Design
considerations
for the ALDC

cores

by M. J. Slattery
F. A. Kampf

The IBM adaptive lossless data compression
(ALDC) family of products uses a derivative
of Lempel-Ziv encoding to compress data.
Several variables affect the compression
performance of the ALDC algorithm: data
content, history size, and data extent. As
ALDC compression is integrated into different
applications, restrictions are placed upon
these variables that affect the overall
compression performance of the system. More
complex applications require further support
for higher-order data structures such as
variable-length segments, error recovery, and
expansion. The IBM Blue Logic ALDC and
embedded lossless data compression (ELDC)
cores have been developed to work in these
application environments. These cores and
the issues associated with integrating data
compression into a system are discussed.

Introduction

As a general compression technique, the Lempel-Ziv
algorithm [1] integrates well into systems required to
handle many different data types. This algorithm processes
a sequence of bytes by keeping a recent history of the
bytes processed and pointing to matching sequences within
the history. Compression is performed by replacing
matched byte sequences with a copy pointer and length
code that together are smaller in size than the replaced

byte sequence. Once the history is filled, it adapts to
incoming data to represent the last N bytes. Matching byte
sequences that propagate beyond the extent of the history
continue to match until the maximum codable length has
been reached. The amount of compression that occurs is
determined by the data content, the history size, and the
amount of data processed.

When data compression is integrated into a system,
that system applies structure to the data. Depending
upon the system, the complexity of the structure varies.
For instance, data stored on hard disks and tapes is file-
oriented, but for hard disks, each file is a collection of
discrete clusters. The entire file is accessed on the storage
media independent of the underlying structure. In
communication systems, data is partitioned into small
blocks, packets, or frames prior to being transmitted.
Along the way, the data blocks may be multiplexed with
other data blocks before reaching their final destination.
In each of these systems, the structure is created to help
manage the data.

Invariably, this results in a tradeoff of less favorable
compression performance for improved data access. In
situations where the data is partitioned into segments,
effective compression decreases when the segments are
compressed individually. If sequential access to the data
segments can be guaranteed, segmented compression
can allow for the retention of the compression context
between compression operations. This enhances the
compression ratio by taking into account the inherent
dependency between consecutive segments of data. Other

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-bascd and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

M. J. SLATTERY AND F. A. KAMPF

747

748

| o _ . ?iawdata“' ' i] |

I . - V. — Con;pre.ss;ad data - - ‘ J

Compression.

12

10F

1024 2048

éompressed file size reduction
relative to 512-byte history (%) -

OF —_ —— !
.
.) '
-2 S
CIZE AN ET RS e e
&&.ﬁuo&oooummanu& <3
§8°REREREEE © = g g
& & &A=& aTa , 5.8

File orderéd by 'inéreasing originél size

Effect of increasing history size.

system considerations, such as variable-length segments,
error recovery, and expansion, further complicate the
integration of data compression into a system.

IBM has developed a family of products that employ a
proprietary version of Lempel-Ziv encoding called IBM
LZ1. The adaptive lossless data compression (ALDC)
products use this proprietary hardware-encoding scheme
to produce superior compression and data throughput.
The ALDC and embedded lossless data compression
(ELDC) cores in the IBM Blue Logic core library apply
the ALDC algorithm to systems that use data structures to
manage data. The ALDC and ELDC cores provide the
flexibility required to handle the many different data
compression situations presented in today’s computer
systems.

This paper describes the important factors associated
with compressing data with the-ALDC algorithm. It
examines complications introduced when data is structured

M. J. SLATTERY AND F. A. KAMPF

and discusses enhancements to compression by sharing
compression contexts between segments. Finally, the new
features of the ELDC core that address variable-length
segments, error recovery, and minimization of expansion
are presented.

Factors affecting performance

The first ALDC products (ALDC-5S, -208S, and -40S) [2]
compress data as one continuous stream of data. This data
is compressed by analyzing successive bytes until all bytes
have been processed. As each byte is processed, it is
compared against the most recent bytes in the history.

As bytes are compared, the ALDC engine keeps track of
consecutive matching bytes. When the longest matching
sequence of bytes is determined, a code word is inserted
into the compressed data stream that points to the
location and the length of the matching sequence. If no
matches are found, the data is coded as a literal and also
inserted into the compressed data stream. Compression is
realized when byte sequences are replaced by smaller code
words. The details of the ALDC algorithm are presented
in a companion paper [3] by Craft.

