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Single-pass
constant- and
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MPEG-2 video
compression

Most real-time MPEG-2 encoders are designed
to perform in a constant-bit-rate (CBR) mode,
in which buffer constraints are imposed to
circumvent large deviations from a desired
rate at any instant in time. Although such
streams are generally good-quality sequences,
certain types of operations or environments
call for a more efficient real-time CBR
encoder. The first part of the paper describes
how a better-quality CBR video stream can be
produced by estimating the relative complexity
of a picture in comparison with the average
complexity of the partially encoded stream and
using it to adjust the compression parameters
in a single-pass mode of operation. Our CBR
encoder is particularly attractive for digital
broadcast and editing environments, in which
representations of higher-fidelity video
objects in both display and freeze modes are
constantly pursued. The second part of the
paper describes the real-time generation of
video streams with a variable-bit-rate (VBR)
encoder. This mode of operation is highly
desirable for home entertainment and
recreational events. We propose a robust
single-pass VBR video encoder algorithm

which is capable of learning and adapting
itself to the complexity of image segments
and thereafter creating streams which have
constant visual picture quality. The new VBR
scheme displays a better performance than
the CBR encoder, particularly when special
effects such as scene transitions, fades, or
luminance changes are to be compressed.
Both CBR and VBR encoders are fully
compliant with the MPEG-2 standard and
are easily implementable with IBM encoder
architecture. Compression results for the
new single-pass encoding algorithms and
comparisons with previous CBR schemes are
provided. The result suggests the suitability
of our VBR approach for record/playback in
storage media such as digital video disc (DVD)
players, disk-based camcorders, and digital
videocassette recorders (DVCRs). It further
reflects the importance of our single-pass
CBR scheme for providers of broadcast
services, for which it allows more video
programs to be allocated to a selected
communication link, and for in-studio
applications, for which it greatly facilitates
visual analysis of captured streams.
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1. Introduction
The standardization of MPEG-2 [1] has greatly
facilitated the transmission, representation, storage, and
manipulation of digital video in various environments
such as broadcast television, wireless communications,
consumer electronics, and multimedia computers. Further,
applications ranging from desktop publishing on personal
computers (PCs) to home authoring with digital video disc
(DVD) players demonstrate the major role played by the
MPEG-2 standard in promoting new storage media for
consumer video and interactive multimedia. This has
enabled the home user to download video streams from
a satellite system or an Internet site in order to create
DVD video programs or multimedia presentations using a
recordable medium. Although the syntax and specification
of MPEG-2 bitstreams and multimedia programs (as in
DVD titles) are well defined by the international
standards, the actual encoding parameters and functions,
which should lead to a fully compliant bitstream, have
been and are the subject of many research efforts. The
main challenge is how to achieve a close-to-optimum video
quality in a compressed stream while reducing the amount
of information in the source. This is because the statistical
nature of any video source is either not known a priori or
will change over time, and a true estimation of source
distribution can be anywhere from computationally
extensive, as in non-real-time multipass encoding, to
almost impossible for real-time encoding.

The nonstationary nature of images makes them
inherently variable; compression optimality for MPEG-2
coder– decoders (codecs) is achieved by carefully selecting
a set of spatial or temporal image analyzers, quantizers,
and variable-length entropy coders, of which some are
frozen by the standard and some are to be defined by the
designer. The results are variable1 streams which require
a sophisticated buffering scheme to smooth out the
variability of the signal before transmission over a fixed
bandwidth is carried out. The receiver will have a similar
buffering policy to convert the fixed-channel rate to
variable streams prior to the decoding and display of
each picture.

Since design and development of an MPEG-2 video
encoder can become cumbersome as a result of
formulating several mathematically or perceptually derived
parameters, typical approaches [2] enforce a constant bit
rate (CBR) for a group of pictures (GOP) regardless of
the complexity of the video interval. This scheme assumes
equal weighting of bit distribution among GOPs and
reduces the degree of freedom of the encoding task. In
short, the problem is reduced to minimizing (maximizing)
the GOP distortion (quality) subject to a constant target
rate. By CBR we mean that the sustainable rate of the

encoded video stream per GOP is close to a constant
target rate, but the instantaneous rate changes per picture
depending on picture type2 or the quantization scaler.
Another advantage of a CBR stream is that the
transmitted signal may be terminated at any time and the
user is assured of maintaining a rate close to the target
rate. All CBR MPEG-2 encoders enforce different
quantizing scalers for each picture type to achieve
good-quality streams within a GOP. This method of
compression works adequately when the complexity of the
source varies slowly over time and therefore the encoding
algorithm has time to adjust itself. However, if the
statistical features of the source change rapidly over time,
a constant-bit-rate operation may result in good picture
quality for a short time window (e.g., a few frames or a
GOP) and discontinuous quality when the whole video is
perceived.

One way to improve the perceptual quality of a CBR
stream while maintaining its constant rate from start to
finish is to identify “difficult-to-encode” pictures and
increase their bit budget accordingly. Conventional
approaches to real-time CBR encoding use picture-to-
picture3 correlations in terms of complexity measures to
predict the level of difficulty of a picture. In this paper
we improve upon this first-order prediction by estimating
the encoding difficulty of a picture on the basis of the
complexity of all previously encoded pictures. Our single-
pass CBR algorithm employs an infinite impulse response
(IIR) filter to dynamically determine a nominal value
which represents the degree of difficulty of the partially
analyzed video stream in real time. We claim that the
number of bits consumed by a more (or less) “difficult-
to-encode” picture can be adjusted by comparing the
encoding difficulty of the substream against a local
measurement. This method of real-time compression
improves the overall quality of the video and maintains a
constant rate throughout the stream. Therefore, it can
potentially become a key encoding element in cable
television (CATV), direct satellite, and terrestrial
broadcast arenas as well as mobile and asynchronous
transfer mode (ATM) communications.

Since we argued that the video is inherently variable,
an even better compressed stream can be created by
employing a variable-bit-rate (VBR) encoder algorithm.
Applications for such a scheme are plentiful. VBR can be
used for networks that employ a dynamic bandwidth, as in
ATMs, or it can be exploited as a means of achieving
statistical multiplexing for digital broadcast satellites.
Other major arenas which can benefit from the use
of a VBR encoder are consumer video and interactive
multimedia, where recording of high-quality pictures onto

1 Here the term variability means the instantaneous rate of the video.

2 The MPEG-2 standard uses I (intrapicture), P (predicted), and B (bidirectionally
predicted) types.
3 Pictures must be of the same type for an accurate prediction.
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a storage medium is desired. For the aforementioned
environments, DVD video movies are created to be played
on set-top players, while DVD–RAM drives are used for
multimedia productions in computers. Some examples of
end-to-end solutions of the above industry segments are
shown in Figure 1.

Some attempts at formulating a VBR video coding
scheme have appeared in the literature. Most of them
propose constraining the quantizer-scale parameter to a
user-defined target value for long periods of time [3]. This
value is adjusted via network negotiation or monitoring
the system buffer to match quality of service (QoS).
Although simple intuition suggests that fixing the
quantizer scaler would redistribute the amount of bits
among GOPs of differing complexity, there are no
guarantees of obtaining a constant video quality. Further,
in ATM applications an encoded stream is usually queued
before a bandwidth is available in the network. This lead
time enables pre-encoding tasks to be performed on
particular streams subject to the overall channel
bandwidth and buffer fullness. Others have investigated
a simple variable-bandwidth estimation model for the
number of ATM cells generated through packetization
of video sources [4]. In this allocation scheme, a fixed
quantizer-scale parameter is again used by the encoder.
Authors in [5] have presented a VBR video encoder which
takes advantage of the limits of the human observer to
improve the perceived quality of the decoded sequence

while maintaining the output bit rate within permitted
bounds.

For consumer video, a popular mode of encoding
operation has been the multipass VBR scheme. For
example, high-end DVD mastering can be accomplished
with an encoding system which typically uses a three-step
procedure. The first step encodes the video source in a
CBR mode and gathers a set of predefined statistical
features. This information is then used to compute a set
of optimized quantization parameters which closely match
the source distribution of the video data and would
provide a better compressed stream during a second-pass
encoding. The last step is a postprocessing task which
creates the final DVD format. The intermediate procedure
can be carried out several times to produce an ideal video
program. This type of application has the advantage that
many lookahead parameters are known a priori when
the VBR video coding algorithm is implemented.
Unfortunately, for applications such as home DVD
productions, writable DVDs for PC, digital camcorders,
and DVCRs, the availability of a platform capable of
analyzing and performing a multipass VBR encoding is
unrealistic. Therefore, a VBR scheme is desired which is
superior to CBR and can be implemented in one pass.
This paper is intended to introduce such an algorithm.

