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Evaluation of
branch-prediction
methods on traces
from commercial
applications

For modern superscalar processors, branch
prediction is a must, and there has been
significant progress in this field during recent
years. For the IBM System ESA/390TM

environment, a set of traces exists which
represent different kinds of commercial
workloads, and they include operating-system
interactions. We have used four of these
traces to evaluate a large variety of branch-
prediction algorithms in order to identify
possible design tradeoffs. One property of
ESA/390 architecture is that for most
branches, target address calculation involves
the use of values stored in general-purpose
registers. Therefore, not only branch directions
but target addresses must be predicted. When
performing prefetch-time prediction, a branch
target buffer (BTB) is used to provide/predict
the target address. In this paper, all evaluated
prediction methods are combined with such
a BTB. The resulting size for the BTB is
significantly larger than for designs evaluated
with SPECmarkTM traces. Algorithms for
determining branch direction are examined
and compared. These algorithms include local
branch history methods as well as global
history and path history procedures. Finally,
combinations of some of these methods,

known as hybrid predictors, are evaluated. The
path history algorithm we use is an adaptation
of a known algorithm, but including it in the
hybrid predictor is new. For all of these
methods, design parameters are varied to find
the tradeoff between the hardware needed
and the prediction quality achieved. Results,
except for those for the path predictor, are
comparable to SPECmark results, except that
for most cases less history must be used.
Another property of ESA/390 architecture,
the absence of specific subroutine call and
return instructions, led to the investigation of
hardware for self-detecting call/return pairs.
A new approach has been developed, and its
prediction quality is demonstrated. All of the
methods described above use a BTB. A BTB
performs well if branches have fixed targets.
However, about 5% of the branches we
consider have changing target addresses.
Very recently an algorithm was proposed for
treating such branches using a modification
to the BTB approach. We have implemented
an enhancement to this method, and the
prediction correctness achievable using the
enhanced method is shown in the results
presented in this paper. Finally, combining
several of the investigated schemes increases
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branch-prediction correctness in commercial
environments. However, it remains to be shown
whether the tremendous increase in hardware
required for their implementation can be
justified.

1. Introduction
Branch prediction is one of the key issues in modern
superscalar processor design. Better branch prediction will
improve the performance a processor can achieve. Even
though there has been significant progress in this field
during recent years [1–7], it is still not clear which if any
of the currently advocated methods is superior.

The quality of a method is often measured by applying
it to the traces of the SPECmark** test suite. These traces
are taken from typical runs of single applications and
with respect to branch prediction show quite different
behaviors for different traces. Often the average of the
prediction rate for each member of the suite is taken,
while in other cases only selected programs are used
to stress certain aspects. However, the gcc trace seems
to be the most difficult for branch prediction [4].

There is much more activity in a processor if an
operating system is running and/or multitasking is allowed
than can be seen in a trace from a single task. Commonly,
this is taken into account by frequently flushing the history
of branch behavior that has accrued up to the flush time
[8]. For the IBM ESA/390* there exists a completely
different set of traces that specifically show the
involvement of the operating system. In this paper we
apply to this set of traces the known methods for branch
prediction and show the influences of frequent task
switching and interrupt handling as they are reflected in
those traces.

The remainder of the paper is organized as follows. The
next section provides details on the traces used for all of
the experiments. Section 3 deals with some specifics of the
ESA/390 instruction set, which in turn have influence on
methods used and impose additional requirements. Results
are presented starting with Section 4, which deals with the
influence of size and organization of the branch target
buffer. It is followed by direction-prediction results which
can be achieved using local history information (detailed
in Section 5) and using global history algorithms (in
Section 6). Section 7 details results from combining
several history algorithms for direction prediction into
hybrid predictors. Section 8 describes the prediction of
the branch target addresses, including both methods for
subroutine returns and methods for indirect branches
which frequently change their target address. Section 9
then summarizes the results and shows how to combine
the partial results of the preceding sections to obtain an
overall prediction result for each of the traces.

2. Trace description
The analysis in this work is based on four different traces.
Each trace is a condensed version of several traces taken
for a well-defined sequence of applications in a well-
defined environment. The traces as such are consistent;
i.e., there are no breaks due to the compression. As the
application sequences are defined, the four traces
represent completely different areas of commercial
workloads. These areas are as follows:

T1: Transaction processing, such as database queries
in warehouse management and stock keeping.

T2: Interactive usage in program development, such
as searches, editing, compilation, and testing.

