
The Qx-coder by M. J. Slattery
J. L. Mitchell

The IBM Adaptive Bilevel Image Compression
(ABIC) algorithm depends upon the hardware-
optimized Q-coder. The Joint Bi-level Image
Experts Group (JBIG) settled upon a software-
optimized QM-coder. This paper explores
the incompatibilities of the hardware- and
software-optimized binary arithmetic coding
conventions and reports on the solution that
allowed a merged Qx-coder in hardware.
A unique hardware solution is presented
for the termination of the JBIG data stream
(CLEARBITS). The probability estimation is
presented in a common format. Detailed
flowcharts are included in the Appendix. An
ASIC core is available that supports both the
ABIC and JBIG bilevel data compression
standards using this merged Qx-coder.

1. Introduction
Binary arithmetic coding is a data compression method
that generates compressed data as a finite-precision
fraction which identifies an interval on the number line.
Each picture element (pel) is encoded or decoded on the
basis of a probability estimate which determines where
the binary arithmetic coder splits the interval into two
subintervals. The value of the pel determines which
subinterval becomes the new interval. When the size of
the new interval drops below a minimum value, b i n ,
renormalization shifts the precision until it is greater than
or equal to the minimum size. With each shift, a bit is
produced for the compressed data stream.

Some conventions have to be established about the
order of the symbols. For example, the lower interval can
be assigned to a 0 and the upper interval assigned to the
1. Alternatively, the lower interval can be assigned to the
more probable symbol (MPS) or the less probable symbol
(LPS); or the largest subinterval can always be assigned to
the more probable symbol. Hardware conventions choose

the upper interval as the MPS and the lower interval as
the LPS. Software conventions select the lower interval
as the MPS and the upper interval as the LPS.

Adaptive binary arithmetic coding uses information
about the surrounding pels, the context, to modify the
probability estimate. In fact, separate probability estimates
are maintained for all possible contexts. A model
generates context-pel pairs for the binary arithmetic coder
based upon a template. The model must provide the same
context for encoding and decoding. The probability
estimate of a given context may be changed only when a
renormalization is required.

IBM Adaptive Bilevel Image Compression (ABIC)
employs the Q-coder for its adaptive binary arithmetic
coder [1, 21. The Q-coder was designed with parallel
hardware conventions. Its model template consists of
seven fixed, nearby pels. For each context, the expected
symbol (0 or 1) and an indication of the estimated
probability of the unlikely symbol are stored. After
initialization of the 128 contexts, the context-decisionipel
pairs are input into the binary arithmetic encoder to
produce the compressed data stream. The international
Joint Bi-level Image Experts Group created the
international standard commonly known as JBIG, which
employs a software-convention-based arithmetic coder, the
QM-coder [3]. The JBIG sequential model template
consists of ten nearby pels, one of which can move,
creating 1024 probability-estimation contexts to track.
Further details regarding ABIC and JBIG models and
architectures are available in companion papers [4, 51.

Figure l (a) illustrates the Q-coder hardware-optimized
symbol-ordering conventions. The C register (e) holds the
least significant bits of the compressed data and points to
the base of the less-probable-symbol (LPS) interval. The
LPS probability estimate Qe is the size of the LPS
interval. The split between the LPS and the more-
probable-symbol (MPS) intervals is at C + Qe and
belongs to the MPS interval. The complete interval size is
held in the A register (A). The sum, C + A, points to the

',Copyright 1998 by International Business Machines Corporation. Copylng in printed form fur prwate use IS permitted without payment of royalty providcd that (I) each
reproduction is done without alteratton and (2) the Jour,w/ reference and IBM copyright notice are includcd o n the first page. Thc title and ahstrdct, but nu other portions,
uf this paper may he copied or distributed royalty free without further permission hy computer-based and other Intormation-service systems. Permission tu repuhlr,%h any other

portion of this paper must he ohtained trom the Edltor. 767
0018-8646/98/$5.00 0 1998 IBM

IBM J . RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 M. I . SLATTERY AND I . L. MITCHELL

- C + A "" C+A- - C + A
C + A - 1 C + A - 1 " -

MPS C + A - Q e - l ~ ~ M : ~ ~ ~ ~ ' C + A - Q e

LPS

C C C

- C + Q e ""

C + Q e - 1 C + Q e - 1

-
(a) (b) (4

f Binary arithmetic coding symbol order: (a) Q-coder hardware
L conventions with MPSLPS; (b) QM-coder software conventions
I : with LPSMPS; (c) QM-coder converted to hardware conventions
i with MPSLPS.

top of the interval and is not part of the MPS segment.
The dashed line at C + A - 1 shows the largest value
that c can reach.

The software-optimized version of the Q-coder in
Reference [6] kept the symbol-order conventions shown in
Figure l(a). Extra cycles to identically match the hardware
output always occurred outside the inner loops. The
hardware-optimized Q-coder-compressed data stream was
constructed while the code stream was pointing to the top
of the MPS interval. During the termination procedure,
the data stream was moved to the bottom of the LPS
segment and thus matched the hardware-generated
compressed data. The hardware bit-stuffing conventions
were carefully duplicated in the software algorithm.

When the International Organization for
Standardization and the International Electrotechnical
Commission (ISOIIEC) and the International
Telecommunications Union-Terminal Sector (ITU-T),
formerly known as the Consultative Committee of the
International Telephone and Telegraph (CCITT), working
jointly as JBIG with the Joint Photographic Experts Group
(JPEG) [7, 81, arrived at a common QM-coder, it was
defined in terms of a different optimal software
convention. Figure l (b) shows the JBIGIJPEG QM-coder
conventions. For the QM-coder, the MPS interval
occupied the lower portion of the number line. The point
between the interval was assigned to the upper LPS
interval. The code stream pointed to the base of the lower
MPS interval.

The QM-coder, derived from ABIC, was designed with
serial software conventions that make sharing of hardware
difficult. However, the basic concept of the conversion
of software-optimized arithmetic coding into hardware-
optimized structures is known [9, 101. Figure l (c) shows a

768 hardware-optimized QM-coder, in which the MPS over

M. J . SLATTERY AND J. L. MITCHELL

LPS (MPSILPS) convention is used. The last valid value of
the interval in Figure l(b), C + A - 1, is mapped to the
base of the LPS interval in Figure l(c). The base of the
LPS interval, C + A - Qe, maps to C + Qe - 1,
which is the top of the LPS interval. Finally, the base of
the MPS interval becomes the last valid value included in
the MPS interval, c + A - 1.

This switch in conventions makes it possible to merge
the Q-coder and the QM-coder in logic, adopting
hardware conventions. The rest of this paper describes in
detail how the two arithmetic coders were merged into the
Qx-coder. Section 2 discusses more of their differences
that must be resolved in the definition of the Qx-coder.
Section 3 defines the Qx-coder and illustrates the
integration of the Q-coder and QM-coder. Section 4
focuses upon a unique hardware solution to the encoder's
termination technique for the JBIG-compressed data
stream known as CLEARBITS. Section 5 discusses the
various probability estimators and casts them into a
common format. Section 6 summarizes the differences
between the Q-coder and QM-coder, and the solutions
provided by the Qx-coder. The Appendix contains detailed
flowcharts implementing the Qx-coder encoder and
decoder, and their descriptions.

2. Differences between the Q-coder and the
QM-coder
Resolving the fundamental differences between hardware
and software conventions is an essential first step in
creating the merged Qx-coder. In addition, several other
issues must be resolved: register precision, probability-
estimation table, carry-over resolution, termination
procedures, and byte stuffing.

The Q-coder Qe values have 12 bits of precision. The A
register needs a 13th bit. This most significant bit is key to
the renormalization-driven probability-estimation process.
Whenever A drops below 0x1000, the index 1 of the
MPS probability Qe is changed for the context CX just
encodedidecoded.