In the first part of the paper we propose a new single-
pass CBR encoder algorithm which is tailor-made for real-
time compression and can easily be realized with the IBM

1
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encoder architecture. We add a further level of complexity
to the CBR encoder and introduce a new real-time single-
pass VBR encoder in the second part of the paper. Our
VBR scheme employs a causal predictive model to
distinguish the “hardness” or “softness” of the incoming
video material on the fly and adapts itself accordingly.
Moreover, it relies on a perceptual model to improve
the quality of the stressful segments of the stream and
produce high-fidelity video. The perceptual model is also
responsible for adjustment of the average rate of the
stream. The rest of the paper is organized as follows.
Section 2 gives some background information for CBR
and VBR algorithms. The new CBR encoding technique
is presented in Section 3, and the VBR rate-control
algorithm is defined in Section 4. Simulation results are
given in Section 5, and concluding remarks are provided
in Section 6.

2. Background formulation
An MPEG-2 sequence is typically partitioned into small
intervals called GOPs (groups of pictures), which in
turn are categorized by picture types I (intracoded or
intrapicture), P (predicted), and B (bidirectionally
predicted) [1]. The number of bits per GOP is distributed
such that the allocation for an I-picture is more than that
for a P-picture. This is because a P-picture uses a motion-
estimation (ME) technique to estimate its content; as a
result, a motion-compensated frame difference (MCFD)
with a lower entropy than the original source is encoded.
B-pictures use the smallest number of bits because
their ME techniques are more intensive than those for
P-pictures. This method provides a basis for maintaining
the same picture quality within a GOP when pictures of
different types are encoded. We may further lower the bit
allocation of B-pictures, since they will not be used to
estimate other pictures. Each picture type is subdivided
into square blocks of pixels called macroblocks. Since
producing an efficient compressed stream is the main
mission of an MPEG-2 encoder, devising a robust rate-
control (RC) algorithm becomes an integral part of the
encoding task. The rate-control algorithm monitors the
number of bits that should be allocated to each picture
or macroblock on the basis of type or image feature,
respectively. Moreover, it should ensure that the decoder
buffer does not experience an overflow or underflow
during the time the stream is received from the
communication channel and prepared for decoding. In
short, there is a need for the following items in any type
of MPEG-2 compression scheme:

● Target bits (or quantization scalers) for picture types.
● Buffer regulation to avoid overflow/underflow

conditions.

● Maintenance of a target rate or consumption of no more
than the bit budget.

● A rate-control strategy which ensures that all of the
above are monitored/satisfied.

In the remainder of this section, we build a framework
for a CBR compression scheme, since most of these
ideas are needed for the new single-pass CBR and VBR
approaches. We assume that pictures of a video sequence
can be modeled as a memoryless Gaussian source with
variance s2 varying from picture to picture; hence,
their rate-distortion (R-D) relationship is defined by
R(D) 5 (1/ 2) log (s 2/D). Experimental results in the
literature suggest that a similar behavior exists between the
rate R of the source and the quantization factor Q [6],

R~Q! 5 b1 log
b2

Q
. (1)

Instead of using the logarithmic model of (1), we
adopt a simpler hyperbolic relationship which is easily
implementable in real time and has proved to be an
effective realization of the R-Q model [2]. The simplified
equation takes the form

R~Q! 5
x

Q
. (2)

Equation (2) indicates that the picture rate is inversely
proportional to the quantization factor. x is a predefined
measure of complexity for each picture type. However,
since the nature of the source changes over time, a new
complexity measure is required prior to encoding of each
picture type. This parameter is usually computed using the
past encoding parameters, e.g., bits, quantization factor,
and/or some lookahead statistics. For each GOP4 of the
MPEG-2 stream, we enforce a total number of bits given
by C

,
,

O
x

N xR x
5 C

,
x 5 I, P, B. (3)

Index , denotes the GOP number, and x is the picture
type. Nx is the number of pictures of type x in a GOP, and
Rx is the number of target bits for picture type x. For a
CBR sequence we have C

,
5 Cgop, where Cgop is a fixed

number of GOP bits. For a given C
,
, the video quality of

the GOP is maximized by minimizing the average sum of the
quantization scalers subject to the condition of Equation (3),

C 5
Ox N xQ x

Ox N x . (4)

4 For simplicity, we have assumed a fixed GOP structure throughout this paper, but
an adaptive GOP structure may also be employed in our MPEG-2 framework.
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Instead of minimizing C subject to the constraint of (3),
we remove this condition and use the Lagrange multiplier
l to minimize the Lagrangian cost Y:

Y 5 C 2 lC
,

. (5)

With the aid of the rate-quantization model described
in (2), the target for each picture type is deduced:

R x
5

x xC
,Ox x xN x . (6)

Targets in Equation (6) represent only ideal picture bits;
the actual bits would almost always deviate from this. The
accumulated error must be computed and fed back to the
rate-control algorithm to ensure that the final MPEG-2
bitstream meets the average bit rate or the total bit
budget. Let C

,,ideal and C
,,actual represent the ideal

and actual bits for GOP ,, respectively, and let
d

,,gop 5 C
,,actual 2 C

,,ideal be the difference between the
two. Further, let Ri,ideal and Ri,actual represent the ideal
and actual bits for picture i, respectively, and
d i,pic 5 Ri,actual 2 Ri,ideal be the difference between
the two. After n pictures have been encoded, the total
accumulated error can be computed as

O
,50

ng21

d
,,gop 1 O

i50

n2ngG21

di,pic 5 Dn21,gop 1 Dn21,pic . (7)

The size of the GOP is given by G 5 ¥x Nx , and
ng 5 n/G is the number of fully encoded GOPs. Suberror
accumulation for all processed GOPs is given by Dn21,gop,
while Dn21,pic is the suberror accumulation for the last but
not yet finished GOP in the encoding order. The ideal
picture target can now be adjusted for overproduction
or underproduction of bits, computed from previously
encoded pictures. The new set of ideal bits prior to
encoding picture n belonging to GOP (, 5 ng) is

Rn,ideal
x

5
xn21

x ~C
,

2 a1Dn21,gop 2 a2Dn21,pic!Ox xn21
x N x , (8)

where a1 and a2 are constants that indicate how
aggressively this adjustment is carried out. For a CBR
scheme it is recommended to use a1 5 a2 5 a with
Dn21 5 Dn21,gop 1 Dn21,pic, and compute the adjusted
picture bits as

Rn,ideal
x

5
xn21

x ~Cgop 2 aDn21!Ox xn21
x N x . (9)

The rate-quantization framework described so far is
based on the assumptions that the decoder buffer is of
infinite size and that a large enough number of bits is
always available. However, this is not true in a real-life
scenario, where the buffer size is limited and defined

by the MPEG-2 standard [1]. The encoding scheme is
responsible for eliminating any overflow or underflow
condition that the decoder buffer may encounter. This
is accomplished by examining a hypothetical decoder
buffer, i.e., video buffer verifier (VBV), and computing
lower/upper bounds on the number of bits assigned for a
picture type. The lower bound should be a large enough
nonnegative number to prevent the overflow condition,
while the upper bound should not be larger than a
predetermined value above which the VBV buffer will
underflow. Let Bn and B*

n be the decoder buffer fullness
before and after picture n is removed, respectively. B*

n is
then computed as

B*
n 5 Bn 2 Rn,actual , (10)

and the buffer fullness before removing the next picture is

Bn11 5 B*
n 1 RchTn , (11)

where Rch is the channel rate (in Mb/s) at which the
decoder buffer is being filled, and Tn is the display period
for picture n. Figure 2 shows how the occupancy of a
VBV buffer changes over time. Before we remove picture
n, we have all the information in the buffer available to
us; therefore, the upper bound Un becomes the buffer
occupancy. To compute the lower bound Ln , suppose
Rn,actual is just that, and picture n has been removed at once
and delivered for display. The decoder buffer is filled at the
rate Rch during this period, and the VBV buffer fullness
before removing picture (n 1 1) would have to be smaller
than the total size of the video buffer verifier, i.e., Bvbv, in
order to prevent overflow. Therefore, the nominal values
by which the picture target bits are bounded are given by

Un 5 Bn,

Ln 5 max ~0, Bn 1 RchTn 2 Bvbv). (12)

2
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After each picture is encoded, the complexity measures
x x are updated, and a new target based on Equation (8) is
computed for the next picture. This target should meet the
constraints imposed by (12) to satisfy the VBV buffer
policy. We clip the ideal picture bits using the picture
bounds Un and Ln :

Rn,ideal 5 5
Un if ~Rn,ideal . Un!,
Ln else if ~Rn,ideal , Ln!,
Rn,ideal else.

