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The IBM adaptive  lossless data compression 
(ALDC) family of products  uses a derivative 
of  Lempel-Ziv  encoding to compress data. 
Several  variables  affect the compression 
performance of the ALDC  algorithm: data 
content, history  size,  and data extent. As 
ALDC  compression  is integrated into  different 
applications,  restrictions are placed upon 
these  variables that affect the overall 
compression performance of the system. More 
complex  applications require further support 
for  higher-order data structures  such as 
variable-length  segments,  error  recovery,  and 
expansion.  The IBM Blue  Logic  ALDC  and 
embedded  lossless data compression  (ELDC) 
cores have been developed  to work in  these 
application  environments.  These  cores  and 
the issues  associated with integrating data 
compression  into a system are discussed. 

Introduction 
As a  general  compression  technique,  the Lempel-Ziv 
algorithm [l] integrates well into systems required  to 
handle many different  data types. This  algorithm  processes 
a sequence of bytes by keeping a recent history of the 
bytes processed  and  pointing  to  matching  sequences within 
the history. Compression is performed by replacing 
matched byte sequences with a copy pointer  and  length 
code  that  together  are  smaller in size than  the  replaced 

byte sequence.  Once  the history is filled, it adapts  to 
incoming data  to  represent  the  last N bytes. Matching byte 
sequences  that  propagate beyond the  extent of the history 
continue  to  match until the maximum codable  length has 
been  reached.  The  amount of compression  that  occurs is 
determined by the  data  content,  the history size, and  the 
amount of data  processed. 

When  data  compression is integrated  into a system, 
that system applies  structure  to  the  data.  Depending 
upon  the system, the complexity of the  structure varies. 
For  instance,  data  stored  on  hard disks and  tapes is file- 
oriented,  but  for  hard disks, each file is a collection of 
discrete  clusters.  The  entire file is accessed on  the  storage 
media  independent of the underlying structure.  In 
communication systems, data is partitioned  into small 
blocks, packets, or  frames  prior  to  being  transmitted. 
Along the way, the  data blocks may be multiplexed with 
other  data blocks before  reaching  their final destination. 
In  each of these systems, the  structure is created  to  help 
manage  the  data. 

Invariably,  this  results  in a  tradeoff of less favorable 
compression  performance  for  improved  data access. In 
situations  where  the  data is partitioned  into  segments, 
effective compression  decreases when the  segments  are 
compressed individually. If sequential access to  the  data 
segments  can  be  guaranteed,  segmented  compression 
can allow for  the  retention of the  compression  context 
between  compression  operations.  This  enhances  the 
compression  ratio by taking  into  account  the  inherent 
dependency  between consecutive segments of data.  Other 
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and discusses enhancements  to  compression by sharing 
compression contexts between segments. Finally, the new 
features of the  ELDC  core  that  address  variable-length 
segments,  error recovery, and minimization of expansion 
are  presented. 
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system considerations, such as variable-length  segments, 
error recovery, and expansion, further  complicate  the 
integration of data  compression  into a system. 

proprietary version of Lempel-Ziv encoding called  IBM 
LZ1.  The  adaptive lossless data  compression  (ALDC) 
products use  this proprietary  hardware-encoding  scheme 
to  produce  superior compression and  data  throughput. 
The  ALDC  and  embedded lossless data  compression 
(ELDC)  cores in the IBM Blue Logic core library  apply 
the  ALDC  algorithm  to systems that use data  structures  to 
manage  data.  The  ALDC  and  ELDC  cores provide the 
flexibility required to handle  the many different  data 
compression situations  presented in today's computer 
systems. 