The QM-coder Qe values have 15 bits of precision. The
16th bit in the A register drives the probability-estimation
process. Whenever A drops below 0x8000, the index I is
changed for the current context CX. During initialization
a 17th bit can be needed for the A register.

To ensure that carries out of the C register could not
affect more than the most recently generated compressed
byte in the encoder, the Q-coder uses bit stuffing. After
every OxFF byte (aligned on byte boundaries), an extra bit
is stuffed into the most significant bit of the next byte.
The resolution of any carries that land in the stuffed-bit
position is done in the decoder. The newly encoded
compressed byte is extracted from the C register in such
a way that at most one carry can propagate into it [9].

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 1 Encoder register assignments.

Coder msb lsb

C register Q f f f f f f f f bbbbbbbb ssssxxxx xxxxxxxx
Q in Qx OOOOcbbb bbbbbsss xxxxxxxx xxxxx000
QM OOOOcbbb bbbbbsss xxxxxxxx xxxxxxxx
QM in Qx OOOOcbbb bbbbbsss xxxxxxxx xxxxxxxx

A register Q OOOlaaaa aaaaaaaa
Q in Qx laaaaaaa aaaaaOOO
QM 0 0 0 0 0 0 0 0 OOOOOOOa aaaaaaaa aaaaaaaa
QM in Qx aaaaaaaa aaaaaaaa

Amin Q 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Q in Qx 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
QM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
QM in Qx 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The QM-encoder is designed to wait to output
compressed bytes until any carries have been resolved in
the encoder. A stack counter (SC) records the number of
buffered OxFF bytes. This counter typically contains small
counts in the range of 1 to 3. However, it could
potentially hold the entire compressed data stream and
create a severe latency problem [l l] . Since carries are
resolved in the encoder, bit stuffing is not needed.
However, byte stuffing of Ox00 bytes after every
compressed OxFF byte is used to prevent the accidental
generation of marker codes.

During the termination of Q-coding, the bits remaining
in the C register are shifted into the data stream. This has
the nice property that the C register returns to 0x0000
when decoding has completed; otherwise, a nonzero value
indicates that errors have occurred.

Since trailing 0x00 bytes may be discarded before
the marker codes ending a JBIG stripe or image, the
termination procedure for the QM-coder is not a simple
flushing of the C register. Instead, the procedure
CLEARBITS finds a point inside the interval with the
most trailing 0 bits.

3. Qx-coder defined
The Qx-coder takes advantage of the fact that the Q-coder
and QM-coder are both finite-precision arithmetic coders
and use renormalization-driven probability estimation. The
Q-coder hardware-optimized symbol order was chosen.
This meant that the QM-coder had to be converted to
hardware conventions without modifying the compressed-
data bit streams. This was accomplished by inverting the
symbol order, as shown in Figure l(c) and then inverting
the compressed data as the bytes are output.

The Qx-coder had to choose a register alignment. The
QM and Q entries in Table 1 and Table 2 show the
encoder and decoder register assignments as given in
References [3] and [6] , respectively. Since the precision of

IBM J . RES. DEVELOP. VOL. 42 NO. (1 NOVEMBER 199R

Table 2 Decoder register assignments.

Coder msb Ish

Chigh register Q oooxxxxx xxxxxxxx
Q in Qx xxxxxxxx xxxxxbbb
QM xxxxxxxx xxxxxxxx
QM in Qx xxxxxxxx xxxxxxxx

Clow register Q nnnnnnnn f f f f f f f f
Q in Qx bbbbbOOO 0 0 0 0 0 0 0 0
QM bbbbbbbb 00000000
QM in Qx bbbbbbbb 00000000

A register Q OOOlaaaa aaaaaaaa
Q in Qx laaaaaaa aaaaaOOO
QM a aaaaaaaa aaaaaaaa
QM in Qx aaaaaaaa aaaaaaaa

the Qe values is 12 bits for the Q-coder and 15 bits for the
QM-coder, it was natural to shift the Q-coder values left
three bits in the register to line them up with the more
significant bits of the QM-coder values. This creates a
common Amin value for triggering renormalizations. Table
1 shows that this aligns the output byte, bbbbbbbb, nicely.

The extra spacer bit, s, in the Q-coder was a concern
until it was realized that the spacer-bit definition changed
between the documentation of the Q-coder and the QM-
coder. The Q-coder documentation had as many xs as the
precision of the Qe values. The QM-coder documentation
has one more x than the precision of its Qe values, so by
the more recent definition, both have just three spacer
bits. The flag bits f in the most significant byte of the
Q-coder C register are not needed because a counter
CT keeps track of when to output bytes. The carry bit c
is shown to the left of the output byte position. If the
previous byte was a OxFF, the carry bit will be the most
significant bit of the output byte at the stuffed-bit
position.

M. J . SLATTERY ANI) J. L. MITCHELL

T = (A - 1 + C) and OxFFFFOOOO
i f T < C

C = T + 0x8000
else

C = T
endif

[QM-coder procedure CLEARBITS.

T = C OR OxOOOOFFFF
if T > (C + A - 1)

C + T - 0 ~ 8 0 0 0
else

C = T
endif

1 QM-coder procedure CLEARBITSx for hardware conventions.

Chigh = Chigh
if (Ox10000 > (Clow + Alow))

Clow = Ox7FFF
else

Clow = OxFFFF
endif

A simplified CLEARBITSx.

The A register has to be kept in alignment with the C
register and therefore is also shifted left three bits for the
Q-coder in the Qx-coder. It still fits in a 16-bit register.

770 The extra 17th bit of precision in the QM-coder was

M. J. SLATTERY AND J. L. MITCHELL

C[14:0] A[14:0]

J CWI

CU51
C[31:28] = O..O
C[27:16] = C[27:16]
C[14:0] = 1..1

dropped. The JBIG specification explicitly states that the
17th bit can be avoided if initialization to Ox0000 produces
the same output after the first subtraction as initialization
to Ox10000 in the low-order 16 bits.

The decoder uses these same definitions of the A
register and the h i n value. The entire renormalization-
driven probability-estimation process is identical between
encoder and decoder. Table 2 shows the decoder register
assignments. The Q-coder registers are again shifted left
three bits to align them with the QM-coder. The flag bits
f in the least significant byte of the Q-coder C l o w register
are not needed because a counter CT identifies when to
input another compressed data byte. The Q-coder input
byte bits n are relabeled as b bits and are also shifted left
three bits. The three bbb bits in the Chigh register do
not disturb the decoding process because all tests against
Chigh are “greater than or equal to” comparisons.

The QM-coder always has marker codes that follow the
arithmetic-coded compressed data. Trailing Ox00 bytes may
have been removed, so any missing data is filled in as Ox00
bytes. The Q-coder expects sufficient bits to completely
decode the final decision in the compressed data stream.
Since there are no marker codes, the end of compressed
data will not always be known. To prevent waiting for
nonexistent data upon a request for more data three shifts
before the termination of compression, the Q-coder data
is shifted up in the C register.

4. Hardware-optimized CLEARBITS
Since the Qx-coder selected the Q-coder symbol-ordering
conventions, the flushing of the C register to terminate

IBM .I. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 3 Qx-coder probability-estimation table for Q-coder.

