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A new high-performance MPEG-2 transport
demultiplexor hardware architecture is
presented which minimizes the support
required from a host processor for common
tasks such as clock recovery and table section
filtering, yet provides an interface for a
processor to modify the handling of the
incoming transport stream. A common on-
chip SRAM is used for temporary storage of
transport packets as they are processed,
as well as for control and status registers,
allowing space for efficient storage and
reducing silicon size. Memory storage is
further reduced by delivering data directly
to the audio and video decoder rate buffers
and to system memory as part of a total,
integrated MPEG subsystem design. The
architecture is implemented as part of the
IBM Blue Logic™ core library.

Overview

Digital television offers viewers high-quality audio and
video. For broadcasters, the compression of data allows
several programs to be delivered over the same analog
bandwidth. Digital television can be distributed using
adapted versions of current analog systems, including
satellite, terrestrial, and cable. A terrestrial system is

illustrated in Figure 1. The audio and video components
of a program are compressed at the source and time-
multiplexed with other programs and system information
needed to recreate the original program. The digital
multiplex is modulated and transmitted to the subscriber’s
home. The set-top box (STB) demodulates the signal to
recover the multiplexed digital streams, extracts the
program of interest, and decodes the compressed audio
and video for presentation on the television.

There are several possible variations of this system. The
digital stream can also be modulated and broadcast over a
coaxial cable system currently installed or delivered over
satellite systems. In addition, the receiver may be a stand-
alone STB, as described above, or it may in time be
integrated directly into the television.

There are a variety of possible methods of encoding and
delivering digital television programs. To promote the
development of interoperable components from different
manufacturers, the MPEG-2' international standard
[1-3] was developed. The standard does not specify the
techniques for encoding, multiplexing, and decoding the
bit streams, but only the format of the data. This leaves
an opportunity for manufacturers to differentiate their
products through the way in which they use resources such
as silicon, processor power, and memory, and through
their ability to conceal or recover from errors. The
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standard is composed of three primary parts covering
systems, video, and audio. The video and audio parts
specify the format of the compressed video and audio
data, while the systems part specifies the formats for
multiplexing the audio and video data for one or more
programs as well as information necessary for recovery
of the programs.

The MPEG-2 systems standard [1] specifies two stream
formats: one for error-free environments such as a digital
storage medium, and one for error-prone environments
such as satellite, cable, ATM, and other networks. The
latter format, often referred to as the transport stream, is
used for broadcast applications such as the one shown in
Figure 1.

An integral part of the broadcast distribution is the
reception and subsequent processing of the data in the
user’s home. Figure 2 is simplified block diagram of
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an STB from Figure 1 showing the flow of program
information. A tuner extracts the analog signal, which is
then digitized. The demodulator recovers the symbols,
which represent the incoming bit stream. The bit stream
contains additional data for forward error recovery. This
group of four functions is often referred to as the network
interface module (NIM). The final output of the NIM is
an MPEG-2 transport stream. The transport demultiplexor
extracts the audio and video portions of the program to
be sent to the audio and video decoders. The data which
specifies the stream content is delivered to memory to
enable the processor to configure the STB to deliver a
particular program.

The remainder of this paper presents the following
topics: The transport stream syntax is introduced, along
with the minimum set of processing requirements. The
set of requirements is expanded to include those for an
MPEG-2 transport demultiplexor implemented as part of
the IBM Blue Logic core library [6] for ASICs. The IBM
transport architecture is described, along with discussions
of the important design and implementation decisions
required to meet the requirements.

Transport-stream syntax

The transport-stream specification for error-prone
environments uses short, 188-byte packets. The small
packet size minimizes the amount of data which might be
lost or corrupted by the delivery network. The packets for
a particular stream within the multiplex are intermixed,

so that burst errors have reduced impact on individual
streams. An important feature of an STB is its ability to
manage and conceal or at least minimize errors as seen by
the user. The MPEG-2 specification does not specify error
handling, so each manufacturer decides how errors are
managed.

