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and  simulation 
methods 
for plasma 
processing 

Methods used for the modeling and numerical 
simulation of the plasma processes used in 
semiconductor integrated-circuit  fabrication 
are reviewed. In  the  first part of the paper, we 
review continuum and kinetic methods. A 
model based on  the drift-diffusion equations 
is presented as an example  of a continuum 
model; the model and associated numerical 
solutions are discussed.  The most widely used 
simulation method for  kinetic modeling is 
the Particle-In-CelVMonte-Carlo-Collision 
(PWMCC) method, in  which  the plasma 
is modeled by a system of charged 
superparticles (each of which represents 
a collection of a large number of ions or 
electrons) that move in self-consistent 
electromagnetic fields and collide via given 
collision  cross sections. In the second part of 
the paper, we review the modeling and 
simulation of the evolution of surface 
topography in plasma etching and deposition. 

1. Introduction 
Modeling  and  numerical simulations of plasma  processing 
can be useful in many ways. An improved understanding 
of a  plasma-processing system can be achieved by 
comparing  predictions  from  numerical  simulations 
with experimental  observations.  The  optimization 

of existing processes  or  the  development of new 
plasma processes  that  offer  better processing results 
may follow such an  understanding.  Modeling  and 
simulations based on  reliable physicalichemical modeling 
of a plasma-processing system can significantly reduce  the 
number of associated  experiments  that  otherwise would 
have to  be  performed. Additionally,  such modeling  and 
simulations  can also be used  in the  computer-aided 
design (CAD) of new process systems and  to  optimize 
manufacturing processes  within the  framework of existing 
processing systems. 

The  ultimate goal may be  the modeling and  simulation 
of an  entire  manufacturing system. Although  current 
methods  are  far  from achieving  this  goal,  several physics- 
based  simulation  tools have already played important  roles 
in the  development of several  plasma-processing systems. 

In this paper we focus on  the modeling and  simulation 
of plasma  processes  used in the  fabrication of integrated 
circuits. Conventional plasma-processing tools  are 
essentially based  on  parallel-plate discharges [l], in which 
a voltage is applied  to  electrodes to break down a gas and 
sustain  the  generated discharges.  Plasmas generated in this 
method  are usually only partially  ionized and have high 
neutral gas pressures.  Because  higher ion fluxes toward 
substrates  are generally more  desirable in plasma 
processing,  high-plasma-density  processing tools [ 2 ]  with 
lower  gas pressures  are beginning to  replace  conventional 
plasma  tools.  Several different  methods  can  be used 
to  generate high-density  plasmas for  semiconductor 
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applications.  For example,  oscillating rf electric fields can 
be used to  generate  and  sustain  a high-density  plasma 
without using steady-state  magnetic fields [known  as an 
inductively coupled plasma (ICP)] or by using steady-state 
magnetic fields (known  as a helicon  plasma because 
helicon waves are induced along  the  magnetic field lines). 
Additionally,  electron cyclotron resonance (ECR) can be 
used to  generate  a high-density  plasma. A neutral-loop 
discharge (NLD) is a recently developed  method in which 
a plasma is generated by  rf fields along  a closed magnetic 
neutral  line [3].  

The goal of this  paper is to  present  fundamental 
aspects of plasma-process  modeling  based  on  relevant 
physicalichemical  mechanisms. To achieve  this  goal and 
because of the limited  available space, we are  unable  to 
discuss details of the most recent  development of plasma- 
process  simulation tools.  However, references  to such 
work are  cited,  and  the  interested  reader is encouraged  to 
examine them.  In  Section 2, a  continuum  model is 
discussed which is more  appropriate  for highly collisional, 
low-densityihigh-pressure discharges,  although such a 
model is also  known to  be  applicable  to  some high- 
densityilow-pressure  plasmas. For less collisional  plasmas 
with possibly non-Maxwellian ion  and/or  electron 
distribution  functions, we present in Section 3 a  particle 
method as a  numerical  technique  for solving kinetic 
plasma models.  The  sheath  region of the plasma has 
different  characteristics  from  the bulk  plasma  (such  as the 
presence of strong  electric fields) and  requires  different 
modeling  methods, which are discussed in Section 4. Once 
fluxes from  the plasma source  are  determined  from  model 
calculations, one  can  predict  the  outcome of materials 
processing by modeling  processes [4] that  occur on the 
substrate, such  as  etching and  deposition; this is discussed 
in detail in Section 5. 

2. Continuum  models 
If the  neutral-gas  pressure is sufficiently high,  collisional 
processes dominate  the dynamics of the plasma. To  model 
such  a  plasma, drift-diffusion equations  are widely used 
[5-lo]. The drift-diffusion equations  are  “reduced” 
equations derived from  the well-known fluid equations 
(i.e., mass- and  momentum-conservation laws) for ions 
and  electrons  under  the  assumption of high collision 
frequencies.  For example, the  momentum-conservation 
law for  electrons may be  written as 

where me is the  electron mass, ne is the  electron density, 
ve is the  electron “fluid” (drift) velocity, p ,  is the  electron 
fluid pressure, E is the  electric field, and vc is the  electron 
collision frequency  at which the plasma electrons collide 

with the  neutral gas  molecules.  Electron-ion  collisions are 
negligible compared with electron-neutral collisions  in a 
high-pressure  plasma. If the  inertia  term (i.e., the  left- 
hand side) of Equation (1) is negligibly small, we obtain 

Equation ( 2 )  states  that vc is determined by the  balance 
among  the  pressure  force,  electrostatic  force,  and  drag 
force.  The  electron flux r, = neve is then given by 

rc = - n c p L , ~  - v(D,~J ,  (3) 

where pc  = e/mcvc is the  electron mobility and De = 

kBTc/m,v, is the  electron diffusivity. The  equation of state 
p ,  = nckuT,  was also  used. The  relation D J p C  = kBTc/e  
is known as the  Einstein  relation. 

Similarly, the  ion drift velocity v, and  ion flux r, = niv, 
can  be expressed as 

r, = n p , E  - V(D1n,), (4) 

where p, = Z,e/m,v, is the ion mobility, Z,e  and v, are 
the ion charge  and ion-neutral  collision frequencies,  and 
Di = kBT,/mivi  is the ion diffusivity. 

If the values of the mobilities and diffusivities are given, 
we need  equations only for  the  electron  and ion densities, 
nc and n,,  and  the  electric field E  to close the system. This 
can be achieved by using the mass conservation laws and 
Poisson’s equation: 

In  Equations (5) and (6), S, and SI denote  the  source 
terms  for  the  electrons  and ions, to  be discussed  below. 
In Poisson’s equation ( 7 ) ,  $ denotes  the  electrostatic 
potential, Le., E = -V+. Equations (5)-(7), together 
with Equations (3) and (4), constitute  the drift-diffusion 
equations  for  the system. Although we have considered 
only single-ion  species,  it is straightforward  to  extend 
Equations (5)-(7) to  those  for  the systems of multi-ion 
species,  including  negative  ions. 