T3: Transaction processing from tasks, such as hotel
reservation, banking, and order processing.

T4: Commercial batch jobs compiled from 130 single jobs,
including compilation, link, and run steps as well as
assist programs used for data manipulation.

To provide statistics on our traces, we must first make a
distinction between static branches and dynamic branches.

Static branches are those branches found in the binary
program. From traces these branches can be extracted by
sorting a trace according to the instruction addresses and
eliminating all entries having the same instruction address
as the first occurrence.

Dynamic branches are all branches which occur as a
result of running the program and thus are found in the
trace. A static branch may have many occurrences as a
dynamic branch; e.g., when the program performs a loop,
the static branch at the end of the loop will occur as many
times dynamically as the loop does.

Table 1 Trace statistics.

Trace T1 T2 T3 T4

No. of dynamic
instructions

1,300,881 1,325,359 1,309,178 1,667,468

No. of dynamic
branches

285,528 321,441 312,865 359,550

No. of other
instructions

1,015,359 1,003,918 996,313 1,307,918

Table 2 Dynamic vs. static branches.

Trace T1 T2 T3 T4

No. of dynamic
branches

285,528 321,441 312,865 359,550

No. of static
branches

19,176 27,878 21,202 15,491
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In analogy we use the term dynamic instructions to
mean the total number of instructions in the trace. The
traces are relatively short, with a rate of 4 to 1 between
instructions and branches. Table 1 gives the exact
numbers. If we look now for the static branches in the
trace (Table 2), it can be seen that on average each
branch is used between 10 and 20 times. This suggests that
history-based branch prediction could work well. However,
the number of times the branches are used in the trace is
not the average. As shown in Table 3 for trace T4, about
half of the branches occur only up to three times [9]. This
may give an early hint as to the length of history that
might be necessary.

The statistics above differ greatly from those of other
traces. Yeh and Patt [10] used traces including only 200 to
7000 static branches, with a majority of the traces being
well below 700 static branches. The average length of their
trace is about 10 000 000 instructions.

Besides being different in length and number of static
branches, our traces also include jumps to interrupt
service routines (initiated without a branch instruction).
See Table 4. Interrupts as such are not problematic for
branch prediction, but due to the completely different
address range, they may force replacement of a branch
from a finite history table that may be needed again after
the interrupt service routine is completed and the original
task has resumed.

Because branch prediction normally works on effective
(virtual) addresses, switching address spaces (the same
virtual address points to a different absolute address) as
usual on task switches brings some problems into branch
prediction. A branch for which history has been gathered
will no longer be present or will have been replaced by
another branch. Each of our traces contains a number of
switches of the address space.

3. Properties of the ESA/390 instruction set
The ESA/390 instruction set uses instructions of three
different lengths: two bytes, four bytes, and six bytes. All
instructions must be aligned on a two-byte boundary. For
the remainder of this section, we concentrate on branch-
related instructions only.

The ESA/390 instruction set contains about 17 different
branch instructions. Even though this set contains
branches which allow the branch target address to be
calculated relative to the current instruction pointer, the
majority of the branches in the traces under investigation
receive their target address in other ways:

● The target address is to be taken from a general-
purpose register.

● The target address is to be calculated as base register
plus index register plus displacement, a calculation
involving two register values and one constant value.

Furthermore, coding the index register address as zero will
force even unconditional branches never to branch. When
using a certain mask for a conditional branch, the branch
will always be taken. Thus, using only the opcode of a
branch will not provide enough information.

A further obstacle presented by the ESA/390 instruction
set is the fact that no distinct call nor return instruction
exists. There are instructions that are commonly used for
this purpose, but these are used in other contexts as well.

From the above we conclude that our approach should
be as follows:

● We combine all methods evaluated with the use of a
branch target buffer (BTB) when performing prefetch
time branch prediction [11]. The basics on BTB size
and its influence are detailed in the next chapter.

● We exclude the problem of the nonexisting call/return
pair from the normal analysis of prediction methods for
branch direction and deal with it in a separate chapter
on moving targets. Here techniques such as those in [12]
are examined.

4. BTB size and organization
The BTB is a storage structure that is intended to contain
the target address for each branch in the program as well
as prediction information [8]. It is normally addressed
using the instruction address of the branch instruction. As
it is not possible to have a BTB as large as the address
space of a processor, techniques known from cache design
are used to fold the complete address space into a usable
BTB of affordable size. The basic question is that of the
influence of a finite table size on branch-prediction rates.
Figure 1 shows simulation results for all of our traces,
varying the BTB size.

