The Qx-coder
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The IBM Adaptive Bilevel Image Compression
(ABIC) algorithm depends upon the hardware-
optimized Q-coder. The Joint Bi-level Image
Experts Group (JBIG) settled upon a software-
optimized QM-coder. This paper explores

the incompatibilities of the hardware- and
software-optimized binary arithmetic coding
conventions and reports on the solution that
allowed a merged Qx-coder in hardware.

A unique hardware solution is presented

for the termination of the JBIG data stream
(CLEARBITS). The probability estimation is
presented in a common format. Detailed
flowcharts are included in the Appendix. An
ASIC core is available that supports both the
ABIC and JBIG bilevel data compression
standards using this merged Qx-coder.

1. Introduction

Binary arithmetic coding is a data compression method
that generates compressed data as a finite-precision
fraction which identifies an interval on the number line.
Each picture element (pel) is encoded or decoded on the
basis of a probability estimate which determines where
the binary arithmetic coder splits the interval into two
subintervals. The value of the pel determines which
subinterval becomes the new interval. When the size of
the new interval drops below a minimum value, Anin,
renormalization shifts the precision until it is greater than
or equal to the minimum size. With each shift, a bit is
produced for the compressed data stream.

Some conventions have to be established about the
order of the symbols. For example, the lower interval can
be assigned to a 0 and the upper interval assigned to the
1. Alternatively, the lower interval can be assigned to the
more probable symbol (MPS) or the less probable symbol
(LPS); or the largest subinterval can always be assigned to
the more probable symbol. Hardware conventions choose

the upper interval as the MPS and the lower interval as
the LPS. Software conventions select the lower interval
as the MPS and the upper interval as the LPS.

Adaptive binary arithmetic coding uses information
about the surrounding pels, the context, to modify the
probability estimate. In fact, separate probability estimates
are maintained for all possible contexts. A model
generates context-pel pairs for the binary arithmetic coder
based upon a template. The model must provide the same
context for encoding and decoding. The probability
estimate of a given context may be changed only when a
renormalization is required.

IBM Adaptive Bilevel Image Compression (ABIC)
employs the Q-coder for its adaptive binary arithmetic
coder [1, 2]. The Q-coder was designed with parallel
hardware conventions. Its model template consists of
seven fixed, nearby pels. For each context, the expected
symbol (0 or 1) and an indication of the estimated
probability of the unlikely symbol are stored. After
initialization of the 128 contexts, the context-decision/pel
pairs are input into the binary arithmetic encoder to
produce the compressed data stream. The international
Joint Bi-level Image Experts Group created the
international standard commonly known as JBIG, which
employs a software-convention-based arithmetic coder, the
QM-coder [3]. The JBIG sequential model template
consists of ten nearby pels, one of which can move,
creating 1024 probability-estimation contexts to track.
Further details regarding ABIC and JBIG models and
architectures are available in companion papers [4, 5].

Figure 1(a) illustrates the Q-coder hardware-optimized
symbol-ordering conventions. The C register (C) holds the
least significant bits of the compressed data and points to
the base of the less-probable-symbol (LPS) interval. The
LPS probability estimate Qe is the size of the LPS
interval. The split between the LPS and the more-
probable-symbol (MPS) intervals is at C + Qe and
belongs to the MPS interval. The complete interval size is
held in the A register (&). The sum, C + A, points to the
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Binary arithmetic coding symbol order: (a) Q-coder hardware
conventions with MPS/LPS; (b) QM-coder software conventions
with LPS/MPS; (c) QM-coder converted to hardware conventions
with MPS/LPS.
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top of the interval and is not part of the MPS segment.
The dashed line at C + A — 1 shows the largest value
that C can reach.

The software-optimized version of the Q-coder in
Reference [6] kept the symbol-order conventions shown in
Figure 1(a). Extra cycles to identically match the hardware
output always occurred outside the inner loops. The
hardware-optimized Q-coder-compressed data stream was
constructed while the code stream was pointing to the top
of the MPS interval. During the termination procedure,
the data stream was moved to the bottom of the LPS
segment and thus matched the hardware-generated
compressed data. The hardware bit-stuffing conventions
were carefully duplicated in the software algorithm.

When the International Organization for
Standardization and the International Electrotechnical
Commission (ISO/IEC) and the International
Telecommunications Union—Terminal Sector (ITU-T),
formerly known as the Consultative Committee of the
International Telephone and Telegraph (CCITT), working
jointly as JBIG with the Joint Photographic Experts Group
(JPEG) [7, 8], arrived at a common QM-coder, it was
defined in terms of a different optimal software
convention. Figure 1(b) shows the JBIG/JPEG QM-coder
conventions. For the QM-coder, the MPS interval
occupied the lower portion of the number line. The point
between the interval was assigned to the upper LPS
interval. The code stream pointed to the base of the lower
MPS interval.

The QM-coder, derived from ABIC, was designed with
serial software conventions that make sharing of hardware
difficult. However, the basic concept of the conversion
of software-optimized arithmetic coding into hardware-
optimized structures is known [9, 10]. Figure 1(c) shows a
hardware-optimized QM-coder, in which the MPS over
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LPS (MPS/LPS) convention is used. The last valid value of
the interval in Figure 1(b), C + A — 1, is mapped to the
base of the LPS interval in Figure 1(c). The base of the
LPS interval, C + A — Qe, maps to C + Qe — 1,
which is the top of the LPS interval. Finally, the base of
the MPS interval becomes the last valid value included in
the MPS interval, ¢ + A — 1.

This switch in conventions makes it possible to merge
the Q-coder and the QM-coder in logic, adopting
hardware conventions. The rest of this paper describes in
detail how the two arithmetic coders were merged into the
Qx-coder. Section 2 discusses more of their differences
that must be resolved in the definition of the Qx-coder.
Section 3 defines the Qx-coder and illustrates the
integration of the Q-coder and QM-coder. Section 4
focuses upon a unique hardware solution to the encoder’s
termination technique for the JBIG-compressed data
stream known as CLEARBITS. Section 5 discusses the
various probability estimators and casts them into a
common format. Section 6 summarizes the differences
between the Q-coder and QM-coder, and the solutions
provided by the Qx-coder. The Appendix contains detailed
flowcharts implementing the Qx-coder encoder and
decoder, and their descriptions.

2. Differences between the Q-coder and the
QM-coder

Resolving the fundamental differences between hardware
and software conventions is an essential first step in
creating the merged Qx-coder. In addition, several other
issues must be resolved: register precision, probability-
estimation table, carry-over resolution, termination
procedures, and byte stuffing.