Sources  and sinks of electrons  and  ions in the bulk 
plasma are usually due  to  ionization,  recombination, 
electron  attachment,  and  charge  exchange.  In  the  case of 
electropositive  discharges with single-ion  species, we may 
write 

S, = S, = k,nenn - kln,ne , 
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where k ,  and kr  are  ionization  and  recombination 
rate coefficients. (In  general, Sc # SI, especially for 
electronegative plasmas. See  for example References 
[lo-121.)  As is well known, there is a  threshold energy Eth 
for  ionization,  and  the  ionization  rate coefficient depends 
on  the  electron  temperature T,. It is often assumed that 
the  electron  temperature  dependence of the ionization 
rate coefficient is given by the  Arrhenius  relation, Le., 

k ,  = A ,  exp - ~ 

where A ,  is a  constant.  For example, for  argon, which is 
commonly  used  in  plasma  processing, A ,  = 1 x m3/s. 

electrodes of the  chamber  that  contains  the  plasma.  Some 
electrons  are also created  at  the walls and  electrodes  due 
to  secondary-electron emission. These effects  must be 
incorporated in the  boundary  conditions.  The  other 
boundary  conditions may be given as follows. For typical 
parallel-plate rf discharges, the  potential I#J at  the  anode 
and wall boundaries may be set to  zero,  whereas  the 
potential  at  the  cathode may be  set at the  applied voltage, 
e.g., I#J = V,, + Vrf cos w t ,  where w is the  applied rf 
angular  frequency  and Vdc and Vrf are  the  dc  and  ac 
components of the  applied voltage. Depending  on  the 
physical conditions  one wishes to  consider,  there  are a 
variety of choices for  boundary  conditions  for  electron 
and ion fluxes. For example, we may set 

i k:;) ’ (8) 

Ions  and  electrons  are also lost to  the walls and 

r, = kj\’nc - yr, , 
r, = n , ~ ,  E ,  

at  the  boundaries,  where rc, r,, and E are  the  surface 
normal  components of re, r,, and E, respectively; k;’’ is 
the  electron  surface  recombination coefficient; and y is 
the  secondary-electron emission Coefficient. Note  that rc 
(r,) is defined to  be positive if the  electrons  (ions) flow 
into  the  boundary,  and y is set  to  zero if r, < 0. 

Well before  the  widespread use of the drift-diffusion 
equations  for plasma-process simulations,  equations 
similar to Equations ( 5 )  and (6) were extensively used to 
model  transport of electrons  and holes  in semiconductor 
materials [13-151. Such modeling of semiconductor devices 
by similar  drift-diffusion equations (which are also known 
as the  fundamental  semiconductor  equations)  dates 
back to  the work by Gummel [ l h ]  in 1964. Thanks  to 
such  extensive  early studies, we now have  access to 
accumulated knowledge of mathematical  structures  and 
numerical  techniques  for  the  drift-diffusion  equations. 

As an example of relevant  simulation  results, Figure 1 
depicts  one-dimensional  results  for  parallel-plate helium 
discharges obtained by Boeuf [17]. The  simulation is based 
on a system of equations similar to  Equations (5) and (6). 
In the figure, spatial profiles of the  electric field ( E )  and 
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ion and  electron  densities  are shown at  four  different 
times in an rf cycle. The  assumptions  made in  this 
simulation are  the following: The  conducting  electrodes 
are  separated by a  distance of 4 cm, the gas pressure  and 
temperature  are 1 Torr  and 300 K, respectively, the 
driving frequency o i2a  is 10  MHz, the driving  voltage 
V,, is 500 V with no dc component (Vc,c = 0), and  the 
secondary-electron emission  coefficient y is 0.1. 

So far we have  assumed that  the  electron  temperature 
profile  can be  characterized by a given function  (or 
constant). However,  as is evident from Equation (8), the 
electron  temperature profile can affect the  ionization  rate, 
which in turn affects the plasma  profile. To treat  the 
electron  temperature  more realistically, one  can  couple 
the  electron-energy  transport  equation with Equations (5) 
and (6) through  Equation (8). The  equation  for  the 
electron-energy  transport  can be expressed [18] as 

3 a  
2 (nck,Tc) = -V * 4, + Q, , (9) 

where  the  electron-energy flux qc and  the  rate of electron 
heat  generation Q, can be approximated by 

4, = r,kBTc - KcV(kBTc), 

with K~ being the  electron  heat conductivity and 

Q, = -e re  * E - nen,, k , ~ ,  + e,,, . (10) 
I 

In Equation  (lo),  the first term  represents  the  joule 
heating,  and  the  second  term  represents  the  electron- 
energy loss due  to collisions  (such as ionization,  excitation, 
and elastic  collisions). Here k, and E, denote  the collision 
rate coefficient and energy loss per  electron  per collision 
for  the collision process  denoted by j [e.g., for  ionization, 
k, = k ) ,  as given in Equation (8)]. The last term of 
Equation (10) represents  an  electron  heat  source 
associated with external  effects,  for  example,  the power- 
deposition profile in  an ICP  or  ECR plasma. 

Continuum  equations  more  general  than  Equations ( 5 )  
and (6) coupled with Equation  (9) have also been used to 
model  various discharges. For  example,  one may employ 
the full ion  momentum  equations  instead of the  drift- 
diffusion approximation given by Equation (4). Some 
earlier  one-dimensional  simulations  for rf glow discharges 
based on continuum  models may be found in References 
[5-10, 17, 191. More recently, the  continuum  equations 
have been  extended to higher  dimensions. Two- 
dimensional  simulation  results  for rf glow discharges are 
found,  for  example, in References [11, 12, 20, 211. 

Although it is known that  the overall structures of 
plasma  discharges are well described by continuum 
equations such  as Equations ( 5 )  and  (6),  these  equations 
do  not  model  the  change in the velocity-distribution 
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functions,  inasmuch as all of the  distribution  functions  are 
assumed  to  be Maxwellian. As Godyak  et al. [22-24) have 
demonstrated experimentally,  however, some rf discharges 
exhibit  bi-Maxwellian electron  distributions, Le., 
distributions with two electron  temperatures. Since 
electron kinetic energies, especially those  near  ionization 
threshold  energies, affect ionization  rates significantly, it is 
necessary to  consider  the  time  evolution of distribution 
functions if one wishes to  model  the plasma more 
accurately. To this end we must use  kinetic  and hybrid 
models, as  discussed in the next section. 

3. Kinetic  and  hybrid  models 
Kinetic  modeling of plasmas determines  time evolution of 
the velocity-distribution functions.  For a rarefied gas or 
plasma, where  interparticle  correlations  are sufficiently 
weak, the  time evolution of distribution  functions is known 
to be governed by the  Boltzmann  equation [18, 251. For 

example, the  electron-distribution  function f,(t, x, v) 
can be  characterized by the  Boltzmann  equation 

where a/ax (= V) and d/av are  gradients in the  real  and 
velocity spaces,  and  the  right-hand  side  represents  the 
collision term.  The specific form  for  the collision term 
(SfJst),,,,, depends  on  the collision processes  to  be 
considered,  but  it typically includes ionization,  excitation, 
dissociation, and  recombination. For ions, a  distribution 
function may be defined for  each excited state of each 
species, which is also governed by an  equation similar to (11). 