Index Qe NMPS NLPS SWITCH Qe (binaly)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5608
5408
5008
4808
3808
3408
3008
2808
2408
2208
lCO8
1808
1608
1408
1208
OcO8
0908
0708
0508
0388
02c8
0298
0138
00b8
0098
0058
0038
0028
0018
0008

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29

0
0
1
2
3
4
5
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
21
23
23
25
25
27

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0101
0101
0101
0100
0011
0011
001 1
0010
0010
0010
0001
0001
0001
0001
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0110
0100
0000
1000
1000
0100
0000
1000
0100
0010
1100
1000
0110
0100
0010
1100
1001
0111
0101
001 1
0010
0010
0001
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1000
1100
1001
001 1
1011
1001
0101
001 1
0010
0001
0000

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

Q-coding basically remained unchanged. However, the
QM-coder software-optimized CLEARBITS procedure,
designed to clear the most trailing bits, had to be
converted to a hardware-optimized procedure
CLEARBITSx designed to set the most trailing bits to 1.
Then the output inversion process would clear those bits.

Figure 2 gives the QM-coder CLEARBITS procedure
derived from Figure 29 in Reference [3]. A variable T
(TEMP in the JBIG specification) is set to the top of the
valid interval (T = A - 1 + C), and then its 16 least
significant bits are cleared (T = T AND OxFFFF0000). If
T is no longer in the interval (T < C), 0x8000 is added
back into T before setting C to T. This serial software
approach is awkward in hardware.

Figures l(b) and l(c) show that the software-optimized
upper point in the interval, (C + A - l), is mapped
directly to C. So a CLEARBITSx procedure with hardware
conventions must set as many bits of c to 1 as possible,
and, if the result is too large for the valid interval,
decrement it by 0x8000. Figure 3 defines this
CLEARBITSx procedure. For the CLEARBITSx shown in
Figure 3, let Chigh and Clow be the nonoverlapping most
significant and least significant 16 bits of C, respectively.

Since A uses only 16 bits, A equals Alow. Substituting
these new definitions for C and A and eliminating the
temporary variable T produces an alternate simplified
CLEARBITSx, given in Figure 4.

Since Alow (after any required renormalizations) is
always greater than or equal to 0x8000, the test is reduced
to a bit test on C [151. If the most significant bit of clow
is set (C [151 = I) , the test will always fail. If that bit is
zero, the 15 low-order bits of A are added into C to allow
a potential carry to set C [151. The 15 low-order bits of C
are set to Is. The simplicity of this hardware is shown in
Figure 5. A flowchart version of this figure is used for
CLEARBITSx in Figure 16, shown later.

5. Probability estimation
The Q-coder and the QM-coder are both renormalization-
driven probability estimators [3, 7, 8, 121. Instead of
collecting statistics on the occurrence of 0 and 1 decisions
for each context cx and calculating probabilities,
predetermined probabilities are referenced in a
probability-estimation table. An index (I) into the
probability-estimation table is saved at each context. From
this index, the Qe value can be generated. The Qx-coder 771

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 M. I. SLATTERY AND J. L. MITCHELL

Table 4 QM-coder probability-estimation table.

I
n

W
S

N N I

(binaly)
Qe

S
I

S

n N N I
W I W

n
d M L T d M L T

N N I

e Q P P C e
X e S S H X e S S H (binaly)

Q P P C Qe Qe
(binaly)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

5A1D
2568
1114
080B
03D8
OlDA
00E5
006F
0036
OOlA
OOOD
0006
0003
0001

5AlF
3F25
2CF2
207C
17B9
1182

OCEF
09A1
072F
055C
0406
0303
0240
OlBl
0144
00F5
00B7
008A
0068
004E
003B
002c

5AE1
484C

3AOD
2EF1
261F
IF33
1YA8
1518
1177
0E74

OBFB
09 F8
0861
0706

05CD
04DE
040F
0363

02D4
025c
01F8
01A4
0160
0125

1
2
3
4
5
6
7
8
9

10
11
12
13
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
9

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
14
16
18
20
23
25
28
30
33
35
9

10
12

15
36
38
39
40
42
43
45
46
48
49
51
52
54
56
57
59
60
62
63
32
33

37
64
65
67
68
69
70
72
73
74
75
77
78
79
48
50
50
51
52
53
54
55
56
57

1
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0101
0010
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0101
001 1
0010
0010
0001
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0101
0100
001 1
0010
0010
0001
0001
0001
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

1010
0101
0001
1000
0011
0001
0000
0000
0000
0000
0000
0000
0000
0000

1010
1111
1100
0000
0111
0001
1100
1001
0111
0101
0100
0011
0010
0001
0001
0000
0000
0000
0000
0000
0000
0000

1010
1000
1010
1110
01 10
1111
1001
0101
0001
1110
1011
1001
1000
0111
0101
0100
0100
0011
0010
0010
0001
0001
0001
0001

0001
0110
0001
0000
1101
1101
1110
0110
0011
0001
0000
0000
0000
0000

0111
0010
1111
0111
1011
1000
1110
1010
0010
0101
0000
0000
0100
1011
0100
1111
1011
1000
0110
0100
001 1
0010

1110
0100
0000
1111
0001
001 1
1010
0001
0111
0111
1111
1111
01 10
0000
1100
1101
0000
0110
1101
0101
1111
1010
01 10
0010

1101
1000
0100
1011
1000
1010
0101
1111
0110
1010
1101
0110
0011
0001

1111
0101
0010
1100
1001
0010
1111
0001
1111
1100
01 10
001 1
0000
0001
0100
0101
0111
1010
1000
1110
1011
1100

0001
1100
1101
0001
1111
001 1
1000
1000
0111
0100
1011
1000
0001
0110
1101
1110
1111
001 1
0100
1100
1000
0100
0000
0101

60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87

88
89
90
91
92
93
94

95
96
97
98
99

100

101
102
103
104

105
106
107

108
109

110
111

112

00F6
OOCB
OOAB
008F

5B12
4D04
412C
37D8
2FE8
293C
2379

IEDF
1 AA9
174E
1424
119C
OF6B
OD51
0886
OA40

5832
4D1C
438E

3BDD
34EE
2EAE
299A
2516

5570
4CAY
44D9
3E22
3824
32B4
2E17

56A8
4F46
47E5
41 CF
3C3D
315E

5231
4C0F
4639
415E

5627
50E7
4B85

5597
504F

5A10
5522

5YEB

61
62
63
32

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
48

81
82
83
84
85
86
87
71

89
90
91
92
93
94
86

96
97
98
99

I00
93

102
103
104
99

106
107
103

109
107

111
109

111

58
59
61
61

65
80
81
82
83
84
86
87
87
72
72
74
74
75
77
77

80
88
89
90
91
92
93
86

88
95
96
97
99
99
93

95
101
102
103
104
99

105
106
107
103

105
108
109

110
111

110
112

112

0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0

0
0
0
0

1
0
0

0
0

1
0

1

0000
0000
0000
0000

0101
0100
0100
0011
0010
0010
0010
0001
0001
0001
0001
0001
0000
0000
0000
0000

0101
0100
0100
001 1
001 1
0010
0010
0010

0101
0100
0100
001 1
001 1
001 1
0010

0101
0100
0100
0100
001 1
0011

0101
0100
0100
0100

0101
0101
0100

0101
0101

0101
0101

0101

0000
0000
0000
0000

1011
1101
0001
0111
1111
1001
001 1
1110
1010
0111
0100
0001
1111
1101
1011
1010

1000
1101
001 1
1011
0100
1110
1001
0101

0101
1100
0100
1110
1000
0010
1110

0110
1111
0111
0001
1100
0111

0010
1100
0110
0001

0110
0000
1011

0101
0000

1010
0101

1001

1111
1100
1010
1000

0001
0000
0010
1101
1110
001 1
0111
1101
1010
0100
0010
1001
0110
0101
1011
0100

001 1
0001
1000
1101
1110
1010
1001
0001

0111
1010
1101
0010
001 0
1011
0001

1010
0100
1110
1100
001 1
0101

001 1
0000
001 1
0101

0010
1110
1000

1001
0100

0001
0010

1110

0110
1011
1011
1111

0010
0100
1100
1000
1000
1100
1001
1111
1001
1110
0100
1100
1011
0001
0110
0000

0010
1100
1110
1101
1110
1110
1010
0110

0000
1001
1001
0010
0100
0100
0111

1000
0110
0101
1111
1101
1110

0001
1111
1001
1110

011 I
0111
0101

01 11
1111

0000
0010

101 1

772

M. J. SLATTERY AND J. L. MITCHELL IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 5 Qx-coder probability-estimation table for JPEG-FA.