The Q-coder Qe values have 12 bits of precision. The A
register needs a 13th bit. This most significant bit is key to
the renormalization-driven probability-estimation process.
Whenever A drops below 0x1000, the index I of the
MPS probability Qe is changed for the context CX just
encoded/decoded.

The QM-coder Qe values have 15 bits of precision. The
16th bit in the A register drives the probability-estimation
process. Whenever A drops below 0x8000, the index I is
changed for the current context CX. During initialization
a 17th bit can be needed for the A register.

To ensure that carries out of the C register could not
affect more than the most recently generated compressed
byte in the encoder, the Q-coder uses bit stuffing. After
every OxFF byte (aligned on byte boundaries), an extra bit
is stuffed into the most significant bit of the next byte.
The resolution of any carries that land in the stuffed-bit
position is done in the decoder. The newly encoded
compressed byte is extracted from the C register in such
a way that at most one carry can propagate into it [9].
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Table 1 Encoder register assignments.

Coder msb Isb
C register Q fEEEEFEE bbbbbbbb SSSSXXXX XXXXXXXX
Qin Qx 0000cbbb bbbbbsss xxxxxxxx xxxxx000
oM 0000cbbb bbbbbsss XXXXXXXX XXXXXXXX
QM in Qx 0000cbbb bbbbbsss XXXXXXXX XXXXXXXX
A register Q 000laaaa aaaaaaaa
Q in Ox laaaaaaa aaaaal00
oM 00000000 0000000a aaaaaaaa aaaaaaaa
QM in Qx aaaaaaaa aaaaaaaa
Amin Q 00010000 00000000
Qin Qx 10000000 00000000
oM 10000000 00000000
QM in Qx 10000000 00000000
The QM-encoder is designed to wait to output Table 2 Decoder register assignments.
compressed bytes until any carries have been resolved in
the encoder. A stack counter (SC) records the number of Coder msb Isb
bufferefi OxFF bytes. This counter typlca-lly contains small Chigh register O P
counts in the range of 1 to 3. However, it could Q in Ox KRXHKHHK XX xxbbb
potentially hold the entire compressed data stream and QM KXXKKKXK XXKXKKXX
create a severe latency problem [11]. Since carries are QM in Qx XXXXXXKK KRXXXKXK
resolved in the encoder, bit stuffing is not needed. Clow register Q nnnnnnnn fEEEEFEE
However, byte stuffing of 0x00 bytes after every Q in Qx bbbbb000 00000000
compressed OxFF byte is used to prevent the accidental QM bbbbbbbb 00000000
. QM in Qx bbbbbbbb 00000000
generation of marker codes.
During the termination of Q-coding, the bits remaining A register Q 000laaaa aaaaaaaa
in the C register are shifted into the data stream. This has Q in Qx laaaaaaa aaaaa000
| R oM aaaaaaaa aaaaaaaa
the nice property that the C register returns to 0x0000 OM in Ox asaaaaaa asaaaaaa

when decoding has completed; otherwise, a nonzero value
indicates that errors have occurred.

Since trailing 0x00 bytes may be discarded before
the marker codes ending a JBIG stripe or image, the
termination procedure for the QM-coder is not a simple
flushing of the C register. Instead, the procedure
CLEARBITS finds a point inside the interval with the
most trailing 0 bits.

3. Qx-coder defined

The Qx-coder takes advantage of the fact that the Q-coder
and QM-coder are both finite-precision arithmetic coders
and use renormalization-driven probability estimation. The
Q-coder hardware-optimized symbol order was chosen.
This meant that the QM-coder had to be converted to
hardware conventions without modifying the compressed-
data bit streams. This was accomplished by inverting the
symbol order, as shown in Figure 1(c) and then inverting
the compressed data as the bytes are output.

The Qx-coder had to choose a register alignment. The
QM and Q entries in Table 1 and Table 2 show the
encoder and decoder register assignments as given in
References [3] and [6], respectively. Since the precision of
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the Qe values is 12 bits for the Q-coder and 15 bits for the
QM-coder, it was natural to shift the Q-coder values left
three bits in the register to line them up with the more
significant bits of the QM-coder values. This creates a

common Amin value for triggering renormalizations. Table
1 shows that this aligns the output byte, bbbbbbbb, nicely.
The extra spacer bit, s, in the Q-coder was a concern
until it was realized that the spacer-bit definition changed
between the documentation of the Q-coder and the QM-
coder. The Q-coder documentation had as many xs as the
precision of the Qe values. The QM-coder documentation
has one more x than the precision of its Qe values, so by
the more recent definition, both have just three spacer
bits. The flag bits £ in the most significant byte of the
Q-coder C register are not needed because a counter
CT keeps track of when to output bytes. The carry bit ¢
is shown to the left of the output byte position. If the
previous byte was a OxFF, the carry bit will be the most
significant bit of the output byte at the stuffed-bit
position.
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T = (A -1+ C) and OxXFFFF0000

if T <cC

C =T + 0x8000
else

cC=T7T
endif

QM-coder procedure CLEARBITS.

T = C OR 0x0000FFFF
ifT>(C+A-1)
C + T — 0x8000

else
cC =7
endif

QM-coder procedure CLEARBITSx for hardware conventions.

Chigh = chigh

if (0x10000 > (Clow + Alow))
Clow = Ox7FFF

else
Clow

endif

0xFFFF

A simplified CLEARBITSx.

The A register has to be kept in alignment with the C
register and therefore is also shifted left three bits for the
Q-coder in the Qx-coder. It still fits in a 16-bit register.
The extra 17th bit of precision in the QM-coder was
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C[14:0] A[14:0]

\*/

Carry
Cl15]
Cl15]
C[31:28] = 0.0
C[27:16] = C[27:16)
Cl14:0] = 1.1

QM-coder procedure CLEARBITSx in hardware.

dropped. The JBIG specification explicitly states that the
17th bit can be avoided if initialization to 0x0000 produces
the same output after the first subtraction as initialization
to 0x10000 in the low-order 16 bits.

The decoder uses these same definitions of the A
register and the Amin value. The entire renormalization-
driven probability-estimation process is identical between
encoder and decoder. Table 2 shows the decoder register
assignments. The Q-coder registers are again shifted left
three bits to align them with the QM-coder. The flag bits
f in the least significant byte of the Q-coder Clow register
are not needed because a counter CT identifies when to
input another compressed data byte. The Q-coder input
byte bits n are relabeled as b bits and are also shifted left
three bits. The three bbb bits in the Chigh register do
not disturb the decoding process because all tests against
Chigh are “greater than or equal to” comparisons.

The QM-coder always has marker codes that follow the
arithmetic-coded compressed data. Trailing 0x00 bytes may
have been removed, so any missing data is filled in as 0x00
bytes. The Q-coder expects sufficient bits to completely
decode the final decision in the compressed data stream.
Since there are no marker codes, the end of compressed
data will not always be known. To prevent waiting for
nonexistent data upon a request for more data three shifts
before the termination of compression, the Q-coder data
is shifted up in the C register.

