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The IBM Adaptive  Bilevel Image Compression 
(ABIC)  algorithm  depends  upon the hardware- 
optimized Q-coder. The  Joint  Bi-level Image 
Experts Group  (JBIG) settled upon a software- 
optimized QM-coder. This  paper  explores 
the incompatibilities of the hardware- and 
software-optimized binary arithmetic coding 
conventions  and reports on the solution that 
allowed a merged Qx-coder  in hardware. 
A unique hardware solution  is presented 
for the termination of the JBIG data stream 
(CLEARBITS).  The  probability  estimation  is 
presented in a common format. Detailed 
flowcharts are included  in the Appendix. An 
ASIC  core  is  available that supports  both  the 
ABIC  and  JBIG  bilevel data compression 
standards  using  this merged Qx-coder. 

1. Introduction 
Binary arithmetic  coding is a  data  compression  method 
that  generates  compressed  data as a  finite-precision 
fraction which identifies an  interval  on  the  number line. 
Each  picture  element  (pel) is encoded  or  decoded  on  the 
basis of a probability estimate which determines  where 
the binary arithmetic  coder splits the interval into two 
subintervals.  The  value of the pel determines which 
subinterval  becomes  the new interval.  When  the size  of 
the new interval drops below a minimum  value, b i n ,  
renormalization shifts the precision  until it is greater  than 
or  equal  to  the minimum  size. With  each shift, a bit is 
produced  for  the  compressed  data  stream. 

Some  conventions have to  be  established  about  the 
order of the symbols. For example, the lower interval  can 
be assigned to  a 0 and  the  upper interval  assigned to  the 
1. Alternatively, the lower interval  can  be assigned to  the 
more  probable symbol (MPS)  or  the less probable symbol 
(LPS);  or  the  largest  subinterval  can always be assigned to 
the  more  probable symbol. Hardware  conventions  choose 

the  upper  interval as the MPS and  the lower  interval  as 
the LPS. Software conventions select the lower  interval 
as the MPS and  the  upper interval  as the LPS. 

Adaptive binary arithmetic coding uses  information 
about  the  surrounding pels, the context, to modify the 
probability estimate.  In  fact,  separate probability estimates 
are  maintained  for all possible  contexts. A  model 
generates  context-pel  pairs  for  the binary arithmetic  coder 
based  upon  a  template.  The  model must  provide the  same 
context  for  encoding  and  decoding.  The probability 
estimate of a given context may be  changed only  when a 
renormalization is required. 

IBM  Adaptive Bilevel Image  Compression  (ABIC) 
employs the  Q-coder  for its adaptive binary arithmetic 
coder [1, 21. The  Q-coder was designed with parallel 
hardware  conventions.  Its  model  template consists of 
seven fixed, nearby pels. For  each  context,  the  expected 
symbol (0 or 1) and  an  indication of the  estimated 
probability of the unlikely symbol are  stored.  After 
initialization of the 128  contexts, the  context-decisionipel 
pairs  are  input  into  the binary arithmetic  encoder  to 
produce  the  compressed  data  stream.  The  international 
Joint Bi-level Image  Experts  Group  created  the 
international  standard commonly known as JBIG, which 
employs a  software-convention-based  arithmetic  coder,  the 
QM-coder [3]. The  JBIG  sequential  model  template 
consists of ten  nearby pels, one of which can move, 
creating 1024 probability-estimation  contexts  to  track. 
Further  details  regarding  ABIC  and  JBIG  models  and 
architectures  are available  in companion  papers [4, 51. 

Figure l (a)  illustrates  the  Q-coder  hardware-optimized 
symbol-ordering  conventions.  The  C  register (e) holds the 
least  significant  bits of the  compressed  data  and  points  to 
the base of the  less-probable-symbol  (LPS)  interval.  The 
LPS  probability estimate Qe is the size of the LPS 
interval.  The split  between the LPS and  the  more- 
probable-symbol (MPS)  intervals is at C + Qe and 
belongs  to  the MPS interval.  The  complete interval  size is 
held  in the  A  register (A). The  sum, C + A, points  to  the 
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top of the interval and is not  part of the MPS segment. 
The  dashed  line  at C + A - 1 shows the  largest value 
that c can  reach. 

The  software-optimized version of the  Q-coder in 
Reference [6] kept  the  symbol-order  conventions shown in 
Figure  l(a).  Extra cycles to identically match  the  hardware 
output always occurred  outside  the  inner  loops.  The 
hardware-optimized  Q-coder-compressed  data  stream was 
constructed while the  code  stream was pointing  to  the  top 
of the MPS  interval. During  the  termination  procedure, 
the  data  stream was moved to  the  bottom of the LPS 
segment  and  thus  matched  the  hardware-generated 
compressed  data.  The  hardware bit-stuffing conventions 
were carefully duplicated in the  software  algorithm. 

When  the  International  Organization  for 
Standardization  and  the  International  Electrotechnical 
Commission (ISOIIEC)  and  the  International 
Telecommunications Union-Terminal Sector  (ITU-T), 
formerly known  as the  Consultative  Committee of the 
International  Telephone  and  Telegraph  (CCITT), working 
jointly  as JBIG with the  Joint  Photographic  Experts  Group 
(JPEG) [7, 81, arrived at  a  common  QM-coder, it was 
defined  in terms of a  different  optimal  software 
convention. Figure l (b)  shows the  JBIGIJPEG  QM-coder 
conventions.  For  the  QM-coder,  the MPS interval 
occupied  the lower portion of the  number line. The  point 
between  the  interval was assigned to  the  upper  LPS 
interval.  The  code  stream  pointed  to  the  base of the lower 
MPS  interval. 

The  QM-coder, derived from  ABIC, was designed  with 
serial  software  conventions  that  make  sharing of hardware 
difficult. However, the basic concept of the conversion 
of software-optimized  arithmetic coding into  hardware- 
optimized  structures is known [9, 101. Figure l (c)  shows a 

768 hardware-optimized  QM-coder, in which the MPS  over 
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LPS (MPSILPS) convention is used.  The  last valid value of 
the interval  in Figure  l(b), C + A - 1, is mapped  to  the 
base of the  LPS interval in Figure  l(c).  The base of the 
LPS interval, C + A - Qe, maps to C + Qe - 1, 
which is the  top of the  LPS interval.  Finally, the  base of 
the MPS interval  becomes  the last valid value included in 
the MPS  interval, c + A - 1. 