Index Qe NMPS NLPS SWITCH Qe (binary)

0
1
2
3
4
5

6
I
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

5601
3401
1801
Oacl
0521
0221

5601
5401
4801
3801
3001
2401
lc01
1601

5601
5401
5101
4801
3801
3401
3001
2801
2401
2201
lc0l
1801
1601
1401
1201
1101
Oacl
09cl
08al
0521
0441
02al
0221
0141
0111
0085
0049
0025
0015
0009
0005
0001

1
2
3
4
5

38

7
8
9

10
11
12
13
29

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45

1 1
6 0
9 0

12 0
29 0
33 0

6 1
14 0
14 0
14 0
17 0
18 0
20 0
21 0

14 1
14 0
15 0
16 0
17 0
18 0
19 0
19 0
20 0
21 0
22 0
23 0
24 0
25 0
26 0
27 0
28 0
29 0
30 0
31 0
32 0
33 0
34 0
35 0
36 0
37 0
38 0
39 0
40 0
41 0
42 0
43 0

0101
001 1
0001
0000
0000
0000

0101
0101
0100
001 1
001 1
0010
0001
0001

0101
0101
0101
0100
001 1
001 1
001 1
0010
0010
0010
0001
0001
0001
0001
0001
0001
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0110
0100
1000
1010
0101
0010

0110
0100
1000
1000
0000
0100
1100
0110

0110
0100
0001
1000
1000
0100
0000
1000
0100
0010
1100
1000
0110
0100
0010
0001
1010
1001
1000
0101
0100
0010
0010
0001
0001
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
1100
0010
0010

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
1100
1100
1010
0010
0100
1010
0010
0100
0001
1000
0100
0010
0001
0000
0000
0000

0001
0001
0001
0001
0001
0001

0001
0001
0001
0001
0001
0001
0001
000 1

0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0101
1001
0101
0101
1001
0101
0001

has unique probability-estimation tables for the Q-coder
and the QM-coder. Formats for these tables are presented
in Table 3 and Table 4. A third table, nicknamed the
JPEG-FA table for its reuse of Qe values in two “fast
attack” paths, is presented in Table 5 [8].

current index, I, a probability estimate, Qe, two possible
next indices, NMPS and NLPS, and a SWITCH value. As

An entry in the probability estimation table consists of a

each decision is processed, the index is changed any time
a renormalization is required. For renormalizations
triggered by the coding of an MPS, the NMPS gives the
new index. Renormalizations are always required after the
coding of an LPS. The NLPS gives the new index for this
case. In addition, on an LPS renormalization, the sense
of the MPS bit stored at each context may have to be
switched, as indicated by a 1 in the SWITCH column.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 M . J. SLATTERY AND J. L. MITCHELL

Table 6 Differences between the Q-coder and QM-coder, and the Qx-coder solution.

Q-coder QM-coder Qx-coder

Hardware convention Software convention

LPS at bottom

12-bit Qe values

13-bit A register

30 Qe values (5 bitdcontext)

Describes four spacer bits

LPSiMPS boundary with MPS

Renormalization on
A < Ox1000

Decoder resolves carry

MPS at bottom

15-bit Qe values

16- or 17-bit A register

113 Qe values (7 bitsicontext)

Describes three spacer bits

LPSiMPS boundary with LPS

Renormalization on
A < 0x8000

Encoder resolves carry

Convert software convention to hardware
convention

LPS at bottom

Left-justify 12-bit Qe values

16-bit A register

Both at 7 bitsicontext

Same number when properly defined

LPSiMPS boundary with MPS

Shift Q-coder A register left three bits so
renormalization on A < 0x8000 for both

Both

ENCODER

25-bit C register

Flush C register

Initialize:
A = Ox1000
CT = 12

Bit stuffing

Compressed data

None

28-bit C register 28-bit C register (25-bit shifted left three bits)

Clear 15 or 16 bits Both (see CLEARBITSx procedure)

Initialize: Both
A = O
CT = 11

Byte stuffing Both

JBIG standard compressed Both-Invert JBIG compressed data on
data output

Conditional exchange Conditional exchange for QM-coder only

DECODER

Bit unstuffing Byte unstuffing Both

Compressed data JBIG standard compressed Both-Invert JBIG compressed data on
data output

C register equals 0 when done Supply 0x00s when out of Both
data

Initialize:
A = Ox1000

Initialize:
A = O

Both

In Table 4, many of the Qe values are used at most
once per context because they are part of the initial
learning. Only 46 entries are part of the nontransient QM
estimation state machine. The gaps in Table 4 show where
the Qe values break a monotonically decreasing pattern.
At these breaks, the NMPS index is not an increment of 1
away from the current index.

The JPEG-FA table has a much simpler initial learning
structure. It is a variant of the Q-coder table extended to
15-bit precision. The JBIG committee has selected this
table for the MQ-coder used in the new JBIG-2 lossy and
lossless compression algorithm [13]. The MQ-coder
follows the hardware conventions of the Q-coder with bit

stuffing, but always assigns the MPS to the largest
subinterval (conditional exchange), as is done in the
QM-coder. Since probability estimates have fifteen bits of
precision, the three trailing zeros of the Q-coder in the
Qx-coder are replaced with real data.

6. Summary
The hardware-optimized Q-coder and the software-
optimized QM-coder are merged into a common
hardware-optimized Qx-coder. The Q-coder 13-bit
A register located in the Qx-coder corresponds to the high-
order 13 bits of the 16-bit QM-coder A register. Similarly,
the Q-coder C register in the Qx-coder is shifted left three

M. I. SLATTERY AND J. L. MITCHELL IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Qx-coder
ENCODERx cx

0 Qx-coder ENCODERx inputs and output.

bits in the QM-coder C register. This allows the output
byte to be co-located in the hardware. The QM-coder
hardware-optimized compressed data is inverted at the
output to create the identical QM-coder software-
optimized compressed data. The CLEARBITSx procedure
is optimized for hardware and can be executed in one
cycle compared to the CLEARBITS and Clear-final-bits
procedures given in the JBIG and JPEG standards
respectively, which take several cycles. Both Q-coder bit
stuffing and QM-coder byte stuffing are implemented.

Table 6 summarizes the differences between the Q-coder
and the QM-coder and the solution chosen for the
Qx-coder. A complete set of flowcharts for the Qx-coder
are presented and discussed in the Appendix. Test
sequences for the Q-coder are found in [6]; test sequences

I I Read CX, D
ENCODEx

Table 7 Comparing Qx-coder with Q-coder and QM-coder notations.

Yes

FLUSHX +
END

:I

t Encoder for the Qx-coder.

for the QM-coder are found in Table 26 of [3] and Annex
K of [7] and [8]. More details about the rest of the
ABICiJBIG ASIC core which implements the Qx-coder
architecture are found in companion papers [4, 51 and on
the IBM Blue Logic Internet site [14].

