Modeling

and simulation
methods

for plasma
processing

by S. Hamaguchi

Methods used for the modeling and numerical
simulation of the plasma processes used in
semiconductor integrated-circuit fabrication
are reviewed. In the first part of the paper, we
review continuum and kinetic methods. A
model based on the drift-diffusion equations
is presented as an example of a continuum
model; the model and associated numerical
solutions are discussed. The most widely used
simulation method for kinetic modeling is

the Particle-In-Cell/Monte-Carlo-Collision
(PIC/MCC) method, in which the plasma

is modeled by a system of charged
superparticles (each of which represents

a collection of a large number of ions or
electrons) that move in self-consistent
electromagnetic fields and collide via given
collision cross sections. In the second part of
the paper, we review the modeling and
simulation of the evolution of surface
topography in plasma etching and deposition.

1. Introduction

Modeling and numerical simulations of plasma processing
can be useful in many ways. An improved understanding
of a plasma-processing system can be achieved by
comparing predictions from numerical simulations

with experimental observations. The optimization

of existing processes or the development of new

plasma processes that offer better processing results

may follow such an understanding. Modeling and
simulations based on reliable physical/chemical modeling
of a plasma-processing system can significantly reduce the
number of associated experiments that otherwise would
have to be performed. Additionally, such modeling and
simulations can also be used in the computer-aided
design (CAD) of new process systems and to optimize
manufacturing processes within the framework of existing
processing systems.

The ultimate goal may be the modeling and simulation
of an entire manufacturing system. Although current
methods are far from achieving this goal, several physics-
based simulation tools have already played important roles
in the development of several plasma-processing systems.

In this paper we focus on the modeling and simulation
of plasma processes used in the fabrication of integrated
circuits. Conventional plasma-processing tools are
essentially based on parallel-plate discharges [1], in which
a voltage is applied to electrodes to break down a gas and
sustain the generated discharges. Plasmas generated in this
method are usually only partially ionized and have high
neutral gas pressures. Because higher ion fluxes toward
substrates are generally more desirable in plasma
processing, high-plasma-density processing tools [2] with
lower gas pressures are beginning to replace conventional
plasma tools. Several different methods can be used
to generate high-density plasmas for semiconductor
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applications. For example, oscillating rf electric fields can
be used to generate and sustain a high-density plasma
without using steady-state magnetic fields [known as an
inductively coupled plasma (ICP)] or by using steady-state
magnetic fields (known as a helicon plasma because
helicon waves are induced along the magnetic field lines).
Additionally, electron cyclotron resonance (ECR) can be
used to generate a high-density plasma. A neutral-loop
discharge (NLD) is a recently developed method in which
a plasma is generated by rf fields along a closed magnetic
neutral line [3].

The goal of this paper is to present fundamental
aspects of plasma-process modeling based on relevant
physical/chemical mechanisms. To achieve this goal and
because of the limited available space, we are unable to
discuss details of the most recent development of plasma-
process simulation tools. However, references to such
work are cited, and the interested reader is encouraged to
examine them. In Section 2, a continuum model is
discussed which is more appropriate for highly collisional,
low-density/high-pressure discharges, although such a
model is also known to be applicable to some high-
density/low-pressure plasmas. For less collisional plasmas
with possibly non-Maxwellian ion and/or electron
distribution functions, we present in Section 3 a particle
method as a numerical technique for solving kinetic
plasma models. The sheath region of the plasma has
different characteristics from the bulk plasma (such as the
presence of strong electric fields) and requires different
modeling methods, which are discussed in Section 4. Once
fluxes from the plasma source are determined from model
calculations, one can predict the outcome of materials
processing by modeling processes [4] that occur on the
substrate, such as etching and deposition; this is discussed
in detail in Section 5.

2. Continuum models

If the neutral-gas pressure is sufficiently high, collisional
processes dominate the dynamics of the plasma. To model
such a plasma, drift-diffusion equations are widely used
[5-10]. The drift-diffusion equations are “reduced”
equations derived from the well-known fluid equations
(i.e., mass- and momentum-conservation laws) for ions
and electrons under the assumption of high collision
frequencies. For example, the momentum-conservation
law for electrons may be written as

av.
menc<a[ tv- ch) =-Vp,—enE-—mnyy,, (1)

where m_ is the electron mass, n, is the electron density,
v, is the electron “fluid” (drift) velocity, p, is the electron
fluid pressure, E is the electric field, and v_ is the electron
collision frequency at which the plasma electrons collide
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with the neutral gas molecules. Electron-ion collisions are
negligible compared with electron-neutral collisions in a
high-pressure plasma. If the inertia term (i.e., the left-
hand side) of Equation (1) is negligibly small, we obtain

Vp. ¢E
v = — —— 2)

¢ mnv, my
€ ¢ ¢ c e

Equation (2) states that v, is determined by the balance
among the pressure force, electrostatic force, and drag
force. The electron flux T, = n v, is then given by

I'=-nuE-VDan), 3)

where u, = e/m_v_is the electron mobility and D, =
kT /m v, is the electron diffusivity. The equation of state
p. = nk,T, was also used. The relation D /u, = kT /e
is known as the Einstein relation.

Similarly, the ion drift velocity v, and ion flux I', = n.v,
can be expressed as

I =nuE - V(D;n), €y

where p, = Z,e/m.v, is the ion mobility, Z,e and v, are
the ion charge and ion-neutral collision frequencies, and
D, = k,T/mv, is the ion diffusivity.

If the values of the mobilities and diffusivities are given,
we need equations only for the electron and ion densities,
n, and n, and the electric field E to close the system. This
can be achieved by using the mass conservation laws and
Poisson’s equation:

on,

— 4+ . =

Py v-r,=S5,, 5)

an,
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at P (6)
e
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In Equations (5) and (6), S, and S, denote the source
terms for the electrons and ions, to be discussed below.
In Poisson’s equation (7), ¢ denotes the electrostatic
potential, i.e., E = —V¢. Equations (5)-(7), together
with Equations (3) and (4), constitute the drift-diffusion
equations for the system. Although we have considered
only single-ion species, it is straightforward to extend
Equations (5)—(7) to those for the systems of multi-ion
species, including negative ions.

