg, and
R. Bhatia, “Functional Verification of the HP PA 8000
Processor,” Hewlett-Packard J. 48, No. 4, 22-31 (August
1997).

8. G. Giacalone, R. Busch, F. Creed, A. Davidovich,

S. Divakaruni, C. Drake, C. Ematrudo, J. Fifield,

M. Hodges, W. Howell, P. Jenkins, M. Kozyrczak,

C. Miller, T. Obremski, C. Reed, G. Rohrbaugh,

M. Vincent, T. Vonreyn, and J. Zimmerman, “A 1MB,
100MHz Integrated L2 Cache Memory with 128b
Interface and ECC Protection,” 1996 IEEE International
Solid-State Circuits Conference Digest of Technical Papers,
42nd 1SSCC, 1996, pp. 370-371, 475.

9. R. E. Anderson and E. M. Foster, “Design of an MPEG-2
Transport Demultiplexor Core,” IBM J. Res. Develop. 43,
No. 4, 521-532 (1999, this issue).

10. R. E. Anderson, E. M. Foster, D. E. Franklin, and R. S.
Svec, “Integrating the MPEG-2 Subsystem for Digital
Television,” IBM J. Res. Develop. 42, No. 6, 795-805
(1998).

11. “Information Technology—Generic Coding of Moving
Pictures and Associated Audio Information: Systems,”
ISO/IEC 13818-1, First Edition, April 1996.

Received November 18, 1998; accepted for publication
February 18, 1999

C. A. REED AND D. J. THYGESEN

Charlotte A. Reed IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452

(chareed @us.ibm.com). Ms. Reed completed a B.S. degree in
electrical engineering with a dual major in mathematics from
Syracuse University in 1988. She began her career in vector
processors and caches for main frames with IBM, receiving an
M.S. degree in computer engineering in 1992. Since joining
the Microelectronics Division in 1994, she has worked in PC
chipset and L2 cache design. Her past two years have been
focused on verification of the IBM MPEG-2 transport
demultiplexor. Ms. Reed is the coauthor of one patent.

Dana J. Thygesen IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452
(dthyg@us.ibm.com). Mr. Thygesen graduated from Vermont
Technical College with an A.S. degree in electrical
engineering in 1978, joining IBM that same year. His work
experience includes test analysis engineering, 486/386-

based in-circuit emulation, product development, FPGA
development, and applications engineering. Mr. Thygesen is
the coauthor of a paper presented at the fourth Canadian
Workshop on Field Programmable Devices, and he is a co-
inventor on an issued patent. For the past year he has worked
on the development of an MPEG-2 transport emulator.

IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