When data is compressed as a continuous stream, no
indication of the former data structure is maintained in
the compressed form. That is to say, any boundary in the
original data will be indistinguishable in the compressed
data. To retrieve any bytes within the original data, it will
be necessary to decompress the entire preceding data
structure.

Figure 1 shows a sample compression. The end marker
(EM) denotes the end of the compressed data stream.

The achievable compression performance depends
most significantly upon the content of the data being
compressed. If many long, matching byte sequences are
encountered, compression performance will be maximized.
However, if entirely random data dominates, creating
only literal code words, the compressed data stream
will expand 12.5%. Unfortunately, in most cases, the
application cannot control the nature of the data it is
working with.

One factor the application can control is the size of the
history. The size of the history affects compression: The
larger the history, the more sequences that are available
to be referenced. Although the average code-word size
does increase slightly as the history depth increases,
effective compression can increase. In the ALDC cores,
the history buffer can be configured in sizes of 512, 1024,
and 2048 bytes. Figure 2 shows the impact of the history
size on compression for a group of files known as the
Calgary Corpus [4], arranged by increasing original file
size. The Calgary Corpus represents a range of typical file
types that would appear in a computer system. In most
cases, the larger history enables a higher compression
ratio. Although this is dependent upon the type of data

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

9.00

8.00f

7.00 F

2

«éG.OOr

§ 500}

§4.00-

E 300}

9]

200 F

Loof

0.00
YT LT BT BU B8N 2T
8§ 8.2 ¢ g P g LED B 4 ¥
TECERERESES TGRS

Files ordered by increasing original size

Compression results for the Calgary Corpus.

used, diabolical data types are minimally affected by a
larger history buffer size.

The final factor that affects compression performance
is the size of the data to be compressed. The graph
in Figure 3 shows a plot of compression ratios for the
Calgary Corpus collection of files. The content of the data
modulates compression performance much more than the
file size. For large volumes of data, the ALDC algorithm
is relatively independent of the number of bytes
processed. Size becomes significant when the byte counts
approach the depth of the history. This effect is discussed
further in the next section.

Segmented compression

In complex systems requiring higher levels of organization,
data is separated into smaller, more manageable segments.
Segmented data can be found everywhere, from
communication systems in CSU/DSUs to networking
protocols (Ethernet, Token Ring, and ATM) and even
personal computer file systems (hard disks, CD-ROMs,
and tape drives). Partitioning the data permits structure to
be preserved during compression and compressed data to
be multiplexed after compression. Segmented compression
divides the raw data prior to compression. Each system
presents a different set of requirements that affect data
organization and data compression.

Figure 4 demonstrates segmented compression. The raw
data is partitioned into either fixed-length segments or
variable-length segments. The compressed segment sizes
vary depending upon the specific data contained within
each segment.

One factor that inhibits effective data compression of
segmented data is the history. When each segment begins

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

| Raw data J
Y N T \ 7
\ / / / /

\ P /N p

\ /oy
|Segment CO” |SegmentC1|| | Segment C, ”

|Segment C3”

Segmented compression.

120 f

Compression ratio

110
1.00

0.90

< < < (=3 RO OD O
REZEREESSREEEEE

800
850
900
950
1000

Segment size (bytes)

Calgary Corpus file paper! compressed with various segment sizes.

with an empty history, fewer byte sequences exist to
compare against during the beginning of every segment.
As a result, the early compressed data stream consists of
more literals than copy code words. Typically, compression
is minimal while the history is being filled.

In conjunction with the history, the segment size also

affects compression. As the segment size approaches the
depth of the history, the compression performance
typically degrades. The adaptive nature of the ALDC
cores affects their ability to compress segmented data
because the probability that the history will contain any
long, matching byte sequences is greatly reduced.

In Figure 5, the file paper] from the Calgary Corpus has
been compressed with different segment sizes. Notice how
the compression ratios at the various segment sizes are
all less than 1.60:1, whereas paper! compressed as a
continuous stream of data achieves a compression ratio
of 1.79:1. As the segment size approaches the size of
the original data, the effect of partitioning the data is
minimized. This reduction in compression ratio is a result
of starting each segment with an empty history, which

M. J. SLATTERY AND F. A, KAMPF

749

750

I Raw data J
iy Iy /\ N 7
\ / / / /
\ / \\ / \\ /N /
[Segment Co” rSegment C, ” I Segment C, “ |Segment C3J|
History History
reset reset

i Dependency between compressed data segments.