Sources and sinks of electrons and ions in the bulk
plasma are usually due to ionization, recombination,
electron attachment, and charge exchange. In the case of
electropositive discharges with single-ion species, we may
write
S, =8=knn —knn

e ?
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where &, and k_are ionization and recombination

rate coefficients. (In general, §, # S, especially for
electronegative plasmas. See for example References
[10-12].) As is well known, there is a threshold energy E,
for ionization, and the ionization rate coefficient depends
on the electron temperature 7. It is often assumed that
the electron temperature dependence of the ionization
rate coefficient is given by the Arrhenius relation, i.e.,

k =A; exp (—*) , (8)

where A, is a constant. For example, for argon, which is
commonly used in plasma processing, 4, =1 X 107 m's.

Ions and electrons are also lost to the walls and
electrodes of the chamber that contains the plasma. Some
electrons are also created at the walls and electrodes due
to secondary-electron emission. These effects must be
incorporated in the boundary conditions. The other
boundary conditions may be given as follows. For typical
parallel-plate rf discharges, the potential ¢ at the anode
and wall boundaries may be set to zero, whereas the
potential at the cathode may be set at the applied voltage,
eg., ¢ =V, + V,cos ot, where w is the applied rf
angular frequency and V, and V are the dc and ac
components of the applied voltage. Depending on the
physical conditions one wishes to consider, there are a
variety of choices for boundary conditions for electron
and ion fluxes. For example, we may set

T =kPn — 9T,
I =nuE,

at the boundaries, where I', T, and E are the surface
normal components of I',, I';, and E, respectively; kr“) is
the electron surface recombination coefficient; and vy is
the secondary-electron emission coefficient. Note that T,
(I',) is defined to be positive if the electrons (ions) flow
into the boundary, and v is set to zero if T, < 0.

Well before the widespread use of the drift-diffusion
equations for plasma-process simulations, equations
similar to Equations (5) and (6) were extensively used to
model transport of electrons and holes in semiconductor
materials [13-15]. Such modeling of semiconductor devices
by similar drift-diffusion equations (which are also known
as the fundamental semiconductor equations) dates
back to the work by Gummel [16] in 1964. Thanks to
such extensive early studies, we now have access to
accumulated knowledge of mathematical structures and
numerical techniques for the drift-diffusion equations.

As an example of relevant simulation results, Figure 1
depicts one-dimensional results for parallel-plate helium
discharges obtained by Boeuf [17]. The simulation is based
on a system of equations similar to Equations (5) and (6).
In the figure, spatial profiles of the electric field (E) and
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ion and electron densities are shown at four different
times in an rf cycle. The assumptions made in this
simulation are the following: The conducting electrodes
are separated by a distance of 4 cm, the gas pressure and
temperature are 1 Torr and 300 K, respectively, the
driving frequency /27 is 10 MHz, the driving voltage

V., is 500 V with no dc component (V, = 0), and the
secondary-electron emission coefficient y s 0.1.

So far we have assumed that the electron temperature
profile can be characterized by a given function (or
constant). However, as is evident from Equation (8), the
electron temperature profile can affect the ionization rate,
which in turn affects the plasma profile. To treat the
electron temperature more realistically, one can couple
the electron-energy transport equation with Equations (5)
and (6) through Equation (8). The equation for the
electron-energy transport can be expressed [18] as

39

——(nk.TY= ~V-q + 9

Zdt(nu B c) qc Qc’ ( )
where the electron-energy flux q, and the rate of electron

heat generation 0, can be approximated by

qc = %FckBTe - KCV(kBTc)’
with x_ being the electron heat conductivity and

Q.= —el"E—nn > ke +0, . (10)
/

In Equation (10), the first term represents the joule
heating, and the second term represents the electron-
energy loss due to collisions (such as ionization, excitation,
and elastic collisions). Here &, and &, denote the collision
rate coefficient and energy loss per clectron per collision
for the collision process denoted by j [e.g., for ionization,
k; = ki, as given in Equation (8)]. The last term of
Equation (10) represents an electron heat source
associated with external effects, for example, the power-
deposition profile in an ICP or ECR plasma.

Continuum equations more general than Equations (5)
and (6) coupled with Equation (9) have also been used to
model various discharges. For example, one may employ
the full ion momentum equations instead of the drift-
diffusion approximation given by Equation (4). Some
earlier one-dimensional simulations for rf glow discharges
based on continuum models may be found in References
[5-10, 17, 19]. More recently, the continuum equations
have been extended to higher dimensions. Two-
dimensional simulation results for rf glow discharges are
found, for example, in References {11, 12, 20, 21].

Although it is known that the overall structures of
plasma discharges are well described by continuum
equations such as Equations (5) and (6), these equations
do not model the change in the velocity-distribution
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Simulation results by Boeuf, showing spatial variations of the electric field (£) and ion and electron densities (designated in the figure as n,
and n,) in a helium discharge at four different times within an rf cycle (the period of which is denoted as T'). From [17], reproduced with
permission.

functions, inasmuch as all of the distribution functions are
assumed to be Maxwellian. As Godyak et al. [22-24} have
demonstrated experimentally, however, some rf discharges
exhibit bi-Maxwellian electron distributions, i.e.,
distributions with two electron temperatures. Since
electron kinetic energies, especially those near ionization
threshold energies, affect ionization rates significantly, it is
necessary to consider the time evolution of distribution
functions if one wishes to model the plasma more
accurately. To this end we must use kinetic and hybrid
models, as discussed in the next section.