Qx-coder
~~~ ~~ ~ 

JBIG QM-coder ABIC Q-coder JPEG QM-coder 

A  A  A A 
AND & AND AND 
B BUFFER B B 
C  C  C  C 
CD  SCD 
Chigh 
COUNT - CT 
CT 
cx cx S s 
D PIX YN D 

MPS(CX) MPS(CX) MPS(S)  MPS(S) 
NLPS[I(CX)] NLPS[ST(CX)] Qe-index-Decr-LPS Next-Index-LPS(1) 
NMPS[I(CX)] NMPS[ST(CX)] Qe-index+Incr-MPS Next-Index"PS(1) 
Qe[I(cx)l LSZ[ST(CX)] Q@) Q G )  
SC sc 
SWITCH[I(CX)] SWTCH[ST(CX)] MPSexch-flag  Switch"PS(1) 
T  TEMP - T 
XOR - 
1-MPS(CX) 
<< << SLL SLL 
>> >> SRL SRL 

- 
CHIGH cx cx 

CT bits in C CT 

- 

- 

I(CX) ST( CX) Qe-index Index(S), I 

- sc 

- 
1-MPS(CX) 

- 
LPS(S) l-MPS(S) 

775 

IBM J.  RES.  DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 M. J .  SLATTERY  AND J. L. MITCHELL 



0 
Set tables  to  Set  tables to c 
I(CX) = 0 

MPS(CX) = 0 

MPS(CX) to their values 
at the  end of the  previous 

stripe of this  layer 

*I B = 0x80 

A = 0x8000 
CT = 12 

sc = 0 
A = O  

CT = 1 1  
I I 
I + I 

END 

1 Initialization of the encoder. 

S ENCODEx 

CODELPSx CODEMPSx 

CODELPSx 

r" 
CJ A = Qe[I(CX)] 

RENORMEx 

can  be  found in the flowcharts. All tests  in  the flowcharts 
are logical, unsigned comparisons. 

The definitions  used in the flowcharts are as follows: 

A A 16-bit  register  containing  the 
current  interval. 

ABIC A status  flag  selecting  the  Q-coder 
from  the  ABIC  algorithm  or  the 
QM-coder  from  the  JBIG 
algorithm.  It  also  selects  which 
probability-estimation  table  to  use. 
If the  ABIC  status  flag is 0, Qe, 
NMPS, NLPS, and SWITCH are  taken 
from  the  QM-coder  values in Table 3. 
If the  ABIC  status  flag  is 1, these 
values  are  taken  from  Table 3. 

AND The  AND logical  operator. 
B The  latest  compressed  byte  output 

in  the  encoder  or  compressed  byte 
input  in  the  decoder. 

significant  bits of the  encoder's 
compressed  data  and  the  most 

C A  register  containing  the  least 

+ 
END 

Deciding to encode an MPS or an LPS 

Appendix: Description of the Qx-coder 
flowcharts 
Figures 6 to 25 show  flowcharts for  the  merged  Qx-coder. 
A bold-faced name in a flowchart  block indicates  that  a 

776 more  detailed  description of a  procedure with that  name 

M. J. SLATTERY AND J .  L. MITCHELL IBM J. RES. DEVELOP. VOL. 42  NO. 6 NOVEMBER 1998 



CD 

Chigh 
COUNT 

CT 

cx 

D 

“Finished” 

“First  stripe of 
this  layer  or 
forced  reset” 
UCX) 

MPS(CX) 

NLPS[I(CX)] 

NMPS[I(CX)] 

Qe[I(CX)I 

sc 

SWITCH[I(CX)] 

T 

XOR 

<< 

>> 

IBM J. RES. DEVELOP. 

significant bits of the decoder’s 
compressed  data. 
The  compressed  data, including 
stuffed byteshits. 
The 16 high-order bits of C. 
The  number of extra  bits flushed 
for  ABIC  to  guarantee  that  the 
decoder  has  enough bits to 
completely decode all decisions. 
The  counter  that identifies byte 
boundaries  and,  therefore, when to 
output  or  input bytes of 
compressed  data. 
The  context  generated by the 
model. The model unit provides 
the  same context to  the  encoder 
and  decoder  for  a given decision. 
The binary  decision to  be  coded 
(O/ l ) .  In  the  encoder it is 
determined by the model unit; in 
the  decoder, it is output  from  the 
Qx-decoder. 
A status flag. For  ABIC  it is set 
when all of the lines  have been 
encoded or decoded. For  JBIG it is 
set when all of the lines in a stripe 
have been  encoded or decoded. 
A  status flag that selects either 
initializing the statistics or 
preserving them. 
The index of the  current 
probability estimate  for context CX. 
The  sense of the  more  probable 
symbol (0/1) for the given context CX 
The next index for context CX after 
coding an LPS. 
The next index for  context CX after 
coding an MPS that  triggered  a 
renormalization. 
The  current  estimate of the less 
probable symbol probability. 
The stack counter used only during 
QM-coding. 
The switch flag which indicates 
that  the  sense of MPS (CX) must be 
switched after coding an LPS. 
A  temporary variable  used for 
intermediate results. 
The  EXCLUSIVE-OR logical 
operator. 
The binary  shift  left logical 
operator. 
The binary  shift  right logical 
operator. 

VOL. 42 NO. 6 NOVEMBER 1998 

CODEMPSx 

c 
A = A - Qe[I(CX)] 

C = C + Qe[I(CX)] 

1 c = c  
C = C + Qe[I(CX)] A = Qe[I(CX)] 

I 

I(CX) = NMPS[I(CX)] 
RENORMEx 

1 MPS encode  and probability-estimate update. 

n RENORMEx 

A = A c c l  
C = C c c l  

c 

& CT = O? e BYTEOUTx 

M. J. SLATTERY AND J. L. MITCHELL 

777 



0 BYTEOUTx BITSTUFFx * B = OxFF? 

f"-el OxFF? 

Write (B XOR OxFF) 
Write OxFFOO SC times 

sc = 0 

I 

I Write (B XOR 0xFF)I 

1"- 
Write Ox00 SC times 

sc = 0 I B = T  
i 

I 

I C T = 8  
C=CANDOx7FFFF I 

Shifting a byte  from the C register to CD with byte stuffing. 

.,,~. ~ ,.X,.-"-_"l_.l ;l." "I". ." , x. . " I .. ".. .. 

Figure 6 is a block diagram showing the  inputs  and 
output  to  the  Qx-encoder,  ENCODERx.  Figures 7 to 17 
illustrate in greater  detail  the  functional block  in Figure 6. 
Figure 18 is a block diagram showing the  inputs  and 
output  to  the  Qx-decoder,  DECODERx.  Figures 19 to 25 
show more  details of this decoder. 

Table 7 compares  the  Qx-coder flowchart symbols with 
the  notation  used  for  the  QM-coder as documented  in  the 
JBIG  standard [3] ,  with the  notation used for  the  Q-coder 
[6], and with the  notation  used  for  the  QM-coder as 
documented in the  JPEG  standard [7 ,  81. 

Figure 6 shows a simple  block diagram of the  Qx-coder 
binary  adaptive  arithmetic  encoder.  The decision (D) and 
context  (CX)  pairs  are  processed  together in the  procedure 
ENCODERx  to  produce  compressed  data (CD) output. 
Both D and CX are  provided by the  model unit (not 
shown). CX selects  the  probability  estimate  to  use  during 

778 the coding of D. For  a  compression  ratio of lO:l, about 80 

i B = B + l  

I i m B = OxFF? I E k z t "  C = C AND Ox7FFFFFF 
I 

Write B Write B 

C = C AND Ox7FFFF C=CANDOxFFFFF 
CT = 8 CT = 7 

B = C > > 2 0  

decisions are  coded  before  a byte of compressed  data is 
output. 

ENCODERx (Figure 7) initializes the  Qx-coder  through 
the  INITENCx  procedure. cx and D pairs  are  read  and 
passed on  to  ENCODEx  until all pairs have been  read. 
Bytes of compressed  data  are  output  when no longer 
modifiable. When all of the CX and D pairs have been  read 
(Finished?),  FLUSHx  concatenates  the  contents of the 
C  register  to  the  compressed  data  stream  for  ABIC 
and  clears as  many bits as  possible for  JBIG. 