4. Hardware-optimized CLEARBITS
Since the Qx-coder selected the Q-coder symbol-ordering
conventions, the flushing of the C register to terminate
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Table 3 Qx-coder probability-estimation table for Q-coder.

Index Qe NMPS NLPS SWITCH Qe (binary)
0 5608 1 0 1 0101 0110 0000 1000
1 5408 2 0 0 0101 0100 0000 1000
2 5008 3 1 0 0101 0000 0000 1000
3 4808 4 2 0 0100 1000 0000 1000
4 3808 5 3 0 0011 1000 0000 1000
5 3408 6 4 0 0011 0100 0000 1000
6 3008 7 5 0 0011 0000 0000 1000
7 2808 8 5 0 0010 1000 0000 1000
8 2408 9 6 0 0010 0100 0000 1000
9 2208 10 7 0 0010 0010 0000 1000
10 1c08 11 8 0 0001 1100 0000 1000
11 1808 12 9 0 0001 1000 0000 1000
12 1608 13 10 0 0001 0110 0000 1000
13 1408 14 11 0 0001 0100 0000 1000
14 1208 15 12 0 0001 0010 0000 1000
15 0c08 16 13 0 0000 1100 0000 1000
16 0908 17 14 0 0000 1001 0000 1000
17 0708 18 15 0 0000 0111 0000 1000
18 03508 19 16 0 0000 0101 0000 1000
19 0388 20 17 0 0000 0011 1000 1000
20 02¢8 21 18 0 0000 0010 1100 1000
21 0298 22 19 0 0000 0010 1001 1000
22 0138 23 20 0 0000 0001 0011 1000
23 00b8 24 21 0 0000 0000 1011 1000
24 0098 25 21 0 0000 0000 1001 1000
25 0058 26 23 0 0000 0000 0101 1000
26 0038 27 23 0 0000 0000 0011 1000
27 0028 28 25 0 0000 0000 0010 1000
28 0018 29 25 0 0000 0000 0001 1000
29 0008 29 27 0 0000 0000 0000 1000

Q-coding basically remained unchanged. However, the
QM-coder software-optimized CLEARBITS procedure,
designed to clear the most trailing bits, had to be
converted to a hardware-optimized procedure
CLEARBITSx designed to set the most trailing bits to 1.
Then the output inversion process would clear those bits.

Figure 2 gives the QM-coder CLEARBITS procedure
derived from Figure 29 in Reference [3]. A variable T
(TEMP in the JBIG specification) is set to the top of the
valid interval (T = A - 1 + C), and then its 16 least
significant bits are cleared (T = T AND OxFFFF0000). If
T is no longer in the interval (T < ), 0x8000 is added
back into T before setting C to T. This serial software
approach is awkward in hardware.

Figures 1(b) and 1(c) show that the software-optimized
upper point in the interval, (C + A — 1), is mapped
directly to . So a CLEARBITSx procedure with hardware
conventions must set as many bits of C to 1 as possible,
and, if the result is too large for the valid interval,
decrement it by 0x8000. Figure 3 defines this
CLEARBITSx procedure. For the CLEARBITSx shown in
Figure 3, let Chigh and Clow be the nonoverlapping most
significant and least significant 16 bits of C, respectively.
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Since A uses only 16 bits, A equals Alow. Substituting
these new definitions for C and A and eliminating the
temporary variable T produces an alternate simplified
CLEARBITSX, given in Figure 4.

Since Alow (after any required renormalizations) is
always greater than or equal to 0x8000, the test is reduced
to a bit test on ¢ [15]. If the most significant bit of Clow
is set (C[15] = 1), the test will always fail. If that bit is
zero, the 15 low-order bits of A are added into C to allow
a potential carry to set C[15]. The 15 low-order bits of C
are set to 1s. The simplicity of this hardware is shown in
Figure 5. A flowchart version of this figure is used for
CLEARBITSx in Figure 16, shown later.

5. Probability estimation

The Q-coder and the QM-coder are both renormalization-
driven probability estimators [3, 7, 8, 12]. Instead of
collecting statistics on the occurrence of 0 and 1 decisions
for each context CX and calculating probabilities,
predetermined probabilities are referenced in a
probability-estimation table. An index (I) into the
probability-estimation table is saved at each context. From
this index, the Qe value can be generated. The Qx-coder
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Table 4 QM-coder probability-estimation table.