A transport stream is composed of time-multiplexed
packets from different streams. Each transport packet
contains a header, an optional adaptation field, and a
payload, as shown in Figure 3. Several of the important
header fields are shown in Figure 4. The Sync byte can be
used to establish the packet boundaries to allow random
access into the transport stream. The packet identifier
(PID) identifies all of the packets belonging to the same
data stream, making it possible to reconstruct the stream
within the STB. Packets with the same PID are considered
a PID stream. As an example, a program typically requires
at least one audio and one video stream. Within the
transport stream, the packets containing the audio stream
will have the same PID. Similarly, the packets comprising
the video stream are identified by the same PID value,
which is unique to the video stream.

In addition to the Sync byte and PID fields, each
transport packet header also contains a continuity counter
(CC) field, which can be used to detect missing packets in
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a PID stream (Figure 4). The CC represents a modulo-16
counter which increments by one with each packet of the
same PID which contains payload. If the next packet of a
PID stream has an incorrect CC value, it is very likely that
at least one packet of the PID stream has been lost. There
are a few additional rules concerning the CC values which,
along with other syntax details, can be found in the
MPEG-2 systems standard [1].

An adaptation field may follow the packet header and
may contain a program clock reference (PCR), which is
used to synchronize the decoding and playback of a
program and is described in the section on audio
and video synchronization. The payload may follow
immediately after the header or after an adaptation field.
It may exclusively contain audio data, video data, private
data defined by the service provider, or table sections.
(Table sections are discussed in the next section.)

Figure 5 illustrates a short sequence of transport
packets from a possible transport stream. Further detail
of three of the packets is shown. One of the packets is a
video packet with a PID field of 34; this video packet
contains not only video data in the payload field, but also
a PCR in the adaptation field. The PID field of the other
two packets is 21, indicating that they are from the same
PID stream. This PID stream contains tables, which are
described in the next section.

® Table sections

The transport-stream syntax also defines a table section
data structure. The MPEG-2 specification includes several
mandatory types of tables which describe the content of
the stream. The required tables specify programs in the
stream, as well as necessary information such as the
audio and video PIDs for each program. The same data
structure can be used to send private data, such as a
software update for the STB.

A table is transmitted as one or more table sections.
The first field in the table section is the table ID, which
allows the STB to identify all of the table sections for a
table so that the STB can reconstruct the complete table
data structure. The table ID allows multiple tables to be
transmitted in a single PID stream, as shown for PID 21
in Figure 5, which contains table sections for tables 49,
12, and 71.

There are several important table characteristics which
place processing demands on the STB. First, table sections
can span multiple transport packets that may be spaced
some distance apart in the transport stream. The STB
must be able to reconstruct a table section as a continuous
structure in memory. Second, the last four bytes of a table
section may contain a cyclic redundancy check (CRC),
which the STB can use to determine whether the table
section was delivered intact. The CRC provides an
additional level of data checking beyond the CC in the
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transport packet header. Third, multiple table sections, or
portions of them, may be contained in a single packet.
Fourth, table sections are repeated in a stream to permit
random access by the STB. Thus, once a particular table
section is acquired, it is not necessary to acquire it again
until it has changed.

The transport stream arrives in real time, so the STB
must be able to process sections as they arrive without risk
of data loss or impact on the operation of the rest of the
system. The STB must also be able to handle multiple
consecutive packets containing several table sections.

® Audio and video program synchronization

The MPEG-2 systems standard identifies a constant-delay
model between the transport-stream source and the STB.
PCRs are inserted into the transport stream as it is
created, as shown in the second packet of Figure 5. The
PCRs reflect the current value of a counter at the source,
incrementing at 27 MHz. Since the transport stream is
delivered with constant delay, the PCRs can be extracted
to control the frequency of the STB’s system time clock
(STC). Matching the frequency of the STC to the arriving
PCRs ensures that the decoder’s audio and video buffers
do not overflow or underflow. If either of these conditions
occurs, the viewer may see or hear brief disruptions in the
program.
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® Transport-stream errors

The discussion so far assumes that the transport stream
is delivered without errors. The short transport-stream
packets are intended to minimize the disruption of the
system when errors in the delivery system occur. The
MPEG-2 systems specification provides a means of
detecting errors, but does not define the appropriate
STB action when an error does occur.