INITENCx (Figure 8) initializes the probability- 
estimation  tables  to  either  the  ABIC values (Table 3) or 
the  JBIG values (Table 4). For all ABIC images, the index 
I ( CX) for  the  less-probable-symbol  probability  estimate 
for all contexts is set to 0, and  the  more-probable-symbol 
MPS (Cx) for all contexts is also  set  to 0. This is also true 
for  the first stripe of all JBIG images and any  images that 
use  a  forced  reset  between stripes. If a  JBIG image does 
not  reset  the  contexts  between  stripes,  the  context  indices 
and MPS remain as  they were  at  the  end of the previous 
stripe  at  the  same level. 

INITENCx initializes B to 0x80 and C to 0. For  ABIC 
images, A is initialized  to 0x8000, and  the byte boundary 

M. J. SLATTERY AND J. L. MITCHELL IBM J. RES.  DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



(74 FLUSHx 

4 
COUNT = 24 

CLEARBITSx 
FINALWRITESx i . '  

If desired, remove any Ox00 
bytes at end of CD 

COUNT = COUNT - CT 
C = C < < C T  
BYTEOUTx 

c 

"---=e CT = 7? 

Remove the  first 
byte in  CD 

f FINALWRITESx 1 

w C = C < < C T  

r-"l O X 8 0 0 0 0 0 0  

1 

Write (B XOR OxFF) 
B = B + 1  

Write OxFFOO SC times 
Write OxFFOO 

1 

Write (B XOR OxFF) 

w Write Ox00 SC times 

Write (((C>> 19) AND OxFF) XOR OxFF) 
Write (((C>> 11) AND O x F F )  XOR OxFF) 

CLEARBITSx 
~~";I-t"D cx DECODERx Qx-coder 

Yes 

No 
C = C + (A AND Ox7FFF) 

i Qx-coder DECODERx inputs and output. 
b 

t 
C = C  OR Ox7FFF 

i 
END 

initialized to 0x10000. A note in the  JBIG specification 
clarifies that 16 bits is sufficient if the effect of the initial 
subtraction  from Ox0000  is the  same as the initial 
subtraction  from 0x10000. 

ENCODEx (Figure 9) uses the  context CX and  decision 
D pair.  It  compares D with the  more  probable symbol for 
CX, MPS (CX). If they are  equal,  the decision is coded 
as  a more  probable symbol in CODEMPSx.  Otherwise, 

counter (CT) is initialized to 12. For  JBIG images, A is the decision is coded as a less probable symbol in 
initialized to 0x0000, and CT is initialized to 11. The  stack CODELPSx. 
counter is also used  for  JBIG images, and it is initialized CODELPSx (Figure 10) codes a less probable symbol. If 
to 0. If A were  more  than 16 bits for  JBIG, it would be the  algorithm is ABIC, C remains  the  same,  and A is set to 779 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 M. J. SLATTERY  AND J .  L. MITCHELL 



DECODERx 

INITDECx 

% Finished? 

Decoder for the Qx-coder. 

f INITDECx 

Yes 
I I + 

Set tables to Q-coder values Set tables to QM-coder values 

reset? 

I(CX) = 0 to their values at  the end of the 

+ 
B = 0x80 

BYTEINx 
c = o  

C = C < < 8  
BYTEINx 

Yes No + t 
c = c < < 4  

C T = C T - 4  
C = C < < 8  

A = O  A = 0x8000 
BYTEINx 

I I 

Qe [ I  ( C X )  1 .  If the  algorithm is JBIG, A is decremented 
780 b y Q e [ I ( C X ) ]   a n d c o m p a r e d t o Q e [ I ( C X ) ]   i n t h e  

( DECODEx 1 

I A = A - Qe[I(CX)] 

i 
Chigh = Chigh - Qe[I(CX)] 

I I I 

-9- D = MPS-EXCHANGEx D = MPS(CX) D = LPS-EXCHANGEx 

b RETURN D 

conditional exchange test. If A is less than Qe [ I  ( C X )  1, 
C is incremented by Qe [ I  (CX) 3 ; otherwise, C remains  the 
same  and A is set  to Qe [I (CX) I .  Next, if SWITCH ( C X )  is 
set,  the  more  probable symbol for  the  current  context is 
switched to  the  opposite symbol. The index into  the 
probability-estimation  table  for  context CX, I ( C X )  , is 
updated with NLPS [ I  ( C X )  1, and  RENORMEx is called. 

A is reduced by the LPS probability, Qe [ I  ( C X )  1 .  If A is 
not below 0x8000, C is incremented by Qe [I (CX) ] and 
CODEMPSx is complete. If A drops below Ox8000 and  the 
algorithm is ABIC, C is increased by Qe [ 1 (CX) I .  If A 
drops below Ox8000 and  the  algorithm is JBIG, A is 
tested  to  see  whether  a  conditional exchange is required 
(A<Qe[I(CX)]).IfAis~essthanQe[I(CX)I,Cremains 
the  same,  and A is set  to Qe [ I  ( C X )  3 ; otherwise, C is 
incremented by Qe [ I  ( C X )  1 .  1 ( C X )  is then  updated with 
the value stored in NMPS [ I  ( C X )  1,  and  RENORMEx is 
called.  RENORMEx (Figure 12) left-shifts A and C until A 
is greater  than or equal  to 0x8000. After  each shift, CT is 
decremented  and  then  tested. If CT equals 0, BYTEOUTx 
is called. 

BYTEOUTx (Figure 13) first  checks which algorithm 
is being used. If the  algorithm is ABIC,  BITSTUFFx is 
called,  and  BYTEOUTx is complete. If the  algorithm is 
JBIG,  the  temporary  variable T is assigned C right-shifted 
by 19. If T is greater  than OxFF, a  carry  has  occurred,  and 
the byte  in the  output  buffer, B, is incremented,  inverted, 
and  written  to  the  compressed  data  stream.  Then,  the two 

CODEMPSx (Figure 11) codes  a  more  probable symbol. 

M. J.  SLATTERY AND J. L. MITCHELL IBM J. RES.  DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 



bytes OxFFOO are  written  into  the  compressed  data  stream 
sc times (including no times if sc is still zero).  The 
propagation of the  carry  through  the  counted OxFF bytes 
converted  them  to Ox00 bytes. However, the inversion 
process  restores  them  to OxFF, and byte  stuffing  causes 
each OxFF byte to  be followed  immediately by a stuffed 
Ox00 byte, SC is set  to 0, and B is assigned the  least 
significant  eight  bits of T. 

If the  test  to  see  whether T is greater  than OxFF failed, 
then, if T is equal  to OxFF, the  stack  counter SC is 
incremented.  Otherwise, B is tested  for  equality with 0x00. 
If so, the  pair of bytes OxFFOO are  written  into  the 
compressed  data  stream;  otherwise B is inverted  and 
written.  The byte Ox00  is written SC times; SC is set  to 0, 
and B is set to T. Finally, the byte placed in the  output 
buffer  and  the  carry bit are  removed  from c by masking 
off the  leftmost significant nine bits. CT is set  to 8. 

the  output  buffer, B, is equal  to OxFF.  If it is, B is written 
to  the  compressed  data  stream  and  then  set  to  the seven 
most  significant  bits of C. These bits are  then  cleared  from 
C, and CT is set  to 7, indicating  that bit stuffing has 
occurred. If B was not OxFF, C is tested  for  a carry. If 
there was a carry, B is incremented  and  tested  again. If B 
is now equal  to OxFF, the  carry bit is removed  from C; B is 
written  and assigned the seven  most  significant  bits of C; 
the seven  most  significant bits  are  cleared  from C; and CT 
is set  to 7 .  If B is not  equal  to OxFF or no carry was set  in 