3

1.90
1.80 — +

Lol /—‘-—kf

1.60 §
1.50f
140}
1.30¢
1.20F
1.10}F
100}
0.90

—=— Independent segments

Compression ratio

—+— Compression context retained

ReE2RER83 8RS RS R888RE
—_ - o t~ 00 o© G_‘

Segment size (bytes)

Calgary Corpus file paperl compressed with various segment sizes
with the compression context retained between segments.

creates fewer matching byte sequences and truncating
matching sequences at the segment boundary. By the time
the compression ratio begins to approach its aggregate
value, the segment is completed. There is not enough data
to reach peak efficiency with small segments.

Intersegment dependencies

As seen in the discussion of segmented compression, the
impact of partitioning data is significant. Inherent in that
discussion is the presumption that all segments can be
decompressed independently of the others. In some
systems, segment ordering is required. A given segment
may have no meaning until the previous segments are
decoded. If this is the case, the ALDC cores can take
advantage of this relationship between segments to
improve effective compression.

For instance, when accessing a file on a tape drive, it is
not efficient to decompress the entire file system simply to
retrieve one file. However, for a network system in which
a relationship between the packets already exists in the

M. J. SLATTERY AND F. A. KAMPF

packet ordering, that relationship can be used to improve
compression performance. If the compression context
between segments is saved, successive segments can refer
to byte sequences in the previous segment and realize
compression immediately. Since the first packet must be
decoded first, the second packet can use the history from
the end of first packet. It will already be available when
the second packet is decoded. The compression context
includes the contents of the history and all associated
pointers and match counters.

Segmented compression can allow part of the
compression context to be retained from one compression
operation to another. Since it is assumed that a
relationship exists among segments, retaining access
to the history buffer between operations significantly
improves the compression ratio of each segment.

For example, consider Figure 6, which shows original
data partitioned into four segments. Assume that the
history buffer is reset between original segments C, and
C,. In order to decompress segment C,, it is necessary to
decompress both segments C, and C, in order. Likewise,
it is necessary to decompress segments C, C,, and C,, in
order, to access data within the third segment. The fourth
segment is independent of all previous segments, so it may
be decompressed by itself. As with compression without
segments, it is necessary to decompress all of the previous
data from the last history reset to retrieve a given byte
within that segment.

In Figure 7, paperl is again compressed with various
segment sizes. The new data represents paper! compressed
while retaining the compression context between segments.
The effect of the end-of-segment marker and broken-byte-
sequence matches can be seen at very small segment sizes.
The end-of-segment marker adds thirteen bits to the
compressed data stream, causing minor expansion. Broken
byte sequences result in multiple copy code words of
smaller copy lengths or literals replacing copy code
words of larger matches. As segment sizes increase, the
compression ratio approaches the continuous-stream
compression ratio much earlier than independent
segments do. The result is almost constant compression
independent of segment size. Allowing the compression
context to be retained between segments improves
ALDC’s ability to compress segmented data.

Extending segmented compression

As applications using data compression evolve, more
intricate data structures are required. In late 1997, the
Linear Tape-Open (LTO) [5] alliance, consisting of the
Hewlett-Packard, Seagate, and IBM companies, proposed
a standard to unite a fragmented tape-drive industry.
The Linear Tape-Open Data Compression (LTO-DC)'

! Lincar Tape-Open Data Compression specifications (not yet released).

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

specification defines a format with variable-length
segments and provides for methods to minimize expansion
and recover from system errors. This advanced form of
partitioning is supported by the new embedded lossless
data compression (ELDC) core.

In this format, raw data can be partitioned into relevant
segments, such as blocks, clusters, files, etc. Each raw
segment can be compressed to form a record, which may
be collected into a formatted block. Formatted block size
is programmable and can be configured to comply with the
LTO specifications. Additionally, the LTO specification
defines the generation of decompression access points.
Access points within each compressed formatted block
correspond to a location at which the history was reset.
Extraction of a record from the compressed data is
accomplished by decompressing from the preceding access
point. During compression, the ELDC core tracks record
and formatted block boundaries and automatically resets
the history to create an access point. The location of
the access point within the compressed data stream is
provided through status registers.

The ELDC core also reduces the overhead for
error recovery by dividing records into one or more
subsegments, known as bursts, as shown in Figure 8.