Errors may manifest themselves as missing or invalid
packets. The CC field in the transport packet header
allows the STB to detect these events. The possible effect
on the system depends on the type of missing data, such
as audio, video, table sections, and so on. The audio and
video portions of the STB must be designed to continue in
such an event by either processing the current partial data
and minimizing any temporary artifacts in the output, or
discarding the partial data and repeating previous output
until good data is available. For tables, all or part of a
table section may be lost for each missing packet. Since
table sections are generally repeated at regular intervals,
the loss of a packet containing a table section does not
have a noticeable impact.

® Transport requirements

The MPEG-2 systems standard places a set of
requirements on all transport demultiplexor
implementations. Some practical requirements exist, such
as the ability to receive a digital stream from a NIM. The
stream interface between the NIM and the transport
demultiplexor can be either serial (1 bit) data or parallel
(byte-wide) data. If the NIM has not already established
the packet boundaries, the demultiplexor must do so using
the sync byte. Once boundaries are determined, the
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MPEG-2 transport syntax defines the bit fields within

the packet so that data can be parsed and processed
accordingly. Typically, as controlled by the host processor
in the STB, the demultiplexor will

Filter the arriving packets based on a set of PIDs.
Extract the PCRs and provide a means to ensure
synchronization of the audio and video presentation.
Forward the payload of audio and video packets to the
respective decoder.

e Forward program-specific information (PSI) and private
tables to system memory for further processing.

In addition, the focus on data broadcasting (non-
audio/video streams) and on improved user perception
has introduced requirements for flexible filtering of table
data to efficiently provide only the necessary information
for host processing, and efficient error detection and
concealment to prevent noticeable artifacts in the audio
or video output.

Transport design goals

On the basis of the predominance and established
definition of the MPEG-2 transport syntax, we have
pursued a hardware-based design that yields the greatest
performance in the least silicon area. The design goals
summarized in the following sections influenced the
architectural decisions of the IBM transport.

® [ntegrate with other cores in the IBM Blue Logic* core
library

The transport core is integrated with other cores from the
IBM Blue Logic core library to create a chip. This creates
an opportunity to optimize communication with other
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cores, such as the host processor, and with the audio and
video decoders. In addition, integration into a larger
design allows the use of common memory. The goal is to
exploit as many of these advantages as possible while still
maintaining compatibility with more typical interfaces.

® Limit use of host processor and memory resources

The transport design must be self-contained for typical
usage and provide sufficient performance to avoid placing
an undue burden on the host processor, leaving it free for
other functions. For example, the PCRs used to control
the STC in the STB are transmitted at least every 100 ms
and usually much more frequently. The arrival of each
PCR could generate an interrupt to signal the processor to
examine the difference between the PCR and the current
STC count and adjust the STC frequency as required.
Reducing the number of clock recovery interrupts reduces
the load on the processor.

As a further example, processing table sections can
consume considerable processor and memory resources.
Only a few table sections transmitted in a PID stream are
actually needed by the STB at any time. If unnecessary
table sections are received, they are discarded. To
understand the impact of filtering table sections using
software running on a processor, it is helpful to look at
two such approaches. The first is to deliver all table
sections to memory and then filter the sections to
determine which ones are needed. This typically requires a
relatively large working buffer to store the table sections
while they are filtered and another memory area to store
the filtered table sections. The size of the working buffer
depends on the latency for software filtering. The second
approach is similar to the first and uses a minimum
working buffer, typically the size of one transport packet.
However, the processor must filter the table sections in
real time. While this second software approach minimizes
the memory needed, it places additional performance and
latency requirements on the processor. The goal in this
design was to provide an extremely flexible set of table-
filtering capabilities in hardware that allow filtering to be
performed before the data is delivered to memory, saving
both processor and memory resources.