Obtaining numerical solutions to  the Boltzmann equation 
under  general  conditions is a difficult computational 
problem.  One  scheme  that can be used to solve the 
equation exactly is the convective scheme [26-281. 
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A more widely used alternative  method is the  particle 
in cell (PIC)  method [29, 301. In  the  PIC  method, 
a  group of electrons  (or ions) are  represented 
by a single simulation  particle  (superparticle  or 
pseudoparticle),  and  the  motion of each  particle is 
assumed  to follow Newton's law. Each  superparticle can 
represent 108-10" real  particles  (such as electrons), so 
that 10000 superparticles-a manageable  number  on 
today's engineering workstations-may represent all of 
the  electrons  and  ions in (a  portion of) an  actual plasma 
system. It is also assumed  that such superparticles have 
no interparticle  interaction except for very short-range 
interactions  corresponding  to collisions: Forces 
exerted  on  superparticles  originate  from  self-consistent 
electromagnetic fields. In this way, only collective motions 
(except for collisions) are  modeled by a PIC  simulation. 
For  parallel-plate rf discharges, only the  electrostatic field 
need  be taken into  account.  The  equations of motion  for 
the  superparticles  are  therefore given by 

g x - ~ v+, 4, 
( 12) 

J 

P 

Eo 

A + =  (13) 

Here x, = x , ( t )  is the position of thej th  (electron  or  ion) 
superparticle  at  time t ,  q, and r n ,  are its charge  and mass, 
and p is the  charge density. In the  PIC  method,  the field 
quantities such  as potential +(x, t )  and  charge density 
p(x ,  t )  are numerically evaluated only at spatial grid 
points,  whereas  particles  are allowed to occupy any 
position within the  discharge.  The  right-hand-side  terms 
of Equation (12) are  therefore  evaluated  from  the 
intcrpolation of + values at  neighboring grid points (force 
weighting), whereas  the value of p in the  right-hand  side 
of Equation (13) at  each grid point is evaluated  from 
charges of neighboring  particles  (particle weighting). For 
these weighting  processes to  be  accurate,  a sufficient 
number of simulation  particles must be  present in 
each grid cell-thus the  name  "particle in cell." 

The  boundary  conditions  for  Equations (12) and (13) 
may be  developed as follows. When an electron  reaches 
the  boundary, i t  is assumed to  be  adsorbed.  For  an  ion, it 
is also  assumed to be  adsorbed,  but  secondary  electrons 
may be  emitted with a probability -y, depending  on  the 
impinging ion energy. One may also assume  that  some 
charged  particles  are reflected by the  boundary  or 
subjected  to  some chemical reactions  at  the  boundary. 
Choices of boundary  conditions  depend  on  the physical 
conditions of the  boundary walls and  electrodes.  There  arc 
many other issues associated with the  PIC  algorithms 
which are beyond the  scope of this paper,  and  interested 
readers  are  referred  to, e.g., References [29, 301. 
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To  simulate highly collisional  plasmas  using the  PIC 
method,  the  Monte  Carlo collision (MCC)  method  has 
been widely adopted [31-361.  By using the knowledge of 
collision  cross sections  for all  possible  collisions and 
generating a sequence of random  numbers,  the  MCC 
method  can  be used to  determine  whether a specific 
collision takes place during  a given time  interval; if it 
occurs,  the  particle velocity is revised  accordingly. There 
is an efficient scheme  to  perform this  task, designated as 
the null collision algorithm;  detailed  descriptions of the 
scheme can be  found,  for  example, in References [37-401. 
The  MCC  process is typically performed  after  the possible 
new positions of all of thc  particles  are  determined in 
each  simulation cycle. Figure 2 schematically shows a 
sequence of computational processes  in a single time-step 
cycle for  a  PICiMCC  simulation. 

simulate  argon rf glow discharges  and have examined  the 
applicability of bi-Maxwellian electron  distribution 
functions, which are typically observed under  conditions 
of relatively low gas pressure.  Prior  to  their  simulations, 
Godyak et al. measured  electron-energy  distribution 
functions [22-241 in rf discharges  and  postulated  that  the 
hi-Maxwellian distributions  result  from two competing 
electron-heating mechanisms  taking  place  in the  discharge. 
One  heating mechanism is ohmic  heating (i.e.,  collisional 
heating), which typically takes place in the bulk  plasma, 
and  the  other is stochastic  heating [42, 431, which occurs 
near  the  plasma-sheath  boundaries.  In  stochastic  heating, 
electrons gain  energy from oscillating rf sheaths.  The 
concept  proposed by Godyak  et al. is the following: Low- 

Vahedi  et al. [41] applied  PICiMCC  simulation  to 
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Experimentally measured normalized electron-energy distribution 
function (upper) and electron-energy probability function (lower) 

I in  an Ar rf (13.56-MHz) discharge. The gas pressure was 0.1 Torr 
and the discharge current was 0.3 A rms in a  2-cm  gap; no and 
<E> denote  the  mean  plasma  density  and  the  mean  electron 
energy, respectively. From [22], reproduced with permission. 

energy  electrons  are  generated by inelastic collisions, 
such  as electron-impact  ionizations, in the bulk  plasma. 
Especially if the  electron  energies  are  near  the  Ramsauer 
minimum, such electrons  cannot  be  thermalized  because 
of the low collision frequency.  Therefore, most of them 
simply oscillate collisionlessly and  remain in an abnormally 
low temperature  range.  Some of the low-energy electrons, 
however, reach  the  bulk-sheath  boundary  region  and  can 
gain energy  from  the  stochastic  heating  mechanism. High- 
energy electrons  generated in this way are eventually  lost 

to  the wall or lose their energy through inelastic  collisions, 
and  a  steady  state with two electron  temperatures is 
maintained. Figure 3 shows electron-energy  distribution 
functions  measured by Godyak  et al. [22-241. 

Figure 4 shows the  electron-energy  distribution  function 
obtained  from  one-dimensional  PICiMCC  simulations 
(one  dimension in coordinate  space  and two dimensions in 
velocity space) by Vahedi  et  al. 1411 under  approximately 
the  same  conditions as those by Godyak et al.: parallel- 
plate  argon rf (13.56 MHz)  discharge with a  gap 
separation of 2 cm, discharge  current 2.56 mA-cm-', gas 
pressure 100 mTorr.  It is seen  that  the  simulated  electron- 
energy distribution  function,  where  the  broken  lines 
represent two temperatures (0.5 eV  and 3.0 eV) of the 
bi-Maxwellian distribution 1411, is in good  agreement with 
the  experimental  results of Figure 3. Another  observation 
made in both  experiments  and  simulations is that  the 
electron-energy  distribution varies from  a bi-Maxwellian 
to  an  ordinary Maxwellian function as the  neutral gas 
pressure is increased 124,  411. This  transition is caused 
by a  transition in the  electron-heating  mode  from  a 
stochastic-heating-dominant  regime  at low pressures to 
an  ohmic-heating-dominant  regime  at high pressures. 