This switch in conventions  makes it  possible to  merge 
the  Q-coder  and  the  QM-coder in logic, adopting 
hardware  conventions.  The  rest of this paper  describes in 
detail how the two arithmetic  coders  were  merged  into  the 
Qx-coder. Section 2 discusses more of their  differences 
that  must  be resolved  in the definition of the  Qx-coder. 
Section 3 defines the  Qx-coder  and  illustrates  the 
integration of the  Q-coder  and  QM-coder.  Section 4 
focuses upon  a  unique  hardware  solution  to  the  encoder's 
termination  technique  for  the  JBIG-compressed  data 
stream known  as CLEARBITS.  Section 5 discusses the 
various probability estimators  and  casts  them  into  a 
common  format.  Section 6 summarizes  the  differences 
between  the  Q-coder  and  QM-coder,  and  the  solutions 
provided by the Qx-coder. The  Appendix  contains  detailed 
flowcharts implementing  the  Qx-coder  encoder  and 
decoder,  and  their  descriptions. 

2.  Differences between the Q-coder and the 
QM-coder 
Resolving the  fundamental  differences  between  hardware 
and  software  conventions is an  essential first step in 
creating  the  merged  Qx-coder.  In  addition, several other 
issues  must be resolved: register  precision, probability- 
estimation  table, carry-over resolution,  termination 
procedures,  and byte  stuffing. 

The  Q-coder Qe values  have 12 bits of precision. The  A 
register  needs  a  13th bit. This most  significant bit is key to 
the  renormalization-driven  probability-estimation process. 
Whenever A drops below 0x1000, the index 1 of the 
MPS probability Qe is changed  for  the  context CX just 
encodedidecoded. 

The  QM-coder Qe values  have 15 bits of precision.  The 
16th bit in the  A  register drives the  probability-estimation 
process. Whenever A drops below 0x8000, the index I is 
changed  for  the  current  context CX. During initialization 
a  17th bit can  be  needed  for  the A register. 

To  ensure  that  carries  out of the  C  register could not 
affect more  than  the most recently  generated  compressed 
byte in the  encoder,  the  Q-coder uses bit stuffing. After 
every OxFF byte (aligned  on byte boundaries),  an  extra bit 
is stuffed into  the most  significant bit of the next byte. 
The  resolution of any carries  that  land in the  stuffed-bit 
position is done in the  decoder.  The newly encoded 
compressed byte is extracted  from  the  C  register in such 
a way that  at most one carry  can propagate  into it [9]. 
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Table 1 Encoder register assignments. 

Coder msb lsb 

C register Q f f f f f f f f  bbbbbbbb ssssxxxx  xxxxxxxx 
Q in  Qx OOOOcbbb  bbbbbsss xxxxxxxx  xxxxx000 
QM OOOOcbbb  bbbbbsss xxxxxxxx  xxxxxxxx 
QM in Qx OOOOcbbb  bbbbbsss xxxxxxxx  xxxxxxxx 

A register Q OOOlaaaa  aaaaaaaa 
Q in  Qx laaaaaaa  aaaaaOOO 
QM 0 0 0 0 0 0 0 0  OOOOOOOa  aaaaaaaa  aaaaaaaa 
QM in Qx aaaaaaaa  aaaaaaaa 

Amin Q 0 0 0 1 0 0 0 0  0 0 0 0 0 0 0 0  
Q in Qx 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
QM 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  
QM in Qx 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

The  QM-encoder is designed to wait to  output 
compressed bytes  until any carries have been resolved in 
the  encoder.  A  stack  counter (SC) records  the  number of 
buffered OxFF bytes. This  counter typically contains small 
counts in the  range of 1 to 3. However,  it  could 
potentially hold the  entire  compressed  data  stream  and 
create  a  severe latency problem [ l l ] .  Since carries  are 
resolved in the  encoder, bit  stuffing is not  needed. 
However, byte stuffing of Ox00 bytes after every 
compressed OxFF byte is used to  prevent  the  accidental 
generation of marker  codes. 

During  the  termination of Q-coding,  the  bits  remaining 
in the C register  are shifted into  the  data  stream.  This has 
the nice property  that  the C register  returns  to 0x0000 
when decoding  has  completed;  otherwise,  a  nonzero value 
indicates  that  errors have occurred. 

Since trailing 0x00 bytes may be  discarded  before 
the  marker  codes  ending  a  JBIG  stripe  or image, the 
termination  procedure  for  the  QM-coder is not  a simple 
flushing of the  C  register.  Instead,  the  procedure 
CLEARBITS finds a  point inside the  interval with the 
most  trailing 0 bits. 

3. Qx-coder defined 
The  Qx-coder  takes  advantage of the fact that  the  Q-coder 
and  QM-coder  are  both finite-precision arithmetic  coders 
and  use  renormalization-driven probability estimation.  The 
Q-coder  hardware-optimized symbol order was chosen. 
This  meant  that  the  QM-coder  had  to  be  converted  to 
hardware  conventions without  modifying the  compressed- 
data bit streams.  This was accomplished by inverting the 
symbol order,  as shown in Figure  l(c)  and  then inverting 
the  compressed  data as the bytes are  output. 

The  Qx-coder  had  to  choose  a  register  alignment.  The 
QM and  Q  entries in Table 1 and Table 2 show the 
encoder  and  decoder  register  assignments as given in 
References [3] and [6] ,  respectively.  Since the precision of 
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Table 2 Decoder register assignments. 

Coder msb Ish 

Chigh register Q oooxxxxx  xxxxxxxx 
Q in Qx xxxxxxxx  xxxxxbbb 
QM xxxxxxxx  xxxxxxxx 
QM in Qx xxxxxxxx  xxxxxxxx 

Clow register Q nnnnnnnn f f f f f f f f  
Q in Qx bbbbbOOO 0 0 0 0 0 0 0 0  
QM bbbbbbbb 00000000  
QM in Qx bbbbbbbb 00000000 

A register Q OOOlaaaa  aaaaaaaa 
Q in Qx laaaaaaa  aaaaaOOO 
QM a  aaaaaaaa  aaaaaaaa 
QM in Qx aaaaaaaa  aaaaaaaa 

the Qe values is 12 bits for  the  Q-coder  and 15 bits for  the 
QM-coder, it was natural  to shift the  Q-coder values  left 
three bits  in the  register  to  line  them  up with the  more 
significant  bits of the  QM-coder values. This  creates  a 
common Amin value for  triggering  renormalizations.  Table 
1 shows that this  aligns the  output byte, bbbbbbbb, nicely. 

The  extra  spacer bit, s, in the  Q-coder was a  concern 
until it was realized  that  the  spacer-bit definition changed 
between  the  documentation of the  Q-coder  and  the  QM- 
coder.  The  Q-coder  documentation  had as  many xs as the 
precision of the Qe values. The  QM-coder  documentation 
has  one  more x than  the precision of its Qe values, so by 
the  more  recent  definition,  both have just  three  spacer 
bits. The flag bits f in the most  significant  byte of the 
Q-coder C register  are  not  needed  because  a  counter 
CT keeps  track of when to  output bytes. The  carry bit c 
is shown to  the left of the  output byte position. If the 
previous  byte was a OxFF, the  carry  bit will be  the most 
significant bit of the  output byte at  the stuffed-bit 
position. 
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T = (A - 1 + C) and OxFFFFOOOO 
i f T < C  

C = T + 0x8000 
else 

C = T  
endif 

[ QM-coder procedure CLEARBITS. 