3. Kinetic and hybrid models

Kinetic modeling of plasmas determines time evolution of
the velocity-distribution functions. For a rarefied gas or
plasma, where interparticle correlations are sufficiently
weak, the time evolution of distribution functions is known
to be governed by the Boltzmann equation [18, 25]. For
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example, the electron-distribution function f (¢, x, v)
can be characterized by the Boltzmann equation

of, .aﬁ_eE.a);: <6ﬁ ()

o ax m, ov &) ’
where 9/dx (= V) and 9/dv are gradients in the real and
velocity spaces, and the right-hand side represents the
collision term. The specific form for the collision term
(8f,/8t),,, depends on the collision processes to be
considered, but it typically includes ionization, excitation,
dissociation, and recombination. For ions, a distribution
function may be defined for each excited state of each
species, which is also governed by an equation similar to (11).
Obtaining numerical solutions to the Boltzmann equation
under general conditions is a difficult computational
problem. One scheme that can be used to solve the
equation exactly is the convective scheme [26-28].
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A more widely used alternative method is the particle

in cell (PIC) method [29, 30]. In the PIC method,

a group of electrons (or ions) are represented

by a single simulation particle (superparticle or
pseudoparticle), and the motion of each particle is
assumed to follow Newton’s law. Each superparticle can
represent 10°~10" real particles (such as electrons), so
that 10000 superparticles—a manageable number on
today’s engineering workstations—may represent all of
the electrons and ions in (a portion of) an actual plasma
system. It is also assumed that such superparticles have
no interparticle interaction except for very short-range
interactions corresponding to collisions: Forces

exerted on superparticles originate from self-consistent
electromagnetic fields. In this way, only collective motions
(except for collisions) are modeled by a PIC simulation.
For parallel-plate rf discharges, only the electrostatic field
need be taken into account. The equations of motion for
the superparticles are therefore given by

q
k= Vo, (12)
! m}
P
Ap=——. (13)
0
Here x; = x(¢) is the position of the jth (electron or ion)

superparticle at time ¢, q, and m, are its charge and mass,
and p is the charge density. In the PIC method, the field
quantities such as potential ¢(x, t) and charge density
p(x, t) are numerically evaluated only at spatial grid
points, whereas particles are allowed to occupy any
position within the discharge. The right-hand-side terms
of Equation (12) are therefore evaluated from the
interpolation of ¢ values at neighboring grid points (force
weighting), whereas the value of p in the right-hand side
of Equation (13) at each grid point is evaluated from
charges of neighboring particles (particle weighting). For
these weighting processes to be accurate, a sufficient
number of simulation particles must be present in

cach grid cell—thus the name “particle in cell.”

The boundary conditions for Equations (12) and (13)
may be developed as follows. When an electron reaches
the boundary, it is assumed to be adsorbed. For an ion, it
is also assumed to be adsorbed, but secondary electrons
may be emitted with a probability vy, depending on the
impinging ion energy. One may also assume that some
charged particles are reflected by the boundary or
subjected to some chemical reactions at the boundary.
Choices of boundary conditions depend on the physical
conditions of the boundary walls and electrodes. There are
many other issues associated with the PIC algorithms
which are beyond the scope of this paper, and interested
readers are referred to, e.g., References [29, 30].
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Typical computational processes during a single time-step cycle
for a PIC/MCC simulation.

To simulate highly collisional plasmas using the PIC
method, the Monte Carlo collision (MCC) method has
been widely adopted {31-36]. By using the knowledge of
collision cross sections for all possible collisions and
generating a sequence of random numbers, the MCC
method can be used to determine whether a specific
collision takes place during a given time interval; if it
occurs, the particle velocity is revised accordingly. There
is an efficient scheme to perform this task, designated as
the null collision algorithm; detailed descriptions of the
scheme can be found, for example, in References [37-40].
The MCC process is typically performed after the possible
new positions of all of the particles are determined in
each simulation cycle. Figure 2 schematically shows a
sequence of computational processes in a single time-step
cycle for a PIC/MCC simulation.

Vahedi et al. [41] applied PIC/MCC simulation to
simulate argon rf glow discharges and have examined the
applicability of bi-Maxwellian electron distribution
functions, which are typically observed under conditions
of relatively low gas pressure. Prior to their simulations,
Godyak et al. measured electron-energy distribution
functions [22-24] in rf discharges and postulated that the
bi-Maxwellian distributions result from two competing
electron-heating mechanisms taking place in the discharge.
One heating mechanism is ohmic heating (i.e., collisional
heating), which typically takes place in the bulk plasma,
and the other is stochastic heating [42, 43], which occurs
near the plasma-sheath boundaries. In stochastic heating,
electrons gain energy from oscillating rf sheaths. The
concept proposed by Godyak et al. is the following: Low-
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in an Ar rf (13.56-MHz) discharge. The gas pressure was 0.1 Torr
and the discharge current was 0.3 A rms in a 2-cm gap; n, and
<e> denote the mean plasma density and the mean electron
energy, respectively. From [22], reproduced with permission.
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energy electrons are generated by inelastic collisions,

such as electron-impact ionizations, in the bulk plasma.
Especially if the electron energies are near the Ramsauer
minimum, such electrons cannot be thermalized because
of the low collision frequency. Therefore, most of them
simply oscillate collisionlessly and remain in an abnormally
low temperature range. Some of the low-energy electrons,
however, reach the bulk-sheath boundary region and can
gain energy from the stochastic heating mechanism. High-
energy electrons generated in this way are eventually lost
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to the wall or lose their energy through inelastic collisions,
and a steady state with two electron temperatures is
maintained. Figure 3 shows electron-energy distribution
functions measured by Godyak et al. [22-24].

Figure 4 shows the electron-energy distribution function
obtained from one-dimensional PIC/MCC simulations
(one dimension in coordinate space and two dimensions in
velocity space) by Vahedi et al. [41] under approximately
the same conditions as those by Godyak et al.: parallel-
plate argon rf (13.56 MHz) discharge with a gap
separation of 2 cm, discharge current 2.56 mA-cm ™, gas
pressure 100 mTorr. It is seen that the simulated electron-
energy distribution function, where the broken lines
represent two temperatures (0.5 eV and 3.0 eV) of the
bi-Maxwellian distribution [41], is in good agreement with
the experimental results of Figure 3. Another observation
made in both experiments and simulations is that the
electron-energy distribution varies from a bi-Maxwellian
to an ordinary Maxwellian function as the neutral gas
pressure is increased [24, 41]. This transition is caused
by a transition in the electron-heating mode from a
stochastic-heating-dominant regime at low pressures to
an ohmic-heating-dominant regime at high pressures.