The main advantage of a kinetic  simulation over a 
continuum-model  simulation is its  usefulness for  obtaining 
detailed  information  on  discharge  characteristics, such as 
velocity-distribution functions.  Although we have thus  far 
discussed only electron-distribution  functions,  distribution 
functions of ions  and  radicals can also  be  simulated using 
the  PICiMCC  method. As we see in the next section, 
energy  and  angular  distributions of ions  and radicals near 
the wafer surface strongly  influence  microscopic material- 
surface  processes such as etching  and  deposition. 
Therefore,  kinetic  modeling is always desirable  for such 
process simulations. The  major  disadvantage of a kinetic 
simulation is, however,  its computational cost. Extending 
the  PICiMCC  method  to a system of higher  dimensions 
(e.g., 2D in coordinate  space  and 3D in velocity space) 
may be relatively straightforward in terms of numerical 
methods,  but  running such simulations with satisfactory 
accuracy can  be extremely  expensive.  However, some 
progress  has  been  made in this  direction.  For  recent 
development in 2D PICiMCC  simulations  for  materials 
process applications,  see  References [44, 451. 

To  reduce  the  computational cost associated with 
kinetic  simulations  but still retain  some of their 
advantages, several researchers have used hybrid schemes, 
i.e., combinations of continuum  simulations  and  kinetic 
simulations [40, 46-53]. For example, Sommerer  and 
Kushner [40] used the  "test-particle  MC  method"  to 
simulate rf discharges,  in which the self-consistent 
fluid equations  (for  both  ions  and  electrons) were 
supplemented by particle  models of electrons  subjected  to 
MCC processes. In this method,  the  electron-simulation 
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particles  are used only as “test  particles”  to  evaluate  the 
electron-distribution  function  under given ion, electron, 
and  neutral-species  densities  and  electric fields obtained 
from  the fluid equations.  The  obtained  electron- 
distribution  functions  are  then used to  determine various 
reaction  rates (including ionization  and excitation rates) 
and  transport coefficients as functions of space  and  time. 
Since the  electron density ne(t ,  x) is obtained by solving 
the  electron fluid equations,  not by counting  the  number 
of electron-simulation  particles in a unit  volume,  this is 
not a PIC  simulation. The lack of the particle-weighting 
process of Figure 2 allows one  to  use  a very small number 
of electron-simulation  particles, typically 1% or less 
of the  equivalent  PIC  simulation.  The  advantage of this 
kinetic-fluid hybrid method is that  detailed  information  on 
the  electron-distribution  function is obtained, making it 
possible to  more accurately estimate  various  reaction  rates 
without  adding  too much computational cost. 

Depending  on  the physicalichemical phenomena  to  be 
studied,  different types of kinetic-fluid hybrid methods 
may be  adopted.  For example, Porteous  and  Graves [51] 
employed an electron-fluid ion-particle  method  to study 
magnetically  confined  plasmas  such  as ECR plasmas with 
long  ion  mean free  paths.  In  contrast  to  the  test-particle 
MC  method discussed  above, Porteous  and  Graves used 
fluid equations only for  electrons,  and  modeled  ions 
completely by particles with MCC.  Their  particle  MCC 
method was, however, not  the  PICiMCC  method  either, 
because  the  ion density was not  calculated  from  the 
number density of the  simulation  particles  at  each  instance 
of time  but was averaged over  trajectories of many 
simulation  particles.  This  simulation  scheme is essentially 
the  direct-simulation  Monte  Carlo  (DSMC)  method, which 
has been used extensively to  model  neutral  rarefied gas 
flows [54]. Owing to this trajectory-averaging  strategy, 
fewer particles  are  needed  to  obtain sufficient  statistics 
in the  DSMC  method  than in the  PICiMCC  method. 
However,  in contrast  to  PIC/MCC  simulations, only time- 
averaged  steady-state  solutions  can  be  obtained  from 
DSMC  simulations.  More recently, the  DSMC  method 
coupled with an  electron-fluid model  has  been used to 
model  the dynamics of both ions and  neutral  species in 
two-dimensional high-density ICP plasmas [SS, 561. 

It is relatively easy to  implement  various collision 
processes in particle  simulations such  as the PTCiMCC and 
DSMC  methods,  compared  to  those based on  continuum 
models such as those  characterized by the drift-diffusion 
equations.  The  major  problem of particle  simulations is, as 
mentioned  above,  the  computational cost. The  problem is 
especially severe  for two- or three-dimensional systems, 
and it is often necessary to use high-performance  vector  or 
parallel  computers to obtain meaningful results. To accurately 
simulate high-density  low-pressure  plasmas, where ion and 
neutral  mean  free  paths  are  comparable with the  chamber 
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! Electron-energy distribution function obtained from one-dimensional 
i PICMCC simulations under approximately the same conditions of 1 Figure 3, at temperatures T,, and T, .  From [41], reproduced with 
t permission. 1 

dimensions,  it may be necessary to use particle  simulations 
such as those discussed above. However, for most practical 
purposes (e.g., designing plasma-processing tools),  it is known 
that continuum (or fluid) simulations are more feasible 
because of their reasonably predictive capabilities and lower 
computational costs, even for high-density-plasma simulations. 

The  real  challenge in simulating high-density  plasmas 
with low gas pressures  often lies in evaluating  the power 
depositions self-consistently. As mentioned  earlier, most 
high-density  plasmas for  materials processing applications 
are  generated by means of high-frequency  driving sources 
such as rf coils (for  ICP  and  NLD), rf antennas  (helicon- 
wave and surface-wave plasmas),  and microwave 
waveguides (for  ECR  plasmas).  Therefore, to obtain  the 
power deposition profile  self-consistently, one must solve 
the Maxwell equations  together with the  equations  for  the 
plasma.  While the  power-deposition profiles [i.e., Q,,,(x) in 
Equation (lo)] were simply assumed to  be  represented by 
given functions in some  earlier  studies [51, 531, recent 
simulation  studies  attempt  to solve the  coupled Maxwell 
equations with some simplifying assumptions  (such  as a 
cold-plasma  approximation  for  the  dielectric  tensor  for 
Maxwell’s equations)  to  evaluate  the  power-deposition 
profiles [57]. For  recent two- and  three-dimensional 
simulations of self-consistent  high-density  plasma sources 
for  materials-processing  applications,  the  reader is 
referred,  for  example,  to  References [S5-66]. 
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I Normalized  ion-energy  flux  vs.  ion energy-assuming self- 
consistent  electric  field  obtained  from MC simulations  (histo- 
gram), self-consistent analytical expression (solid curve) given in 
[73], and constant-field approximation of Equation (14) (dashed 1 line). The assumed collisionality is dlA . = 0.14, with d and A 

1 being  the  sheath width and the ion-neutral  collision mean free 
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i path,  respectively.  From [73], reproduced with permission. 

4. Sheath  modeling 
The  sheath  region in a plasma-processing system usually 
denotes a gaseous  boundary region between  the bulk 
plasma and  the  electrode,  where  the  electron density is 
low and  strong  electric fields are  present.  The  materials 
processes  are strongly  influenced by the  characteristics of 
ion-  and  neutral-species fluxes impinging on  the  substrate 
through  the  sheath.  For dry etching  and  deposition 
processes,  energy and  angular  distributions of those 
incoming fluxes are two important  factors.  As discussed in 
the previous section,  obtaining  information  on  ion-  and 
neutral-species  distribution  functions  from  kinetic  or 
hybrid simulations  can  be very costly. On  the  other  hand, 
less computationally intensive  fluid-type simulations 
provide  no  information  on  the  distribution  functions. 
To  compromise,  one may use less expensive  fluid-type 
simulation  to  model  the global structures (such  as  ion and 
electron  temperatures  and  densities) of the plasma and 
treat  the  sheath region separately, using a kinetic model. 