T = C OR OxOOOOFFFF 
if T >   ( C + A -  1) 

C + T - 0 ~ 8 0 0 0  
else 

C = T  
endif 

1 QM-coder procedure CLEARBITSx for hardware conventions. 

Chigh = Chigh 
if (Ox10000 > (Clow + Alow)) 

Clow = Ox7FFF 
else 

Clow = OxFFFF 
endif 

A simplified CLEARBITSx. 

The A register  has  to  be  kept in alignment with the C 
register  and  therefore is also shifted  left three bits for  the 
Q-coder in the  Qx-coder.  It still fits in a  16-bit  register. 

770 The  extra  17th bit of precision in  the  QM-coder was 
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C[14:0]  A[14:0] 

J CWI 

CU51 
C[31:28] = O..O 
C[27:16] = C[27:16] 
C[14:0] = 1..1 

dropped.  The JBIG specification explicitly states  that  the 
17th bit can  be avoided if initialization  to Ox0000 produces 
the  same  output  after  the first subtraction as  initialization 
to Ox10000 in the  low-order 16 bits. 

The  decoder  uses  these  same definitions of the A 
register  and  the h i n  value.  The  entire  renormalization- 
driven probability-estimation process is identical  between 
encoder  and  decoder.  Table 2 shows the  decoder  register 
assignments. The  Q-coder  registers  are again shifted  left 
three  bits  to align them with the  QM-coder.  The flag bits 
f in the  least significant  byte of the  Q-coder C l o w  register 
are  not  needed  because  a  counter CT identifies  when to 
input  another  compressed  data byte. The  Q-coder  input 
byte bits n are  relabeled as b bits and  are also shifted left 
three bits. The  three bbb bits in the Chigh register  do 
not  disturb  the  decoding  process  because all tests  against 
Chigh are  “greater  than  or  equal to” comparisons. 

The  QM-coder always has  marker  codes  that follow the 
arithmetic-coded  compressed  data.  Trailing Ox00 bytes may 
have been  removed, so any missing data is filled in as Ox00 
bytes. The  Q-coder expects  sufficient bits  to  completely 
decode  the final  decision  in the  compressed  data  stream. 
Since there  are no marker  codes,  the  end of compressed 
data will not always be known. To  prevent waiting for 
nonexistent  data  upon  a  request  for  more  data  three shifts 
before  the  termination of compression,  the  Q-coder  data 
is shifted  up in the C register. 

4. Hardware-optimized CLEARBITS 
Since the Qx-coder selected  the  Q-coder  symbol-ordering 
conventions,  the flushing of the C register  to  terminate 

IBM .I. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



Table 3 Qx-coder probability-estimation table for Q-coder. 

Index  Qe NMPS NLPS SWITCH Qe (binaly) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

5608 
5408 
5008 
4808 
3808 
3408 
3008 
2808 
2408 
2208 
lCO8 
1808 
1608 
1408 
1208 
OcO8 
0908 
0708 
0508 
0388 
02c8 
0298 
0138 
00b8 
0098 
0058 
0038 
0028 
0018 
0008 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
29 

0 
0 
1 
2 
3 
4 
5 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
21 
23 
23 
25 
25 
27 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0101 
0101 
0101 
0100 
0011 
0011 
001 1 
0010 
0010 
0010 
0001 
0001 
0001 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0110 
0100 
0000 
1000 
1000 
0100 
0000 
1000 
0100 
0010 
1100 
1000 
0110 
0100 
0010 
1100 
1001 
0111 
0101 
001 1 
0010 
0010 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
1000 
1100 
1001 
001 1 
1011 
1001 
0101 
001 1 
0010 
0001 
0000 

1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 
1000 

Q-coding basically remained  unchanged.  However,  the 
QM-coder  software-optimized  CLEARBITS  procedure, 
designed to  clear  the most trailing bits, had  to  be 
converted  to  a  hardware-optimized  procedure 
CLEARBITSx  designed  to  set  the most trailing bits to 1. 
Then  the  output inversion process would clear  those bits. 

Figure 2 gives the  QM-coder  CLEARBITS  procedure 
derived from  Figure 29 in Reference [3]. A  variable T 
(TEMP in the  JBIG specification) is set  to  the  top of the 
valid interval (T = A - 1 + C), and  then its 16 least 
significant bits  are  cleared (T = T AND OxFFFF0000). If 
T is no  longer in the  interval (T < C), 0x8000 is added 
back into T before  setting C to T. This  serial  software 
approach is awkward in hardware. 

Figures  l(b)  and  l(c) show that  the  software-optimized 
upper  point in the  interval, (C + A - l), is mapped 
directly to C. So a  CLEARBITSx  procedure with hardware 
conventions must  set  as many bits of c to 1 as possible, 
and, if the result is too  large  for  the valid interval, 
decrement it by 0x8000. Figure 3 defines  this 
CLEARBITSx  procedure.  For  the  CLEARBITSx shown  in 
Figure 3, let Chigh and Clow be  the  nonoverlapping most 
significant and  least significant  16  bits of C, respectively. 

Since A uses only 16  bits, A equals Alow. Substituting 
these new definitions for C and A and  eliminating  the 
temporary  variable T produces  an  alternate simplified 
CLEARBITSx, given in Figure 4. 

Since Alow (after any required  renormalizations) is 
always greater  than  or  equal  to 0x8000, the  test is reduced 
to  a  bit  test on C [ 151. If the most  significant bit of clow 
is set (C [ 151 = I ) ,  the  test will always fail. If that bit is 
zero,  the 15 low-order bits of A are  added  into C to allow 
a  potential carry to  set C [ 151. The 15 low-order bits of C 
are set to Is. The simplicity of this hardware is shown  in 
Figure 5.  A flowchart  version of this  figure is used for 
CLEARBITSx in Figure 16,  shown later. 

5. Probability  estimation 
The  Q-coder  and  the  QM-coder  are  both  renormalization- 
driven probability estimators [3, 7, 8, 121. Instead of 
collecting statistics  on  the  occurrence of 0 and 1 decisions 
for  each  context cx and calculating probabilities, 
predetermined  probabilities  are  referenced in a 
probability-estimation  table.  An index (I) into  the 
probability-estimation  table is saved at  each  context.  From 
this index, the Qe value can  be  generated.  The Qx-coder 771 
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Table 4 QM-coder probability-estimation table. 