Table 4 Number of interrupts.

Trace T1 T2 T3 T4

No. of interrupts 35 65 97 115

Table 3 Dynamic executions per static branch for Trace T4.

No. of dynamic execs. 1 2–3 4 –7 8 –15 16 –31 32– 63 64 –127 128 –255 .256
No. of static branches 3,402 3,663 2,402 1,743 1,532 1,323 981 245 190
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The number of times a taken branch is not found in the
BTB is counted as an equal number of misses. Thus, this
number consists of the first or cold misses occurring when
a branch is detected the first time, as well as the misses
due to replacement. For BTB sizes greater than 32K
entries, the curve becomes flat for all traces. Here only
the first misses appear to be left over. The values are
close to the number of static branches for each of the
traces in Table 2.

The BTB size and the number of first misses are
obviously different from those deduced for SPEC traces,
because those traces contain fewer static branches and
each branch is executed many more times. Unless the BTB

is preloaded (primed), the first misses are always some
minimum number of mispredicted branches. To show the
effect that priming may have, a trace of about one million
instructions, taken immediately prior to a part of the trace
which is used for measuring the miss rate, was executed
on our simulator. After this, all of the measuring counters
were reset and then the usual trace was executed. In
Figure 2 it can be seen that for small BTB sizes there is
almost no difference in the miss rate between a primed
and an unprimed environment. Here replacement misses
are the dominant factor. However, for large BTB sizes the
number of table misses falls below the number of static
branches in the trace used to measure the misses.

Making the BTB as large as possible appears to
be advantageous. A large BTB, however, has its own
disadvantages. First, its physical size and its access time
may be too large to fit the design point of the processor.
Second, the BTB stores effective addresses, not absolute
addresses. After an address space change, e.g., a task
switch, part of the BTB content is useless, or worse,
counterproductive. Instructions which in fact are not even
branches may be predicted as branching instructions
because of mapping to a BTB entry from the previous
task. These are called false hits and could require partial
purges to a large BTB. The number of replacement misses
for a given BTB size is a function of the associativity.
Figure 3 shows the simulation results for all traces
using different associativities for a BTB of 8K entries.
We chose a size of 8K because this size appears to be
implementable, and enough replacement takes place not
to be affected by artifacts. It can be seen that using an
eight-way-associative buffer increases the hit rate by 0.3%
to 0.6% over the base four-way BTB used for creating the
results shown in Figures 1 and 2.
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Finally, modern processors generally fetch more than a
single instruction per cycle. Therefore, an address range
rather than a single instruction address must be tested for
the occurrence of a branch. This is achieved by addressing
the BTB not with instruction addresses but rather with
block addresses. Figure 4 shows the degradation resulting
from such coarser access. Degradation is not high, but if
possible, access using instruction addresses is preferable.

For all following discussion, unless stated otherwise,
an 8K-entry, eight-way-associative BTB with instruction
address access resolution is presumed.

5. Prediction of branch direction based on
local history
In this section we summarize all methods that predict the
outcome of a branch from the recorded previous outcomes
of that branch.

● History patterns with fixed assignments of branch direction
The simplest way of predicting a branch is to assume that
a new occurrence of the branch will behave the same way
as the last prior occurrence. Such prediction uses a so-
called “local 1”-bit history. If the outcomes of several
consecutive occurrences of a branch are recorded, the
prediction may become more accurate. Perleberg [8]
performed some statistical analysis on the behavior
of a branch according to the last two and/or last three
outcomes of that branch. To form the history, a shift
register which holds one bit per outcome is used. Table 5
shows the results from such an analysis; the history
pattern in the first column shows the leftmost being the
oldest of the last three branch outcomes. The second
column shows as a percentage the frequency with which
a branch with such a history will be taken, and the last
column shows the suggested prediction for that branch.
Patterns with a frequency of more than 50% taken will be
predicted as taken. We used these static assignments for
simulation with our traces. The results are shown in
Figure 5.

To build up its history, a branch must be executed
several times without being fully predictable. If branch
history begins to be recorded only after the branch has
occurred the first time, the history register may be
initialized using a predefined pattern. The best results are
achieved if a pattern is chosen which will predict the
branch the next time as taken. If this prediction turns
out to be wrong, the new pattern that is created by
augmenting the history pattern with an N should then
predict not taken for the third occurrence of the branch.
It can be seen that increasing the number of history bits
increases the branch prediction quality as well. However,
from a two-bit to a three-bit history the increase is very
moderate, about 0.2%.