(13)

Finally, a quantization scaler Q, which is defined on the
hyperbola of Equation (2), is obtained. It should be noted
that each picture type has its own composite R-Q curve,
and further, for each picture type the Q factor may be
adjusted slightly to ensure that all pictures are perceived
to be of equal quality. In this paper we do not define how
to incorporate perceptual effects, via modulating the
Q factor, for a macroblock-level rate control during
the encoding task; the reader can refer to [2] for this
procedure. However, we must describe a strategy which
ensures that the ideal target number of bits for each
picture type is met. The above condition can be satisfied
by monitoring the actual number of bits computed for a
set of encoded macroblocks against the ideal average
number of bits of a macroblock. Let rm,n,actual represent the
actual number of bits calculated for macroblock m in
picture n. In order to track how closely we match the
ideal picture bit, a parameter Dm,n,mb is defined:

Dm,n,mb 5 O
p50

m21

rp,n,actual 2
mRn,ideal

Mmb

, (14)

where Mmb is the total number of macroblocks in a
picture. A positive Dm,n,mb indicates an overproduction
of bits at the macroblock level; therefore, the picture
quantizer must be increased for the next macroblock to
satisfy the target number of bits. Similarly, a negative
value dictates the opposite scenario. A macroblock-level
rate-control strategy can be formulated to modulate the Q
factor on the basis of overproduction or underproduction
of bits. We accomplish this by defining a factor qm,n , used
to scale macroblock m in picture n, through [7]

qm,n 5 QnHA c~Dn, Dm,n,mb! if ~Dm,n,mb . 0!,
Af~En, Dm,n,mb! else, (15)

where Ac(., .) and Af(., .) are empirically derived
functions which help in maintaining the picture target
bits. They should behave such that Ac(., .) is always
larger than 1 and Af(., .) is smaller than or equal
to 1. Qn is the picture quantizer, and differential targets
Dn and En are

Dn 5 Un 2 Rn,ideal ,

En 5 Rn,ideal 2 Ln . (16)

We have now defined a CBR MPEG-2 encoder specified
by {Ri , Qi} i50

n . In the following section, we describe how
this framework can be modified to produce a better CBR
stream.

3. Single-pass CBR video
Previous approaches to CBR video compression such as
the schemes defined in Section 2 and in [2] have used
only the encoding parameters of one previously encoded
picture to estimate the R-Q relationship of a picture
having the same type. After a picture is encoded, its
complexity x x is updated as defined in [2] and used for
the next picture of the same type,

xn21
x

5 5Rn21,actual
x Mmb

21 O
m50

Mmb21

qm,n21
x if ~n 2 1! is of type x,

xn22
x for all other types,

(17)
and the complexity measures are used to predict a
quantization value for picture n,

Qn
x

5
xn21

I N I
1 xn21

P N P
1 xn21

B N B

~Cgop 2 aDn21!
. (18)

An examination of Equation (18) reveals that a first-
order prediction is used to estimate the position of an
(Ri , Qi) pair for each picture type to be encoded. This
method of estimation can be improved by observing the
long-term complexity of all pictures processed so far and
determining the relative complexity of a current picture to
be encoded. The long-term complexity x# n21

x of a picture
type x is defined as

x# n21
x

5 5
~Gx 2 1!x# n22

x
1 xn21

x

Gx

if ~n 2 1! is of type x,

x# n22
x for all other types.

(19)

Equation (19) characterizes an IIR filter structure with
the complexity of a picture as an input and the average
complexity of a subset of the stream as the output.
Coefficient Gx is fixed over time for a picture type x and
reflects how strongly the output of the filter is dependent
on the previous input and output samples. The canonical
structure of the IIR filter represents an efficient and
simple way to respond quickly to the statistical variations
of a video sequence in real time. The recurrence in
Equation (19) can be factored to write the average
complexity in terms of the individual complexity of
encoded pictures,
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x# n21
x

5
~Gx 2 1! n21

G x
n21 x# 0

x
1 O

i51

n21
~Gx 2 1! n2~11i!

G x
n2i x i

x , (20)

with

x# 0
I

5 x# init ,

x# 0
x

5 kxx# 0
I for x [ $P, B%. (21)

Since each GOP typically starts with an I-picture, the
selection of the magnitude of x# init determines how well we
may encode the first few Is of the sequence. Constants kP

and kB are intended to maintain a complexity ratio among
the start-up values. We now take advantage of the fact
that before compression of a “difficult-to-encode” picture,
the differential target Dn may be a large positive number
which can be used to adjust the ideal target allocation of
such a picture. Similarly, the bit allocation of an “easy-
to-encode” picture can be lowered on the basis of the
differential target En . It should be noted that the notion
of difficulty of encoding reflects the relative complexity of
a picture among all processed pictures. This conception
is substituted for the expression “more (less) difficult to
encode” throughout this formulation. In order to identify
the level of difficulty of a picture type, we compare its
complexity against the output of the IIR filter, which
indicates the history of all previously encoded pictures
of this type. If (xn21

x
$ x# n21

x ), we label this picture as
“difficult to encode” and increase its bit allocation. For
the opposite scenario, i.e., (xn21

x , x# n21
x ), the picture is

labeled as “easy to encode,” and bit allocation is lowered.
The actual adjustments are defined by modifying Rn,ideal of
Equation (13) through

Rn,ideal
x

5 5
min SRn,ideal

x
1

xn21
x

2 x# n21
x

xn21
x

1 x# n21
x rmax Dn, nmax Rn,ideal

x D
if ~xn21

x
$ x# n21

x !,

max SRn,ideal
x

1
xn21

x
2 x# n21

x

xn21
x

1 x# n21
x rmin En, nmin Rn,ideal

x D
else,

(22)
and the picture quantizer is computed as

Qn
x

5
xn21

x

Rn,ideal
x . (23)

The new targets in Equation (22) suggest that for
extreme cases, i.e., pictures that are very difficult (or
easy) to encode, we may come very close to the upper or
lower bound of a picture and force the decoder buffer to
underflow or overflow. To resolve this problem, constants
rmax and rmin are incorporated to use only a portion of the
available buffers Dn or En . The min and max operations,
along with user-defined nmax and nmin parameters, are used
to prevent a picture from using too many or too few bits.
A further precaution is taken to avoid decoder buffer

overflow by adding a guard band gL to increase the lower
picture bound:

Ln,adj 5 Ln 1 gL ; (24)

the new adjusted differential targets (buffers) are given by

Dn,adj 5 Un 2 Rn,ideal 2 gU ,

En,adj 5 Rn,ideal 2 Ln,adj . (25)

Again, a guard band gU is used to prevent the decoder
buffer from underflowing. After the new target for a
picture is set through the conditions given in Equation (22),
we must still clip the bits using the adjusted lower
bound Ln,adj and the upper bound Un . The updated
parameters Dn,adj and En,adj are used to ensure that the new
targets are achieved by implementing a macroblock-level
rate-control strategy, as defined in (15). Figure 3 displays
a graphical representation of how a transformation of a
plot of the relative complexity of a picture is used to
set a new bit target. It further reflects how VBV buffer
compliance is guaranteed and picture bit budgets are
satisfied by enforcing the actual bit production to operate
within certain limits and cling to the ideal bit allocation.

The robustness of any type of constant-bit-rate control
algorithm is directly dependent on the speed with which
it can respond to the changes of the video content of an
incoming stream. For real-time applications in which an
efficient hardware implementation must be realized with
dedicated integrated circuits, the veracity of the RC
algorithm may be severely tested under stressful
conditions. This is because such customized solutions do
not use any preprocessing functions to pre-analyze the
nature of the stream; consequently, the availability of the
true encoding parameters of a picture always lags the
assigned values. A real-time RC algorithm must process
and memorize a few GOPs of the same complexity before
it can reach its optimality. We argue, on the basis of the
following observations, that our new approach to CBR
video compression, as formulated in Equation (22),
offers a quicker response and better results than
the conventional method of CBR encoding.