I 
n 

W 
S 

N N I  

(binaly) 
Qe 

S 
I 

S 

n N N I  
W I W 

n 
d M L T  d M L T  

N N I  

e Q P P C  e 
X e S S H  X e S S H  (binaly) 

Q P P C  Qe Qe 
(binaly) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

5A1D 
2568 
1114 
080B 
03D8 
OlDA 
00E5 
006F 
0036 
OOlA 
OOOD 
0006 
0003 
0001 

5AlF 
3F25 
2CF2 
207C 
17B9 
1182 

OCEF 
09A1 
072F 
055C 
0406 
0303 
0240 
OlBl 
0144 
00F5 
00B7 
008A 
0068 
004E 
003B 
002c 

5AE1 
484C 

3AOD 
2EF1 
261F 
IF33 
1YA8 
1518 
1177 
0E74 

OBFB 
09 F8 
0861 
0706 

05CD 
04DE 
040F 
0363 

02D4 
025c 
01F8 
01A4 
0160 
0125 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
13 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
9 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

1 
14 
16 
18 
20 
23 
25 
28 
30 
33 
35 
9 

10 
12 

15 
36 
38 
39 
40 
42 
43 
45 
46 
48 
49 
51 
52 
54 
56 
57 
59 
60 
62 
63 
32 
33 

37 
64 
65 
67 
68 
69 
70 
72 
73 
74 
75 
77 
78 
79 
48 
50 
50 
51 
52 
53 
54 
55 
56 
57 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0101 
0010 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0101 
001 1 
0010 
0010 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0101 
0100 
001 1 
0010 
0010 
0001 
0001 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

1010 
0101 
0001 
1000 
0011 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

1010 
1111 
1100 
0000 
0111 
0001 
1100 
1001 
0111 
0101 
0100 
0011 
0010 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

1010 
1000 
1010 
1110 
01 10 
1111 
1001 
0101 
0001 
1110 
1011 
1001 
1000 
0111 
0101 
0100 
0100 
0011 
0010 
0010 
0001 
0001 
0001 
0001 

0001 
0110 
0001 
0000 
1101 
1101 
1110 
0110 
0011 
0001 
0000 
0000 
0000 
0000 

0111 
0010 
1111 
0111 
1011 
1000 
1110 
1010 
0010 
0101 
0000 
0000 
0100 
1011 
0100 
1111 
1011 
1000 
0110 
0100 
001 1 
0010 

1110 
0100 
0000 
1111 
0001 
001 1 
1010 
0001 
0111 
0111 
1111 
1111 
01 10 
0000 
1100 
1101 
0000 
0110 
1101 
0101 
1111 
1010 
01 10 
0010 

1101 
1000 
0100 
1011 
1000 
1010 
0101 
1111 
0110 
1010 
1101 
0110 
0011 
0001 

1111 
0101 
0010 
1100 
1001 
0010 
1111 
0001 
1111 
1100 
01 10 
001 1 
0000 
0001 
0100 
0101 
0111 
1010 
1000 
1110 
1011 
1100 

0001 
1100 
1101 
0001 
1111 
001 1 
1000 
1000 
0111 
0100 
1011 
1000 
0001 
0110 
1101 
1110 
1111 
001 1 
0100 
1100 
1000 
0100 
0000 
0101 

60 
61 
62 
63 

64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

80 
81 
82 
83 
84 
85 
86 
87 

88 
89 
90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 

101 
102 
103 
104 

105 
106 
107 

108 
109 

110 
111 

112 

00F6 
OOCB 
OOAB 
008F 

5B12 
4D04 
412C 
37D8 
2FE8 
293C 
2379 

IEDF 
1 AA9 
174E 
1424 
119C 
OF6B 
OD51 
0886 
OA40 

5832 
4D1C 
438E 

3BDD 
34EE 
2EAE 
299A 
2516 

5570 
4CAY 
44D9 
3E22 
3824 
32B4 
2E17 

56A8 
4F46 
47E5 
41 CF 
3C3D 
315E 

5231 
4C0F 
4639 
415E 

5627 
50E7 
4B85 

5597 
504F 

5A10 
5522 

5YEB 

61 
62 
63 
32 

65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
48 

81 
82 
83 
84 
85 
86 
87 
71 

89 
90 
91 
92 
93 
94 
86 

96 
97 
98 
99 

I00 
93 

102 
103 
104 
99 

106 
107 
103 

109 
107 

111 
109 

111 

58 
59 
61 
61 

65 
80 
81 
82 
83 
84 
86 
87 
87 
72 
72 
74 
74 
75 
77 
77 

80 
88 
89 
90 
91 
92 
93 
86 

88 
95 
96 
97 
99 
99 
93 

95 
101 
102 
103 
104 
99 

105 
106 
107 
103 

105 
108 
109 

110 
111 

110 
112 

112 

0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 

0 
0 

1 
0 

1 

0000 
0000 
0000 
0000 

0101 
0100 
0100 
0011 
0010 
0010 
0010 
0001 
0001 
0001 
0001 
0001 
0000 
0000 
0000 
0000 

0101 
0100 
0100 
001 1 
001 1 
0010 
0010 
0010 

0101 
0100 
0100 
001 1 
001 1 
001 1 
0010 

0101 
0100 
0100 
0100 
001 1 
0011 

0101 
0100 
0100 
0100 

0101 
0101 
0100 

0101 
0101 

0101 
0101 

0101 

0000 
0000 
0000 
0000 

1011 
1101 
0001 
0111 
1111 
1001 
001 1 
1110 
1010 
0111 
0100 
0001 
1111 
1101 
1011 
1010 

1000 
1101 
001 1 
1011 
0100 
1110 
1001 
0101 

0101 
1100 
0100 
1110 
1000 
0010 
1110 

0110 
1111 
0111 
0001 
1100 
0111 

0010 
1100 
0110 
0001 

0110 
0000 
1011 

0101 
0000 

1010 
0101 

1001 

1111 
1100 
1010 
1000 

0001 
0000 
0010 
1101 
1110 
001 1 
0111 
1101 
1010 
0100 
0010 
1001 
0110 
0101 
1011 
0100 

001 1 
0001 
1000 
1101 
1110 
1010 
1001 
0001 

0111 
1010 
1101 
0010 
001 0 
1011 
0001 

1010 
0100 
1110 
1100 
001 1 
0101 

001 1 
0000 
001 1 
0101 

0010 
1110 
1000 

1001 
0100 

0001 
0010 

1110 

0110 
1011 
1011 
1111 

0010 
0100 
1100 
1000 
1000 
1100 
1001 
1111 
1001 
1110 
0100 
1100 
1011 
0001 
0110 
0000 

0010 
1100 
1110 
1101 
1110 
1110 
1010 
0110 

0000 
1001 
1001 
0010 
0100 
0100 
0111 

1000 
0110 
0101 
1111 
1101 
1110 

0001 
1111 
1001 
1110 

011 I 
0111 
0101 

01 11 
1111 

0000 
0010 

101 1 
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Table 5 Qx-coder  probability-estimation table  for JPEG-FA. 