with compressing data with the-ALDC  algorithm.  It 

IBM has developed  a family of products  that employ a 

This  paper  describes  the  important  factors associated 

748 examines complications  introduced when data is structured 
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Factors  affecting performance 
The first ALDC  products (ALDC-SS, -20S, and -40s) [2] 
compress  data as one  continuous  stream of data.  This  data 
is compressed by analyzing successive bytes until all bytes 
have been  processed. As each byte is processed, it is 
compared against the most recent bytes in the history. 
As bytes are  compared,  the  ALDC  engine  keeps  track of 
consecutive matching bytes. When  the longest matching 
sequence of bytes is determined, a code word is inserted 
into  the  compressed  data  stream  that  points  to  the 
location  and  the  length of the matching sequence. If no 
matches  are  found,  the  data is coded as a  literal  and  also 
inserted  into  the  compressed  data  stream.  Compression is 
realized  when  byte sequences  are  replaced by smaller  code 
words. The  details of the  ALDC  algorithm  are  presented 
in a  companion  paper [3] by Craft. 

When data is compressed as a  continuous  stream,  no 
indication of the  former  data  structure is maintained in 
the  compressed  form.  That is to say, any boundary in the 
original data will be indistinguishable  in the  compressed 
data.  To  retrieve any bytes within the original data, it will 
be necessary to  decompress  the  entire  preceding  data 
structure. 

Figure 1 shows a  sample  compression.  The  end  marker 
(EM)  denotes  the  end of the  compressed  data  stream. 

The achievable compression  performance  depends 
most significantly upon  the  content of the  data being 
compressed. If many  long, matching byte sequences  are 
encountered,  compression  performance will be maximized. 
However, if entirely  random  data  dominates,  creating 
only literal  code words, the  compressed  data  stream 
will expand 12.5%. Unfortunately, in most  cases, the 
application  cannot  control  the  nature of the  data it is 
working  with. 

history. The size of the history  affects compression:  The 
larger  the history, the  more  sequences  that  are available 
to  be  referenced.  Although  the  average code-word  size 
does  increase slightly as the history depth  increases, 
effective compression  can  increase. In the  ALDC  cores, 
the history buffer  can  be configured  in  sizes of 512, 1024, 
and 2048 bytes. Figure 2 shows the  impact of the history 
size on compression  for  a  group of files known as the 
Calgary Corpus [4], arranged by increasing  original file 
size. The Calgary Corpus  represents a range of typical file 
types that would appear in a  computer system. In most 
cases, the  larger history enables  a higher compression 
ratio.  Although this is dependent  upon  the type of data 

One  factor  the  application  can  control is the size of the 
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used, diabolical data types are minimally affected by a 
larger history buffer size. 

is the size of the  data  to  be  compressed.  The  graph 
in Figure 3 shows a  plot of compression  ratios  for  the 
Calgary Corpus collection of files. The  content of the  data 
modulates  compression  performance much more  than  the 
file size. For  large volumes of data,  the  ALDC  algorithm 
is relatively independent of the  number of bytes 
processed. Size becomes significant  when the byte counts 
approach  the  depth of the history. This effect is discussed 
further in the next section. 

The final factor  that affects compression  performance 

Segmented  compression 
In complex  systems requiring  higher levels of organization, 
data is separated  into  smaller,  more  manageable  segments. 
Segmented  data  can  be  found everywhere, from 
communication systems in CSUiDSUs  to networking 
protocols  (Ethernet,  Token Ring, and  ATM)  and even 
personal  computer file systems (hard disks, CD-ROMs, 
and  tape drives). Partitioning  the  data  permits  structure  to 
be  preserved  during  compression  and  compressed  data  to 
be multiplexed after  compression.  Segmented  compression 
divides the raw data  prior  to  compression.  Each system 
presents  a  different set of requirements  that affect data 
organization  and  data  compression. 

data is partitioned  into  either fixed-length segments  or 
variable-length  segments.  The  compressed  segment sizes 
vary depending  upon  the specific data  contained within 
each  segment. 

One  factor  that inhibits  effective data  compression of 
segmented  data is the history. When  each  segment begins 

Figure 4 demonstrates  segmented  compression.  The raw 
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with an  empty history,  fewer  byte sequences exist to 
compare  against  during  the beginning of every segment. 
As a  result,  the early compressed  data  stream consists of 
more  literals  than copy code words. Typically, compression 
is minimal while the history is being filled. 