Consider an encoder that has processed a few “difficult-
to-encode” pictures and, further, that this new group
of pictures belong to the same GOP. The increase in
picture difficulty may be due to the sudden (or gradual)
appearance of a high degree of spatial image detail,
an increase in the velocity of many moving objects of
different scales, directional changes of objects, or some
form of higher-order combinations. At the start of a
new GOP, we must encode an I-picture. Since we have
already compressed one difficult I-picture, there is a high
probability that the next I-picture is also “difficult to
encode,” as reflected by the complexity of the previously
analyzed picture. Our CBR scheme can adjust to this
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picture much more quickly by knowing that the I-picture is
significantly different from the rest of the video sequence.
This observation is made by comparing the output of the
IIR filter against the estimated I-complexity. As a result,
the I-picture consumes more bits than the normal bit
allocation generated by a conventional method of CBR
encoding. Therefore, a higher-quality I-picture is
reconstructed at the decoder output. I-pictures are
used as references to predict a block of pixels in P- and
B-pictures. A better prediction is now obtained for the
non-intracoded pictures, resulting in better reconstruction
of such pictures at the cost of a small number of bits.
Hence, we improve the perceptual quality of a GOP while
still adhering to the constant bit rate of the stream. If an
easy picture is to be encoded, it consumes fewer bits, and
the remaining bit budget is used to encode the future
pictures of a GOP. Overall, the number of bits and the
picture quality average out over an “easy-to-encode” GOP.
It should be noted that the human observer finds image
distortions in “difficult-to-encode” pictures most annoying;
for long video programs, a small degradation in “easy-to-
encode” pictures is tolerated. Further assessment of the
argument presented in this section and comparison
with the method described in Section 2 are provided
in Section 5, which discusses the simulation results.

4. VBR video
The CBR rate-control strategy of the previous section is
inspired by the fact that for a fixed target Cgop, constant
quality is achieved within a GOP by modulating the
quantization parameters. Any statistical variations or bit
offshoots are exploited to help stabilize the CBR RC
algorithm over time and maintain a desired rate. In
addition, an MPEG-2 CBR encoder takes advantage
of a set of universal constants and predetermined initial
complexity measures to ensure a certain ratio between the
number of bits allocated among different picture types [2].
However, efforts in classifying a group of continuous
pictures, such as GOPs or video segments, into different
types of time intervals in terms of complexity “hardness”
or “softness” have been limited for real-time single-pass
MPEG-2 encoding. We define “hardness” (“softness”)
of the video by the large (small) number of bits that it
requires to produce high-fidelity results. For multipass
CBR or VBR encoding, such information is known; hence,
quality improvements can be made. One way of achieving
single-pass VBR compression is to compare the Q factor,
derived by the CBR algorithm, against a fixed parameter
[8]:

Qvbr 5 max ~Qfix, Q!. (26)

3
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The method in (26) is intended to provide an upper
bound on the quality of pictures which belong to soft
video segments. When soft segments are analyzed, it
is very likely that we have (Qfix . Q). Therefore, a
quantization scaler, larger than the values normally
assigned by the CBR encoder, is assigned to pictures in
soft segments. A VBR stream is produced by distributing
the surplus bits among the hard segments of the video.
Qfix may be obtained through experimentation with a large
number of sequences, but finding a near-optimum value
is difficult if not impossible. A better scheme can be
formulated by calculating a Qfix scaler in real time using
prior image statistics [7]. The concept behind the method
in [7] is to combine the Qfix approach of [8] with that of
the CBR RC algorithm.

Our real-time single-pass VBR encoder exploits an
R-Q compression model to differentiate the degree of
“hardness” or “softness” of video segments, each segment
corresponding to a particular hyperbola similar to the one
defined by (2). The actual encoding parameters of the
video segments are computed along this hyperbola. We
also use an R-Q perceptual model to prioritize the video
segments in terms of visual importance. To satisfy the
average rate of the VBR stream, the position of the
perceptual model must be changed over time. In this
paper we specify two methods for meeting this condition.
The perceptual model and the VBR RC algorithms are
described next.

● Rate-quantization perceptual model
The VBR scheme proposed in this paper is conceptually
motivated by the fact that each video segment is
associated with a level of encoding difficulty, and this
difficulty can be measured by various source statistics
or compression parameters such as total picture bits,
quantization scaler, spatial activity, temporal activity,
signal-to-noise ratio, or any combination of them. A larger
number of bits should be allocated to a video segment
with a high level of encoding difficulty. This is a different
approach from that of the CBR RC algorithm, in which a
fixed number of bits is allocated to each GOP regardless
of the degree of complexity of the source. Research
efforts have shown that for a large number of test cases
composed of complex, moderate, and easy materials, a
strong correlation exists between the rate of the video
interval and its corresponding quantization scaler [9]:

Ra } ~a1 1 a2Qa
b!. (27)

The R-Q relationship of (27) is deduced on the basis
of the criterion that all types of video intervals should be
perceived equally. Further, it suggests that difficult video
segments producing a large quantization scaler should
consume more than the average bit rate of the compressed
stream, while easy segments would use smaller bits. This

provides a natural building block in formulating a robust
single-pass VBR encoding algorithm, since it takes
advantage of the variability of the video source. The
actual number of bits allocated to each interval is
determined by the slope K of the perceptual model,

Ra 5 K~a1 1 a2Qa
b! 5 KF~Qa!. (28)

Constant K (measured in Mb/s) is modulated for each
video interval to ensure that the average rate of the
compressed stream meets the desired target. For the case
of b 5 1.0 the perceptual model reduces to a linear
relationship.

● VBR rate-control algorithms
The efficiency of a single-pass VBR encoder is assessed by
the speed with which its rate-control algorithm can learn
and adjust itself to the “softness” or “hardness” of the
video stream. For regions where image discontinuities
or special effects occur, degradations in picture quality
should be minimized. Since for single-pass encoding, image
statistics are limited by the previously analyzed pictures,
the learning rate of the RC algorithm must be adequate to
predict the content of the future video intervals, yet not
aggressive enough to result in algorithmic instabilities.
One way to solve the twofold problem is to adjust the
quality of the encoded stream for every time interval
and let the RC algorithm learn the local content of
each picture within that time interval.

In this subsection we claim that a VBR video stream
Svbr is a concatenation of several contiguous video
intervals, each operating at a different CBR bit rate. We
further use the GOP terminology as the definition of a
video (or time) interval for the remainder of the paper,
and compute the quantization parameters of the single-
pass VBR algorithm for each GOP. Therefore, Svbr can be
partitioned into a number of piecewise-continuous GOPs
specified by {S

,
}

,50
m . For GOP S

,
we define an average

number of bits #C
,

and an average quantization scaler #Q
,

such that [ #C
,

#Q
,
] 5 G21[C

,
Q

,
]. We modify the terms of

(28) to form a dependency between the average number
of bits and quantization scaler of GOP S

,
,

#C
,

5 f 21KF~ #Q
,
!. (29)

The picture rate of the video is defined by f. Equation (29)
represents the perceptual rate-quantization model for
a GOP. We further take advantage of the theoretical rate-
quantization model and assume a hyperbolic dependency
between the average number of bits and quantization
scaler of a GOP as in (2). The GOP rate-quantization
model takes the form of

#C
,
~ #Q

,
! 5

x
,

c

#Q
,

. (30)
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The average complexity of a GOP is given by x
,

c . To
understand how the two perceptual and theoretical rate-
quantization models work in harmony, we should look at
their graphical representations in Figure 4. The perceptual
model is overlaid on the ideal rate-quantization behavior
of GOPs. Once the VBR encoder processes a few GOPs,
the #C- #Q relationship of Equation (30) can be realized.
Depending on the actual compression parameters, the
model of Equation (30) characterizes a “hard” or “soft”
GOP. Then the #C- #Q perceptual model is used to emphasize
the visual importance of a “hard” GOP. The positive
slope of this model ensures that “hard” GOPs are
assigned more bits. A more detailed description of the
VBR rate-control algorithm is presented later in this
section.

Since our goal is to formulate a VBR algorithm which is
readily applicable for hardware implementations, we form
a linear approximation for the model of Equation (30).
The new model uses previously processed GOPs to
construct a straight line for the #C- #Q relationship. We call
this line the #C- #Q predictive model and define its slope and
#C 2 intercept by j

,
and h

,
, respectively. Next, we explain

how to derive this model.
Let ( #C

,22,actual, #Q
,22,actual) and ( #C

,21,actual, #Q
,21,actual)

represent the average number of bits and average
quantization scaler pairs of GOPs S

,22 and S
,21 just

encoded.5 Then, the #C- #Q relationship for GOP S
,

to be
encoded is given by

#C
,

5 2j
,

#Q
,

1 h
,

, (31)

with

H j
,

5 D #C
,
~D #Q

,
! 21 h

,
5 #C

,21,actual 1 j
,

#Q
,21,actual ,

D #C
,

5 #C
,21,actual 2 #C

,22,actual D #Q
,

5 #Q
,22,actual 2 #Q

,21,actual .