Index Qe NMPS NLPS SWITCH Qe (binary) 

0 
1 
2 
3 
4 
5 

6 
I 
8 
9 

10 
11 
12 
13 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

5601 
3401 
1801 
Oacl 
0521 
0221 

5601 
5401 
4801 
3801 
3001 
2401 
lc01 
1601 

5601 
5401 
5101 
4801 
3801 
3401 
3001 
2801 
2401 
2201 
lc0l 
1801 
1601 
1401 
1201 
1101 
Oacl 
09cl 
08al 
0521 
0441 
02al 
0221 
0141 
0111 
0085 
0049 
0025 
0015 
0009 
0005 
0001 

1 
2 
3 
4 
5 

38 

7 
8 
9 

10 
11 
12 
13 
29 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
45 

1 1 
6 0 
9 0 

12 0 
29 0 
33 0 

6 1 
14 0 
14 0 
14 0 
17 0 
18 0 
20 0 
21 0 

14 1 
14 0 
15 0 
16 0 
17 0 
18 0 
19 0 
19 0 
20 0 
21 0 
22 0 
23 0 
24 0 
25 0 
26 0 
27 0 
28 0 
29 0 
30 0 
31 0 
32 0 
33 0 
34 0 
35 0 
36 0 
37 0 
38 0 
39 0 
40 0 
41 0 
42 0 
43 0 

0101 
001 1 
0001 
0000 
0000 
0000 

0101 
0101 
0100 
001 1 
001 1 
0010 
0001 
0001 

0101 
0101 
0101 
0100 
001 1 
001 1 
001 1 
0010 
0010 
0010 
0001 
0001 
0001 
0001 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0110 
0100 
1000 
1010 
0101 
0010 

0110 
0100 
1000 
1000 
0000 
0100 
1100 
0110 

0110 
0100 
0001 
1000 
1000 
0100 
0000 
1000 
0100 
0010 
1100 
1000 
0110 
0100 
0010 
0001 
1010 
1001 
1000 
0101 
0100 
0010 
0010 
0001 
0001 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 
0000 
0000 
1100 
0010 
0010 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 

0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
0000 
1100 
1100 
1010 
0010 
0100 
1010 
0010 
0100 
0001 
1000 
0100 
0010 
0001 
0000 
0000 
0000 

0001 
0001 
0001 
0001 
0001 
0001 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
000 1 

0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0001 
0101 
1001 
0101 
0101 
1001 
0101 
0001 

has unique  probability-estimation  tables for the  Q-coder 
and  the  QM-coder.  Formats  for  these  tables  are  presented 
in Table 3 and Table 4. A  third  table,  nicknamed  the 
JPEG-FA  table  for its reuse of Qe values in two “fast 
attack”  paths, is presented in Table 5 [8]. 

current index, I, a probability estimate, Qe, two possible 
next indices, NMPS and NLPS, and  a SWITCH value. As 

An  entry in the probability estimation  table consists of a 

each decision is processed,  the index is changed any time 
a  renormalization is required.  For  renormalizations 
triggered by the coding of an MPS, the NMPS gives the 
new index. Renormalizations  are always required  after  the 
coding of an LPS. The NLPS gives the new index for this 
case.  In  addition,  on  an  LPS  renormalization,  the  sense 
of the MPS  bit stored  at  each  context may have to  be 
switched,  as indicated by a 1 in the SWITCH column. 
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Table 6 Differences between the  Q-coder  and  QM-coder,  and the Qx-coder  solution. 

Q-coder  QM-coder  Qx-coder 

Hardware convention Software convention 

LPS at  bottom 

12-bit Qe values 

13-bit A  register 

30 Qe values  (5 bitdcontext) 

Describes  four  spacer bits 

LPSiMPS boundary with MPS 

Renormalization  on 
A < Ox1000 

Decoder resolves  carry 

MPS at  bottom 

15-bit Qe values 

16- or 17-bit A register 

113 Qe values (7 bitsicontext) 

Describes three  spacer bits 

LPSiMPS boundary with LPS 

Renormalization on 
A < 0x8000 

Encoder resolves  carry 

Convert  software  convention  to  hardware 
convention 

LPS at  bottom 

Left-justify 12-bit Qe values 

16-bit A register 

Both  at 7 bitsicontext 

Same  number  when  properly defined 

LPSiMPS boundary with MPS 

Shift Q-coder  A  register left three bits so 
renormalization  on A < 0x8000 for  both 

Both 

ENCODER 

25-bit C  register 

Flush C  register 

Initialize: 
A = Ox1000 
CT = 12 

Bit stuffing 

Compressed  data 

None 

28-bit C register 28-bit C  register (25-bit shifted left three bits) 

Clear 15 or 16 bits Both (see CLEARBITSx  procedure) 

Initialize: Both 
A = O  
CT = 11 

Byte stuffing Both 

JBIG  standard  compressed Both-Invert JBIG  compressed  data  on 
data  output 

Conditional exchange Conditional exchange for  QM-coder only 

DECODER 

Bit unstuffing Byte unstuffing Both 

Compressed  data JBIG  standard  compressed Both-Invert JBIG  compressed  data on 
data  output 

C register equals  0 when done Supply 0x00s when out of Both 
data 

Initialize: 
A = Ox1000 

Initialize: 
A = O  

Both 

In  Table 4, many of the Qe values are used at most 
once  per  context  because they are  part of the initial 
learning. Only 46 entries  are  part of the  nontransient  QM 
estimation  state  machine.  The  gaps in Table 4 show where 
the Qe values break a monotonically  decreasing  pattern. 
At  these  breaks,  the NMPS index is not  an  increment of 1 
away from  the  current index. 

The  JPEG-FA  table  has a  much simpler  initial  learning 
structure.  It is a variant of the  Q-coder  table  extended  to 
15-bit precision.  The  JBIG  committee  has  selected this 
table  for  the  MQ-coder  used in the new JBIG-2 lossy and 
lossless compression  algorithm [13]. The  MQ-coder 
follows the  hardware  conventions of the  Q-coder with  bit 

stuffing, but always assigns the MPS to  the  largest 
subinterval  (conditional  exchange),  as is done in the 
QM-coder. Since  probability estimates have  fifteen bits of 
precision,  the  three  trailing  zeros of the  Q-coder in the 
Qx-coder  are  replaced with real  data. 