Analyzing the pattern and the action to follow shows
that only when a branch is not taken twice in a row or
more will it be predicted as not taken. Such a condition
can also be satisfied using a counter or a finite-state
machine.

Table 5 Static prediction for three-bit history pattern.

Pattern Next is taken (%) Prediction

NNN 7.8 not taken
NNT 34.1 not taken
NTN 51.9 taken
NTT 67.9 taken
TNN 32.6 not taken
TNT 64.4 taken
TTN 79.1 taken
TTT 97.7 taken
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● Local history recorded in finite-state machines
In [13] and [14], two-bit counters are suggested for storage
of history information for branches. For each branch in
the BTB, a two-bit counter value is stored. On each
execution of the branch, this value is loaded into a
counter and updated according to the outcome of the
branch. If the branch is taken, the value will be
incremented or kept at its maximum value (3). If the
branch is not taken, the value decrements or is kept at its
minimum value (0). Such a counter is called a saturation
counter, as there is no overflow or underflow.

Predicting the outcome of the next execution of a
branch is done by inspecting the current value of the
counter stored for that branch. Whenever the counter
value is 0 or 1, not taken is predicted; when the value
is 2 or 3, taken is predicted.

Such a counter can also be viewed as a four-state finite-
state machine (FSM) with a specific set of transitions
defined for each state for a taken or not taken outcome
of a branch. Some investigation went into changing the
transitions to find better predictors. Nair [15] made an
exhaustive search by simulating 5248 possible FSMs. From
an analysis of his results, the two-bit saturation counter
turned out to give the best prediction. We simulated our
traces using the average over several traces of the four
top-ranked FSMs. For each of these machines we also
investigated the influence of the initial value, the value
written into the FSM when the branch is found the first
time. Figure 6 shows this influence for T1, while Figure 7
shows the results of our top two FSMs for all traces using
the best-fitting initial values. As a reference, the three-bit
history prediction from Figure 5 is added. From Figure 6
it follows that there is a considerable improvement (0.7%)
when initializing the two-bit saturation counter with “3”
instead of the regular “2” initialization. Such a large
influence could not be found for SPEC traces.

Whenever the local-history two-bit saturation counter
is referred to hereafter, it is implicit that this counter
has been initialized with “3.”

In Figure 7 we can see that a two-bit FSM improves
branch prediction significantly. The two machines
themselves do not differ much. The two-bit saturation
counter is better for T2 (0.07%), almost the same for
T1 and T3, and little worse (0.04%) for T4. Results are
comparable to the results in [13].

● Two-level adaptive assignment of branch direction
Yeh and Patt [16] introduced the two-level adaptive
branch predictor. As for the static predictor, the history
of a branch is recorded as a series of “0” (not taken) and
“1” (taken). It is not used to address a lookup table in
which the prediction direction is stored as derived from
statistical analysis of the workload, but rather addresses an
array of two-bit saturation counters, called a pattern history
table, where the current value of the counter determines
which direction should be predicted for the branch. The
counters are updated according to the outcome of the
branch; in this way, the pattern table adapts itself to the
behavior of the workload. If there is only a single pattern
table, called the global pattern history table PAg 1 [10],
two branches may disturb each other, so the next idea is
to provide a separate pattern table for each branch PAp.
In our case this would require 8K tables, each with, e.g.,
64 entries for six history bits, a vast amount of storage
hardware. However, if several branches share one table
PAs [7], hardware cost may be reduced to a justifiable
amount.

1 PAg: per-address history recording and lookup in global table.
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Figure 8 shows simulation results for several
combinations of history bits and instruction-address bits
for T1. Zero address bits used is equal to PAg, and, at the
other extreme, 13 address bits used is equal to PAp. We
see that for the same number of history bits, using more
instruction-address bits results in a better prediction.
Looking back to the statistics of our traces, where it was
found that about half of the branches occur less than four
times each, it becomes clear that using more history bits
will not be effective. This is in contrast to the SPEC
traces, where most of the branches have a high occurrence
repetition and large histories still have advantages. For a
specific branch, a pattern may have occurred once and
never again, so learning does not occur and thus
improvements will not develop.

On the other hand, the global pattern table needs five
history bits to outperform the local two-bit saturation
counter described in the previous section. This more than
doubles the number of storage bits required. The storage
required for the adaptive predictor is the sum of the
number of history bits times 8K entries in the BTB
and the number of bits in the pattern tables.