Equation (31) defines the instantaneous rate-
quantization behavior of a particular GOP under analysis
and will change over time. To find the optimum operating
point, we solve the causal predictive model of (31)
together with the perceptual model of (29) and encode
the next GOP at the average number of bits of

#C
,

5
K~j

,
a1 1 h

,
a2!

fj
,

1 a2 K
. (32)

Constant K is modulated for each GOP to ensure that the
total number of bits produced by the VBR stream is not
more than the size of the storage or retrieval device,
e.g., a DVD disc. Assume that the total number of bits
available is RTOT. Then, after every GOP of the video
sequence is analyzed and encoded, we can use the
perceptual model of (29) to compute K:

K 5
fRTOT

G O
,50

Ngop21
F~ #Q

,,actual!
. (33)

The number of GOPs in the video sequence is given by
Ngop. Given a number of pictures and a bit budget RTOT,
the single-pass VBR encoder has the responsibility of
fitting all of the produced bits into the digital medium. To
prevent overruns or underruns, RTOT must be dynamically
modified for each GOP. The adjusted budget R

,,tot is
obtained by subtracting the actual bits from RTOT and is
used to set a new slope,

K
,

5
fR

,,tot

G O
,50

Ngop21
F~ #Q

,,actual!
. (34)

We call the VBR encoder which uses this method of bit
assignment (or slope modulation) VBR method 1 (VBR-1).
The denominator of Equation (34) can easily be
computed in a multipass encoding scheme, but is not
available for a single-pass real-time compression. Instead,
we use a pre-encoded phantom sequence with a set of
GOP quantizers defined by { #Q*

,
}

,50
N*gop 21 , and adjust the

summation of Equation (34) after each GOP of the test
sequence is encoded. N*

gop is the number of encoded GOPs
in the phantom sequence. The learning procedure for (34)
is formulated as follows.

Learning procedure 1

1. Let P be a pre-encoded phantom defined by the tuple
{N*

gop, { #Q*
,
}

,50
N*gop 21 }, and set Z0 5 [¥

,50
N*gop 21 F( #Q*

,
)],

N0 5 N*
gop.5 A CBR or VBR MPEG-2 encoder can be used here.

4
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2. Initialize the VBR-1 RC algorithm by encoding the first
two GOPs of the video sequence, i.e., S0 and S1 , at a
rate of ( f #Cgop) using a CBR MPEG-2 encoder. The
nominal value of ( f #Cgop) should correspond to the
average rate of the VBR stream.

3. After S
,21 is encoded, update Z

,
and N

,
as

Z
,

5 Z
,21 1 gF( #Q

,21,actual), N
,

5 N
,21 1 g, where

g is the update speed of the learning algorithm.
Compute C

,21,actual and then the sum ¥ j50
,21 Cj,actual.

a. If (, 2 1 5 0) f increment , by one, go to step 3.
b. Otherwise, compute j

,
and h

,
according to the

causal predictive model defined in (31).
4. Use the sum term of step 3 to determine the remaining

bits R
,,tot in the budget. Update the number of

remaining pictures P
,

to be encoded.
5. Measure the new slope: K

,
5 fR

,,totN,
(P

,
Z

,
)21 .

6. Calculate the new target #C
,

and encode S
,

in VBR
mode.

7. If there are unfinished GOPs in the sequence, go to
step 3; otherwise stop.

Term Z
,

is intended to adapt itself to the image content
of each GOP and smooth out the volatility of the VBR
video. It acts as a safety measure to prohibit unrealistic bit
allocations to GOPs of very high (low) complexity. Finally,
the average number of bits of the GOP S

,
to be encoded

by the VBR-1 encoder is set by

#C
,

5 SR
,,tot N

,

P
,
Z

,

D3
j

,
a1 1 h

,
a2

j
,

1 a2SR
,,tot N

,

P
,

Z
,

D4 . (35)

To adjust the target bits of each picture type, #C
,

is
multiplied by the GOP size G and Equation (8) is used to
set the VBR picture bits. For a VBR scenario, upper and
lower picture bounds are defined differently from those
for the CBR mode of operation. An overflow condition
cannot occur for the decoder buffer of a VBR codec.
This is because the task of filling the decoder buffer is
immediately stopped after the VBV buffer occupancy
reaches its maximum level. Therefore, a lower bound of
zero is imposed for picture bound. Moreover, the decoder
buffer is filled at the maximum rate of Rmax,

6 set by the
user. Figure 5 shows an example of how the occupancy of
a VBV buffer changes over time for the VBR mode of
compression. We clip the target bits of Equation (8) by
the newly derived picture bounds

Un 5 min ~Bvbv, Bn21 1 RmaxTn21 2 Rn21,actual!,

Ln 5 0. (36)

Picture quantization scalers are computed as in (23) and
the macroblock-level rate-control strategy of Section 2

is used to maintain the picture targets. We have now
defined a single-pass VBR MPEG-2 encoder specified
by {RTOT, {Ri , Qi} i50

n }. The encoder operates along
constellations which are formed by jointly solving for a
time-varying perceptual model and a bank of #C- #Q models.
The relative ideal position of the ( #C

,
, #Q

,
) pair of a GOP

within the constellation is first determined by the “softness”
or “hardness” of the GOP and then adjusted by the
remaining number of bits in the bit budget. The local
position of the (Ri , Qi) pair of a picture is represented by
the R-Q model of the picture type. Figure 4 displays how
a constellation of ( #C

,
, #Q

,
) pairs is formed by the VBR-1

encoder. In this figure, the constant line defined by
#C 5 #Cgop indicates the ideal location of all ( #C

,
, #Q

,
) pairs

if they were to be encoded in CBR mode. Moreover, it
reflects that the average quantization scalers increase as
the hardness of GOPs increases. The ideal and actual
operating points are depicted by light and dark circles,
respectively. Let ( #C1 , #Q1) and ( #C2 , #Q2) be the first two
pairs of a “soft” GOP, which are obtained by initialization
of the VBR-1 encoder in the beginning of a video
sequence. The next ideal operating point, denoted by “3,”
is the intersection of the perceptual model (solid line) and
the causal predictive model. The position of point “3”
indicates that an average number of bits smaller than the
sequence average #Cgop is allocated. However, the output of
the encoder, i.e., point ( #C3 , #Q3), will be different, and as a
result, a new perceptual model (shown by the dotted line)
is derived to meet the bit budget constraint. The pairs
( #C2 , #Q2) and ( #C3 , #Q3) are then used to obtain a new
predictive model (shown by the dotted line) and compute
a new operating point, i.e., “4.” If the video sequence
contains a large number of contiguous “soft” GOPs, the
perceptual model will eventually converge to a line which6 For DVD application, an Rmax 5 9.8 Mb/s is suggested.

5
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intersects the #C 5 #Cgop line in close proximity to the CBR
output pairs ( #C1 , #Q1) and ( #C2 , #Q2).

If the video material starts with “hard” GOPs, the
location of the actual point ( #C3 , #Q3) is above the
#C 5 #Cgop line. This ensures the optimization of the available

bit budget for regions where a CBR encoder is most
vulnerable, i.e., “hard” GOPs. In this scenario, a new
perceptual model (shown by the dashed line) is formed to
gradually lower the allocated GOP bits and comply with
the bit budget constraint. This model, along with the new
causal predictive model (also shown by the dashed line),
determines the next operating point, denoted by “4.” For
the case in which the incoming sequence is composed only
of “hard” GOPs, the perceptual model will eventually
conform to a line which meets the #C 5 #Cgop line at a
location close to the ( #C1 , #Q1) and ( #C2 , #Q2) points. For a
typical video program, it is unlikely that we operate along
the same GOP (or a constellation of previously computed
points) for a long duration of time. It is, however, likely
that we jump out of a GOP to the next neighboring GOP
after a short time. Therefore, we can deduce the following
behavior. Before the perceptual model settles in a
situation where it can monotonously take away from
“hardness” or “softness” of a GOP, the RC algorithm will
migrate to a new GOP. The actual quantization scaler
values for previously encoded picture types determine the
migration to a “harder” or “softer” GOP. For a future
“harder” (“softer”) GOP, we move to the right (left) of
the previously encoded GOP as depicted in Figure 4.
Hence, the point at which we intersect the perceptual
model produces a number of GOP bits which is higher
(lower) than the number of actual bits consumed by a
previous GOP. This mechanism ensures that, for a
collection of contiguous GOPs of similar “level of
encoding difficulty,” the effect of the “hardness” (or
“softness”) reduction or augmentation is distributed over
the encoded content of the corresponding video interval,
while the most (least) complex GOP still gets the largest
(smallest) bit allocation relative to its lookalike GOPs.