6. Summary 
The  hardware-optimized  Q-coder  and  the  software- 
optimized  QM-coder  are  merged  into a common 
hardware-optimized  Qx-coder.  The  Q-coder 13-bit 
A register located in the Qx-coder  corresponds to  the high- 
order  13 bits of the 16-bit QM-coder A register. Similarly, 
the  Q-coder C register in the Qx-coder is shifted left  three 
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Qx-coder 
ENCODERx cx 

0 Qx-coder  ENCODERx inputs and output. 

bits in the  QM-coder C register.  This allows the  output 
byte to  be  co-located in the  hardware.  The  QM-coder 
hardware-optimized  compressed  data is inverted  at  the 
output  to  create  the  identical  QM-coder  software- 
optimized  compressed  data.  The  CLEARBITSx  procedure 
is optimized  for  hardware  and  can  be  executed in one 
cycle compared  to  the  CLEARBITS  and Clear-final-bits 
procedures given in the JBIG and JPEG standards 
respectively, which take several cycles. Both  Q-coder bit 
stuffing and  QM-coder byte  stuffing are  implemented. 

Table 6 summarizes the differences between the Q-coder 
and  the  QM-coder  and  the  solution  chosen  for  the 
Qx-coder.  A complete set of flowcharts for  the Qx-coder 
are  presented  and discussed  in the Appendix. Test 
sequences  for  the  Q-coder  are  found in [6]; test  sequences 

I I Read CX, D 
ENCODEx 

Table 7 Comparing Qx-coder with Q-coder and QM-coder notations. 

Yes 

FLUSHX + 
END 

:I 

t Encoder  for  the  Qx-coder. 

for  the  QM-coder  are  found in Table 26 of [3] and  Annex 
K of [7] and [8]. More  details  about  the  rest of the 
ABICiJBIG  ASIC  core which implements  the  Qx-coder 
architecture  are  found in companion  papers [4, 51 and on 
the  IBM  Blue Logic Internet  site [14]. 