S N
I w 1 w
n N N I n N N 1
d M L T d M L T
e Q P P C Qe e Q P P C Qe
x e N N H (binary) x e N S H (binary)
0 5A1D 1 1 1 0101 1010 0001 1101 60 00F6 61 58 0 0000 0000 1111 0110
1 2568 2 14 0 0010 0101 0110 1000 61 00CB 62 59 0 0000 0000 1100 1011
2 1114 3 16 0 0001 0001 0001 0100 62 00AB 63 61 0 0000 0000 1010 1011
3 080B 4 18 0 0000 1000 0000 1011 63 008F 32 61 0 0000 0000 1000 1111
4 03D8 5 20 0 0000 0011 1101 1000
5 01DA 6 23 0 0000 0001 1101 1010 64 5B12 65 65 1 0101 1011 0001 0010
6 00E3 7 25 0 0000 0000 1110 0101 65 4D04 66 80 0 0100 1101 0000 0100
7 006F 8 28 0 0000 G000 0110 1111 66 412C 67 81 0 0100 0001 0010 1100
8 0036 9 30 0 0000 0000 0011 0110 67 37D8 68 82 0 0011 0111 1101 1000
9 001A 10 33 0 0000 0000 0001 1010 68 2FES8 69 83 0 0010 1111 1110 1000
10 000D 11 35 0 0000 0000 0000 1101 69 293C 70 84 0 0010 1001 0011 1100
11 0006 12 9 0 0000 0000 0000 0110 70 2379 71 86 0 0010 0011 0111 1001
12 0003 13 10 0 0000 0000 0000 0011 71 1EDF 72 87 0 0001 1110 1101 1111
13 0001 13 12 0 0000 0000 0000 0001 72 1AA9 73 87 0 0001 1010 1010 1001
73 174E 74 72 0 0001 0111 0100 1110
14 SATF 15 15 1 0101 1010 0111 1111 74 1424 75 72 0 0001 0100 0010 0100
15 3F25 16 36 0 0011 1111 0010 0101 75 119C 76 74 0 0001 0001 1001 1100
16 2CF2 17 38 0 0010 1100 1111 0010 76 0F6B 77 74 0 0000 1111 0110 1011
17 207C 18 39 0 0010 0000 0111 1100 77 0D51 78 75 0 0000 1101 0101 0001
18 17B9 19 40 0 0001 0111 1011 1001 78 0BB6 79 77 0 0000 1011 1011 0110
19 1182 20 42 0 0001 0001 1000 0010 79 0A40 48 77 0 0000 1010 0100 0000
20 0CEF 21 43 0 0000 1100 1110 111
21 09A1 22 45 0 0000 1001 1010 0001 80 5832 81 80 1 0101 1000 0011 0010
22 072F 23 46 0 0000 0111 0010 1111 81 4D1C 82 88 ] 0100 1101 0001 1100
23 055C 24 48 0 0000 0101 0101 1100 82 438E 83 89 0 0100 0011 1000 1110
24 0406 25 49 0 0000 0100 0000 0110 83 3BDD 84 90 0 0011 1011 1101 1101
25 0303 26 51 0 0000 0011 0000 0011 84 34EE 85 91 0 0011 0100 1110 1110
26 0240 27 52 0 0000 0010 0100 0000 85 2EAE 86 92 0 0010 1110 1010 1110
27 01B1 28 54 0 0000 0001 1011 0001 86 299A 87 93 0 0010 1001 1001 1010
28 0144 29 56 0 0000 0001 0100 0100 87 2516 71 86 0 0010 0101 0001 0110
29 00F5 30 57 0 0000 0000 11 0101
30 00B7 31 59 0 0000 0000 1011 0111 88 5570 89 88 1 0101 0101 0111 0000
31 008A 32 60 0 0000 0000 1000 1010 89 4CA9 90 95 0 0100 1100 1010 1001
32 0068 33 62 0 0000 0000 0110 1000 90 44D9 91 96 0 0100 0100 1101 1001
33 004E 34 63 0 0000 0000 0100 1110 91 3E22 92 97 0 0011 1110 0010 0010
34 003B 35 32 0 0000 0000 0011 1011 92 3824 93 99 0 0011 1000 0010 0100
35 002C 9 33 0 0000 0000 0010 1100 93 32B4 94 99 0 0011 0010 1011 0100
94 2E17 86 93 0 0010 1110 0001 0111
36 SAE1l 37 37 1 0101 1010 1110 0001
37 484C 38 64 0 0100 1000 0100 1100 95 56A8 96 95 1 0101 0110 1010 1000
38 3A0D 39 65 0 0011 1010 0000 1101 96 4F46 97 101 0 0100 1111 0100 0110
39 2EF1 40 67 0 0010 1110 1111 0001 97 47E5 98 102 0 0100 0111 1110 0101
40 261F 41 68 0 0010 0110 0001 1111 98 41CF 99 103 0 0100 0001 1100 1111
41 1F33 42 69 0 0001 1111 0011 0011 99 3C3D 100 104 0 0011 1100 0011 1101
42 19A8 43 70 0 0001 1001 1010 1000 100 375E 93 99 0 0011 0111 0101 1110
43 1518 44 72 0 0001 0101 0001 1000
44 1177 45 73 0 0001 0001 o111 0111 101 5231 102 105 0 0101 0010 0011 0001
45 0E74 46 74 0 0000 1110 0111 0100 102 4COF 103 106 0 0100 1100 0000 1111
46 0BFB 47 75 0 0000 1011 1111 1011 103 4639 104 107 0 0100 0110 0011 1001
47 09F8 48 77 0 0000 1001 1111 1000 104 415E 99 103 0 0100 0001 0101 1110
48 0861 49 78 0 0000 1000 0110 0001
49 0706 50 79 0 0000 0111 0000 0110 105 5627 106 105 1 0101 0110 0010 0111
50 05CD 51 48 0 0000 0101 1100 1101 106 50E7 107 108 0 0101 0000 1110 0111
51 04DE 52 50 0 0000 0100 1101 1110 107 4B8S 103 109 0 0100 1011 1000 0101
52 040F 53 50 0 0000 0100 0000 111
53 0363 54 51 0 0000 0011 0110 0011 108 5597 109 110 0 0101 0101 1001 0111
54 02D4 55 52 0 0000 0010 1101 0100 109 504F 107 111 0 0101 0000 0100 1111
55 025C 56 53 0 0000 0010 0101 1100
56 01F8 57 54 0 0000 0001 1111 1000 110 SALQ 111 110 1 0101 1010 0001 0000
57 01A4 58 55 0 0000 0001 1010 0100 111 5522 109 112 0 0101 0101 0010 0010
58 0160 59 56 0 0000 0001 0110 0000
59 0125 60 57 0 0000 0001 0010 0101 112 59EB 111 112 1 0101 1001 1110 1011
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Table 5 Qx-coder probability-estimation table for JPEG-FA.

Index Qe NMPS NLPS SWITCH Qe (binary)
0 5601 1 1 1 0101 0110 0000 0001
1 3401 2 6 0 0011 0100 0000 0001
2 1801 3 9 0 0001 1000 0000 0001
3 Oacl 4 12 0 0000 1010 1100 0001
4 0521 5 29 0 0000 0101 0010 0001
5 0221 38 33 0 0000 0010 0010 0001
6 5601 7 6 1 0101 0110 0000 0001
7 5401 8 14 0 0101 0100 0000 0001
8 4801 9 14 0 0100 1000 0000 0001
9 3801 10 14 0 0011 1000 0000 0001
10 3001 11 17 0 0011 0000 0000 0001
11 2401 12 18 0 0010 0100 0000 0001
12 1c01 13 20 0 0001 1100 0000 0001
13 1601 29 21 0 0001 0110 0000 0001
14 5601 15 14 1 0101 0110 0000 0001
15 5401 16 14 0 0101 0100 0000 0001
16 5101 17 15 0 0101 0001 0000 0001
17 4801 18 16 0 0100 1000 0000 0001
18 3801 19 17 0 0011 1000 0000 0001
19 3401 20 18 0 0011 0100 0000 0001
20 3001 21 19 0 0011 0000 0000 0001
21 2801 22 19 0 0010 1000 0000 0001
22 2401 23 20 0 0010 0100 0000 0001
23 2201 24 21 0 0010 0010 0000 0001
24 1c01 25 22 0 0001 1100 0000 0001
25 1801 26 23 0 0001 1000 0000 0001
26 1601 27 24 0 0001 0110 0000 0001
27 1401 28 25 0 0001 0100 0000 0001
28 1201 29 26 0 0001 0010 0000 0001
29 1101 30 27 0 0001 0001 0000 0001
30 Oacl 31 28 0 0000 1010 1100 0001
31 09c1 32 29 0 0000 1001 1100 0001
32 08al 33 30 0 0000 1000 1010 0001
33 0521 34 31 0 0000 0101 0010 0001
34 0441 35 32 0 0000 0100 0100 0001
35 02al 36 33 0 0000 0010 1010 0001
36 0221 37 34 0 0000 0010 0010 0001
37 0141 38 35 0 0000 0001 0100 0001
38 0111 39 36 0 0000 0001 0001 0001
39 0085 40 37 0 0000 0000 1000 0101
40 0049 41 38 0 0000 0000 0100 1001
41 0025 42 39 0 0000 0000 0010 0101
42 0015 43 40 0 0000 0000 0001 0101
43 0009 44 41 0 0000 0000 0000 1001
44 0005 45 42 0 0000 0000 0000 0101
45 0001 45 43 0 0000 0000 0000 0001
has unique probability-estimation tables for the Q-coder each decision is processed, the index is changed any time
and the QM-coder. Formats for these tables are presented  a renormalization is required. For renormalizations
in Table 3 and Table 4. A third table, nicknamed the triggered by the coding of an MPS, the NMPS gives the
JPEG-FA table for its reuse of Qe values in two “fast new index. Renormalizations are always required after the
attack” paths, is presented in Table 5 [8]. coding of an LPS. The NLPS gives the new index for this
An entry in the probability estimation table consists of a  case. In addition, on an LPS renormalization, the sense
current index, I, a probability estimate, Qe, two possible of the MPS bit stored at each context may have to be
next indices, NMPS and NLPS, and a SWITCH value. As switched, as indicated by a 1 in the SWITCH column. 773
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Table 6 Differences between the Q-coder and QM-coder, and the Qx-coder solution.