The main advantage of a kinetic simulation over a
continuum-model simulation is its usefulness for obtaining
detailed information on discharge characteristics, such as
velocity-distribution functions. Although we have thus far
discussed only electron-distribution functions, distribution
functions of ions and radicals can also be simulated using
the PIC/MCC method. As we see in the next section,
energy and angular distributions of ions and radicals near
the wafer surface strongly influence microscopic material-
surface processes such as etching and deposition.
Therefore, kinetic modeling is always desirable for such
process simulations. The major disadvantage of a kinetic
simulation is, however, its computational cost. Extending
the PIC/MCC method to a system of higher dimensions
(e.g., 2D in coordinate space and 3D in velocity space)
may be relatively straightforward in terms of numerical
methods, but running such simulations with satisfactory
accuracy can be extremely expensive. However, some
progress has been made in this direction. For recent
development in 2D PIC/MCC simulations for materials
process applications, see References [44, 45].

To reduce the computational cost associated with
kinetic simulations but still retain some of their
advantages, several researchers have used hybrid schemes,
i.e., combinations of continuum simulations and kinetic
simulations [40, 46-53]. For example, Sommerer and
Kushner [40] used the “test-particle MC method” to
simulate rf discharges, in which the self-consistent
fluid equations (for both ions and electrons) were
supplemented by particle models of electrons subjected to
MCC processes. In this method, the electron-simulation
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particles are used only as “test particles” to evaluate the
electron-distribution function under given ion, electron,
and neutral-species densities and electric fields obtained
from the fluid equations. The obtained electron-
distribution functions are then used to determine various
reaction rates (including ionization and excitation rates)
and transport coefficients as functions of space and time.
Since the electron density »_(, x) is obtained by solving
the electron fluid equations, not by counting the number
of electron-simulation particles in a unit volume, this is
not a PIC simulation. The lack of the particle-weighting
process of Figure 2 allows one to use a very small number
of electron-simulation particles, typically 1% or less

of the equivalent PIC simulation. The advantage of this
kinetic—fluid hybrid method is that detailed information on
the electron-distribution function is obtained, making it
possible to more accurately estimate various reaction rates
without adding too much computational cost.

Depending on the physical/chemical phenomena to be
studied, different types of kinetic—fluid hybrid methods
may be adopted. For example, Porteous and Graves [51]
employed an electron-fluid ion-particle method to study
magnetically confined plasmas such as ECR plasmas with
long ion mean free paths. In contrast to the test-particle
MC method discussed above, Porteous and Graves used
fluid equations only for electrons, and modeled ions
completely by particles with MCC. Their particle MCC
method was, however, not the PIC/MCC method either,
because the ion density was not calculated from the
number density of the simulation particles at each instance
of time but was averaged over trajectories of many
simulation particles. This simulation scheme is essentially
the direct-simulation Monte Carlo (DSMC) method, which
has been used extensively to model neutral rarefied gas
flows [54]. Owing to this trajectory-averaging strategy,
fewer particles are needed to obtain sufficient statistics
in the DSMC method than in the PIC/MCC method.
However, in contrast to PIC/MCC simulations, only time-
averaged steady-state solutions can be obtained from
DSMC simulations. More recently, the DSMC method
coupled with an electron—fluid model has been used to
model the dynamics of both ions and neutral species in
two-dimensional high-density ICP plasmas [55, 56].

It is relatively easy to implement various collision
processes in particle simulations such as the PIC/MCC and
DSMC methods, compared to those based on continuum
models such as those characterized by the drift-diffusion
equations. The major problem of particle simulations is, as
mentioned above, the computational cost. The problem is
especially severe for two- or three-dimensional systems,
and it is often necessary to use high-performance vector or
parallel computers to obtain meaningful results. To accurately
simulate high-density low-pressure plasmas, where ion and
neutral mean free paths are comparable with the chamber
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dimensions, it may be necessary to use particle simulations
such as those discussed above. However, for most practical
purposes (e.g., designing plasma-processing tools), it is known
that continuum (or fluid) simulations are more feasible
because of their reasonably predictive capabilities and lower
computational costs, even for high-density-plasma simulations.

The real challenge in simulating high-density plasmas
with low gas pressures often lies in evaluating the power
depositions self-consistently. As mentioned earlier, most
high-density plasmas for materials processing applications
are generated by means of high-frequency driving sources
such as rf coils (for ICP and NLD), rf antennas (helicon-
wave and surface-wave plasmas), and microwave
waveguides (for ECR plasmas). Therefore, to obtain the
power deposition profile self-consistently, one must solve
the Maxwell equations together with the equations for the
plasma. While the power-deposition profiles [i.e., O, (x) in
Equation (10)] were simply assumed to be represented by
given functions in some earlier studies [51, 53], recent
simulation studies attempt to solve the coupled Maxwell
equations with some simplifying assumptions (such as a
cold-plasma approximation for the dielectric tensor for
Maxwell’s equations) to evaluate the power-deposition
profiles [57]. For recent two- and three-dimensional
simulations of self-consistent high-density plasma sources
for materials-processing applications, the reader is
referred, for example, to References [55-66].
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Normalized jon-energy flux vs. ion energy—assuming self-
consistent electric field obtained from MC simulations (histo-
gram), self-consistent analytical expression (solid curve) given in
[73], and constant-field approximation of Equation (14) (dashed
line). The assumed collisionality is d/)\mfp = 0.14, with d and )\m{p
being the sheath width and the ion-neutral collision mean free
path, respectively. From [73], reproduced with permission.