® Minimize silicon area while maintaining flexibility
Minimizing silicon area is a key requirement for all cores,
especially those used in larger integrated designs. A
hardware-based design provides the greatest efficiency for
a given set of functions, and the capability of a hardware
design can be extended through the use of highly
configurable resources. There is further benefit in the
ability to adapt the design to new requirements as they
arise. The goal is to reach a balance between functions
which are implemented in hardware and those which
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require more flexibility and can be implemented as
software running on the host processor.

Design architecture

The transport architecture is divided into three major
sections: a front end, an interim buffer, and a back end, as
shown in Figure 6. The front end consists of the packet
synchronization, PID filter, parsing, and descrambling
functions; it processes fields related to the header and
adaptation fields. The buffer stores arriving packets for
processing by the back end, as well as control and status
information. The back end, which processes packet
payloads, consists of three separate unloaders: one for
audio, one for video, and one for system data. Both the
front end and the back end access the packet buffer
through a common cycle-by-cycle arbiter. The front end
passes information about each packet to the back end
through an information word that is appended to the
beginning of the packet.

This modular approach allows parts of the design to be
changed with minimum impact on the remaining elements.
In addition, the use of a single SRAM memory for the
packet buffer and an information word allows other
memory elements such as registers to be stored in a single
array.

Figure 6 represents the dataflow of a transport stream
through the design. The sync block finds the start of the
transport packet by searching for the sync byte at the
beginning of a transport packet. The packet parser extracts
data from the transport packet header and adaptation
field. For example, the PID in the stream is compared to
active PIDs in the PID filter. Concurrently, the packet
parser sends PCRs from matching PCR packets to the
clock recovery unit to reconstruct the STC. The optional
descrambler may be configured to descramble the payloads
of selected packets.

Status indicators representing parsed information are
sent along with the complete transport packet to the
packet loader to be stored in the packet buffer. The status
indicators reside in a 32-bit information word, making the
total storage requirements for a packet 48 32-bit words.
The packet buffer holds up to ten transport packets while
they are delivered to the decoders and memory queues,
and efficiently absorbs any latency of these data targets.

The three unloaders retrieve data from the packet
buffer. The audio unloader and video unloader send data
to the respective decoders as it is requested. The memory
unloader sends data to the bus controller for subsequent
transfer to system memory. It can optionally be configured
to filter table sections and perform CRC checking. The
host port is used by the host processor to configure,
monitor, and control the operation of the transport core.
The transport assist port can be used to further filter,

parse, and direct data before it is delivered. 525
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Transport hardware architecture.

Features of the design

Using the described architecture, we tailored many areas
to achieve our stated design goals. Unique work was done
to reduce host processing requirements, to provide flexible
management mechanisms in order to handle foreseeable
use of the hardware, to maximize storage efficiency, to
allow an option for modification of the operation of the
design, and to increase communication and dataflow
performance between cores. Key areas of work are
described in the following sections.

® FExtended clock recovery

A transport extracts the PCRs from the transport stream
in real time to ensure that the constant-delay model is
maintained. At the same time it captures the value of the
STC, which is the local clock in the STB. The difference
in rate and the difference between the PCR and the STC
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values can be used in a feedback loop to control the
oscillator driving the STC as well as the audio and video
decoders.