Q-coder

QOM-coder

Qx-coder

Hardware convention

LPS at bottom

12-bit Qe values

13-bit A register

30 Qe values (5 bits/context)
Describes four spacer bits
LPS/MPS boundary with MPS

Renormalization on
A < 0x1000

Decoder resolves carry

Software convention

MPS at bottom

15-bit Qe values

16- or 17-bit A register

113 Qe values (7 bits/context)
Describes three spacer bits
LPS/MPS boundary with LPS

Renormalization on
A < 0x8000

Encoder resolves carry

Convert software convention to hardware
convention

LPS at bottom

Left-justify 12-bit Qe values

16-bit A register

Both at 7 bits/context

Same number when properly defined
LPS/MPS boundary with MPS

Shift Q-coder A register left three bits so
renormalization on A < 0x8000 for both

Both

ENCODER

25-bit C register
Flush C register

Initialize:
A = 0x1000
cT = 12

Bit stuffing

Compressed data

None

28-bit C register
Clear 15 or 16 bits

Initialize:
A =0
cT = 11

Byte stuffing

JBIG standard compressed
data

Conditional exchange

28-bit C register (25-bit shifted left three bits)
Both (see CLEARBITSx procedure)
Both

Both

Both—Invert JBIG compressed data on
output

Conditional exchange for QM-coder only

DECODER

Bit unstuffing

Compressed data

C register equals 0 when done

Initialize:
A = 0x1000

Byte unstuffing

JBIG standard compressed
data

Supply 0x00s when out of
data

Initialize:
A =20

Both

Both—Invert JBIG compressed data on
output

Both

Both

In Table 4, many of the Qe values are used at most

stuffing, but always assigns the MPS to the largest

once per context because they are part of the initial
learning. Only 46 entries are part of the nontransient QM
estimation state machine. The gaps in Table 4 show where
the Qe values break a monotonically decreasing pattern.
At these breaks, the NMPS index is not an increment of 1
away from the current index.

The JPEG-FA table has a much simpler initial learning
structure. It is a variant of the Q-coder table extended to
15-bit precision. The JBIG committee has selected this
table for the MQ-coder used in the new JBIG-2 lossy and
lossless compression algorithm [13]. The MQ-coder
follows the hardware conventions of the Q-coder with bit
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subinterval (conditional exchange), as is done in the
QM-coder. Since probability estimates have fifteen bits of
precision, the three trailing zeros of the Q-coder in the
Qx-coder are replaced with real data.

6. Summary

The hardware-optimized Q-coder and the software-
optimized QM-coder are merged into a common
hardware-optimized Qx-coder. The Q-coder 13-bit

A register located in the Qx-coder corresponds to the high-
order 13 bits of the 16-bit QM-coder A register. Similarly,
the Q-coder C register in the Qx-coder is shifted left three
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D

Qx-coder
ENCODERx

———» CD

bits in the QM-coder C register. This allows the output
byte to be co-located in the hardware. The QM-coder
hardware-optimized compressed data is inverted at the
output to create the identical QM-coder software-
optimized compressed data. The CLEARBITSx procedure

is optimized for hardware and can be executed in one
cycle compared to the CLEARBITS and Clear_final_bits
procedures given in the JBIG and JPEG standards

respectively, which take several cycles. Both Q-coder bit
stuffing and QM-coder byte stuffing are implemented.
Table 6 summarizes the differences between the Q-coder
and the QM-coder and the solution chosen for the
Qx-coder. A complete set of flowcharts for the Qx-coder
are presented and discussed in the Appendix. Test
sequences for the Q-coder are found in [6]; test sequences

ENCODERx

Encoder for the Qx-coder.

for the QM-coder are found in Table 26 of [3] and Annex
K of [7] and [8]. More details about the rest of the
ABIC/JBIG ASIC core which implements the Qx-coder
architecture are found in companion papers [4, 5] and on
the IBM Blue Logic Internet site [14].

Table 7 Comparing Qx-coder with Q-coder and QM-coder notations.

Qx-coder JBIG QM-coder ABIC Q-coder JPEG QM-coder
A A A A
AND & AND AND
B BUFFER B B
C C C C
CD SCD — —
Chigh CHIGH Cx Cx
COUNT — CT —
CT CT bits in C CT
CcX CX S S
D PIX YN D
I(CX) ST(CX) Qe_index Index(S), 1
MPS(CX) MPS(CX) MPS(S) MPS(S)
NLPS[I(CX)] NLPS[ST(CX)] Qe_index—Decr_LPS Next_Index_LPS(I)
NMPS[I(CX)] NMPS[ST(CX)] Qe_index+Incr_MPS Next_Index_MPS(I)
Qe[I(CX)] LSZ[ST(CX)] Qe(S) Qe(S)
SC SC — sC
SWITCH[I(CX)] SWTCHIST(CX)] MPSexch_flag Switch_MPS(I)
T TEMP — T
XOR — — —
1-MPS(CX) 1-MPS(CX) LPS(S) 1-MPS(S)
< <« SLL SLL
>> > SRL SRL
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INITENCx

Set tables to
QM-coder values

Set tables to
Q-coder values

First
stripe of this
layer or forced
reset?