4. Sheath modeling
The sheath region in a plasma-processing system usually
denotes a gaseous boundary region between the bulk
plasma and the electrode, where the electron density is
low and strong electric fields are present. The materials
processes are strongly influenced by the characteristics of
ion- and neutral-species fluxes impinging on the substrate
through the sheath. For dry etching and deposition
processes, energy and angular distributions of those
incoming fluxes are two important factors. As discussed in
the previous section, obtaining information on ion- and
neutral-species distribution functions from kinetic or
hybrid simulations can be very costly. On the other hand,
less computationally intensive fluid-type simulations
provide no information on the distribution functions.
To compromise, one may use less expensive fluid-type
simulation to model the global structures (such as ion and
electron temperatures and densities) of the plasma and
treat the sheath region separately, using a kinetic model.
Much effort has been made to measure and compute
the ion-distribution functions in sheaths of various
discharges. Davis and Vanderslice [67] made the first
systematic measurements of the energy distribution
of ions striking the cathode and found that the energy
distributions vary considerably according to the
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collisionality (i.e., the ratio of the sheath thickness to
the mean free path). Taking into account only charge-
exchange collisions, Davis and Vanderslice also proposed
a simple model of the ion distribution and succeeded in
explaining some of the measured energy distributions.
Kushner [68] computed the energy and angular
distributions of the impinging ions in rf discharges, using
the Monte Carlo (MC) technique for charge-exchange
collisions. Thompson et al. presented more comprehensive
MC simulations [69] for several different forms of elastic
ion-neutral interactions as well as charge-exchange
collisions in dc and rf discharges with predefined electric
fields. Farouki et al. [70] reported MC simulations with
self-consistent electric fields due to space-charge effects,
taking into account both elastic scattering and charge-
exchange collisions.

Under some conditions, analytical expressions for the
ion-distribution function can be obtained. Wannier [71]
has solved the Boltzmann equation analytically for ions
with ion-neutral elastic collisions in the limit of a strong
uniform electric field. Lawler [72] has also solved the
Boltzmann equation with charge-exchange collisions and
obtained an ion-distribution function whose asymptotic
limit is Wannier’s equilibrium solution. Hamaguchi
et al. [73] have obtained analytical expressions for ion-
distribution functions in collisional dc sheaths.

According to that work, in the limit of weak ion-neutral
elastic collisionality with a constant electric field, the
normalized ion-energy flux function T, (7) is given by

I, (m=~-In1-mn), (14)

where 7 is the normalized kinetic energy of the ion, i.e.,
n = v’/v,, with v = Vvl = 2qV/m, being the ion
velocity resulting from the sheath potential 7 (<0) and ion
charge ¢ in the absence of collisions. The Bohm velocity (or
ion sound velocity), v, = (k,T./m)'"", is the initial velocity
of the ion when it enters the sheath region from the bulk
plasma. Since v is typically small (as k,T, << —gV’), we may
write n = %mivz/(—ql/). It is shown in Figure 5 that
Equation (14) is an excellent approximation to the self-
consistent energy flux function. The exact analytical
formula of the ion-energy distribution function in the self-
consistent electric field (represented by the solid curve in
Figure 5) is given by Reference [73], Equation (104).
Figure 6 shows time-averaged ion-distribution functions
at the cathode of collisionless rf sheaths obtained by
Hamaguchi et al. [74, 75]; the solid lines (upper figures)
are from the analytical expressions given below [Equation
(15)] and histograms (lower figures) are simulation results
[76]. The electric field in the sheath was assumed to
oscillate sinusoidally; i.e., E (x) + E (x)coswt, with
E (x) and E (x) having arbitrary spatial dependences.
(The origin was assumed to be located at the plasma-
sheath boundary and the electrode was assumed to be
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located at x = d.) If the ion-transit frequency
w, = [qE,(d)/md] "? (i.e., the inverse of the typical time that
an ion takes to cross the sheath of width d) is sufficiently

small compared to the rf frequency (i.e.,, & = o /o <& 1),
the time-averaged ion energy flux is given [74] by

J— nlvB

T_(n) = _—
20 (v, — (V- v)

(15)

where n| is the ion density at the plasma-sheath boundary
(e, x = 0)and v, = 1 = gE (d)/m,wv’ . The width of
the energy spread, in terms of the dimensional quantity

&= %m.v2 7, is given by

1 max

2qE(d) [ —2g\
A= 2 .
w mi

It is also known that the ponderomotive force due to the
oscillating sheath field exerts a retarding influence on the
ion trajectories [74].

5. Surface process modeling

Modeling and numerical simulation of plasma etching and
deposition systems can facilitate a better understanding of
microscopic phenomena taking place on the substrate. In
this section, we discuss the modeling and simulation of the
evolution of surface topography on the substrate using
information on ion and radical fluxes impinging on the
substrate (which may be obtained from plasma simulations
discussed above or experimental observations). Using such
information, one can simulate the evolution of surface
profiles during processing.

First we discuss continuum surface models, in which
boundaries of materials are represented by continuous
surfaces. Although collections of atoms and molecules are
actually involved, a continuous-surface representation is
still a good approximation at dimensions currently
of interest (i.e., 0.1-10 um, pattern widths) for
microelectronic structures.

To further simplify the problem, we consider only 2D
problems, such as a traverse cross section of infinitely long
trenches, where boundaries are expressed by curves. For
the purpose of numerical simulation, such curves are
discretized and represented by a sequence of nodes
connected by line segments. The etching or deposition
rates (i.e., “velocities” of the surface) are then evaluated
at each nodal point on the basis of the magnitudes and
angles of incoming ion and neutral fluxes.

If the surface velocity (i.e., “rate”) is known at each
point on the surface, the equation that governs surface
motion may be obtained in the following manner. The
x-axis is assumed to be horizontal and the z-axis vertical.
The y-coordinate, needed for 3D analyses, is chosen
accordingly to form the usual right-hand coordinate
system. We assume that the boundary curve of the
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€ = 0.24 for (a) and € = 0.16 for (b). In each case, the ion flux
distribution is normalized to enclose a unit area. From [75],
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material is given by an equation of the form ¥(x, z, f) = 0,
and that §(x, z, t) > 0 (< 0) represents the material
(vacuum) side of the boundary. Etching and deposition
processes may then be formulated as the time evolution of
this surface. Let

C=Ca+Ct (16)

be the velocity vector at point (x, z) of the boundary.
Here

1 ¥ . 1 Y

i=——| |, t=———— :

Vo \ RN

denote the unit normal and unit tangent vectors

(¢, = ou/ox and ¢, = 94/dz). Note that the normal

velocity components C, > 0 and C, < 0 represent etching

and deposition of the material in this formulation.
Differentiating the equation Y[x(¢), z(¢), t] = 0

with respect to ¢ and substituting Equation (16) yields

g+ Cp + ¢l = 0. (17)

Here we write C = C, for simplicity. Note that the
tangential velocity component C, does not appear in
Equation (17). The velocity along the curve does not alter
its shape, and the motion of the curve is determined only
by the normal component C = C,. Equation (17) is
known as the Hamilton-Jacobi equation if the function C
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Unit area (unit beam flux)
-

expression Cy/1 + u? represents the volume removed from the
surface per unit beam flux and unit time.