Much effort  has  been  made  to  measure  and  compute 
the  ion-distribution  functions in sheaths of various 
discharges.  Davis and  Vanderslice [67] made  the first 
systematic  measurements of the energy distribution 
of ions  striking the  cathode  and  found  that  the energy 
distributions vary considerably according  to  the 
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collisionality  (i.e., the  ratio of the  sheath thickness to 
the  mean  free  path).  Taking  into  account only charge- 
exchange  collisions,  Davis and  Vanderslice also proposed 
a simple model of the ion distribution  and  succeeded in 
explaining some of the  measured energy distributions. 
Kushner [68] computed  the energy and  angular 
distributions of the impinging  ions in rf discharges,  using 
the  Monte  Carlo  (MC)  technique  for  charge-exchange 
collisions. Thompson  et  al.  presented  more  comprehensive 
MC  simulations [69] for several different  forms of elastic 
ion-neutral interactions as well as  charge-exchange 
collisions  in dc  and rf discharges with predefined  electric 
fields. Farouki  et al. [70] reported  MC  simulations with 
self-consistent electric fields due  to  space-charge effects, 
taking into  account  both  elastic  scattering  and  charge- 
exchange  collisions. 

Under  some  conditions, analytical  expressions for  the 
ion-distribution  function  can  be  obtained.  Wannier [71] 
has solved the  Boltzmann  equation analytically for  ions 
with ion-neutral elastic  collisions in the limit of a  strong 
uniform electric field. Lawler [72] has also solved the 
Boltzmann  equation with charge-exchange collisions and 
obtained an ion-distribution  function whose  asymptotic 
limit is Wannier’s equilibrium  solution.  Hamaguchi 
et  al. [73] have obtained analytical  expressions for  ion- 
distribution  functions in collisional  dc sheaths. 

According  to  that work, in the limit of weak  ion-neutral 
elastic  collisionality  with a  constant  electric field, the 
normalized  ion-energy flux function rcn(p) is given by 

where p is the  normalized  kinetic  energy of the ion,  i.e., 
p = 7,z2/~:,ax, with u m a x  = vu: - 2qV/m, being the ion 
velocity resulting from the  sheath potential V (<O) and ion 
charge q in the absence of collisions. The Bohm velocity (or 
ion sound velocity), vB = (k,TJm,)”*, is the initial velocity 
of the ion when it enters  the  sheath region from the bulk 
plasma. Since 71B is  typically small (as k,Tc << -471, we may 
write 9 = imiu2/(-qV).  It is shown in Figure 5 that 
Equation (14) is an excellent approximation  to  the self- 
consistent energy flux function.  The exact analytical 
formula of the  ion-energy  distribution  function in the self- 
consistent  electric field (represented by the solid  curve in 
Figure 5) is given by Reference [73], Equation (104). 

Figure 6 shows time-averaged  ion-distribution  functions 
at the  cathode of collisionless rf sheaths  obtained by 
Hamaguchi  et  al. [74, 751; the solid lines  (upper figures) 
are  from  the analytical  expressions given below [Equation 
(15)] and histograms  (lower  figures) are  simulation  results 
[76]. The  electric field in the  sheath was assumed  to 
oscillate  sinusoidally; i.e., E , ( x )  + E,(x)coswt, with 
E , ( x )  and E,(x) having arbitrary  spatial  dependences. 
(The origin was assumed  to  be  located  at  the plasma- 
sheath  boundary  and  the  electrode was assumed  to  be 
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located  at x = d.) If the  ion-transit  frequency 
= [4E,(d)/mid]1’2 (i.e., the inverse of the typical time that 

an ion takes  to  cross  the  sheath of width d )  is sufficiently 
small compared  to  the rf frequency (i.e., F = w,,/w << l), 
the  time-averaged  ion energy flux is given [74] by 

- nIuB re”(d = (15) 
2.rr\I(V+ - \m v’; - v 4  

’ 

where n I  is the ion  density at  the  plasma-sheath  boundary 
(i.e., x = 0) and v+ = 1 2 q E , ( d ) / m l w u i a x .  The width of 
the energy spread, in terms of the  dimensional  quantity 
6 = -m u v, is given by 1 2  

2 I max 

2 q q 4  (-fr? ” *  A &  = ~ ~ 

0 

It is also  known that  the  ponderomotive  force  due  to  the 
oscillating sheath field exerts  a  retarding influence on  the 
ion  trajectories [74]. 

5. Surface process  modeling 
Modeling  and  numerical  simulation of plasma  etching and 
deposition systems can  facilitate  a  better  understanding of 
microscopic phenomena  taking place on  the  substrate.  In 
this section, we discuss the  modeling  and  simulation of the 
evolution of surface  topography  on  the  substrate using 
information  on ion and radical fluxes impinging on  the 
substrate (which may be  obtained  from plasma simulations 
discussed above  or  experimental  observations). Using  such 
information,  one  can  simulate  the evolution of surface 
profiles during processing. 

First we discuss continuum  surface models, in which 
boundaries of materials  are  represented by continuous 
surfaces. Although collections of atoms  and molecules are 
actually  involved, a continuous-surface  representation is 
still a good approximation  at  dimensions  currently 
of interest (Le., 0.1-10 pm,  pattern widths) for 
microelectronic  structures. 

To further simplify the  problem, we consider only 2D 
problems,  such as a  traverse cross  section of infinitely long 
trenches,  where  boundaries  are expressed by curves. For 
the  purpose of numerical  simulation, such  curves are 
discretized  and  represented by a sequence of nodes 
connected by line  segments.  The  etching  or  deposition 
rates (i.e.,  “velocities” of the  surface)  are  then  evaluated 
at  each  nodal  point  on  the basis of the  magnitudes  and 
angles of incoming ion  and  neutral fluxes. 

If the  surface velocity (i.e., “rate”) is known at  each 
point on the  surface,  the  equation  that  governs  surface 
motion may be  obtained in the following manner.  The 
x-axis is assumed to  be  horizontal  and  the z-axis  vertical. 
The  y-coordinate,  needed  for 3D analyses, is chosen 
accordingly to  form  the usual right-hand  coordinate 
system. We assume  that  the  boundary curve of the 
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1 Time-averaged energy distributions of ion flux at cathode ( z  = d )  1 obtained  from  the  analytical  expression  given by Equation (15) 1 and  from  numerical  simulations.  The  parameters  used  here  are 
j E = 0.24 for (a) and E = 0.16 for (b). In each  case, the ion flux 

distribution  is  normalized  to  enclose a unit area.  From [75], 3 reproduced with permission. L 

material is  given by an  equation of the form $(x, z ,  t )  = 0, 
and  that $(x, z ,  t )  > 0 (< 0) represents  the  material 
(vacuum)  side of the  boundary.  Etching  and  deposition 
processes may then be formulated as the  time evolution of 
this surface.  Let 

be  the velocity vector at point (x, z )  of the  boundary. 
Here 

denote  the  unit  normal  and unit tangent  vectors 
( $ x  = a$/dx and $z = d$/dz). Note  that  the  normal 
velocity components Cn > 0 and Cn < 0 represent  etching 
and  deposition of the  material in this formulation. 