The transport core provides extended support in
hardware for recovering the clock from the arriving PCRs,
as shown in Figure 7. In addition to extracting the PCR
from the stream and capturing the matching STC value,
it calculates the difference between the two values and
compares it to a programmable threshold to determine
whether an interrupt should be issued. Further, a simple
internal algorithm is provided which can make minor
corrections to the frequency of the voltage-controlled
crystal oscillator (VCXO), so that the STC tracks the PCR
without support from the host processor. The VCXO
frequency is controlled by a pulse generator whose output
is filtered by a low-pass RC filter network to create a
steady voltage input.
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A software clock recovery algorithm running on the
processor completes the solution. The software algorithm
was developed to take advantage of the features provided
in hardware, including the hardware algorithm and the
programmable threshold. The software algorithm is used
initially to match both the rate and value of the STC to
the arriving PCRs. This is accomplished by setting the
threshold value for generating an interrupt to 0, so that
the algorithm is called each time a PCR is received by the
STC. Once the software algorithm has closely matched the
STC to the PCRs, full control returns to the hardware
algorithm. This is accomplished by setting the threshold
to a value greater than 0; in the implemented software
algorithm, a value of 256 was used. The software
algorithm is not called until the difference between an
arriving PCR and the STC is greater than 256. Meanwhile,
the hardware algorithm maintains the feedback to the
VCXO.

The software and hardware solution for clock recovery
was originally tested on an emulation system containing
the transport design in FPGAs [7], and then later in
hardware. When the local clock frequency differed by
100 ppm, the software algorithm requires 60-70 PCRs to
initially lock and switch the feedback control solely to the
hardware algorithm. The hardware algorithm maintains
the difference between the STC and the PCR to less than
256 for 6—8 minutes. Once the magnitude exceeds the
threshold value, the software algorithm can relock the
clock on the basis of 20-30 PCRs. We have measured a
98% reduction in the number of clock recovery interrupts
to the host.

® Flexible and extensive table section filtering

Like PCRs, table sections require constant handling by
the STB. Several types of table sections required by the
MPEG-2 systems standard must be repeated at least ten
times a second to allow random access by all STBs which
may receive the transport stream. The STB must monitor
the table sections to determine whether they have been
updated. Thus, table sections can place a burden on the
STB, even when the data they contain remains the same.

Like clock recovery, the IBM transport demultiplexor
reduces the load on the host processor by performing the
repetitive tasks and limiting delivery of table sections
transmitted within the PID streams to only those needed
by the STB. The processor resources are used only when
table sections of interest have been acquired by the
transport hardware and delivered to memory.

The hardware table section filtering must be compatible
with existing software application programming interfaces
(APIs). These APIs can assume bit-level masking of the
filtered fields. They can also permit variable-length filters,
which may be accomplished by using a combination of
hardware and software filtering.
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The transport architecture provides a pool of four-byte
filter blocks. Each filter block includes four bytes of
compare value, four bytes of compare masking, and a
32-bit control word. The current design includes 64 filter
blocks, corresponding to 192 32-bit words of storage. To
minimize silicon area, the filter blocks are stored in the
common SRAM along with the received packets, and are
retrieved from the SRAM as needed while a table section
is processed.

A filter block is applied to a table section on a bitwise
basis. Each bit of the filter value and mask is applied to
the corresponding bit in an arriving table section. A bit
always matches if the mask bit is set; otherwise, a bit
matches if the filter bit and the table section bit match.
A match results for the filter block if for all 32 bits the
result is a match.

Constructing section filters from filter blocks

The filter block architecture provides two important
features for flexibility. The first is the ability to allocate
the filter blocks in any manner among the received PIDs.
The second is the ability to create section filters using any
number of filter blocks from one to 64.

The key to both types of flexibility is a linked list
structure used to construct section filters for each PID
index. Each section filter may include one or more filter
blocks depending on the required filtering depth. The
first filter block for a PID index is specified in the
configuration of a queue. Additional filter blocks are
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specified by a pointer to the next filter block in the control
word of each filter block. A second field in the control
word indicates whether the next filter block should be
applied to the next four words of the section filter. This
linked list arrangement simplifies the allocation and
reallocation of filter blocks to different section filters

and PID indexes.

Consider three section filters attached to a PID index.
The first section filter has a filter depth of eight bytes, the
second section filter four bytes, and the third section filter
twelve bytes. Six filter blocks must be allocated for this
PID index. It is helpful to think of organizing the filter
blocks into rows and columns, as shown in Figure 8.