In  conjunction with the history, the  segment size also 
affects compression. As the  segment size approaches  the 
depth of the history, the  compression  performance 
typically degrades.  The  adaptive  nature of the  ALDC 
cores affects their ability to  compress  segmented  data 
because  the probability that  the history will contain any 
long, matching byte sequences is greatly reduced. 

In Figure 5, the file puperl from  the Calgary Corpus  has 
been  compressed with different  segment sizes. Notice how 
the compression ratios  at  the  various  segment sizes are 
all less than 1.60:1, whereas puperl compressed as a 
continuous  stream of data achieves a  compression  ratio 
of 1.79:l.  As  the  segment size approaches  the size of 
the original data,  the effect of partitioning  the  data is 
minimized. This  reduction in compression  ratio is a  result 
of starting  each  segment with an  empty history, which 749 
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B with  the  com  ression  context  retained  between  se  ments. 

creates fewer matching byte sequences  and  truncating 
matching  sequences  at  the  segment  boundary. By the  time 
the  compression  ratio begins to  approach its aggregate 
value,  the  segment is completed.  There is not  enough  data 
to reach  peak efficiency with  small segments. 

lntersegment  dependencies 
As seen in the discussion of segmented  compression,  the 
impact of partitioning  data is significant. Inherent in that 
discussion is the  presumption  that all segments  can  be 
decompressed  independently of the  others.  In  some 
systems, segment  ordering is required.  A given segment 
may have no meaning until the previous segments  are 
decoded. If this is the case, the  ALDC  cores can take 
advantage of this relationship  between  segments  to 
improve effective compression. 

For  instance,  when accessing a file on a  tape drive, it is 
not efficient to  decompress  the  entire file system simply to 
retrieve  one file. However, for  a  network system in which 
a  relationship  between  the  packets  already exists in the 
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packet  ordering,  that  relationship  can  be used to  improve 
compression  performance. If the  compression  context 
between segments is saved, successive segments can refer 
to byte sequences in the previous segment  and realize 
compression immediately. Since the first packet must be 
decoded first, the  second  packet can  use the history from 
the  end of first packet.  It will already  be available when 
the  second  packet is decoded.  The  compression  context 
includes  the  contents of the history and all associated 
pointers  and match counters. 

Segmented  compression  can allow part of the 
compression  context to be  retained  from  one  compression 
operation  to  another. Since  it is assumed that  a 
relationship exists among  segments,  retaining access 
to  the history buffer  between  operations significantly 
improves the  compression  ratio of each  segment. 

For example, consider Figure 6, which shows  original 
data  partitioned  into  four  segments.  Assume  that  the 
history buffer is reset  between original segments  C2  and 
C,. In  order  to  decompress  segment  C,, it is necessary to 
decompress  both  segments C, and  C,, in order. Likewise, 
it is necessary to  decompress  segments C,,, C,,  and C,, in 
order,  to access data within the  third  segment.  The  fourth 
segment is independent of all previous segments, so it may 
be  decompressed by itself. As with compression  without 
segments, it is necessary to  decompress all of the previous 
data  from  the  last history reset  to  retrieve  a given byte 
within that  segment. 

In Figure 7, paper1 is again compressed with various 
segment sizes. The new data  represents puperl compressed 
while retaining  the  compression  context  between  segments. 
The effect of the  end-of-segment  marker  and  broken-byte- 
sequence  matches  can  be  seen  at very small segment sizes. 
The  end-of-segment  marker  adds  thirteen  bits  to  the 
compressed  data  stream, causing minor  expansion.  Broken 
byte sequences  result in multiple copy code words of 
smaller copy lengths  or  literals replacing  copy code 
words of larger  matches. As segment sizes increase,  the 
compression  ratio  approaches  the  continuous-stream 
compression  ratio much earlier  than  independent 
segments  do.  The  result is almost  constant  compression 
independent of segment size. Allowing the compression 
context to  be  retained  between  segments improves 
ALDC's ability to compress  segmented  data. 