C, B is written  and assigned the eight  most  significant bits 
of C;  the eight  most  significant bits of c are  cleared,  and 
CT is set  to 8. 

FLUSHx (Figure 15) first tests which algorithm is being 
used. If the  algorithm is ABIC, COUNT is set  to 24. COUNT 
is then  decremented by  CT; C is left-shifted by  CT; and 
BYTEOUTx is called.  These  three  steps  are  repeated 
while COUNT is greater  than 0. Once COUNT is less than 
or  equal  to 0, if CT equals 7, Ox00 is written  to  output 
the  trailing  stuffed bit. If the  algorithm is JBIG, 
CLEARBITSx  and  FINALWRITESx  are  called. If desired, 
any trailing Ox00 bytes at  the  end of CD may also be 
removed.  FLUSHx is completed  for  both  algorithms  when 
the first byte in CD is removed. 

CLEARBITSx (Figure 16) tests bit 15 of C. If bit 15 is 
0, the sum of c and A masked  with Ox7FFF will not carry 
into bit 16 of C, and  the  addition  can  be  performed.  The 
addition  determines  whether  bit 15 of C will be  set  to 0 or 
1. In  either case, the 15 least significant  bits of C are  then 
set to Ox7FFF. 

FINALWRITESx (Figure 17) left-shifts C by CT. If C is 
greater  than 0x8000000, a carry exists. The byte  in the 
output  buffer, B, is incremented,  inverted,  and  written; 
and  the pair of bytes OxFFOO is written SC times. If a  carry 
does not exist, B is tested  for  equality with 0x00. If so, the 
pair of bytes OxFFOO are  written  into  the  compressed  data 

BITSTUFFx (Figure 14) tests  to  see  whether  the byte in 

IBM J.  RES.  DEVELOP,  VOL. 42 NO. 6 NOVEMBER 1998 

Q LPS-EXCHANGEx 

I 

A = Qe[I(CX)] A = Qe[I(CX)] 
D = MPS (CX) D =  1 " P S ( C X )  

I(CX) = NMPS[I(CX)I 

SWITCH[I(CX)l 

No 

I(CX) = NLPS[I(CX)] 

1 LPS decode and  probability-estimate  update. 

(MPS- EXCHANGE^) ..o ABIC? 

D = MPS (CX) D = 1 - M P S  (CX) 
I(CX) = NMPS[I(CX)] 

I I 

(*D) 

f MPS decode and  probability-estimate  update. d 

781 

M. J. SLATTERY AND J. L. MITCHELL 



f RENORMDx I 

r - 6  CT = O? 

+ 
A = A < < l  
C=C<<l 
CT = CT - 1 

Yes 

(*) 

stream;  otherwise B is inverted  and  written.  The byte Ox00 
is written SC times.  Finally, the most  significant 16 bits of 
the c register,  not including the  carry bit, are  inverted  and 
written. 

Figure 18 shows a simple  block diagram of a binary 
adaptive  arithmetic  decoder.  The  compressed  data CD and 
a  context cx from  the decoder’s model unit (not shown) 
are  input  to  the  arithmetic  decoder,  DECODERx.  The 
decoder’s output is the decision D. The  encoder  and 
decoder  model  units must  supply exactly the  same  context 
cx for  each given decision. 

through  INITDECx.  Contexts, CX, and bytes of 
compressed  data  (as  needed)  are  read  and passed on to 
DECODEx  until all contexts have been  read.  When all 
contexts have been  read,  the  coded  data has been 
decompressed. 

estimation  tables  to  either  the  ABIC values (Table 3) or 
the  JBIG values (Table 4). For all ABIC images, the index 
of the MPS  probability estimate I (CX) and  the  more 
probable symbol MPS (CX) for all contexts  are  both  set  to 
0. This is also  true  for  the first stripe of all JBIG images 
and any  images that  use  a  forced  reset  between  stripes. If 
a  JBIG image does  not  reset  the  contexts  between  stripes, 

782 the  context  indices  and  more  probable symbols remain as 

DECODERx (Figure 19) initializes the  Qx-coder 

INITDECx (Figure 20) initializes the probability- 

M. J. SLATTERY AND J. L. MITCHELL 

they were  at  the  end of the previous stripe of this  layer. 
B is initialized to 0x80. C is initialized to 0. BYTEINx is 
called to  read in a byte of compressed  data. C is left- 
shifted by 8. BYTEINx is called to  read in another byte of 
coded  data.  For  ABIC images, C is left-shifted by 4; CT is 
decremented by 4; and A is initialized to 0x8000. For  JBIG 
images, c is left-shifted by 8; BYTEINx is called a  third 
time;  and A is initialized to 0. For  implementations  in 
which A has  more  than 16 bits,  it is initialized to 0x10000. 

Chigh is less than Qe [ 1 (ex) I ,  LPS-EXCHANGEx  and 
RENORMDx  are  called,  and  DECODEx  completes. If 
Chigh is greater  than  or  equal  to Qe [I (CX) I ,  Chigh is 
decremented by Qe [I ( CX) I .  If A is less than 0x8000, 
MPS-EXCHANGEx  and  RENORMDx  are called; 
otherwise,  the decision, D, is set  to MPS (CX) . D is 
returned  to  the calling DECODERx  routine. 

LPS-EXCHANGEx (Figure 22) tests which algorithm 
is used. If the  algorithm is ABIC, A is set  to Qe [I (CX) ] 
and D is set  to  the  LPS  value, i.e., 1 - MPS (CX) . If 
SWITCH [ I (Cx) I is set, MPS (CX) is inverted.  The index, 
1 (CX), is updated with NLPS [I (CX) 1 .  The  decoded 
decision D is returned  to  the calling routine. 

Qe [I (CX) 1 .  If A is greater  than  or  equal  to Qe [I (CX) 1 ,  
the  ABIC  path is taken as  above; otherwise, A is set to 
Qe [I (CX) I ,  D is set  to MPS (CX), and  the I  (CX) is 
updated with NMPS [I (CX) 3 .  The  decoded decision D is 
returned  to  the calling routine. 

is used. If the  algorithm is ABIC, D is set  to MPS (CX) . 
The index, I ( CX), is updated with NMPS [I (CX) 1 .  The 
decoded decision D is returned  to  the calling routine. 

Qe[I(CX)].IfAisgreaterthanorequaltoQe[I(CX)], 
the  ABIC  path is taken as  above; otherwise, D is set  to  the 
LPS value, 1 - MPS (CX). If SWITCH [I (CX) I is set, 
MPS (CX) is inverted.  The index, 1  (CX) , is updated with 
NLPS [I (cx) I .  The  decoded decision D is returned  to  the 
calling routine. 

decrements CT until A is greater  than  or  equal  to 0x8000. 
Before  each shift, if CT is 0, BYTEINx is called to  read in 
another byte of compressed  data.  Once A is greater  than 
or  equal  to 0x8000, if the  algorithm is JBIG  and CT equals 
0, BYTEINx is called  again. 

If the  algorithm is ABIC, bit stuffing is used.  For bit 
unstuffing, B is tested. If B is OxFF, one byte of 
compressed  data is read  from CD, and B is set  equal  to  it. 
C is incremented by B left-shifted 12 bits. The  counter CT 
is set equal  to 7, indicating  that  the byte includes  a  stuffed 
bit. If B is not  equal to OxFF, one byte of compressed  data 
is read  from cD, and B is set  equal  to  it. C is incremented 

DECODEx (Figure 21) decrements A by Qe [I (CX) 3 .  If 

If the  algorithm is JBIG, A is tested against 

MPS-EXCHANGEx (Figure 23) tests which algorithm 

If the  algorithm is JBIG, A is tested against 

RENORMDx (Figure 24) left-shifts A and C and 