While the VBR-1 encoding framework is based on
modulating the slope K of the perceptual model, an
alternative VBR RC algorithm can be formulated by
translation of the perceptual model to meet the total
number of bits set by the user. This method is labeled as
VBR-2 and is defined next. For the VBR-2 bit-modulation
scheme, we fix the slope K at a CBR rate of f #Cgop and
translate the position of the #C- #Q perceptual model by
solving for parameter a1 of (29) through

a1 5

RTOT 2 Cgopa2 O
,50

Ngop21 #Q
,

Cgop Ngop

. (37)

The sum term in the above equation is undefined for
the real-time single-pass VBR-2 encoder. We use a pre-

encoded phantom sequence (as in the previous algorithm)
to initialize the VBR-2 RC algorithm. To ensure that
the digital storage medium does not experience
overruns/underruns, we monitor the remaining bits
periodically and use them as the instantaneous total bit
budget, i.e., R

,,tot. Translation of the perceptual model is
varied as

a 1
,

5
P

,

21R
,,tot

#Cgop

2 a2

Y
,

N
,

5 ra
,

2 a2 E
,

. (38)

Term ra
, represents a ratio between the long-term rate of

the GOPs not yet encoded and the CBR rate of the video
stream. For “hard” GOPs we have ( #C

,
. #Cgop) and,

therefore, ratio ra
, must become smaller over time to

satisfy the total bit budget. Further enforcement is
provided by E

,
to move the position of the ( #C

,
, #Q

,
) pairs

downstream, along the constellation, to lower the rate of
the compressed stream. The opposite scenario takes place
if several soft GOPs are encoded over time. The average
number of bits of each GOP is set as

#C
,

5
j

,
a 1

,
1 h

,
a2

j
,

#C gop
21

1 a2

. (39)

Term Y
,

is initialized and updated during a learning
procedure given below. The rest of the encoding
parameters are defined with the formulation of the VBR-1
algorithm.

Learning procedure 2

1. Let P be a pre-encoded phantom defined by the tuple
{N*

gop, { #Q*
,
}

,50
N*gop 21 }, and set Y0 5 (¥

,50
N*gop 21 #Q*

,
),

N0 5 N*
gop.

2. Initialize the VBR-2 RC algorithm by encoding the first
two GOPs of the video sequence, i.e., S0 and S1 , at a
rate of ( f #Cgop) using a CBR MPEG-2 encoder. The
nominal value of ( f #Cgop) should correspond to the
average rate of the VBR stream.

3. After S
,21 is encoded, update Y

,
and N

,
as

Y
,

5 Y
,21 1 g #Q

,21,actual, N
,

5 N
,21 1 g, where g is

the update speed of the learning algorithm. Compute
C

,21,actual and then the sum ¥ j50
,21 Cj,actual.

a. If (, 2 1 5 0) f increment , by one, go to step 3.
b. Otherwise, compute j

,
and h

,
according to the

causal predictive model defined in (31).
4. Use the sum term of step 3 to determine the remaining

bits R
,,tot in the budget. Update the number of

remaining pictures P
,

to be encoded.
5. Compute ra

, , E
,
, and the new translation factor a1

, .
6. Calculate the new target #C

,
and encode S

,
in VBR

mode.
7. If there are unfinished GOPs in the sequence, go to

step 3; otherwise stop.
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Constraints on the VBV buffer occupancy and target
adjustments are handled as before. Figure 6 displays how
the instantaneous causal predictive models are formed
within each GOP and used in conjunction with a time-
varying perceptual model to estimate a new ( #C

,
, #Q

,
) point

for the VBR-2 encoder. If several soft (or hard) GOPs are
encoded over time, the perceptual model will be shifted
upward (or downward) to meet the bit budget constraint.
In Section 5 we evaluate the efficiency and robustness of
the single-pass VBR compression schemes by encoding
several video sequences.

● Scene transitions
The reliability of any type of real-time single-pass RC
algorithm is directly related to the number of pictures
processed after the encoder start-up. The encoder is
initialized with a set of statistical information which is
updated over time as the encoder learns and adjusts
itself to the spatial or temporal perturbation of image
details. As a result, the output stream may suffer some
degradations at the beginning of the video sequence. This
distortion is often ignored, since the human visual system
(HVS) requires a recovery time to comprehend changes in
the image distortion [10], and, more significantly, no past
encoded pictures are available as a reference at the
beginning of the video. After a few GOPs are encoded,
the learning curve of the RC algorithm reaches an
equilibrium level and produces streams which display
acceptable image quality upon decoding.

During the course of the encoding procedure, the RC
algorithm can become unreliable. This is usually caused
by special effects or naturally occurring phenomena such
as scene cuts, slow- or fast-moving fades, and luminance
changes. For such cases, the encoder scheme undergoes
temporal transitions for which parameter adjustments
become nearly impossible. These image discontinuities
typically result in serious image degradations which
the human observer finds very distracting. One way to
overcome this problem is to detect the temporal position
of the special effect in the video and replace the
quantization parameters with a properly adjusted set.
The former is easily derivable for hard scene cuts but can
become complicated for fades, while the latter requires a
new framework for deriving a new set of target rates and
quantization scalers.

The existence of image discontinuities is even more
troublesome for a VBR video because of the volatile
nature of the compressed video parameters. Since our
intention is to formulate a VBR RC algorithm offering
continuous picture quality, we seek a VBR encoding
scheme which displays graceful degradations when special
effects are compressed. We accomplish this by detecting
scenarios in which, as a result of scene transitions, the
causal predictive model cannot provide a faithful

estimation. Under these circumstances we set the GOP
targets along a trajectory different from the procedure
described in the subsection on VBR rate-control
algorithms. Figure 7 shows two cases (for the VBR-1
video encoder) in which transitions from “soft” GOP to
“hard” GOP and vice versa make incorrect estimations for
a future GOP to be encoded. The incorrect estimation is
denoted by “bad operating point” in the figure. A much
better estimation can be made by applying a three-point
median filter to a set of carefully selected parameters. For
the VBR-1 RC scheme, the new targets are derived using
the following rule:

6

7
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C
,,new 5 G5

median @m1 f 21K
,

F~ #Q
,21,actual!, m2

#Cgop, m3 f 21K
,
#

if ~j
,

, 0!,
#C

,
else;

(40)

for the VBR-2 RC scheme, the targets are

C
,,new

5 G5median Fm4
#Cgop~a 1

,
1 a2

#Q
,21,actual!, m5

#Cgop, m6

R
,,tot

P
,
G

if ~j
,

, 0!,
#C

,
else.

(41)

The median filter is used to compensate for instability
conditions that occur in the transition of video scenery
among all types of GOPs, i.e., “soft” to “hard” and vice
versa. The constant set {m i u1 # i # 6} enforces a bound
on the number of bits produced during a scene transition.
For the “soft”-to-“hard” GOP transition, the output of the
filter in Equation (40) is marked by “1” in Figure 7, while

point “2” is the new estimate for the reverse transition.
The nonlinear nature of the filtering schemes in (40) and
(41) is an effective way of controlling the rate of the VBR
encoder for higher-order temporal changes. Further, it
does not require a local (picture-level) scene-change
detector. However, if the encoder is equipped with a
scene-change detector, we may take advantage of the
GOP target allocation of Equations (40) and (41).

● C# -Q# irregularities
The R-Q relationship of Equation (2) is known to work
fairly well for a diverse class of video sequences and is a
fundamental concept used for many real-time MPEG and
non-MPEG compression systems. In this paper we have
used it to build a causal predictive model to estimate the
average bits of a present GOP to be encoded on the basis
of the actual average number of GOP bits and average
quantization factor of previous GOPs. However, this
predictive model can become unreliable for some video
segments even when there are no special effects, scene
transitions, or scene cuts. The cause of this unreliability
is related to the nonstationary nature of video sources,
e.g., several highly detailed objects moving slowly across a
background of significant luminance or chrominance image
details, the presence of unwanted noise in the scene, etc.
Figure 8 displays two points derived by an encoder, with
one being outside the composite #C- #Q curve. This point is
a result of the aforementioned criteria and does not obey
the #C- #Q relationship. Further, it will contribute to the
calculation of a “bad operating point.” Our VBR encoder
suppresses this irregularity by making an additional
contribution to the strategies defined in (40) and (41).
We set the GOP bits according to the condition

C
,,new

5 5
max ~C

,,new, Gfmax
#C

,,fil!

if ~j
,

, 0! ` ~uL , uD #Qu , uU! ` ~ #C
,,fil . #Cgop!,

min ~C
,,new, Gfmin

#C
,,fil!

else if ~j
,

, 0! ` ~uL , uD #Qu , uU! ` ~ #C
,,fil , #Cgop!,

G #Cgop

else if ~j
,

, 0! ` ~uL , uD #Qu , uU! ` ~ #C
,,fil 5 #Cgop!,

(42)

with

#C
,,fil 5

v1
#C

,22,actual 1 v2
#C

,21,actual

v1 1 v2

. (43)

#C
,,fil is an average number of GOP bits which is

determined by applying a linear filter on the average number
of bits of the previously encoded GOPs. The output of this
filter is the new operating point, and (v1, v2) represent the
weights of the filter. Constants fmax and fmin are used to
scale the filter output. Thresholds uL and uU are chosen

8

Table 1 Classes of the test sequence library.