A local two-bit saturation counter requires 2 3 8K
storage bits. For a two-level adaptive predictor, only two
combinations exist (one history and eleven address bits, or
two history and zero address bits) that require almost the
same amount of hardware. If we double the amount of
hardware, we may choose among three combinations.
Doubling again will provide still other possible
combinations. We selected the best-performing predictors
out of each of the combinations for the three different
quantities of hardware described above. The results of
simulations with these predictors for all traces are shown
in Figure 9. For T1 and T2, using a local adaptive
predictor having the same hardware cost as the two-bit
saturation counter results in slightly improved prediction.
For T3 and T4, such a predictor behaves worse. Increasing
the amount of hardware increases the prediction
correctness. The predictor with hardware cost twice as
high as the two-bit saturation counter behaves better for
all traces, but on T3 is only 0.1% and on T1 0.5% better.
Doubling the hardware once more does not produce much
further improvement.

6. Prediction of branch direction based on
global history
Here methods are summarized which use information
about the last several branches executed to predict the
direction of the next upcoming branch.

● Branch correlation using branch direction history
For a fixed number of BTB entries, two-level prediction
may increase prediction correctness by adding more

history bits and thus more storage hardware to each entry
in the BTB.

Prediction schemes using global history information
were proposed in [6] and [10]. Instead of recording the
history for each branch separately, only one large history
register exists. For each branch executed, the branch
direction is recorded into this register to form a global
history pattern. In other words, the path through the
control-flow graph by which a certain branch is reached
is used to predict the outcome of that branch. In a way
similar to two-level prediction, the global history pattern
is used to address a pattern table that contains two-bit
saturation counters. If only one such table exists, the
method is called GAg [10]. If several tables are used and
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the required table is selected by parts of the branch
instruction address, it is called gselect. This collection of
tables may be viewed as one big table with history bits
and address bits being concatenated. Figure 10 shows
simulation results for T1 and three table sizes (the
number of history bits used in the address is the
independent variable).

The theoretical processor with which this prediction
method should work fetches several bytes from instruction
storage containing up to eight instructions per cycle. Thus,
there can be several branches contained in one access, and
the prediction should not be the same for all branches.
(Predicting several branches in parallel using the same

history is not widely discussed in the literature.) We
recommend always using gselect with a minimum of three
address bits to permit a selection among eight entries for
eight branches in parallel. From this it follows that for an
8K pattern table, a maximum of ten history bits may be
used. The hardware needed to support a gselect with an
8K pattern table is roughly equivalent to that needed for
an 8K local two-bit saturation counter. It can be seen that
the prediction quality achieved with this table is always
worse. A table four times larger is needed to get a better
prediction. Furthermore, it can be seen that adding
instruction-address information increases the quality of the
prediction, provided there is enough room left in the table
to allow the history to influence the results at all. This is
similar to SPECmark behavior. McFarling [4] examined
these phenomena and found that the pattern table is used
only very sparsely. He therefore recommends that the
address and the history bits be shared by XORing them.
This method is called gshare.

gshare
We have analyzed gshare prediction for the three tables
described in the previous section. The results for T1 are
summarized in Figure 11. As can be seen, prediction
quality is much better. The 8K pattern table already
surpasses the 8K local two-bit counter. However, we still
have the effect that adding history will not necessarily add
prediction precision. For the 8K table, the best prediction
is achieved using five bits of history, for a 16K table,
four or five bits, and for a 32K table, six bits. These “best”
prediction setups have been used to examine the other
traces as well. The results are shown in Figure 12. For
T1 and T2, gshare always outperforms the local two-bit
predictor. However, for T3 only the 32K table performs

R. B. HILGENDORF, G. J. HEIM, AND W. ROSENSTIEL IBM J. RES. DEVELOP. VOL. 43 NO. 4 JULY 1999

586



slightly better, and for T4 the 8K table performs exactly
as well as the local two-bit predictor. Obviously, traces or
parts of traces exist which are better predicted by local
history, while others are better predicted by global
history. Generally this statement also holds for branches
themselves. Therefore, a combined prediction seems
advantageous.

● Branch correlation using branch path history
In [5], Nair proposed a scheme in which the taken/not
taken type of branch history from the previous chapter is
replaced by a history representing the path leading to the
branch to be predicted. This path history is made up of
the instruction addresses of the branches in the path.
Ideally, the complete address of all preceding branches
should be stored. However, given a fixed size for the
pattern table, a tradeoff must be made between the
number of branches and the number of unique address
bits per branch to be used. Nair suggested two methods:

● Concatenating some of the address bits from each
branch target.