Differentiating  the  equation $ [ x ( t ) ,  z ( t ) ,  t ]  = 0 
with respect  to t and  substituting  Equation (16) yields 

+ , + c \ m = o .  
Here we write C = C,, for simplicity. Note  that  the 
tangential velocity component C, does  not  appear in 
Equation (17). The velocity along  the curve does  not  alter 
its shape,  and  the  motion of the curve is determined only 
by the  normal  component C = C,,. Equation (17) is 
known as the Hamilton-Jacobi equation if the  function C 
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Unit area (unit beam flux) 

I“/ z = u(x, t )  

~~~~~~~~~~ 

~,.~&&e. _.“ et4?.@*;..? 

f The surface is characterized by the function z = u (x ,  f). The I expression C m  represents the volume removed from the 
i surface per unit beam flux and unit time. 

depends only on  time t ,  position (x, z ) ,  the unknown 
function $, and its first derivatives (QX, QZ) [77-EO]. In 
general  etchingideposition  problems, however, C can  be 
a more  complicated  function. 

If the height of the  boundary curve z is a “function” 
of x and  one  can write z = u(x, t ) ,  we may write 
$(x, z ,  t )  = u ( x ,  t )  - z and simplify Equation (17)  as 

u, + c ,/l + u; = 0. (18) 

Suppose  an ion beam  bombards  the  surface in the 
negative z direction  and  the  slope of the  boundary curve is 
denoted by p = uL = - $.r/$z, as shown  in Figure 7. Then 
the  functionf(p) = C q 1  + u s  represents  the  volume of 
the  material  removed  from  the  surface  per unit beam flux 
and  unit  time  and is proportional  to  the  sputtering yield 
Y-Le., the flux (number of atoms)  sputtered  from  the 
surface  per single incident  beam  particle  (ion  or  atom). 
Therefore, f ( p )  is sometimes called a flux function 
[ E l ,  821. 

moving boundary always satisfies Equation (17) [or 
It is important  to  note  that,  although  motion of the 

Equation  (IS)], the converse is not true. In other words, 
a solution  to  Equation (17) [or  Equation (18)] satisfying 
given initial-boundary  conditions  does  not necessarily 
describe physically plausible surface  evolution.  Indeed, 
Equation (17) [or  Equation  (18)]  can  admit two or  more 
solutions  for given initial-boundary  conditions,  and only 
one of them is physically meaningful. For an  example of 
nonphysical solutions  to  Equation (17) [or  Equation  (18)], 
the  reader is referred  to  Reference [4]. 

The  problem of spurious  solutions  to  Equation (17) [or 
Equation  (IS)]  arises  from  the fact that we have tried  to 
model  surface  evolution only by geometric  motion of a 
surface  (or a curve in the  case of two dimensions) with 
given surface velocities. For example, a curve on  a two- 
dimensional  plane  can  intersect itself to form  a  loop 
during its motion,  whereas  the  surface of a solid is always 
represented by a non-self-intersecting  surface,  no  matter 
how the  shape of the solid evolves. In this sense,  there is 
an essential  difference  between  geometric  surface  motion 
and  the  surface evolution of a material. To construct  a 
system of equations  that provides a  unique  solution  for 
all t > 0 that  represents physically meaningful  material 
surface  evolution,  therefore,  additional  conditions known 
as “entropy  conditions” must be  imposed.  Detailed 
discussion of these  conditions is found in References 
[4, 811. 

In many earlier  simulations,  each  node  and  linear 
segments  representing  the  material  surface  were moved 
in the  direction of the specified surface velocity [often 
without  referring  to  Equation (17) or  Equation  (IS)].  For 
example, if the  surface velocity is a  function of the  surface 
gradient p = u A  (e.g., for  the  etching-rate  function of 
Figure 9, discussed later),  the  surface velocity is not well 
defined at  sharp  corners  (where p is not uniquely defined). 
In  some  earlier  studies, ad hoc geometric  considerations 
were employed to avoid such uncertainties.  Consequently, 
the  simulations  suffered  from  a basic  lack of credibility. 

If the  surface velocity C does  not  depend  on  second- or 
higher-order derivatives of $ or u ,  Equation (17) and 
Equation (18) are of first order  and  can  be solved by the 
method of characteristics. Several numerical  simulation 
codes have been  proposed employing  this method. 
Problems still arise, however,  when discontinuities of the 
surface  gradient  form (i.e., two characteristics  intersect). 
Some existing  models that employ the  method of 
characteristics  appear  to  require  subtle  geometric 
“adjustments,” such  as eliminating  or avoiding the 
formation of nonphysical loops  (“delooping”)  based 
on  geometric  hypotheses  to  deal with such situations 
(see  for  example  References [83-921). 

More recently, a  numerical  algorithm  has  been 
proposed  for  obtaining a solution  for  Equation (17) [or 
Equation (IE)] with the  entropy  conditions, using the  same 
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curve discretization (Le., nodal  points  connected by linear 
segments).  The algorithm is designated  thc shock-tracking 
method,  and  through its  use, a physically plausible 
solution  can  be  obtained  for  the  propagation of 
discontinuities of the  surface  slope  (ix.,  “shock  wave”). 
For  details,  the  reader is referred  to  Reference [81]. The 
shock-tracking  method is employed in the simulation code 
“SHADE,” which has been  applied  to  various  dry-etching 
and  deposition  problems [93-981. The  simulation  results 
discussed next have been obtained using SHADE unless 
indicated  otherwise. 

Most existing continuum-simulation  codes employ some 
combination  or modification of the  boundary-moving 
algorithms  mentioned above. Among  them,  SAMPLE [99], 
SPEEDIE  [loo],  DEPICT  [loll,  and  EVOLVE  [lo21  are 
examples of the most widely (and commercially)  available 
2D  codes for simulating  etching,  deposition,  and/or 
photolithography. 

can be used to solve Equation (17) or  Equation  (18), 
without appealing  to  the  characteristic  or  shock-tracking 
methods [103-1051. For example, one can solve 
Equation (17) [or  Equation (18)] directly for $ (or u )  
on  the x-z surface  (or x axis), using a  combination of a 
Lax-Wendroff-type  finite-difference scheme with an 
upwind (or artificial  diffusion) scheme.  The  “numerical” 
diffusion inherent in this method stabilizes the  solution. 
The  method is especially suited  to  the  case in which the 
surface velocity depends explicitly on  the local curvature 
and  the  PDE is  of second order. As we discuss  shortly, 
the  curvature-dependent  surface velocity introduces  a 
“diffusion” effect, so that  slope  discontinuities  are  not 
formed in this case. 

There is also  an entirely different class of methods  that 

Here we briefly discuss diffusive flows along  thc  surface 
of the solid. If the  temperature of the solid is sufficiently 
high (e.g., near its  melting point),  surface diffusion can 
cause  changes in the  surface  topography.  The  surface 
diffusion is linearly dependent on the  surface  curvature K 

and  smooths  out  the  surface [106]. To incorporate  surface 
diffusion into  Equations (17) and (18), we can replace C 
with C - U K ,  where - U K  is the  surface velocity due  to  the 
curvature-driven diffusion ( u  is typically a small  positive 
constant). Since 