CODELPSx

C=C
A = QefI(CX)}

For all CX set I{CX) and
For all CX
I((gX)I= 0 MPS(CX) to their values
MPS(CX) = 0 at the .end of th'e previous
stripe of this layer
L + ]
B = 0x80
C=0
Yes @ No
A = 0x8000 SAC:OO
CT=12 CT =11
]

A
ABIC
CODELPSx CODEMPSx
| ]
Deciding to encode an MPS or an LPS.
AND
B

Appendix: Description of the Qx-coder

flowcharts

Figures 6 to 25 show flowcharts for the merged Qx-coder. C
A bold-faced name in a flowchart block indicates that a

more detailed description of a procedure with that name

M. J. SLATTERY AND J. L. MITCHELL

No L
MPS(CX) =1 — MPS(CX)]

I(CX) = NLPS[I(CX)]

RENORMEx

LPS encode and probability-estimate update.

e e

can be found in the flowcharts. All tests in the flowcharts
are logical, unsigned comparisons.
The definitions used in the flowcharts are as follows:

A 16-bit register containing the
current interval.

A status flag selecting the Q-coder
from the ABIC algorithm or the
QM-coder from the JBIG
algorithm. It also selects which
probability-estimation table to use.
If the ABIC status flag is 0, Qe,
NMPS, NLPS, and SWITCH are taken
from the QM-coder values in Table 3.
If the ABIC status flag is 1, these
values are taken from Table 3.
The AND logical operator.

The latest compressed byte output
in the encoder or compressed byte
input in the decoder.

A register containing the least
significant bits of the encoder’s
compressed data and the most
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(8}

Chigh
COUNT

CT

CX

“Finished”

“First stripe of
this layer or
forced reset”
I(CX)
MPS(CX)
NLPS[I(CX)]

NMPS[I(CX)]

Qe[I(CX)]
SC

SWITCH[I(CX)]

XOR
<«

>

IBM J. RES. DEVELOP.

significant bits of the decoder’s
compressed data.

The compressed data, including
stuffed bytes/bits.

The 16 high-order bits of C.

The number of extra bits flushed
for ABIC to guarantee that the
decoder has enough bits to
completely decode all decisions.
The counter that identifies byte
boundaries and, therefore, when to
output or input bytes of No
compressed data.

The context generated by the
model. The model unit provides
the same context to the encoder
and decoder for a given decision.
The binary decision to be coded

A = A — Qe[I(CX)]

A <0x8000
?

Yes

C = C + Qe[I(CX)]

A<
QelI(CX)]
?

c=C
C=c+Qmwmﬂ A = Qe[I(CX)]

(CX) = NMPS[1(CX)]

(0/1). In the encoder it is RENORMEx
determined by the model unit; in
the decoder, it is output from the END

Qx-decoder.

A status flag. For ABIC it is set
when all of the lines have been
encoded or decoded. For JBIG it is
set when all of the lines in a stripe
have been encoded or decoded.

A status flag that selects either
initializing the statistics or
preserving them.

The index of the current
probability estimate for context CX.
The sense of the more probable [«
symbol (0/1) for the given context CX 1
The next index for context CX after
coding an LPS.

The next index for context CX after
coding an MPS that triggered a No
renormalization.

The current estimate of the less
probable symbol probability.

The stack counter used only during
QM-coding. >
The switch flag which indicates
that the sense of MPS (CX) must be
switched after coding an LPS.

A temporary variable used for
intermediate results.

The EXCLUSIVE-OR logical

MPS encode and probability-estimate update.

Yes

BYTEOUTx

operator.

The binary shift left logical % _
operat.or. o . Encoder renormalization.
The binary shift right logical :

operator.
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VOL. 42 NO. 6 NOVEMBER 1998

777



778

BYTEOUTx

[

B=B+1

Write (B XOR OxFF) SC =

Write 0xFF00 SC times | | gc + 1
SC=0

B =T AND OxFF

Write
0xFF00

Write (B XOR 0xFF)

Write 0x00 SC times
SC=0
B=T

J

C = C AND 0x7FFFF
CT =

i Shifting a byte from the C register to CD with byte stuffing.

Figure 6 is a block diagram showing the inputs and
output to the Qx-encoder, ENCODERx. Figures 7 to 17
illustrate in greater detail the functional block in Figure 6.
Figure 18 is a block diagram showing the inputs and
output to the Qx-decoder, DECODERXx. Figures 19 to 25
show more details of this decoder.

Table 7 compares the Qx-coder flowchart symbols with
the notation used for the QM-coder as documented in the
JBIG standard [3], with the notation used for the Q-coder
[6], and with the notation used for the QM-coder as
documented in the JPEG standard [7, 8].

Figure 6 shows a simple block diagram of the Qx-coder
binary adaptive arithmetic encoder. The decision (D) and
context (CX) pairs are processed together in the procedure
ENCODERKx to produce compressed data (CD) output.
Both D and CX are provided by the model unit (not
shown). CX selects the probability estimate to use during
the coding of D. For a compression ratio of 10:1, about 80

M. J. SLATTERY AND J. L. MITCHELL

BITSTUFFx

C = C AND Ox7FFEFFF |—>

Y

Write B Write B
B=C>>19 B=C>20
C = C AND Ox7FFFF C = C AND OxFFFFF
CT=38 CT=7
| il

Shifting a byte from the C register to CD with bit stuffing.

decisions are coded before a byte of compressed data is
output.

ENCODERx (Figure 7) initializes the Qx-coder through
the INITENCx procedure. CX and D pairs are read and
passed on to ENCODEXx until all pairs have been read.
Bytes of compressed data are output when no longer
modifiable. When all of the CX and D pairs have been read
(Finished?), FLUSHx concatenates the contents of the
C register to the compressed data stream for ABIC
and clears as many bits as possible for JBIG.

INITENCx (Figure 8) initializes the probability-
estimation tables to either the ABIC values (Table 3) or
the JBIG values (Table 4). For all ABIC images, the index
I(cX) for the less-probable-symbol probability estimate
for all contexts is set to 0, and the more-probable-symbol
MPS (CX) for all contexts is also set to 0. This is also true
for the first stripe of all JBIG images and any images that
use a forced reset between stripes. If a JBIG image does
not reset the contexts between stripes, the context indices
and MPS remain as they were at the end of the previous
stripe at the same level.