Qx-coder 
~~~ ~~ ~ 

JBIG QM-coder ABIC Q-coder JPEG QM-coder 

A  A  A A 
AND & AND AND 
B BUFFER B B 
C  C  C  C 
CD  SCD 
Chigh 
COUNT - CT 
CT 
cx cx S s 
D PIX YN D 

MPS(CX) MPS(CX) MPS(S)  MPS(S) 
NLPS[I(CX)] NLPS[ST(CX)] Qe-index-Decr-LPS Next-Index-LPS(1) 
NMPS[I(CX)] NMPS[ST(CX)] Qe-index+Incr-MPS Next-Index"PS(1) 
Qe[I(cx)l LSZ[ST(CX)] Q@) Q G )  
SC sc 
SWITCH[I(CX)] SWTCH[ST(CX)] MPSexch-flag  Switch"PS(1) 
T  TEMP - T 
XOR - 
1-MPS(CX) 
<< << SLL SLL 
>> >> SRL SRL 

- 
CHIGH cx cx 

CT bits in C CT 

- 

- 

I(CX) ST( CX) Qe-index Index(S), I 

- sc 

- 
1-MPS(CX) 

- 
LPS(S) l-MPS(S) 

775 
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0 
Set tables  to  Set  tables to c 
I(CX) = 0 

MPS(CX) = 0 

MPS(CX) to their values 
at the  end of the  previous 

stripe of this  layer 

*I B = 0x80 

A = 0x8000 
CT = 12 

sc = 0 
A = O  

CT = 1 1  
I I 
I + I 

END 

1 Initialization of the encoder. 

S ENCODEx 

CODELPSx CODEMPSx 

CODELPSx 

r" 
CJ A = Qe[I(CX)] 

RENORMEx 

can  be  found in the flowcharts. All tests  in  the flowcharts 
are logical, unsigned comparisons. 

The definitions  used in the flowcharts are as follows: 

A A 16-bit  register  containing  the 
current  interval. 

ABIC A status  flag  selecting  the  Q-coder 
from  the  ABIC  algorithm  or  the 
QM-coder  from  the  JBIG 
algorithm.  It  also  selects  which 
probability-estimation  table  to  use. 
If the  ABIC  status  flag is 0, Qe, 
NMPS, NLPS, and SWITCH are  taken 
from  the  QM-coder  values in Table 3. 
If the  ABIC  status  flag  is 1, these 
values  are  taken  from  Table 3. 

AND The  AND logical  operator. 
B The  latest  compressed  byte  output 

in  the  encoder  or  compressed  byte 
input  in  the  decoder. 

significant  bits of the  encoder's 
compressed  data  and  the  most 

C A  register  containing  the  least 

+ 
END 

Deciding to encode an MPS or an LPS 

Appendix: Description of the Qx-coder 
flowcharts 
Figures 6 to 25 show  flowcharts for  the  merged  Qx-coder. 
A bold-faced name in a flowchart  block indicates  that  a 

776 more  detailed  description of a  procedure with that  name 
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CD 

Chigh 
COUNT 

CT 

cx 

D 

“Finished” 

“First  stripe of 
this  layer  or 
forced  reset” 
UCX) 

MPS(CX) 

NLPS[I(CX)] 

NMPS[I(CX)] 

Qe[I(CX)I 

sc 

SWITCH[I(CX)] 

T 

XOR 

<< 

>> 

IBM J. RES. DEVELOP. 

significant bits of the decoder’s 
compressed  data. 
The  compressed  data, including 
stuffed byteshits. 
The 16 high-order bits of C. 
The  number of extra  bits flushed 
for  ABIC  to  guarantee  that  the 
decoder  has  enough bits to 
completely decode all decisions. 
The  counter  that identifies byte 
boundaries  and,  therefore, when to 
output  or  input bytes of 
compressed  data. 
The  context  generated by the 
model. The model unit provides 
the  same context to  the  encoder 
and  decoder  for  a given decision. 
The binary  decision to  be  coded 
(O/ l ) .  In  the  encoder it is 
determined by the model unit; in 
the  decoder, it is output  from  the 
Qx-decoder. 
A status flag. For  ABIC  it is set 
when all of the lines  have been 
encoded or decoded. For  JBIG it is 
set when all of the lines in a stripe 
have been  encoded or decoded. 
A  status flag that selects either 
initializing the statistics or 
preserving them. 
The index of the  current 
probability estimate  for context CX. 
The  sense of the  more  probable 
symbol (0/1) for the given context CX 
The next index for context CX after 
coding an LPS. 
The next index for  context CX after 
coding an MPS that  triggered  a 
renormalization. 
The  current  estimate of the less 
probable symbol probability. 
The stack counter used only during 
QM-coding. 
The switch flag which indicates 
that  the  sense of MPS (CX) must be 
switched after coding an LPS. 
A  temporary variable  used for 
intermediate results. 
The  EXCLUSIVE-OR logical 
operator. 
The binary  shift  left logical 
operator. 
The binary  shift  right logical 
operator. 
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CODEMPSx 

c 
A = A - Qe[I(CX)] 

C = C + Qe[I(CX)] 

1 c = c  
C = C + Qe[I(CX)] A = Qe[I(CX)] 

I 

I(CX) = NMPS[I(CX)] 
RENORMEx 

1 MPS encode  and probability-estimate update. 

n RENORMEx 

A = A c c l  
C = C c c l  

c 

& CT = O? e BYTEOUTx 
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0 BYTEOUTx BITSTUFFx * B = OxFF? 

f"-el OxFF? 

Write (B XOR OxFF) 
Write OxFFOO SC times 

sc = 0 

I 

I Write (B XOR 0xFF)I 

1"- 
Write Ox00 SC times 

sc = 0 I B = T  
i 

I 

I C T = 8  
C=CANDOx7FFFF I 

Shifting a byte  from the C register to CD with byte stuffing. 

.,,~. ~ ,.X,.-"-_"l_.l ;l." "I". ." , x. . " I .. ".. .. 

Figure 6 is a block diagram showing the  inputs  and 
output  to  the  Qx-encoder,  ENCODERx.  Figures 7 to 17 
illustrate in greater  detail  the  functional block  in Figure 6. 
Figure 18 is a block diagram showing the  inputs  and 
output  to  the  Qx-decoder,  DECODERx.  Figures 19 to 25 
show more  details of this decoder. 

Table 7 compares  the  Qx-coder flowchart symbols with 
the  notation  used  for  the  QM-coder as documented  in  the 
JBIG  standard [3] ,  with the  notation used for  the  Q-coder 
[6], and with the  notation  used  for  the  QM-coder as 
documented in the  JPEG  standard [7 ,  81. 

Figure 6 shows a simple  block diagram of the  Qx-coder 
binary  adaptive  arithmetic  encoder.  The decision (D) and 
context  (CX)  pairs  are  processed  together in the  procedure 
ENCODERx  to  produce  compressed  data (CD) output. 
Both D and CX are  provided by the  model unit (not 
shown). CX selects  the  probability  estimate  to  use  during 

778 the coding of D. For  a  compression  ratio of lO:l, about 80 

i B = B + l  

I i m B = OxFF? I E k z t "  C = C AND Ox7FFFFFF 
I 

Write B Write B 

C = C AND Ox7FFFF C=CANDOxFFFFF 
CT = 8 CT = 7 

B = C > > 2 0  

decisions are  coded  before  a byte of compressed  data is 
output. 

ENCODERx (Figure 7) initializes the  Qx-coder  through 
the  INITENCx  procedure. cx and D pairs  are  read  and 
passed on  to  ENCODEx  until all pairs have been  read. 
Bytes of compressed  data  are  output  when no longer 
modifiable. When all of the CX and D pairs have been  read 
(Finished?),  FLUSHx  concatenates  the  contents of the 
C  register  to  the  compressed  data  stream  for  ABIC 
and  clears as  many bits as  possible for  JBIG. 

INITENCx (Figure 8) initializes the probability- 
estimation  tables  to  either  the  ABIC values (Table 3) or 
the  JBIG values (Table 4). For all ABIC images, the index 
I ( CX) for  the  less-probable-symbol  probability  estimate 
for all contexts is set to 0, and  the  more-probable-symbol 
MPS (Cx) for all contexts is also  set  to 0. This is also true 
for  the first stripe of all JBIG images and any  images that 
use  a  forced  reset  between stripes. If a  JBIG image does 
not  reset  the  contexts  between  stripes,  the  context  indices 
and MPS remain as  they were  at  the  end of the previous 
stripe  at  the  same level. 

INITENCx initializes B to 0x80 and C to 0. For  ABIC 
images, A is initialized  to 0x8000, and  the byte boundary 
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(74 FLUSHx 

4 
COUNT = 24 

CLEARBITSx 
FINALWRITESx i . '  

If desired, remove any Ox00 
bytes at end of CD 

COUNT = COUNT - CT 
C = C < < C T  
BYTEOUTx 

c 

"---=e CT = 7? 

Remove the  first 
byte in  CD 

f FINALWRITESx 1 

w C = C < < C T  

r-"l O X 8 0 0 0 0 0 0  

1 

Write (B XOR OxFF) 
B = B + 1  