Each row implements one of the section filters. The links
indicate the order in which the filter blocks are processed
by the transport. Filter blocks in the same column are
compared against the same byte positions in the table
section.

Another field in the filter block control word indicates
which filter blocks are part of the same section filter. The
section filter ID field is configured with the same value for
filter blocks belonging to the same section filter. In Figure §,
three unique section filter IDs are used to specify the
filter blocks associated with each of the three section
filters. The application can make the section filter IDs
unique across all PIDs, or it can use the same section
filter IDs for several PIDs, allowing multiple uses of this
feature.

Section filter ID and section filter match word

The section filter ID field provides a second function to
further reduce processing by the host processor. The
transport can be configured to write a match word in
memory indicating which section filters matched a table
section. Each bit position corresponds to the section filter
ID field in the filter control of each filter block. The
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section filter match word is placed before the start of the
table section in memory to allow the software to quickly
identify the destination(s) of the table section. Without
this feature, the software may have to filter the table
sections again to determine which section filters matched.

“Not-match” section filtering

The table section filtering hardware also supports a “not-
match” capability for each byte. Four bits in the control
word of each filter block indicate for each byte whether
the byte is considered a match only if the value in the
filter and the table section are not the same. Not-match is
accomplished by inverting the match result for each byte,
and is used to detect a change in a byte of a table section.

Table section filtering performance

The flexible table section filtering architecture also
provides high-performance processing. The hardware can
maintain a sustained rate of 60 filter block compares per
transport packet, with an input transport-stream rate of
100 Mb/s. For example, a transport packet containing five
table sections with four block filters defined for that PID
index requires 20 filter compares to complete processing
of that packet.

® Moving system data to memory

The transport macro supports up to 32 queues in memory.
Each of these is associated with a PID index in the PID
filter. For example, data from PID index 5 is stored in
queue 5. One queue can be allocated to provide special
functions which are described later. The transport can be
configured to deliver data to memory in a 16MB region,
which is also aligned on a 16MB boundary. Queues within
the region can be allocated in increments of 4096-byte
blocks, with the largest possible queue size encompassing
the entire 16 MB. The entire 16MB queue region need
not be allocated solely for the queues. The application can
place the queues anywhere within the 16MB region and
can use the remainder for other functions (Figure 9).

Memory queue management
Each queue can be configured independently using two
registers. The fields in these registers include those to
specify the region of memory defined for the queue, a
read pointer within the queue which the hardware should
not pass, and the type of data to be delivered to the
queue. A set of status registers are also provided for
each queue. One of the status fields is the write pointer
indicating the next memory location to which the
hardware will deliver data. Another field indicates the
beginning of a table section which is partially delivered
because it spans transport packets.

Interrupts are provided to the processor when the
hardware has reached the read pointer within the queue,
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when a table section or packet has been delivered to
memory, or when a programmable number of 256-byte
blocks have been delivered to memory. The interrupt,
configuration, and status registers allow the host processor
to manage each queue independently as a circular buffer.

Queue data types
Each queue can be configured to deliver data from
packets of a PID stream. Several of the basic options
include delivering complete transport packets, the
adaptation fields, or just the packet payload. Eight options
deliver table sections, with the added flexibility to include
section filtering, CRC32 checking, and delivering
adaptation fields to a special bucket queue.

A bucket queue allows delivery of adaptation fields
from several PID streams to a single queue. This may
be desired when either just the packet payload or table
sections from the packet payload must be delivered to
their corresponding queues, but the adaptation fields
are also required from these PID streams. To allow the
application to determine which PID is associated with an
adaptation field, the transport packet header is also stored
in the bucket queue, followed by the adaptation field. The
audio and video queues are not used to deliver data to the
decoders, so these can be used to deliver adaptation data
from the audio and video PIDs to memory. One of these
queues can also be used as the adaptation bucket queue.

® FEfficient storage through a common SRAM buffer
Configuration information for the queues and table
section filter requires storage that is easily accessible by
the transport demultiplexor. These and other storage
requirements are shown in the first column of Table 1.
One of the critical choices in the design was the
implementation of this required state.