% The surface is characterized by the function 7 = u(x, r). The
5

depends only on time ¢, position (x, z), the unknown
function &, and its first derivatives (¢, ¢,) [77-80]. In
general etching/deposition problems, however, C can be
a more complicated function.

If the height of the boundary curve z is a “function”
of x and one can write z = u(x, t), we may write
¥(x, z, t) = u(x, ) — z and simplify Equation (17) as

u+ Cyl1+ul=0. (18)

Suppose an ion beam bombards the surface in the
negative z direction and the slope of the boundary curve is
denoted by p = u_ = —4 /s, as shown in Figure 7. Then
the function f(p) = CV1 + u? represents the volume of
the material removed from the surface per unit beam flux
and unit time and is proportional to the sputtering yield
Y—i.e., the flux (number of atoms) sputtered from the
surface per single incident beam particle (ion or atom).
Therefore, f(p) is sometimes called a flux function
[81, 82].

It is important to note that, although motion of the
moving boundary always satisfies Equation (17) [or
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Equation (18)], the converse is not true. In other words,

a solution to Equation (17) [or Equation (18)] satisfying
given initial-boundary conditions does not necessarily
describe physically plausible surface evolution. Indeed,
Equation (17) [or Equation (18)] can admit two or more
solutions for given initial-boundary conditions, and only
one of them is physically meaningful. For an example of
nonphysical solutions to Equation (17) [or Equation (18)],
the reader is referred to Reference [4].

The problem of spurious solutions to Equation (17) [or
Equation (18)] arises from the fact that we have tried to
model surface evolution only by geometric motion of a
surface (or a curve in the case of two dimensions) with
given surface velocities. For example, a curve on a two-
dimensional plane can intersect itself to form a loop
during its motion, whereas the surface of a solid is always
represented by a non-self-intersecting surface, no matter
how the shape of the solid evolves. In this sense, there is
an essential difference between geometric surface motion
and the surface evolution of a material. To construct a
system of equations that provides a unique solution for
all + > 0 that represents physically meaningful material
surface evolution, therefore, additional conditions known
as “entropy conditions” must be imposed. Detailed
discussion of these conditions is found in References
[4, 81].

In many earlier simulations, each node and linear
segments representing the material surface were moved
in the direction of the specified surface velocity [often
without referring to Equation (17) or Equation (18)]. For
example, if the surface velocity is a function of the surface
gradient p = u_(e.g., for the etching-rate function of
Figure 9, discussed later), the surface velocity is not well
defined at sharp corners (where p is not uniquely defined).
In some earlier studies, ad hoc geometric considerations
were employed to avoid such uncertainties. Consequently,
the simulations suffered from a basic lack of credibility.

If the surface velocity C does not depend on second- or
higher-order derivatives of ¢ or u, Equation (17) and
Equation (18) are of first order and can be solved by the
method of characteristics. Several numerical simulation
codes have been proposed employing this method.
Problems still arise, however, when discontinuities of the
surface gradient form (i.e., two characteristics intersect).
Some existing models that employ the method of
characteristics appear to require subtle geometric
“adjustments,” such as eliminating or avoiding the
formation of nonphysical loops (“delooping™) based
on geometric hypotheses to deal with such situations
(see for example References [83-92]).

More recently, a numerical algorithm has been
proposed for obtaining a solution for Equation (17) [or
Equation (18)] with the entropy conditions, using the same
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curve discretization (i.e., nodal points connected by linear
segments). The algorithm is designated the shock-tracking
method, and through its use, a physically plausible
solution can be obtained for the propagation of
discontinuities of the surface slope (i.c., “shock wave”).
For details, the reader is referred to Reference [81]. The
shock-tracking method is employed in the simulation code
“SHADE,” which has been applied to various dry-etching
and deposition problems [93-98]. The simulation results
discussed next have been obtained using SHADE unless
indicated otherwise.

Most existing continuum-simulation codes employ some
combination or modification of the boundary-moving
algorithms mentioned above. Among them, SAMPLE [99],
SPEEDIE [100], DEPICT [101], and EVOLVE [102] are
examples of the most widely (and commercially) available
2D codes for simulating etching, deposition, and/or
photolithography.

There is also an entirely different class of methods that
can be used to solve Equation (17) or Equation (18),
without appealing to the characteristic or shock-tracking
methods [103-105]. For example, one can solve
Equation (17) [or Equation (18)] directly for i (or u)
on the x—z surface (or x axis), using a combination of a
Lax-Wendroff-type finite-difference scheme with an
upwind (or artificial diffusion) scheme. The “numerical”
diffusion inherent in this method stabilizes the solution.
The method is especially suited to the case in which the
surface velocity depends explicitly on the local curvature
and the PDE is of second order. As we discuss shortly,
the curvature-dependent surface velocity introduces a
“diffusion” effect, so that slope discontinuities are not
formed in this case.