● Shifting the current history by some number of bits and
then XORing the new branch target address with this
shifted history to form the new history.

We have found that using the branch instruction address
rather than the branch target address and using the
concatenating mode did not reduce the achievable
prediction correctness but was easier to implement. In
using partial branch instruction address information to
build the history, only low-order address bits are used.
Figure 13 shows the simulation results for trace T1 with
one, two, three, and four address bits per branch being
stored, respectively.

The 16K pattern table itself is accessed in a gselect
fashion called gpselect2 for global path history. As can be
seen, the prediction correctness is much better than for
a predictor of comparable size using direction history
(dotted line). Again, the best prediction results are
achieved using four to five history bits. The degradation
from using more history bits is not as dramatic as it is
with gselect, especially if three to four address bits per
branch are added to the history. It appears that the
pattern table is addressed much more evenly and that
using a strategy like gshare would not achieve much
additional prediction correctness. By selecting a path
history formed by adding two address bits per branch, a
gshare-like predictor called gpshare has been simulated.

gpshare
We simulated the gpshare predictor for the three pattern
table sizes. The result for T1 is shown in Figure 14. The
plot for the 16K table around four to five bits of history
shows almost no difference from gpselect, as expected.
With more or fewer history bits, gpshare becomes better.
Overall, gpshare outperforms gshare for an equivalent
amount of hardware.

Taking again the best predictor configuration for each
of the three table sizes and applying them to the other
traces for simulation gives the results shown in Figure 15.
It is seen that gpshare is the better predictor for those
traces as well. However, the problem still exists that T3 is

2 gpselect is a new term not found in the literature; there are very few published
results that are based on path prediction.
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better predicted by local history. The techniques presented
in the next section will address this problem.

7. Hybrid methods
If local and global history methods are compared, it can
be seen that both result in about the same amount of
misprediction. However, analysis on a branch-by-branch
basis shows that some of the branches predicted badly by
one method are predicted far better by the other one, and
vice versa [4].

A hybrid method consists of two or more prediction
methods for branch direction and a selection mechanism
that chooses the probable better method for the branch to
be currently predicted. Basically the selector records for

each branch separately how well each method works for
that branch. On the basis of this information, the decision
is made as to which method to use.

The total amount of hardware needed for a hybrid
method is greater than for certain local methods, because
each prediction method needs its own hardware and the
selector requires hardware as well. In the simulation
results below, we show whether (and when) such hardware
increases can be justified.

● Hybrid predictor combining one local and one global
predictor
If the hybrid predictor must select between only two
predictors, the selection mechanism can be a two-bit
saturation counter that is incremented if method A has
predicted correctly and decremented if method B was
correct. Thus, if both are correct or both are incorrect, the
value is not changed. Whenever the value of this selection
counter is above 1, method A is chosen; otherwise method
B is used. There are other possible selection methods, but
we have simulated only this one.

To make the results comparable with respect to the
amount of hardware involved, we choose as method A the
local two-bit counter, and as B a global predictor using a
16K pattern table and a two-bit counter as the selector.
This is equivalent to the hardware needed for a global
predictor with a 32K pattern table. Figure 16 shows the
simulation results for T1 when gshare is used as the global
predictor.

Using a four-bit history (the value for the best gshare
prediction), only a slight improvement over the best 32K
gshare predictor is achieved. When analyzing the gshare
behavior, we saw that increasing the number of history
bits decreased the prediction quality because several
branches were predicted less well with the longer history,
while only a few had better predictions. However, if with
hybrid prediction those branches which behaved badly with
longer history are predicted well enough with the local
predictor, only those branches which do require a long
history to be predicted well are left for the gshare
predictor. This is shown in Figure 16, where prediction
correctness improves with increasing number of history
bits used.

Figure 17 shows similar simulation results for T1 when
gpshare is used. Here also, the hybrid predictor using a
16K gpshare surpasses the prediction quality of the best
32K predictor. It shows the same tendency as in Figure 16:
using a longer history results in better prediction. Figure
13 shows that for long histories it is advantageous to store
more history bits per branch, but this cannot be verified
for the hybrid predictor. Storing two address bits per
branch outperforms the four-address-bit case at all points.
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gpshare as global predictor in a two-predictor hybrid
predictor outperforms gshare for all traces, as shown in
Figure 18. The advantage, however, is not as great as for
gpshare versus gshare. Since the method of using a path
predictor as part of a hybrid predictor has not been
published previously, no comparison to SPECmark
results can be made here.