BYTEINx (Figure 25) tests which algorithm is used. 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



P BYTEINx 

Yes No 

Read one byte from CD 

CT = 8 CT = I 
C=C+(B<<ll) C = C + (B << 12) 

Set B equal to it Set B equal to it 
Read one byte from CD 

B = Ox00 Read one byte from CD 
Set B equal to it 

- 
Read one byte from CD 

by B left-shifted 11 bits. The  counter CT is set  to 8, 
indicating  that  eight  bits  are  to  be  processed  before 
another byte of compressed  data is needed. 

If the  algorithm is not  ABIC,  a  test is done  to  see 
whether all of the  compressed  data  has  been  read  from 
CD. If all the  data  has  been  read, B is set equal  to 0x00. If 
not,  a new byte is read  from CD, and B is set  equal  to  it. If 
B is equal  to OxFF, the next byte is read  from CD. Once B 
is set,  increment c by an inverted B left-shifted by eight 
bits. CT is set  to 8. 

Acknowledgments 
The  authors  thank S. H. Burroughs  for his persistence in 
asking whether merging a  Q-coder  and  a  QM-coder in 
VLSI  was practical,  the Xionics Corporation  for 
demonstrating  a  market  for  the  Qx-coder,  and  their 
colleagues, P. S. Colyer, F. A. Kampf, and K. M. Marks, 
for  helpful discussions. In addition, they thank  their 
managers, J. A. Oleszkiewicz, F. C.  Mintzer,  and T. R. 
Lattrell,  for  encouragement  and  support of this work; 
W. B. Pennebaker  for his invaluable  contributions  to  the 
pioneering work on hardware-  and  software-optimized 
arithmetic coding structures; R. B. Arps  and G. G. 
Langdon, who  played  significant roles in laying the 

foundation of the  hardware  ABIC;  and  C.  Constantinescu 
for  rapid  code  updates  to  the  software  that was  used to 
validate  the design. The  Q-coder work was done as a 
collaboration  between  the  IBM  Thomas J. Watson  and 
Almaden  Research  Centers. 

References 
1. R. B. Arps,  T. K. Truong,  D. J. Lu, R. C.  Pasco, and 

T. D.  Friedman,  “A  Multi-Purpose VLSI Chip  for 
Adaptive  Data  Compression of Bilevel Images,” ZEM J. 
Res. Develop. 32, 775-795 (1988). 

2. W. B. Pennebaker,  J. L. Mitchell,  G. G. Langdon,  Jr.,  and 
R. B. Arps,  “An Overview of the Basic Principles of the 
Q-Coder  Adaptive Binary Arithmetic  Coder,” ZEM J. Res. 
Develop. 32, 717-726 (1988). 

Technology-Coded Representation of Picture  and  Audio 
Information-Progressive Bi-Level Image  Compression 
(JBIG  standard). 

4. K. M. Marks, “A JBIGIABIC  Compression  Engine  for 
Digital Document Processing,” IEM J.  Res. Develop. 42, 
753-758 (1998, this  issue). 

5. S. H. Burroughs  and  T.  R.  Lattrell,  “Data  Compression 
Technology in ASIC  Cores,” IEM J. Res. Develop. 42, 
725-731 (1998, this  issue). 

Implementations of the  Q-Coder,” IEM J. Res. Develop. 

3. ZTU-T Rec. T.821ZSOIZEC 11544:1993 Information 

6. J. L. Mitchell and W. B. Pennebaker,  “Software 

32, 753-774 (1988). 
7. ITU-T Rec. T81  lISO/IEC  10918-1:1993 Information 

Technology-Coded Representation of Picture  and  Audio 783 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 M. J. SLATTERY AND J.  L. MITCHELL 



Information-Digital Compression  and Coding of 
Continuous-Tone Still Images  (JPEG  standard). 

Data Compression Standard, Van  Nostrand  Reinhold, New 
York, 1993. 

9. J.  L. Mitchell and W. B. Pennebaker,  “Optimal  Hardware 
and  Software  Arithmetic Coding Procedures  for  the 
Q-Coder,” IBM J. Res. Develop. 32, 727-736 (1988). 

10. J. L. Mitchell and W. B. Pennebaker,  “Arithmetic Coding 
Data CompressioniDe-Compression by Selectively 
Employed, Diverse Arithmetic Coding Encoders  and 
Decoders,” U.S. Patent 4,891,643, January 2, 1990. 

Compression,” IBM J. Res. Develop. 42, 759-766 (1998, 
this issue). 

Estimation  for  the  Q-Coder,” IBM J. Res. Develop. 32, 

8. W. B. Pennebaker  and J. L. Mitchell, JPEG: Still Image 

11. F. A.  Kampf, “Performance as a  Function of 

12. W. B. Pennebaker  and J. L. Mitchell, “Probability 

737-752 (1988). 
13. JBIG Committee,  “Working  Draft 14492 as of  20 April 

1998,” ISOIIEC JTC lISC29IWGl  N839, April 20, 1998. 
14. http:iiwww.chips.ibm.comlproductslasicslcores.html. 

Received  Februaly 3, 1998; accepted for  publication 
May 21, 1998 

M. J. SLATTEKY AND J. L. MITCHELL 

Michael J.  Slattery IBM Microelectronics Division, 
Burlington facility, Essex Junction, Vermont 05452 
(mslatter@us.ibm.com). Mr.  Slattery  graduated  from  the 
University of Notre  Dame with a B.S. degree in electrical  and 
computer  engineering. He joined  the IBM Microelectronics 
Division in 1990 and has  worked in VLSI failure analysis, 
polyimide films and via process  engineering, encryption 
product design, adaptive  and lossless data  compression 
product design, arithmetic coding for VLSI implementations, 
and 2D graphical acceleration. 

Joan L. Mitchell IBM Research Division, Thomas J. Watson 
Research Center, P.O. Box 218, Yorktown Heights, New York 
10598 (joanm@us.ibm.com). Dr. Mitchell graduated  from 
Stanford University  with a B.S. degree in physics in 1969. 
She received her M S .  and  Ph.D.  degrees in physics from  the 
University of Illinois at  Champaign-Urbana in 1971 and 1974, 
respectively, joining  the  Exploratory  Printing  Technologies 
group  at  the IBM Thomas  J.  Watson  Research  Center 
immediately after completing her Ph.D. She was a  manager  at 
the  Research  Center  for  nine years, worked  for  three years in 
IBM Marketing,  and  returned  to  the IBM Research Division 
in 1991 to work  again in the  Image  Technologies  group. In 
1994, she left for  a two-year  leave of absence.  During  her 
leave, Dr. Mitchell co-authored  a  book on MPEG,  consulted 
for IBM Burlington,  and was a visiting professor at  the 
University of Illinois for six months. Back at  the IBM Thomas 
J. Watson  Research  Center,  she is now a  Research Staff 
Member in the  Image  Applications  Department. Since 1976 
Dr. Mitchell has  worked in the field of image  processing and 
data  compression.  She received IBM Outstanding  Innovation 
Awards for two-dimensional data  compression in 1978, for 
teleconferencing in 1982, for  the image view facility in 1985, 
for resistive ribbon  thermal  transfer  printing technology in 
1985, for  speed-optimized  software  implementations of image 
compression  algorithms in 1991, and  for  the  Q-coder in 1991. 
She is a  member of APS, IEEE, Sigma Xi, and IS&T and is a 
co-inventor on 30 patents. 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBEK 1YYX 