Here we briefly discuss diffusive flows along the surface
of the solid. If the temperature of the solid is sufficiently
high (e.g., near its melting point), surface diffusion can
cause changes in the surface topography. The surface
diffusion is linearly dependent on the surface curvature «
and smooths out the surface [106]. To incorporate surface
diffusion into Equations (17) and (18), we can replace C
with C — vk, where —w«k is the surface velocity due to the
curvature-driven diffusion (v is typically a small positive
constant). Since

Y 2
W )™

K=

u_
xx

- (1+ uf)’%’f2 ’
Equations (17) and (18) become

YUl = 200+ LY

7 2
¢,+CV¢4V+1//Z:‘V l!f§+lllf
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Flux of ions

Schematic diagram of gas-phase transport of ionic and neutral
species.

and

i 7 Vuxx
u‘+C\;1+uX=l+ 5. (20)
u

Solving Equation (17) or Equation (19) with the
condition (x, z, t) = 0 on a spatial grid is called a level-
set method. Such a method makes it possible to simulate
complex topological changes that occur during the course
of surface evolution more easily than other methods based
on line discretization. In the level-set method, however,
the problem is solved in a space one dimension higher;
e.g., { = Y(x, z, 1) is obtained from Equation (17) or
Equation (19) first, and then the condition (x, z, t) = 0
is used to obtain the solution curve on the x-z plane.
Therefore, it is generally more expensive computationally
than line-discretization-based methods.

We next discuss the estimation of the surface velocity C
in Equation (17) or (18). A typical schematic of gas-phase
transport of ionic and neutral species is shown in Figure 8.
Since the length scales of features in which we are
interested are sufficiently smaller than the mean free
paths, collisionless transport may be assumed for all gas-
phase species. To simplify the following discussion, we
also assume that the ion flux is unidirectional and vertical
to the substrate surface. The sputtering yield ¥ depends
on the angle 6 formed by the incident flux and surface
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Example of the angular dependence [Y (6) cos 8] of an etching-rate
function. The function is normalized to unity at ¢ = 0.

normal. Figure 9 shows an example of the angular
dependence of an etching-rate function. The dependence
is proportional to Y(6) cos 6. (It is normalized to 1
at 6 = 0 in Figure 9.) Some etching-rate functions peak at
nonzero angles [107], as in the case of the example shown
in Figure 9.

The velocity distribution function of the re-emitted
atoms at position X on the boundary curve typically has
a functional form given by

=10V, X) cos™' 0, (21)

where 0 is the angle between the velocity vector v and the
surface normal N, as indicated in Figure 8. Depending on
its angular dependence, the re-emission is designated as
an over-cosine, cosine, or under-cosine distribution for
v>0,v=0or -1 <wv<0, respectively. Such sputtered
atoms have sufficiently low energies that they do not
resputter the surface material and can be adsorbed on the
surface when they land on other sites on the surface. The
probability that an adsorbed atom remains on the surface
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indefinitely is the sticking coefficient 5. The angular
distribution of desorbed atoms is assumed to have
the same functional form given in Equation (21).

The incoming flux at position x on the surface boundary
is related to the velocity distribution function f(v, x) as

.‘fi"(x) = f (- v) f(v, x) dv,

where fi is the unit vector normal to the surface at x and
the integration is over the half velocity space (i - v < 0).
The outgoing flux is defined in a similar manner, with the
integration over the other half space i - v > 0.

The outgoing flux from the surface, i.e., the flux of re-
emitted atoms, is the sum of the desorption flux and
resputtering flux:

5y = (1 = 9)F"(x) + T (), (22)
where " (x) is the incoming flux of (low-energy) atoms.
Therefore, the first term (1 — $)F" represents the

total desorption flux. The second term represents the
outgoing flux due to the ion sputtering (etching), i.e.,
U = Y(0)5*", where 5 is the magnitude of the
unidirectional ion flux and 8 is the angle formed by

the surface normal and the vertical direction (6 = 0

in the example of Figure 8).

Suppose that the only source of neutral atoms is the
sputtering of the surface by ion bombardment. Using the
re-emission distribution function, Equation (21), we may
relate [4] the desorption flux 7"(x) to the outgoing metal
*!(X) at every position X (at which the unit
normal vector is denoted as N) on the surface as

atom flux §

cin Au+4(V + 2) c-out
T = | dsK(x X)5(X), (23)
B

where

R-NR- 4"
K (x, X) = g(x, X) (24)

is the integration kernel, the coefficient 4 ,, is given by

el

and % denotes the surface boundary. For example, 4, = n/4
for the cosine distribution (v = 0). In Equation (24),

the function g is the visibility factor (i.e., g = 1 if the
points x and X are on the line of sight, and g = 0
otherwise), R = x — X, R = |R], and R = R/R.
Substituting Equation (22) into Equation (23) results in an
integral equation for F"(x) for given source terms 5% (x).
If the flux §"(x) of the incoming material at position x on
the boundary curve is known, the deposition rate is given
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by D = (m/p)5", where m and p are the atomic mass and
mass density of the deposited material. The net surface
velocity is then the difference between the etching rate
and the deposition rate. For more details of the derivation
of Equation (23), the reader is referred to Reference [4].

To illustrate how such simulations can be applied to
actual plasma deposition processes, we consider ionized-
magnetron metal sputter-deposition processes [95, 96,
108, 109] as examples. An ionized-magnetron sputter-
deposition system consists of a conventional magnetron
sputter-deposition system and an inductively coupled
plasma generator [108, 109]. Metal atoms (such as Cu)
sputtered from the target are ionized by the high-density
plasma (typically argon plasmas), which is generated by a
radio-frequency induction (RFI) coil connected to an rf
generator. The ion bombardment energy on the wafer
surface, therefore the amount of resputtering, can be
controlled through a bias voltage. The directionality of
the ion flux in such a system provides better deposition
at the bottom of a trench than conventional magnetron
sputtering systems. With an appropriate bias voltage that
induces simultaneous resputter deposition on the trench
sidewalls, conformal deposition of thin metal liners over
high-aspect-ratio trenches can be achieved.

Ideally, plasma and sheath simulation discussed in the
previous sections should be used to estimate energy and
angular distributions of incoming ion fluxes and neutral-
species fluxes at the substrate [110]. However, for the sake
of simplicity, we assume here that the ion beam incident
on the substrate is unidircctional and vertical and the
neutral flux has a uniform angular distribution with a 52°
cutoff (i.e., collimation) angle due to the finite size of the
target {98]. The etching-rate function is assumed to be
proportional to the function of Figure 9, and the sticking
coefficient & is assumed to be unity. The total neutral
incoming flux 5 consists of the resputtering flux 5
defined by the right-hand side of Equation (23) and the
direct neutral flux f° (i.e, 5" = * + 5°). Since F° is
known, we use Equation (22) (where §" is replaced by
$* + ) and Equation (23) (where the left-hand
side is replaced by 5") to determine .