Extending  segmented  compression 
As applications using data  compression evolve, more 
intricate  data  structures  are  required. In late 1997, the 
Linear  Tape-Open (LTO) [5] alliance,  consisting of the 
Hewlett-Packard,  Seagate,  and IBM companies,  proposed 
a  standard  to  unite  a  fragmented  tape-drive industry. 
The  Linear  Tape-Open  Data  Compression  (LTO-DC)' 

I Llncar  Tape-Open Data Compression spccifications (not yet releascd). 
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specification  defines a  format with variable-length 
segments  and provides for  methods  to minimize expansion 
and recover from system errors.  This  advanced  form of 
partitioning is supported by the new embedded lossless 
data  compression  (ELDC)  core. 

segments, such  as blocks, clusters, files, etc.  Each raw 
segment can be  compressed  to  form  a  record, which may 
be collected into  a  formatted block. Formatted block  size 
is programmable  and  can  be configured to comply with the 
LTO specifications.  Additionally, the  LTO specification 
defines the  generation of decompression access points. 
Access points within each  compressed  formatted block 
correspond  to a location  at which the history was reset. 
Extraction of a  record  from  the  compressed  data is 
accomplished by decompressing  from  the  preceding access 
point.  During  compression,  the  ELDC  core  tracks  record 
and  formatted block boundaries  and  automatically  resets 
the history to  create  an access point.  The  location of 
the access point within the  compressed  data  stream is 
provided through  status  registers. 

The  ELDC  core also reduces  the  overhead  for 
error recovery by dividing records  into  one  or  more 
subsegments, known  as bursts, as  shown  in Figure 8. 
A  compressed  burst is the smallest  identifiable  block 
of compressed  data  generated by the  ELDC  core,  and 
is padded  to  a  four-byte  boundary.  Each  burst is 
terminated by an  end-of-burst  (EOB)  control  code.  The 
final burst is terminated by either  an  EOB  or  the  end-of- 
record  (EOR)  control  code.  This  feature  provides  the 
ability to  correlate  compressed  data blocks to  data  bus 
transfers,  independently of the  overall  record size. If a 
very large  record is divided into  smaller  bursts, a bus 
parity error within a single bus  transfer  does  not 
necessitate  the recovery of the  entire  record. 
Retransmission  and  compression  can  occur  on  the 
failed burst  boundary. 

ELDC  core.  The LTO-DC format defines a  method of 
indicating two alternate  compressed  data  modes within 
the  compressed  data  stream.  The first mode is composed 
of ALDC  compressed  data,  and  the  second  mode is 
composed of raw data.  The  ELDC  core switches  optimally 
between  the two modes  to minimize  any potential  data 
expansion. 

graphed in Figure 9 shows the effects of the  mode- 
changing  abilities of the  ELDC  core.  The  compression 
ratio  obtained  from  the original ALDC  compression 
algorithm  decreases  to 0.89:l (12.5% data  expansion) 
as the  randomness of the raw data  approaches 100%. 
However,  when  the  ELDC scheme-swapping algorithm is 
applied  to  the  same  data,  the  compression  ratio stabilizes 
around 1:l as the  randomness of the raw data  increases. 

In this format, raw data  can  be  partitioned  into  relevant 

The  artifact of data  expansion is also addressed by the 

Experimentation with raw data of varying randomness 
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Summary 
With  the increasing need  to  integrate as much  function as 
possible into VLSI applications,  the  ALDC  and  ELDC 
cores provide flexible, lossless data  compression  solutions. 
The system integrator  must  consider  the size of the history 
and how the  data is managed  to  optimize  compression 
performance in a particular  application. By providing 
automatic  data  segmentation  and history control,  the 
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ALDC core provides a  compressionidecompression 
solution  for  many  system  environments.  The ELDC core 
extends  this  architecture  to  work  with  variable-length 
segments  with  burst  controls,  error  recovery,  and 
expansion  minimization  to  address  the  requirements of 
advanced  systems.  The  ALDC  and ELDC cores  continue 
to evolve to meet  the needs of today’s  complex  systems. 
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