Class Composition

A Consists mostly of different subsequences with high
spatial detail and medium-to-high amounts of
movement or vice versa

B Special effects: luminance changes, zoom, rotation,
etc.

C Fade
D Rapid scene changes
E Equal amounts of difficult and easy video material
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under the assumption that a future GOP belongs to the
same video segment as the already processed GOPs. The
max and min functions are implemented to filter out the
encoding bit parameters that result in #C- #Q irregularities.

5. Simulation results and discussion
The performance of the proposed single-pass CBR and
VBR video encoders is evaluated by compressing a library
of test sequences. This library contains a diverse class of
composite sequences, as described in Table 1. The video
sequences are digitized according to the CCIR 601
resolution [11], with a color sampling ratio of 4:2:2.
A 4:2:0 color sampling ratio is created by applying
preprocessing filters on the chrominance samples of
each source. The compression procedure is carried out
in 4:2:0 mode using MPEG-2-compliant main profile at
main level encoder software developed at our research
laboratory. Since optimizing the communications
bandwidth or the digital storage medium is very important
for broadcast, consumer, and multimedia applications,
most dedicated MPEG-2 encoders are configured to
operate in the low-bit-rate regime of the main profile
at the main level. Because of this, we assess the rate-
distortion performance of the new algorithms at the
popular rate of 4 Mb/s using the common peak signal-
to-noise ratio (PSNR) measure defined by

PSNR 5 10 log10 S255 2

Dseq
D , (44)

with

Dseq 5
1

Aseq
O

all~i, j,n!

~I i, j
n

2 Î i, j
n ! 2, (45)

where Ii, j
n and Îi, j

n are the intensities of the uncompressed
picture n and its reconstructed version at position (i, j),
respectively. The spatial indices i and j represent positions
of rows and columns of a picture. Both luminance and
chrominance image samples are included in the sum
calculation of Equation (45). Finally, Aseq is the
total number of pixels in a video sequence of 4:2:0
format.

Table 2 compares the average sequence PSNRs
produced by all single-pass encoders against the results
from the conventional approach of MPEG-2 compression
denoted by “old CBR.” The proposed single-pass CBR
encoder is labeled “new CBR” throughout this section.
Figures 9–12 illustrate the picture-bit usage for each GOP
and the PSNR performance for some of the video sequences
of Table 2. Test sequences mpeg and mixb are composed
primarily of stressful video materials with high spatial details
such as “Mobile and Calendar” and “Flower Garden” or
medium to high amounts of motion, as in video shots of
action scenes taken by a car camera. For the case of
“Cheerleaders,” used as part of the mpeg sequence, spatial
and temporal activities are both significantly present. The
efficiency of the VBR-1 and VBR-2 encoders depends on
the accuracy with which the input stream can be classified
into “hard” and “soft” GOPs. The perceptual #C- #Q model
can then take advantage of this classification and divert
bits to video segments which are the most stressful. This
observation can be deduced from the PSNR plot of the

Table 2 Average PSNRs and actual bit rates for all test sequences.

Sequence Type/Duration/Class Old CBR New CBR VBR-1 VBR-2

mpeg NTSC/30 s/A 31.47 dB
@ 4.0 Mb/s

31.64 dB
@ 4.0 Mb/s

32.14 dB
@ 4.0 Mb/s

32.10 dB
@ 4.04 Mb/s

mixb NTSC/30 s/A 37.01 dB
@ 4.0 Mb/s

37.04 dB
@ 3.99 Mb/s

37.02 dB
@ 3.8 Mb/s

37.10 dB
@ 3.96 Mb/s

LaBk PAL/20 s/B 37.54 dB
@ 4.0 Mb/s

37.48 dB
@ 3.98 Mb/s

38.73 dB
@ 4.0 Mb/s

38.52 dB
@ 4.0 Mb/s

Sprite NTSC/4 s/C 38.79 dB
@ 4.0 Mb/s

38.73 dB
@ 3.95 Mb/s

38.55 dB
@ 3.85 Mb/s

38.58 dB
@ 3.93 Mb/s

BkSz NTSC/10 s/E 35.24 dB
@ 4.0 Mb/s

35.28 dB
@ 3.97 Mb/s

35.54 dB
@ 3.64 Mb/s

35.62 dB
@ 3.88 Mb/s

SzBk NTSC/10 s/E 35.29 dB
@ 3.98 Mb/s

35.37 dB
@ 3.99 Mb/s

36.65 dB
@ 4.02 Mb/s

36.51 dB
@ 4.02 Mb/s

GreySep NTSC/30 s/A, D 30.96 dB
@ 4.01 Mb/s

31.22 dB
@ 4.01 Mb/s

32.65 dB
@ 4.02 Mb/s

32.66 dB
@ 4.07 Mb/s

Singer NTSC/4 s/B 31.85 dB
@ 4.0 Mb/s

31.86 dB
@ 4.03 Mb/s

31.96 dB
@ 4.06 Mb/s

31.98 dB
@ 4.05 Mb/s
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mpeg sequence in Figure 9. In this figure the GOP sets
{S

,
}

,50
9 , {S

,
}

,520
29 , and {S

,
}

,540
49 represent “Cheerleaders,”

“Flower Garden,” and “Mobile and Calendar” substreams,
respectively, for which an increase of more than 1 dB in
average PSNR is obtained. This quality improvement is
achieved at the cost of some PSNR degradations in the rest
of the sequence. However, the overall quality of the video is
improved, as reflected by the numbers given in Table 2.

The new CBR encoder takes advantage of the increase
in the local complexity of a picture to increase picture bits
while allotting the same number of bits to each GOP. As a
result, its PSNR performance lies somewhere between the
single-pass VBR schemes and the old CBR. For “difficult-
to-encode” pictures, the PSNR numbers are higher than
those for old CBR and lower than for VBRs, while for the
“easy-to-encode” pictures, the performance is higher than
for VBRs and lower than for old CBR. The most difficult
portion of the mixb sequence is the set defined by

{S
,
}

,518
25 , which contains scenes of buildings with many

windows panning across the screen. For this video content,
called “Skyscrapers,” VBRs and new CBR offer better
results than old CBR, as shown in Figure 10. The GreySep
sequence displays an even better PSNR performance for
its difficult video content when the new single-pass
encoders are compared to the old CBR encoder. This is
attributed to the nature of this source, which is composed
of one-second natural scenes separated by one-second
gray pictures. The gray pictures are created by setting the
luminance and chrominance samples to a constant value.
Since the gray segments require only a small number of
bits to produce good-quality pictures, the VBR encoders
can use the surplus bit budget to enhance the perceived
quality of the non-gray pictures. As a result, the GreySep
sequence, which is typically a very stressful test case for
CBR encoders because of rapid scene changes, can easily
be handled by the VBR encoder. For this example,
improvements of 4 and 2 dB in average PSNR are noticed
in Figure 11 for the “Cheerleaders” and “Mobile and
Calendar” subsequences, represented by {S

,
}

,526
27 and

{S
,
}

,530
31 , respectively.

Sequences SzBk and BkSz are composed of equal
numbers of easy and difficult video segments, each five
seconds long.

SzBk begins with “Susie” and ends with “Basketball,”
while BkSz has “Basketball” at the beginning and
“Susie” as the trailer. An examination of PSNR figures
(not shown here) revealed that these streams can easily be
classified into different activity regions. The quality of the
compressed streams is improved by allocating more bits to
the “difficult-to-encode” “Basketball” subsequence at the
cost of small degradations in the “easy-to-encode” “Susie”
subsequence.