Figure 19 uses the local adaptive predictor instead of
the local two-bit saturation counter. Two versions were
simulated, both having the same hardware cost as the
other hybrid predictors. Thus, if the hardware for the local
predictor increases, hardware for the global predictor is
decreased. Under this boundary condition, a hybrid
predictor using gpshare and the local two-bit saturation
counter achieves the best results.

● Hybrid predictor combining multiple prediction algorithms
Having already achieved better prediction by selecting
between two predictors, in Evers et al. [3] it is claimed
that choosing among multiple predictors would improve
prediction quality even more. It is clear that here even
more prediction hardware is required, because each
predictor needs its dedicated and/or shared hardware
resources and each predictor needs hardware to establish
and store its prediction quality for each branch as well as
some hardware that evaluates this information and selects
the “best” predictor. While Evers [3] still uses two-bit
saturation counters (one per predictor and branch),
Rotenberg [17] claims that more elaborate methods
for branch confidence assignment are needed.

We investigated a hybrid predictor by combining three
predictors in each of four combinations: our two global
predictors with either local predictor and vice versa; and

the two local predictors with either global predictor. All
four predictors are comparable in hardware resources but
require three times as much hardware as the simple hybrid
predictor. To select which predictor should be used, we
extended the two-bit counter method from the simple
hybrid predictor. In the extension, three counters are
used to store the relative performance of one algorithm
against those of the other two algorithms. Counter 1 is
incremented if method A is better than method B and
decremented for the opposite relationship. Counter 2
shows the relationship between A and C, and counter 3
that between B and C. To find which method should be
used for the next prediction, two counters are examined;
e.g., Counters 1 and 2 indicate whether A is the method
of choice. Adding one more method will increase the
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number of counters to six, as the LRU for four-way
associativity requires six bits.

Besides choosing among the methods, it is likewise
important to choose the method to be used after a branch
is encountered the first time. This might even be crucial
for the behavior of the multihybrid predictor. Whenever it
was present, we selected the local two-bit counter as the
starting method. Figure 20 shows the results for the four
traces. As can be seen, using more predictors does further
improve the prediction. However, improvement is not
consistent over the combinations chosen and the different
traces. Overall, a maximum of 0.25% might be achieved,
but the amount of hardware is increased dramatically for
only a small reduction in missed predictions.

8. Moving targets
Until now we have concentrated on predicting the
direction a branch should take. It was implied that the
target address stored in the BTB was correct. However,
this is true for only some of the branches. Some branches,
such as returns from subroutines, may have different
target addresses. If there is a special return instruction in
the instruction set, a return stack creates the possibility of
obtaining the correct return address.

There is a second group of branches, indirect branches,
which commonly have changing target addresses. The
target address of an indirect branch is created dynamically
while the program is executed. It is used to implement
case statements, jump tables, or computed go-tos. Little
research has been done on correctly obtaining the target
addresses of these branches. Only recently [2], a new
approach was presented which uses global history patterns
like those from Section 6. The number of misses resulting

from changing target addresses is noticeable, and results
for our implementation of this approach are detailed in
this section.

● Identified return cache
Most of the instruction-set architectures which are used to
publish results on branch prediction use specific call and
return instructions, so it is not difficult to have a return
stack and use it to achieve 100% correct return target
addresses. However, as stated earlier, ESA/390 does not
have such instructions, so we must first determine whether
a branch is used as a call or as a return.

In [12] Kaeli and Emma proposed a two-stack approach
to detect call/return pairs for instruction-set architectures
that do not have explicit call or return instructions. A
slightly different version was published in [18] for the
ESA/390. Both methods require a two-stage lookup, which
is not a problem as long as one is interested only in the
number of misses, but it may be harmful to the overall
performance of the processor. We have modified the
approach by adding hardware such that a lookup for
a return can be done in parallel with that in the BTB.
The results presented in the following are for this new
approach, which uses two independent memorizing
elements:

● An identification stack into which each possible call
is written with its target and return address.

● A return cache that receives new entries from the
identification stack when the stored return address
matches the target address of a possible return. The
regular BTB entry of such a matching return gets a
specific type indication which informs the structure that
the target address for this entry is to be taken from the
return cache.