4r.r$: - W,$,$: + $A: 
($t  + $i)i’? K = -  

- - 
111 I 

(1 + 1 1 ; y 2  ’ 

Equations (17) and (18) become 

Flux of ions 

i Schematic  diagram of gas-phase transport of ionic and neutral 
; species. 

and 

Solving Equation (17) or  Equation (19)  with the 
condition $(x, z ,  t )  = 0 on  a  spatial grid is called a level- 
set method. Such a  method  makes it  possible to  simulate 
complex  topological changes  that occur during  the  course 
of surface  evolution  more easily than  other  methods  based 
on  line  discretization.  In  the level-set method, however, 
the  problem is solved in a  space  one  dimension higher; 
e.g., [ = $ ( x ,  z ,  t )  is obtained  from  Equation (17) or 
Equation (19) first, and  then  the  condition $ ( x ,  z ,  t )  = 0 
is used to  obtain  the  solution curve on the x-z plane. 
Therefore, it is generally more expensive computationally 
than  line-discretization-based  methods. 

We next  discuss the  estimation of the  surface velocity C 
in Equation (17) or (18). A typical schematic of gas-phase 
transport of ionic and  neutral species is shown in Figure 8. 
Since the  length scales of features in which we are 
interested  are sufficiently smaller  than  the  mean  free 
paths, collisionless transport may be assumed  for all gas- 
phase species. To simplify the following  discussion, we 
also assume  that  the ion flux is unidirectional  and vertical 
to  the  substrate  surface.  The  sputtering yield Y depends 
on  the angle 0 formed by the  incident flux and  surface 209 
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Example of the angular dependence [Y  (6’) cos 6’1 of an etching-rate 
function. The function is normalized to unity at 6’ = 0. 

normal. Figure 9 shows an  example of the  angular 
dependence of an etching-rate  function.  The  dependence 
is proportional  to Y ( 0 )  cos 0. (It is normalized  to 1 
at 0 = 0 in Figure 9.) Some  etching-rate  functions  peak  at 
nonzero angles [107], as  in the  case of the  example shown 
in Figure 9. 

The velocity distribution  function of the  re-emitted 
atoms  at position X on  the  boundary curve typically has 
a functional  form given by 

f” =f,(IvI, X) cos”+’8, (21 1 
where 8 is the angle between  the velocity vector v and  the 
surface  normal N, as indicated in Figure 8. Depending  on 
its angular  dependence,  the re-emission is designated  as 
an  over-cosine, cosine, or  under-cosine  distribution  for 
u > 0, v = 0, or -1 < u < 0, respectively. Such  sputtered 
atoms have sufficiently low energies  that they do  not 
resputter  the  surface  material  and  can  be  adsorbed  on  the 
surface when  they land  on  other  sites  on  the  surface.  The 
probability that  an  adsorbed  atom  remains on the  surface 

indefinitely is the sticking  coefficient b. The  angular 
distribution of desorbed  atoms is assumed to have 
the  same  functional  form given in Equation (21). 

is related  to  the velocity distribution  functionf(v, x) as 
The incoming flux at  position x on  the  surface  boundary 

< - I n  
I! (x) = J (fi * v).f(v, x) dv, 

i i ~ V - C f l  

where fi is the  unit  vector  normal  to  the  surface  at x and 
the  integration is over the half velocity space (ii . v < 0). 
The  outgoing flux is defined  in a similar manner, with the 
integration over the  other half space ii v > 0. 

The  outgoing flux from  the  surface, i.e., the flux of re- 
emitted  atoms, is the sum of the  desorption flux and 
resputtering flux: 

:)’Ou‘(x) = (1 - $):F’”(x) + :Fctch(x), (22) 

where Y‘”(x) is the incoming flux of (low-energy) atoms. 
Therefore,  the first term (1 - S)?“ represents  the 
total  desorption flux. The  second  term  represents  the 
outgoing flux due  to  the  ion  sputtering  (etching), Le., 

- Y(O):F’””, where 3’”” is the  magnitude of the 
unidirectional  ion flux and 8 is the  angle  formed by 
the  surface  normal  and  the vertical direction ( 0  = 0 
in the example of Figure 8). 

Suppose  that  the only source of neutral  atoms is the 
sputtering of the  surface by ion  bombardment. Using the 
re-emission  distribution  function,  Equation (21), we may 
relate [4] the  desorption flux s‘“(x) to  the  outgoing  metal 
atom flux :F””‘(X) at every  position X (at which the  unit 
normal  vector is denoted as N) on the  surface as 

y t c h  - 

where 

is the  integration  kernel,  the coefficient A v t 4  is given by 

and $13 denotes  the surface boundary. For example, A, = ~ / 4  
for  the cosine distribution ( u  = 0). In Equation (24), 
the  function g is the visibility factor (Le., g = 1 if the 
points x and X are  on  the  line of sight, and g = 0 
otherwise), R = x - X, R = IRI, and R = R/R. 
Substituting  Equation (22) into  Equation (23) results  in an 
integral  equation  for Y ( x )  for given source  terms :Fctch(x). 
If the flux IF’”(x) of the incoming material  at position x on 
the  boundary curve is known, the  deposition  rate is given 
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by D = (rn/p)rF’”, where rn and p are  the  atomic mass and 
mass  density of the  deposited  material.  The  net  surface 
velocity is then  the  difference  between  the  etching  rate 
and  the  deposition  rate.  For  more  details of the  derivation 
of Equation (23), the  reader is referred to Reference [4]. 

To  illustrate how such simulations  can  be  applied  to 
actual plasma deposition  processes, we consider ionized- 
magnetron  metal  sputter-deposition processes [95, 96, 
108, 1091 as examples. An ionized-magnetron  sputter- 
deposition system consists of a  conventional  magnetron 
sputter-deposition system and an  inductively coupled 
plasma generator [lot?, 1091. Metal atoms (such  as Cu) 
sputtered from the  target  are ionized by the high-density 
plasma (typically argon plasmas), which is generated by a 
radio-frequency  induction (RFI) coil connected  to an rf 
generator.  The ion bombardment energy on the wafer 
surface,  therefore  the  amount of resputtering, can be 
controlled  through  a  bias voltage. The  directionality of 
the ion flux in such a system provides better  deposition 
at  the  bottom of a trench  than  conventional  magnetron 
sputtering systems. With an appropriate bias  voltage that 
induces  simultaneous  resputter  deposition on the  trench 
sidewalls, conformal  deposition of thin metal liners  over 
high-aspect-ratio  trenches  can  be achieved. 

Ideally,  plasma and  sheath simulation  discussed in the 
previous  sections should be used to estimate energy and 
angular  distributions of incoming  ion fluxes and  neutral- 
species fluxes at  the  substrate [110].  However, for  the  sake 
of simplicity, we assume  here  that  the ion beam incident 
on the  substrate is unidirectional  and vertical and  the 
neutral flux has  a uniform angular  distribution with a 52” 
cutoff  (i.e., collimation) angle due  to  the finite  size of the 
target  The  etching-rate  function is assumed  to be 
proportional  to  the  function of Figure 9, and  the sticking 
coefficient b is assumed to  be unity. The  total  neutral 
incoming flux Y‘” consists of the  resputtering flux ;iK 
defined by the  right-hand  side of Equation (23) and  the 
direct  neutral flux :F” (ix., Y ”  = :iR + YD). Since f T ”  is 
known, we use Equation (22) (where Y‘ is replaced by 
;iR + YD)  and Equation (23) (where  the  left-hand 
side is replaced by :iR) to  determine ;fR. 