INITENCx initializes B to 0x80 and ¢ to 0. For ABIC
images, A is initialized to 0x8000, and the byte boundary
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FLUSHx

y

CLEARBITSx
FINALWRITESx
If desired, remove any 0x00 COUNT = COUNT - CT
bytes at end of CD C=C<«<CT
BYTEOUTX
No
\ - Write 0x00
Remove the first
byte in CD
END

FINALWRITESx

B=B+1
Write (B XOR 0xFF)
Write 0xFF00 SC times

‘Write 0xFF00

Write (B XOR 0xFF)

Write 0x00 SC times

¢

Write ((C>> 19) AND 0xFF) XOR 0xFF)
Write ((C>> 11) AND 0xFF) XOR 0xFF)

END

Writing out the final bytes with byte stuffing.

CLEARBITSx

|C=C+(AANDOX7FFF)|

C = C OR O0x7FFF

counter (CT) is initialized to 12. For JBIG images, A is
initialized to 0x0000, and CT is initialized to 11. The stack
counter is also used for JBIG images, and it is initialized
to 0. If A were more than 16 bits for JBIG, it would be

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

CD ————] Qx-coder

DECODERx

initialized to 0x10000. A note in the JBIG specification
clarifies that 16 bits is sufficient if the effect of the initial
subtraction from 0x0000 is the same as the initial
subtraction from 0x10000.

ENCODEXx (Figure 9) uses the context CX and decision
D pair. It compares D with the more probable symbol for
CX, MPS (CX) . If they are equal, the decision is coded
as a more probable symbol in CODEMPSx. Otherwise,
the decision is coded as a less probable symbol in
CODELPSx.

CODELPSx (Figure 10) codes a less probable symbol. If
the algorithm is ABIC, C remains the same, and A is set to
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DECODERx

Read CX

D = DECODEx

Decoder for the Qx-coder.

I Set tables to Q-coder values |

I Set tables to QM-coder values

Y

First
stripe of this
layer or forced
reset?

For all CX For all CX set I(CX) and MPS(CX)
CX) =0 to their values at the end of the
MPS(CX) =0 previous stripe of this layer
[ 1
¥
B = 0x80
C=0
BYTEINx
C=C<<8
BYTEINx
Yes /\ No
¥ ABIC? 1
C=C<<4 ~ C=C<<8
CT=CT—-4 BYTEINx
A = 0x8000 A=0
1

Qe [T (Cx)]. If the algorithm is JBIG, A is decremented
780 by Qe [I(CX)] and compared to Qe [I(CX)] in the

Initialization of the decoder.

M. J. SLATTERY AND J. L. MITCHELL

A = A — Qe[l(CX)]

Qell(CX))?

Chigh = Chigh — Qe[I(CX)] |

A < 0x80007> N0
Yes $
D = MPS_EXCHANGEx| [D = MPS(CX)] [D = LPS_EXCHANGEx
RENORMDx I————] RENORMDx
|

RETURN D

% Decoding an MPS or an LPS.

conditional exchange test. If A is less than Qe [I(CX) ],
C is incremented by Qe [I (CX) ]; otherwise, C remains the
same and A is set to Qe [I (CX) 1. Next, if SWITCH (CX) is
set, the more probable symbol for the current context is
switched to the opposite symbol. The index into the
probability-estimation table for context CX, I(CX), is
updated with NLPS[I(CX)], and RENORMEX is called.

CODEMPSx (Figure 11) codes a more probable symbol.
A is reduced by the LPS probability, Qe [I(CX)]. If A is
not below 0x8000, C is incremented by Qe [I(CX)] and
CODEMPSx is complete. If A drops below 0x8000 and the
algorithm is ABIC, C is increased by Qe [I (CX)].If A
drops below 0x8000 and the algorithm is JBIG, & is
tested to see whether a conditional exchange is required
(A < Qelz(cx)]).If Ais less than Qe[I(CX)], C remains
the same, and A is set to Qe [I (CX) ]; otherwise, C is
incremented by Qe [I (CX)]. I(CX) is then updated with
the value stored in NMPS[I (CX) 1, and RENORMEXK is
called. RENORMEXx (Figure 12) left-shifts A and C until A
is greater than or equal to 0x8000. After each shift, CT is
decremented and then tested. If CT equals 0, BYTEOUTx
is called.

BYTEOUTx (Figure 13) first checks which algorithm
is being used. If the algorithm is ABIC, BITSTUFFx is
called, and BYTEOUTx is complete. If the algorithm is
JBIG, the temporary variable T is assigned C right-shifted
by 19. If T is greater than 0xFF, a carry has occurred, and
the byte in the output buffer, B, is incremented, inverted,
and written to the compressed data stream. Then, the two
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bytes 0xFF00 are written into the compressed data stream
SC times (including no times if SC is still zero). The
propagation of the carry through the counted OxFF bytes
converted them to 0x00 bytes. However, the inversion
process restores them to 0xFF, and byte stuffing causes
each OxFF byte to be followed immediately by a stuffed
0x00 byte. sC is set to 0, and B is assigned the least
significant eight bits of T.

If the test to see whether T is greater than OxFF failed,
then, if T is equal to OxFF, the stack counter SC is
incremented. Otherwise, B is tested for equality with 0x00.
If so, the pair of bytes 0xFF00 are written into the
compressed data stream; otherwise B is inverted and
written. The byte 0x00 is written SC times; SC is set to 0,
and B is set to T. Finally, the byte placed in the output
buffer and the carry bit are removed from C by masking
off the leftmost significant nine bits. CT is set to 8.

BITSTUFFx (Figure 14) tests to see whether the byte in
the output buffer, B, is equal to OxFF. If it is, B is written
to the compressed data stream and then set to the seven
most significant bits of C. These bits are then cleared from
¢, and CT is set to 7, indicating that bit stuffing has
occurred. If B was not OxFF, C is tested for a carry. If
there was a carry, B is incremented and tested again. If B
is now equal to OxFF, the carry bit is removed from C; B is
written and assigned the seven most significant bits of C;
the seven most significant bits are cleared from C; and CT
is set to 7. If B is not equal to OxFF or no carry was set in
C, B is written and assigned the eight most significant bits
of C; the eight most significant bits of C are cleared, and
CT is set to 8.

FLUSHx (Figure 15) first tests which algorithm is being
used. If the algorithm is ABIC, COUNT is set to 24. COUNT
is then decremented by CT; C is left-shifted by CT; and
BYTEOUTx is called. These three steps are repeated
while COUNT is greater than 0. Once COUNT is less than
or equal to 0, if CT equals 7, 0x00 is written to output
the trailing stuffed bit. If the algorithm is JBIG,
CLEARBITSx and FINALWRITESx are called. If desired,
any trailing 0x00 bytes at the end of CD may also be
removed. FLUSHXx is completed for both algorithms when
the first byte in CD is removed.