Both storage structures may vary in size independently.
Figures 21 and 22 show the simulation results. As can be
seen, prediction quality depends on stack size. Simulation
was performed using a 256-entry return cache. With as few
as four to eight entries, saturation is reached, with an
exception for T2. For T2, saturation is achieved with 16
entries. Therefore, a 16-entry identification stack was
chosen for varying the number of entries in the cache
itself, as shown in Figure 22. The cache is organized as
a four-way-interleaved structure. A steady improvement
for all traces can be seen as the number of entries
grows; the improvement rate flattens after 512 entries.
Design tradeoffs may suggest a 256-entry cache,
since except for T3 only a moderate 0.04% prediction
correctness is lost compared to the double-sized
512-entry cache.
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● Moving target cache
Until the publication of Chang [2], it was common to
exchange a wrong target address in the BTB for the newly
calculated address. Exchanging the target had a slight
advantage over leaving the BTB entry unchanged or
removing that branch from the BTB.

As with adaptive prediction of branch directions, where
a history pattern is used to define the entry in a pattern
table which then predicts the branch outcome, Chang
suggested the use of a history pattern to select the correct
target address from among several target addresses stored
for that branch. As in direction prediction, this method
has the problem of aliasing; e.g., a given history will
always point to the same entry, even for different
branches. Since it is not reasonable that different branches
will have the same target address just because they have
the same history pattern, the target addresses must be
identified more accurately. Using methods from cache
design, associative sets with tagging are used to store
several addresses for the same history and use the branch
address as a tag to identify the correct entry. Thus, the
structure is called a target cache. However, a specific
branch may already have several entries in the target
cache but none that matches the current history. Thus,
no target can be selected.

We have changed the above approach by switching the
addressing and tagging. We use the instruction address to
index into the target cache in the same way as a BTB is
accessed. In the target cache we use a history pattern as
a tag to select one of the target addresses. If there is no
perfect match for the tag, i.e., no target is stored for
exactly that history, the entry whose history is closest to
the current history is chosen. To enable many targets to

be stored for one branch, the target cache should have a
high associativity, as this will provide the maximum
number of different available targets for a given branch at
any time. We chose an associativity of 8, the same as for
the BTB. In Figures 23 and 24 we show the results of
simulating this new approach, varying the size of the trace
cache and the kind of history stored in the tag field.
Except for T3, employing a target cache with 256 entries
improves the address miss rate drastically. Increasing its
size improves prediction for both T1 and T3. However,
this increase is not dramatic, and design tradeoffs can be
made, resulting in a target cache of 512 entries.
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Three different history patterns were analyzed: the
global direction history, the global path history, and a
combination denoted XOR. Except for T4, global branch-
direction history behaves worse than global path history.
Combination by simply XORing both history patterns is
intended to distinguish different target addresses even
when one of the two patterns stays the same. Using this
combination, it can be seen that the prediction for T2 and
T3 decreases only slightly (0.01%), while T1 and T4 are
predicted best by the combined history pattern.

9. Summary
It has been shown that branch-prediction misses can be
separated into three categories: table misses, direction
misses, and address misses. Each category may be dealt
with in another way, but reducing the number of misses
always increases prediction hardware. It has also been
shown that on the basis of SPECmark traces one would
probably choose to invest hardware in a different way than
is now suggested. Typically, BTB size falls between 1K and
4K entries. For our traces this would mean a miss rate of
around 12% just due to missing branches in the table. To
this, all of the other types of misses must be added. On
the other hand, SPECmark traces also suggest fairly
complex hybrid predictors for direction misses when long
history information must be stored. Here we show that a
modest two-way hybrid predictor performs almost as well
as predictors involving several more algorithms. Finally,
even if there is no distinct return instruction available in a
specific instruction set, our approach is able to find a
dominant majority of the occurring returns and predict
their target addresses correctly.

The sensitivity of a processor to branch-prediction
correctness depends on the microarchitecture of that

processor. This sensitivity must be well understood in
order to justify expending hardware for better branch
prediction. However, on the basis of our simulation we
suggest the following configuration for the branch-
prediction unit of a processor:

● BTB with 8K entries, eight-way set-associative.
● Hybrid direction predictor with 8K two-bit local

saturation counter and 16K entry-path history table.
● Return cache.

Such a configuration would yield compound miss rates for
T1: 10.8%; T2: 11.4%; T3: 12.8%; and T4: 7.9%. Adding a
target cache would reduce those numbers by about 0.6%,
whereas doubling the BTB could reduce the numbers by
more than 2% for at least two of the traces.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard
Performance Evaluation Corporation.
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