There are several storage mechanisms available,
including latches, register arrays, SRAMs, and off-chip
memory. The latter requires additional pins on the chip,
which are not available for chips with a high level of
integration. Latches consume the most area per bit, but
the value from a latch can be used independently and
concurrently with other latch values. Thus, latches were
used to implement the PID filters, since concurrent access
is required to check all 32 PID filters in one clock cycle.
Other registers were also implemented with latches for
similar reasons. Registers implemented as latches also
require multiplexing logic so that their state can be
accessed by a processor. Register arrays and SRAMs do
not share this overhead because the multiplexing or
address decoding is part of their basic function.

The initial architecture included an SRAM for packet
storage, since it was the most area-efficient. The incremental
area for storing another bit in the SRAM was approximately
1/30th of a corresponding latch implementation. This
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16MB queue
region

Queues

Queue memory allocation.

Table 1 Register implementation.

Register type Latches SRAM
Configuration 12
Clock recovery 10
Interrupt and masks 11
PID filter 36
Ten packets 480
Queue configuration 64
Section filters 192
Queue working data 160
Queue interrupts 16
Descrambler 48
Totals 69 960

created an opportunity for implementing other registers
and working data as part of the same SRAM array. Thus,
most of the memory storage in the transport is located
within a single SRAM array (Table 1).

To use a single SRAM, a simple arbitration scheme
was developed to ensure that no data would be lost. The
arbitration scheme uses a fixed priority, with descrambler
key access and packet data loading having the highest
priority. A single access can be one, two, or three 32-bit
words for the purpose of arbitration, but no unit is
allowed to have two consecutive accesses. The success
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Table 2 SRAM utilization.

Access type Maximum
accesses per
packet
Packet loading 48
Packet unloading 48
Read queue configuration 2
Read queue working data 4
Update queue working data 4
Read interrupts 1
Update interrupts 1
Sixty filter block lookups 180
Read descrambler keys 4
Total 292

of the arbitration scheme has been demonstrated in the
emulation system [7], and then later in hardware.

Our goal was to ensure that no more than 50% of
the SRAM bandwidth is consumed in order to permit
additional SRAM storage in future designs and to handle
any unanticipated problems. Table 2 shows the maximum
number of SRAM accesses required to process a transport
packet. Loading a packet requires 48 SRAM accesses;
unloading a packet can require up to 48 accesses, but may
take less. The heaviest usage of the SRAM occurs when
the transport is filtering and delivering table sections.
In this case, the memory unloader reads the queue
configuration and queue working data, packet, and section
filters. At the end of a packet, the memory unloader
updates the queue working data and reads and updates
the interrupts for the queue. Reading the section filters
accounts for 62% of the total SRAM accesses. The
utilization is determined by the number of system clocks
per transport packet. In a typical configuration, the design
requires a ratio of 1:4 for the incoming stream byte clock
to the system clock. This allows for 752 system clocks per
188-byte packet. Thus, the maximum SRAM utilization for
a single packet is 292/752, or 39%.

® Modifying the transport function through software

While the transport core has been designed to implement
all common functions in hardware, it also has an interface
to the host processor that can be used to modify its
operation. This provides flexibility and the ability to meet
new requirements as they arise. Since the processor
interface is used only on an exception basis, the design
maintains its goal to minimize its impact on the system
resources.

The processor interface, referred to as the transport
assist processor (TAP) function, gives the host direct
access to the internal packet buffer, including the
information word that is passed by the front-end units to
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the back-end unloaders, and indicates how to process the
corresponding packet. The transport can be configured
through special registers to hold a given packet type in the
buffer under certain conditions such as the start of a table
section. The processor can then parse the packet data,
determine the proper action, modify the packet data or
information word accordingly, and release the packet to
the back-end unloaders, which process it as indicated.