Figure 10 shows simulation results for the deposition of
a metal liner on the walls of trenches having aspect ratio
2.5. (Since Ar sputtering is taking place, we consider Y as
the “effective” sputtering yield due to both metal and Ar
ions. Namely, for a single ion impinging on the surface, ¥
metal atoms are sputtered, whether the sputtering is due
to the metal ion or other Ar ions.) The ratio of metal ion
flux to neutral flux is assumed to be 1:1. The shaded area
represents the initial SiO, trenches, and curves above
it represent the profiles of the deposited film. At a
sputtering yield of zero, very little deposition is expected.
However, at a sputtering yield of 1.0, atoms sputtered
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from the trench bottom are expected to be redeposited on
the vertical walls, predicting good conformal coverage.

Figure 11 shows scanning electron microscopy (SEM)
photographs of Cu deposition obtained under comparable
conditions. The dc magnetron power was 10 kW for a
200-mm target cathode and up to 30 kW for a 300-mm
cathode. The RFI coil was connected to a 13.56-MHz rf
generator having a maximum power capacity of 3 kW.
The bias voltage could be varied up to —200 V.

Figure 12 depicts the results of a simulation of the
effects of sputtering yield on metal deposition onto
two trenches. Each boundary curve represents the
metal film profile at equal time intervals, and the shaded
arca represents the initial trenches. As in Figure 10, the
ratio of the ion to neutral fluxes was assumed to be 1:1.
The sputtering yield at § = 0 was assumed to be 0, 0.6,
and 0.8. The simulation predicts that as the film thickness
becomes comparable to the trench width, the atoms
sputtered from one side of the trench will be collected

on the opposite side, leading to a lateral buildup of 211
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Simulation results for metal deposition onto two adjacent trenches.
The sputtering yields at zero slope angle were assumed to be 0,
0.6, and 0.8, respectively. From [95], reproduced with permission.
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SEM micrographs of deposited metal (Al) films under similar
conditions. The bias voltages were (a) 20 V or less, {(b) about 80 V,
and (c) 120 V or more. From [95], reproduced with permission.

P——

(a)

(a) Microstructure depiction and (b) local density simulation by
SIMBAD for a MgF, film deposited over oxide lines at an incident
angle of 5° from the substrate normal. From [111], reproduced
with permission.
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resputtered deposit which can eventually result in the
closing of the trench. Comparable effects are observed
experimentally, as shown in Figure 13. The film depicted
in part (a) was deposited with ion energies of 20 eV or
less, which can cause a directional deposition without
causing major resputtering at the surface. The film
depicted in part (b) was deposited at an ion energy of
about 80 eV, and that of part (c) at an ion energy of
about 120 eV. As can be seen, both (b) and (c) show the
effects of increasing sputtering yields.

We now briefly discuss another entirely different
numerical method for solving surface evolution problems
in etching and/or deposition processes. Instead of
representing the material surface by a continuous surface,
one may represent both the material and incoming fluxes
as collections of particles. As in PIC simulations, one can
use superparticles, which represent a large number of ions
and neutral species. For example, in SIMBAD [111], a
commercially available simulation code, thin films of scale
lengths of 1 um are represented by an aggregation of
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10°-10° disks in two dimensions. In contrast to PIC or
molecular dynamics (MD) simulation, no force is assumed
to be exerted on these disks during the gas-phase
transport. When the disks reach the substrate, they may
sputter the surface materials (also represented by disks),
be adsorbed and desorbed with given probabilities
(sticking coefficients), or undergo diffusion to minimize
the surface chemical potential. One of the advantages of
using particle (or disk) models instead of the continuum
models discussed above is that microstructures (such as
the packing density of particles) of the deposited film can
also be taken into consideration. Figure 14 shows a sample
calculation of MgF, film deposition obtained from
SIMBAD [112]. A disadvantage of the particle method
may be its computational cost, because a very large
number of particles must be used to evolve the surface,
especially in 3D simulations.

The particle method for surface evolution can be
made more sophisticated by incorporating appropriate
interparticle potentials for each simulation particle. Such
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an MD simulation represents a more realistic view of
the microscopic process. This method makes it possible
to estimate microstructure and its stresses with good
accuracy. However, MD simulations are computationally
intensive and costly [113].

Summary

In this paper, we have reviewed some of the most

widely used methods for modeling and simulating the
plasma processes that are used in integrated-circuit
fabrication. As is discussed in Sections 2 and 3, continuum
models or particle models, or a combination of both
(hybrid models), may be used to describe the dynamics of
processing plasmas. The continuum models, such as those
based on the drift-diffusion equations, are less time-
consuming in terms of numerical computation but

have several built-in approximations, such as a Maxwellian
distribution for each species. The particle models are, on
the other hand, less restrictive in terms of such built-in
approximations and are therefore applicable to a plasma
process under a wider variety of conditions; and they
provide more detailed information on the system. The
drawback is that such particle models generally require
more computational resources (CPU time and storage) to
simulate the plasma dynamics compared to a continuum
model. If the plasma is highly collisional, a continuum
model and its fluidlike simulation can provide accurate
information on its dynamics. However, under certain
conditions (for example, when the distribution functions
are known to be highly non-Maxwellian), kinetic
simulation may be the only feasible choice.

After discussing sheath modeling briefly in Section 4, we
have reviewed numerical methods to simulate the time
evolution of microscopic surfaces under etching and/or
deposition conditions. Although it is not presented in
this paper, a combination of bulk plasma and sheath
simulations with microscopic surface-evolution simulations
can provide insights into the problem of controlling
microscopic process results by adjusting macroscopic
process-tool parameters such as gas pressures and bias
voltages.

Because of space limitations, we were able to give an
account of only the fundamental aspects of plasma-
processing modeling and simulation. Sample results of
actual plasma processes were presented only to illustrate
how such models and simulations can be applied to actual
embodiments. The reader is therefore encouraged to
refer to the referenced publications and also to the
publications quoted therein for more details.
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