a  metal liner on the walls of trenches having aspect  ratio 
2.5. (Since Ar  sputtering is taking  place, we consider Y as 
the  “effective”  sputtering yield due  to both metal  and  Ar 
ions.  Namely, for  a single ion  impinging on the  surface, Y 
metal  atoms  are  sputtered,  whether  the  sputtering is due 
to the  metal ion or  other  Ar ions.) The  ratio of metal ion 
flux to  neutral flux is assumed to  be 1 : 1. The  shaded  area 
represents  the initial SiO?  trenches,  and curves  above 
it represent  the profiles of the  deposited film. At a 
sputtering yield of zero, very little  deposition is expected. 
However,  at a sputtering yield of 1.0, atoms  sputtered 

Figure 10 shows simulation  results  for  the  deposition of 

0 0.5 1.0 

12 v 50 V 100 v 

from  the  trench  bottom  are  expected to be redeposited on 
the vertical walls, predicting  good  conformal coverage. 

Figure 11 shows scanning electron microscopy (SEM) 
photographs of Cu deposition  obtained  under  comparable 
conditions.  The dc magnetron power was 10 kW for a 
200-mm target  cathode  and  up to 30 kW for a 300-mm 
cathode.  The  RFI coil was connected  to a 13.56-MHz rf 
generator having a maximum power  capacity of 3 kW. 
The bias  voltage  could be varied up  to -200 V. 

Figure 12 depicts  the  results of a simulation of the 
effects of sputtering yield on metal deposition  onto 
two trenches.  Each  boundary curve represents  the 
metal film profile  at equal  time intervals, and  the  shaded 
arca  represents  the initial trenchcs. As in Figure 10, the 
ratio of the ion to  neutral fluxes was assumed to be 1:l. 
The  sputtering yield at 0 = 0 was assumed to  be 0, 0.6, 
and 0.8. The  simulation  predicts  that as the film thickness 
becomes  comparable  to  the  trench width, the  atoms 
sputtered  from  one side of the  trench will be collected 
on the  opposite  side,  leading to a lateral  buildup of 
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4 SEM micrographs of deposited metal (AI)  films under similar 1 conditions. The bias voltages were (a) 20 V or less, (b) about 80 V, 

resputtered  deposit which can eventually result in the 
closing of the  trench.  Comparable effects are  observed 
experimentally, as shown in Figure 13. The film depicted 
in part (a) was deposited with ion  energies of 20 eV  or 
less, which can  cause  a  directional  deposition  without 
causing major  resputtering  at  the  surface.  The film 
depicted in part (b) was deposited  at an ion energy of 
about 80 eV,  and  that of part  (c)  at  an ion energy of 
about 120 eV. As can be  seen,  both (b) and  (c) show the 
effects of increasing  sputtering yields. 

numerical  method  for solving surface  evolution  problems 
in etching  and/or  deposition processes. Instead of 
representing  the  material  surface by a  continuous  surface, 
one may represent  both  the  material  and incoming fluxes 
as collections of particles. As in PIC simulations,  one  can 
use  superparticles, which represent a large  number of ions 
and  neutral species. For  example, in SIMBAD [lll], a 
commercially  available simulation  code,  thin films of scale 

We now briefly discuss another  entirely  different 

21 2 lengths of 1 pm  are  represented by an  aggregation of 
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~ (a) Microstructure depiction  and (b) local density simulation by I SIMBAD for a MgF, film deposited over oxide lines at an incident 

angle of 5" from the substrate normal. From [ l l l ] ,  reproduced I with permission. 

104-105 disks  in two dimensions.  In  contrast  to  PIC  or 
molecular dynamics (MD) simulation,  no  force is assumed 
to  be  exerted  on  these disks during  the  gas-phase 
transport.  When  the disks reach  the  substrate, they may 
sputter  the  surface  materials (also represented by disks), 
be  adsorbed  and  desorbed with given probabilities 
(sticking  coefficients), or  undergo diffusion to minimize 
the  surface chemical potential.  One of the  advantages of 
using particle  (or disk) models  instead of the  continuum 
models discussed  above is that  microstructures  (such as 
the packing  density of particles) of the  deposited film can 
also be  taken  into  consideration. Figure 14 shows a  sample 
calculation of MgF, film deposition  obtained  from 
SIMBAD [112]. A disadvantage of the  particle  method 
may be its computational cost, because  a very large 
number of particles must be used to evolve the  surface, 
especially in 3D simulations. 

The  particle  method  for  surface  evolution  can  be 
made  more  sophisticated by incorporating  appropriate 
interparticle  potentials  for  each  simulation particle.  Such 
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an  MD  simulation  represents  a  more realistic view  of 
the microscopic  process. This  method  makes it possible 
to estimate  microstructure  and its stresses with good 
accuracy.  However, MD simulations  are  computationally 
intensive and costly [113]. 

Summary 
In this paper, we have  reviewed some of the most 
widely used methods  for  modeling  and  simulating  the 
plasma  processes that  are  used in integrated-circuit 
fabrication. As is discussed  in Sections 2 and 3, continuum 
models  or  particle models, or a combination of both 
(hybrid models), may be used to  describe  the dynamics of 
processing plasmas.  The  continuum models,  such as those 
based  on  the drift-diffusion equations,  are less time- 
consuming in terms of numerical  computation  but 
have  several built-in  approximations, such  as a Maxwellian 
distribution  for  each species. The  particle  models  are,  on 
the  other  hand, less  restrictive in terms of such  built-in 
approximations  and  are  therefore  applicable  to  a plasma 
process  under a wider  variety of conditions;  and they 
provide more  detailed  information  on  the system. The 
drawback is that  such  particle  models generally require 
more  computational  resources (CPU time  and  storage) to 
simulate  the plasma  dynamics compared  to  a  continuum 
model. If the plasma is highly collisional, a  continuum 
model  and its  fluidlike  simulation can provide accurate 
information  on its  dynamics.  However, under  certain 
conditions  (for example,  when the  distribution  functions 
are known to be highly non-Maxwellian), kinetic 
simulation may be the only feasible choice. 

After discussing sheath  modeling briefly in Section 4, we 
have  reviewed numerical  methods to simulate  the  time 
evolution of microscopic surfaces  under  etching  and/or 
deposition  conditions.  Although it is not  presented in 
this paper, a combination of bulk  plasma and  sheath 
simulations with  microscopic surface-evolution  simulations 
can provide  insights into  the  problem of controlling 
microscopic process  results by adjusting macroscopic 
process-tool  parameters such as gas pressures  and bias 
voltages. 

account of only the  fundamental  aspects of plasma- 
processing modeling  and  simulation.  Sample  results of 
actual plasma processes were presented only to  illustrate 
how such models  and  simulations  can  be  applied  to  actual 
embodiments.  The  reader is therefore  encouraged  to 
refer to the  referenced  publications  and  also  to  the 
publications quoted  therein  for  more  details. 
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