CLEARBITSx (Figure 16) tests bit 15 of C. If bit 15 is
0, the sum of C and A masked with 0x7FFF will not carry
into bit 16 of C, and the addition can be performed. The
addition determines whether bit 15 of ¢ will be set to 0 or
1. In either case, the 15 least significant bits of C are then
set to Ox7FFF.

FINALWRITESx (Figure 17) left-shifts ¢ by CT. If C is
greater than 0x8000000, a carry exists. The byte in the
output buffer, B, is incremented, inverted, and written;

and the pair of bytes 0xFF00 is written SC times. If a carry

does not exist, B is tested for equality with 0x00. If so, the
pair of bytes 0xFF00 are written into the compressed data
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LPS_EXCHANGEx

A = Qe[l(CX)]
D = MPS (CX)
KCX) = NMPS[I(CX)]

A = Qe[l(CX)]
D=1-MPS(CX)

SWITCH[I(CX)]

I MPS(CX) = 1 — MPS(CX) |———> No

| 1cx) = NLpsgcx)) |
]

] LPS decode and probability-estimate update.

MPS_EXCHANGExX

D = MPS (CX)
I(CX) = NMPS[I(CX)]

WS(CX) = 1 - MPS(CX) I——» No

| (CX) = NLPS(KCX)] 1
)

MPS decode and probability-estimate update.
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BYTEINx

A=A«
C=C<«1
CT=CT~-1

A < 0x80007?

BYTEINx

% Decoder renormalization.

stream; otherwise B is inverted and written. The byte 0x00
is written SC times. Finally, the most significant 16 bits of
the C register, not including the carry bit, are inverted and
written.

Figure 18 shows a simple block diagram of a binary
adaptive arithmetic decoder. The compressed data CD and
a context CX from the decoder’s model unit (not shown)
are input to the arithmetic decoder, DECODERx. The
decoder’s output is the decision D. The encoder and
decoder model units must supply exactly the same context
CX for each given decision.

DECODER«x (Figure 19) initializes the Qx-coder
through INITDECx. Contexts, CX, and bytes of
compressed data (as needed) are read and passed on to
DECODEXx until all contexts have been read. When all
contexts have been read, the coded data has been
decompressed.

INITDECx (Figure 20) initializes the probability-
estimation tables to either the ABIC values (Table 3) or
the JBIG values (Table 4). For all ABIC images, the index
of the MPS probability estimate I (CX) and the more
probable symbol MPS (CX) for all contexts are both set to
0. This is also true for the first stripe of all JBIG images
and any images that use a forced reset between stripes. If
a JBIG image does not reset the contexts between stripes,
the context indices and more probable symbols remain as
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they were at the end of the previous stripe of this layer.

B is initialized to 0x80. C is initialized to 0. BYTEINX is
called to read in a byte of compressed data. C is left-
shifted by 8. BYTEINXx is called to read in another byte of
coded data. For ABIC images, C is left-shifted by 4; CT is
decremented by 4; and A is initialized to 0x8000. For JBIG
images, C is left-shifted by 8; BYTEINXx is called a third
time; and A is initialized to 0. For implementations in
which A has more than 16 bits, it is initialized to 0x10000.

DECODEZX (Figure 21) decrements A by Qe [I (CX)]. If
Chigh is less than Qe [I(CX) 1, LPS_ EXCHANGEx and
RENORMDXx are called, and DECODEx completes. If
Chigh is greater than or equal to Qe [I(CX) ], Chigh is
decremented by Qe [I(CX)]. If A is less than 0x8000,
MPS_EXCHANGEx and RENORMDx are called;
otherwise, the decision, D, is set to MPS(CX). D is
returned to the calling DECODERX routine.

LPS_EXCHANGEx (Figure 22) tests which algorithm
is used. If the algorithm is ABIC, A is set to Qe[I (CX)]
and D is set to the LPS value, ie., 1 — MPS(CX). If
SWITCHI[I(CX)] is set, MPS(CX) is inverted. The index,
I(CX), is updated with NLPS[I (CX)]. The decoded
decision D is returned to the calling routine.

If the algorithm is JBIG, A is tested against
Qel[I(cx)].If Ais greater than or equal to Qe [I(CX)],
the ABIC path is taken as above; otherwise, A is set to
Qe[I(CX)], Dis set to MPS(CX), and the I (CX) is
updated with NMPS [I(CX)]. The decoded decision D is
returned to the calling routine.

MPS_EXCHANGEZx (Figure 23) tests which algorithm
is used. If the algorithm is ABIC, D is set to MPS (CX).
The index, I (CX), is updated with NMPS[I (CX)]. The
decoded decision D is returned to the calling routine.

If the algorithm is JBIG, A is tested against
Qe[I(CX)].If A is greater than or equal to Qe[I(CX)],
the ABIC path is taken as above; otherwise, D is set to the
LPS value, 1 — MPS(CX). If SWITCH[I(CX)] is set,
MPS (CX) is inverted. The index, I (CX), is updated with
NLPS[I(CX)]. The decoded decision D is returned to the
calling routine.

RENORMDx (Figure 24) left-shifts A and ¢ and
decrements CT until A is greater than or equal to 0x8000.
Before each shift, if CT is 0, BYTEINX is called to read in
another byte of compressed data. Once A is greater than
or equal to 0x8000, if the algorithm is JBIG and CT equals
0, BYTEINk is called again.

BYTEINx (Figure 25) tests which algorithm is used.

If the algorithm is ABIC, bit stuffing is used. For bit
unstuffing, B is tested. If B is 0xFF, one byte of
compressed data is read from CD, and B is set equal to it.
C is incremented by B left-shifted 12 bits. The counter CT
is set equal to 7, indicating that the byte includes a stuffed
bit. If B is not equal to OxFF, one byte of compressed data
is read from CD, and B is set equal to it. C is incremented
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Yes

Yes No
Read one byte from CD Read one byte from CD
Set B equal to it Set B equal to it
C=C+ (B<<12) C=C+ (B<<l1l)
CT=7 CT=8

BYTEINx

ABIC? No

(bit stuffing)

data been read
from CD?

B = 0x00 Read one byte from CD
Set B equal to it

No

Yes

| Read one byte from CD
!

C = C + [(B XOR 0xFF) << 8]
CT=8

T

I Inserting a new byte of CD into the C register.

by B left-shifted 11 bits. The counter CT is set to &,
indicating that eight bits are to be processed before
another byte of compressed data is needed.

If the algorithm is not ABIC, a test is done to see
whether all of the compressed data has been read from

CD. If all the data has been read, B is set equal to 0x00. If
not, a new byte is read from CD, and B is set equal to it. If

B is equal to OxFF, the next byte is read from CD. Once B
is set, increment C by an inverted B left-shifted by eight
bits. CT is set to 8.
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collaboration between the IBM Thomas J. Watson and
Almaden Research Centers.
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