The LaBk sequence is a 20-second PAL source which
can also be classified into two subsequences, with the
exception that it contains a special-effect region. The
first 10 seconds of the clip displays a person describing
a diagram of a flowchart followed by a 10-second
“Basketball” subsequence.7 The flowchart undergoes
special effects such as zoom, rotation, and spatially
nonuniform intensity changes, which take place over
several pictures. These forms of variation in image
structures can seriously stress the efficiency of the motion-
estimation technique and complicate the task of selecting
accurate picture quantizers for any MPEG-2 encoder. On
the contrary, our proposed single-pass video encoders can
quickly adjust to such perturbations and provide better-
quality streams. For the VBR encoder, we accomplish this
by first examining the slope of the causal predictive model
to detect anomalies in the compression parameters, and

7 This Basketball clip is different from the one used in the SzBk and BkSz
sequences.

9
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then setting the number of bits allocated to the next GOP
using the rules defined in Equation (40) or (41). This
results in better bit allocations for troublesome areas. The
new CBR encoder improves the quality of the special-
effect pictures by detecting an increase in the encoding
difficulty (as a result of inaccuracies in the motion vectors
or the picture quantization scaler) and enlarging the
picture targets accordingly. Figure 12 shows PSNR
and bit usage of all encoders for the LaBk sequence.
A comparison of the average PSNR numbers for the
pictures in the special-effect region is given in Table 3.

Also presented in Table 3 are results for the Sprite
sequence, which is composed of a segment where a fade to
(from) black from (to) natural video material takes place.
Fades are a special class of temporal image discontinuities
which can seriously challenge the robustness of the
motion-estimation technique of the encoder. As a result,
B- and P-picture types do not do well during fades, and it

is better to pre-analyze a collection of pictures, prior to
encoding, and label them all-I if a fade is detected. Our
single-pass encoders do not require a pre-analyzing step
and are capable of adjusting their RC parameters in real
time to compensate for the luminance changes of the
pictures within the fade. Compression results for the
Sprite sequence are given in Table 2. Finally, as the last
test sequence, we encoded Singer, which comprises flashes
of different intensities. For this case a small improvement
in the PSNR performance is obtained, as indicated by the
tabulated results of Table 2.

As previously stated in Section 4, the median filtering
techniques of Equations (40) and (41) can be used to set
the GOP target bits when a scene change is detected at
the start of the GOP. This method is defined as GOP-level
scene-change detection (GLSCD). We detect a scene
change by comparing the weighted sum of differences
of average intensities of consecutive reference pictures

01 11
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against a predefined threshold. A reference picture can
be either I- or P-type. Since a GOP always starts with an
I-picture, and we have assumed a fixed GOP structure
throughout this paper, intensity differences are computed
between a current I-picture and a previous P-picture. Let
YI

n represent the average intensity of the luminance
component of an I-picture (in temporal position n) to
be encoded at the start of the GOP, and let YP

n2(NB 11)

represent the average intensity of the luminance
component of a previous P-picture just encoded. The

P-picture is displayed (NB 1 1) pictures before the
I-picture, since NB is the number of B-type pictures. We
further define similar representations for the average
intensities of the chrominance components of the picture
types under consideration by introducing statistical
measures CBI

n , CBP
n2(NB 11) , CRI

n , and CRP
n2(NB 11) . A

threshold tth is employed above which a scene change
is declared using the decision

V1uYI
n

2 YP
n2~N B11!u 1 V2uCBI

n
2 CBP

n2~N B11!u
1 V3uCRI

n
2 CRP

n2~N B11!u

O
i51

3
Vi

. tth . (46)

The set of weights {V1, V2, V3} is chosen so as to give
importance to certain statistical measures. We label the
VBR encoding scheme which adopts the scene-change
criterion of Equation (46) as VBR w/GLSCD. The impact
of the scene-change detection strategy on the quality
of the VBR streams is assessed by compressing video
sequences mpeg, mixb, and GreySep. A comparison of the
PSNR performance of the VBR encoders with and without
the GLSCD formulation is provided in Table 4. The
importance of the GLSCD addition is not reflected by the
PSNR improvements of Table 4. An examination of the
PSNR figures (not shown here) revealed that detecting
video discontinuities and applying the median filtering of
(40) and (41) cleans up some of the undesired bit targets
that are allocated between the scenes of different
complexities.

We also simulated the highly detailed video sequences
mpeg and mixb using the GOP bit-irregularity detection
(GBID) methodology defined by (42). This approach
improves the quality of the difficult segments of sources
such as “Cheerleaders” and “Mobile and Calendar” of the
mpeg sequence and “Skyscrapers” of the mixb sequence,
as shown by the PSNR plots of Figures 13 and 14. In
these regions, GOP bit irregularities are filtered, and a
more intelligent bit distribution is achieved. Table 5
summarizes average-sequence PSNRs obtained by using
the VBR encoders with and without incorporating the
GLSCD and GBID methods.

The rate-distortion analysis of the VBR formulations
suggests that the VBR-2 encoder allocates more bits to
the beginning of the sequence in comparison with the
VBR-1 encoder. This is because in the VBR-2 scheme the
perceptual model is translated after each GOP is encoded.
This provides a faster reaction to compensate for the
underproduction of bits if the sequence is started with
“soft” GOPs. For the case in which the source starts with
a “hard” GOP, this reaction takes longer to develop. On
the basis of this observation and the results presented in
this paper, the VBR-1 encoder produces better video
streams for sources which are composed of many

12

Table 3 Average PSNRs for special-effect regions of
video streams encoded at 4 Mb/s.

Sequence Old CBR
(dB)

New CBR
(dB)

VBR-1
(dB)

VBR-2
(dB)

Sprite 39.96 40.44 40.19 40.20
LaBk 39.42 39.52 40.12 39.10
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13 14

Table 4 Average PSNRs and actual bit rates for a few test sequences with the GOP-level scene-change detection
(GLSCD) enabled and disabled.

Sequence VBR-1 VBR-1 w/GLSCD VBR-2 VBR-2 w/GLSCD

mpeg 32.14 dB @ 4.0 Mb/s 32.16 dB @ 3.99 Mb/s 32.10 dB @ 4.04 Mb/s 32.16 dB @ 4.03 Mb/s

mixb 37.02 dB @ 3.8 Mb/s 37.08 dB @ 3.79 Mb/s 37.10 dB @ 3.96 Mb/s 37.15 dB @ 3.96 Mb/s

GreySep 32.65 dB @ 4.02 Mb/s 32.69 dB @ 3.97 Mb/s 32.66 dB @ 4.07 Mb/s 32.57 dB @ 4.0 Mb/s

Table 5 Comparison of average PSNRs for highly detailed video sequences with GOP-level scene-change detection
(GLSCD) and GOP bit-irregularity detection (GBID) techniques enabled and disabled. Actual bit rates are also given.

Sequence VBR-1 VBR-1
w/GLSCD & GBID

VBR-2 VBR-2
w/GLSCD & GBID

mpeg 32.14 dB @ 4.0 Mb/s 32.21 dB @ 4.0 Mb/s 32.10 dB @ 4.04 Mb/s 32.22 dB @ 4.05 Mb/s

mixb 37.02 dB @ 3.8 Mb/s 37.10 dB @ 3.8 Mb/s 37.10 dB @ 3.96 Mb/s 37.17 dB @ 3.96 Mb/s
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dissimilar GOPs in terms of grades of “hardness” and
“softness.” On the other hand, the VBR-2 encoder is very
useful for compression of sources which are biased toward
“soft” GOPs.

6. Conclusion
In this paper, we propose new formulations for single-pass
constant-bit-rate and variable-bit-rate encoding schemes
for an MPEG-2-like environment. The real-time
implementations of these schemes are easily accomplished
with IBM encoder architecture. We have found that
differentiating the local complexity of a picture from that
of the rest of the encoded pictures can be used as a
difficulty measure to increase the perceived quality of
difficult pictures of the video while still adhering to
the constant bit rate of the compressed bitstream. In
comparison with the conventional approaches of CBR
encoding, our single-pass CBR encoder shows better
performance. This performance can further be improved
by creating a VBR bitstream. We have taken advantage of
both statistical and perceptual rate-quantization models to
estimate the variability of the video sequence, thereby
economizing the available bit budget in a single-pass
encoding scenario. This is achieved by not wasting bits in
the simple video segments while allocating more bits to
areas where the penalty for quality degradation is greater.
Our single-pass VBR strategy presents a more consistent
perceptual quality throughout the stream than do the CBR
encoders.

The VBR framework of this paper can be improved
upon to accommodate the requirements of the next
generation of digital storage media capable of storing
high-definition video sequences. We can accomplish this
by establishing more sophisticated rate-quantization
profiles to better predict the allotted GOP bits. Ongoing
advances in VLSI and fabrication technologies should
provide us with the necessary architecture to achieve this
goal in the future with a single-chip encoder dedicated to
real-time applications.
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