The transport core includes a dedicated interrupt
and an independent signaling mechanism between the
transport assist interface and the application interface
so that the two processes can be separated and even
implemented with separate processors.

e Use with other cores in an integrated design

Since the transport design is intended to be used as a core
in the IBM Blue Logic library that will likely be integrated
with other related functions, additional signals and ports
have been added to allow extending or enhancing the
function. For example, there is a set of optional
handshake signals between the transport and the audio
and video decoders, which provide improved channel
changes, time-base changes, and error flagging.

The transport can also take advantage of memory
shared with the host controller for passing system data
such as filtered table sections. In an integrated design, the
transport memory controller is able to access the same
address range as the processor, so it can write data
directly into buffers that are maintained by the processor
without the need to move it a second time. This approach
requires less bus bandwidth and reduces the chip pin
count. The transport also has the special TAP port to
allow a processor to control transport packet processing
within the transport core, as described in the preceding
section. Using this port, the internal buffer of the
transport appears as a data cache to the processor. All of
these features are discussed further as part of the
integrated MPEG subsystem [8].

® Error detection and concealment
As an example of the communication between the
transport and other cores, the transport deals with errors
as a two-step process, detection and handling/concealment.
This technique is applied to errors which affect individual
packets. The transport also detects problems with the
incoming stream, including a number of consecutive
packets with errors and no delivery of packet data after
1/30th of a second. We refer to these errors as transport-
stream errors, since they span a number of packets.
Transport-stream errors may affect the data associated
with several PIDs.

Errors may also occur in individual packets, which affect
the data of only one PID. We refer to these errors as
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PID-stream errors. The following types of PID-stream
errors are detected:

e Transport error indicator is set.

 Sync byte is missing and the transport is in sync.
e TS error signal is active.

« Continuity counter error is detected.

Packet buffer overflow has occurred.

Packets with these PID-stream errors are discarded before
they are loaded into the packet buffer.

Audio and video data error handling

The unloaders report PID-stream errors to the decoders
before processing the next valid packet. For the video
decoder, the transport sends the error flag to the decoder
and, optionally, an error sequence code which is
recognized by the video decoder. For the audio decoder,
the transport sends only the error flag. Valid data follows
the error so that the decoder can begin scanning the
stream after the error to determine the next valid decode
point.

In the case of transport-stream problems, the video
unloader sends an error to the decoder if the packet
buffer does not have any more data from that PID index,
and the decoder is requesting data. These conditions
indicate that valid data has stopped, and the flag allows
the decoder to find a valid point to stop decoding data
from its rate buffer to perform error masking.

Error handling for system data

The memory unloader provides automatic error handling
for table sections. For all types of system data, the
transport can notify the processor through an interrupt if

a PID-stream error occurred on data delivered to memory.

Transport-stream errors are not used by the memory
unloader, since the real-time delivery requirement is not
as important as with the delivery of audio and video data.
These errors appear as PID-stream errors at a later time.

Table section error handling

The front end discards packets with errors before they are
loaded into the packet buffer, since an error may make it
impossible to correctly parse the packet. Additional
checking is performed by the memory unloader on table
sections to ensure that the table section length matches
the value in the table section header, and that a CRC32
check on the table section is correct. If any type of

error is found during unloading of a table section, the
current section is discarded and the queue write pointer is
moved back to the end of the previous valid section. This
discards the current table section, which has an error.
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Summary

The IBM transport demultiplexor core is implemented as
a hardware solution and requires minimum support from
a host processor. Most of the requirements for clock
recovery and table section filtering are performed in
hardware to reduce handling by the processor. Queues
defined in the processor address space do not require the
processor to copy the data before it is used. The design
is optimized to parse the fixed fields in an MPEG-2
transport stream. A single SRAM is used for storing
transport packets as well as control and status registers.
The transport core is designed with additional interfaces
to the decoders and the processor. The decoder interfaces
facilitate error handling, channel changes, and time-base
changes. The transport assist interface to a processor
allows the transport function to be extended as needed

if requirements change.
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