A compressed burst is the smallest identifiable block

of compressed data generated by the ELDC core, and
is padded to a four-byte boundary. Each burst is
terminated by an end-of-burst (EOB) control code. The
final burst is terminated by either an EOB or the end-of-
record (EOR) control code. This feature provides the
ability to correlate compressed data blocks to data bus
transfers, independently of the overall record size. If a
very large record is divided into smaller bursts, a bus
parity error within a single bus transfer does not
necessitate the recovery of the entire record.
Retransmission and compression can occur on the
failed burst boundary.

The artifact of data expansion is also addressed by the
ELDC core. The LTO-DC format defines a method of
indicating two alternate compressed data modes within
the compressed data stream. The first mode is composed
of ALDC compressed data, and the second mode is
composed of raw data. The ELDC core switches optimally
between the two modes to minimize any potential data
expansion.

Experimentation with raw data of varying randomness
graphed in Figure 9 shows the effects of the mode-
changing abilities of the ELDC core. The compression
ratio obtained from the original ALDC compression
algorithm decreases to 0.89:1 (12.5% data expansion)
as the randomness of the raw data approaches 100%.
However, when the ELDC scheme-swapping algorithm is
applied to the same data, the compression ratio stabilizes
around 1:1 as the randomness of the raw data increases.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

BurstR, BurstR, BurstR,

\

\\ // \\\\\ ///’ A
feox]

Record C,

Compression of a record.

Compression ratio

Embedded compression

1 L
40 60 80
Randomness of raw data (%)

o i

¢ LZ1 vs. embedded compression performance with swapping.

Summary

With the increasing need to integrate as much function as
possible into VLSI applications, the ALDC and ELDC
cores provide flexible, lossless data compression solutions.
The system integrator must consider the size of the history
and how the data is managed to optimize compression
performance in a particular application. By providing
automatic data segmentation and history control, the

M. J. SLATTERY AND F. A. KAMPF

ALDC core provides a compression/decompression
solution for many system environments. The ELDC core
extends this architecture to work with variable-length
segments with burst controls, error recovery, and
expansion minimization to address the requirements of
advanced systems. The ALDC and ELDC cores continue
to evolve to meet the needs of today’s complex systems.

Acknowledgments

This paper would not have been possible without the
guidance and inspiration of Joan Mitchell, the enthusiastic
interest of Stuart Burroughs, the support of Bill Lawrence,
the excellent technical work of David Craft, Julie Cubino,
Rudy Farmer, Rob Gibson, Joe Hamel, and Oscar
Strohacker, and the unqualified support of the authors’
managers, Mark Merrill and Ted Lattrell.

References

1. J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Trans. Info. Theory
IT-23, 337-343 (1977).

2. http:/jwww.chips.ibm.com/productsialdc/index.html.

3. D. J. Craft, “A Fast Hardware Data Compression
Algorithm and Some Algorithmic Extensions,” IBM J. Res.
Develop. 42, 733-745 (1998, this issue).

4. T. C. Bell, 1. H. Witten, and J. G. Cleary, “Modeling
for Text Compression,” Computing Surv. 21, 557-591
(December 1989).

5. http:/iwww.lto-technology.com.

Received May 28, 1998; accepted for publication
October 23, 1998

752

M. 1. SLATTERY AND F. A. KAMPF

Michael J. Slattery IBM Microelectronics Division,
Burlington facility, Essex Junction, Vermont 05452
(mslatter@us.ibm.com). Mr. Slattery graduated from the
University of Notre Dame with a B.E. degree in electrical and
computer engineering. He joined the IBM Microelectronics
Division in 1990 and has worked in VLSI failure analysis,
polyimide films and via process engineering, encryption
product design, adaptive and lossless data compression
product design, arithmetic coding for VLSI implementations,
and 2D graphical acceleration.

Francis A. Kampf IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (kampf@us.ibm.com).
Mr. Kampf attended Temple University, earning a B.S. in
engineering, magna cum laude, in 1987. He joined IBM
Kingston in 1988 and participated in the development

of an FDDI-based interconnect controller. His continued
development effort in the communications interconnect arena
resuited in a cooperative effort with the IBM Zurich Research
Laboratory and the demonstration of a prototype gigabit
WAN/LAN at Telecom’91. He joined the newly formed IBM
POWERparallel group in 1992 and participated in the
development of the Scalable POWERparallel (SP) line of
massively parallel computers. Mr. Kampf’s work on the
communication subsystem has led to eleven pending patent
applications. In 1996, he joined the IBM Blue Logic core
development area at IBM Burlington to develop data
compression cores. His work includes the development of the
JBIG-ABIC and ALDC/BLDC and ELDC cores.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