Write OxFFOO SC times 
Write OxFFOO 

1 

Write (B XOR OxFF) 

w Write Ox00 SC times 

Write (((C>> 19) AND OxFF) XOR OxFF) 
Write (((C>> 11) AND O x F F )  XOR OxFF) 

CLEARBITSx 
~~";I-t"D cx DECODERx Qx-coder 

Yes 

No 
C = C + (A AND Ox7FFF) 

i Qx-coder DECODERx inputs and output. 
b 

t 
C = C  OR Ox7FFF 

i 
END 

initialized to 0x10000. A note in the  JBIG specification 
clarifies that 16 bits is sufficient if the effect of the initial 
subtraction  from Ox0000  is the  same as the initial 
subtraction  from 0x10000. 

ENCODEx (Figure 9) uses the  context CX and  decision 
D pair.  It  compares D with the  more  probable symbol for 
CX, MPS (CX). If they are  equal,  the decision is coded 
as  a more  probable symbol in CODEMPSx.  Otherwise, 

counter (CT) is initialized to 12. For  JBIG images, A is the decision is coded as a less probable symbol in 
initialized to 0x0000, and CT is initialized to 11. The  stack CODELPSx. 
counter is also used  for  JBIG images, and it is initialized CODELPSx (Figure 10) codes a less probable symbol. If 
to 0. If A were  more  than 16 bits for  JBIG, it would be the  algorithm is ABIC, C remains  the  same,  and A is set to 779 
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DECODERx 

INITDECx 

% Finished? 

Decoder for the Qx-coder. 

f INITDECx 

Yes 
I I + 

Set tables to Q-coder values Set tables to QM-coder values 

reset? 

I(CX) = 0 to their values at  the end of the 

+ 
B = 0x80 

BYTEINx 
c = o  

C = C < < 8  
BYTEINx 

Yes No + t 
c = c < < 4  

C T = C T - 4  
C = C < < 8  

A = O  A = 0x8000 
BYTEINx 

I I 

Qe [ I  ( C X )  1 .  If the  algorithm is JBIG, A is decremented 
780 b y Q e [ I ( C X ) ]   a n d c o m p a r e d t o Q e [ I ( C X ) ]   i n t h e  

( DECODEx 1 

I A = A - Qe[I(CX)] 

i 
Chigh = Chigh - Qe[I(CX)] 

I I I 

-9- D = MPS-EXCHANGEx D = MPS(CX) D = LPS-EXCHANGEx 

b RETURN D 

conditional exchange test. If A is less than Qe [ I  ( C X )  1, 
C is incremented by Qe [ I  (CX) 3 ; otherwise, C remains  the 
same  and A is set  to Qe [I (CX) I .  Next, if SWITCH ( C X )  is 
set,  the  more  probable symbol for  the  current  context is 
switched to  the  opposite symbol. The index into  the 
probability-estimation  table  for  context CX, I ( C X )  , is 
updated with NLPS [ I  ( C X )  1, and  RENORMEx is called. 

A is reduced by the LPS probability, Qe [ I  ( C X )  1 .  If A is 
not below 0x8000, C is incremented by Qe [I (CX) ] and 
CODEMPSx is complete. If A drops below Ox8000 and  the 
algorithm is ABIC, C is increased by Qe [ 1 (CX) I .  If A 
drops below Ox8000 and  the  algorithm is JBIG, A is 
tested  to  see  whether  a  conditional exchange is required 
(A<Qe[I(CX)]).IfAis~essthanQe[I(CX)I,Cremains 
the  same,  and A is set  to Qe [ I  ( C X )  3 ; otherwise, C is 
incremented by Qe [ I  ( C X )  1 .  1 ( C X )  is then  updated with 
the value stored in NMPS [ I  ( C X )  1,  and  RENORMEx is 
called.  RENORMEx (Figure 12) left-shifts A and C until A 
is greater  than or equal  to 0x8000. After  each shift, CT is 
decremented  and  then  tested. If CT equals 0, BYTEOUTx 
is called. 

BYTEOUTx (Figure 13) first  checks which algorithm 
is being used. If the  algorithm is ABIC,  BITSTUFFx is 
called,  and  BYTEOUTx is complete. If the  algorithm is 
JBIG,  the  temporary  variable T is assigned C right-shifted 
by 19. If T is greater  than OxFF, a  carry  has  occurred,  and 
the byte  in the  output  buffer, B, is incremented,  inverted, 
and  written  to  the  compressed  data  stream.  Then,  the two 

CODEMPSx (Figure 11) codes  a  more  probable symbol. 
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bytes OxFFOO are  written  into  the  compressed  data  stream 
sc times (including no times if sc is still zero).  The 
propagation of the  carry  through  the  counted OxFF bytes 
converted  them  to Ox00 bytes. However, the inversion 
process  restores  them  to OxFF, and byte  stuffing  causes 
each OxFF byte to  be followed  immediately by a stuffed 
Ox00 byte, SC is set  to 0, and B is assigned the  least 
significant  eight  bits of T. 

If the  test  to  see  whether T is greater  than OxFF failed, 
then, if T is equal  to OxFF, the  stack  counter SC is 
incremented.  Otherwise, B is tested  for  equality with 0x00. 
If so, the  pair of bytes OxFFOO are  written  into  the 
compressed  data  stream;  otherwise B is inverted  and 
written.  The byte Ox00  is written SC times; SC is set  to 0, 
and B is set to T. Finally, the byte placed in the  output 
buffer  and  the  carry bit are  removed  from c by masking 
off the  leftmost significant nine bits. CT is set  to 8. 

the  output  buffer, B, is equal  to OxFF.  If it is, B is written 
to  the  compressed  data  stream  and  then  set  to  the seven 
most  significant  bits of C. These bits are  then  cleared  from 
C, and CT is set  to 7, indicating  that bit stuffing has 
occurred. If B was not OxFF, C is tested  for  a carry. If 
there was a carry, B is incremented  and  tested  again. If B 
is now equal  to OxFF, the  carry bit is removed  from C; B is 
written  and assigned the seven  most  significant  bits of C; 
the seven  most  significant bits  are  cleared  from C; and CT 
is set  to 7 .  If B is not  equal  to OxFF or no carry was set  in 
C, B is written  and assigned the eight  most  significant bits 
of C;  the eight  most  significant bits of c are  cleared,  and 
CT is set  to 8. 

FLUSHx (Figure 15) first tests which algorithm is being 
used. If the  algorithm is ABIC, COUNT is set  to 24. COUNT 
is then  decremented by  CT; C is left-shifted by  CT; and 
BYTEOUTx is called.  These  three  steps  are  repeated 
while COUNT is greater  than 0. Once COUNT is less than 
or  equal  to 0, if CT equals 7, Ox00 is written  to  output 
the  trailing  stuffed bit. If the  algorithm is JBIG, 
CLEARBITSx  and  FINALWRITESx  are  called. If desired, 
any trailing Ox00 bytes at  the  end of CD may also be 
removed.  FLUSHx is completed  for  both  algorithms  when 
the first byte in CD is removed. 

CLEARBITSx (Figure 16) tests bit 15 of C. If bit 15 is 
0, the sum of c and A masked  with Ox7FFF will not carry 
into bit 16 of C, and  the  addition  can  be  performed.  The 
addition  determines  whether  bit 15 of C will be  set  to 0 or 
1. In  either case, the 15 least significant  bits of C are  then 
set to Ox7FFF. 

FINALWRITESx (Figure 17) left-shifts C by CT. If C is 
greater  than 0x8000000, a carry exists. The byte  in the 
output  buffer, B, is incremented,  inverted,  and  written; 
and  the pair of bytes OxFFOO is written SC times. If a  carry 
does not exist, B is tested  for  equality with 0x00. If so, the 
pair of bytes OxFFOO are  written  into  the  compressed  data 

BITSTUFFx (Figure 14) tests  to  see  whether  the byte in 
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Q LPS-EXCHANGEx 

I 

A = Qe[I(CX)] A = Qe[I(CX)] 
D = MPS (CX) D =  1 " P S ( C X )  

I(CX) = NMPS[I(CX)I 

SWITCH[I(CX)l 

No 

I(CX) = NLPS[I(CX)] 

1 LPS decode and  probability-estimate  update. 

(MPS- EXCHANGE^) ..o ABIC? 

D = MPS (CX) D = 1 - M P S  (CX) 
I(CX) = NMPS[I(CX)] 

I I 

(*D) 

f MPS decode and  probability-estimate  update. d 
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f RENORMDx I 

r - 6  CT = O? 

+ 
A = A < < l  
C=C<<l 
CT = CT - 1 

Yes 

(*) 

stream;  otherwise B is inverted  and  written.  The byte Ox00 
is written SC times.  Finally, the most  significant 16 bits of 
the c register,  not including the  carry bit, are  inverted  and 
written. 

Figure 18 shows a simple  block diagram of a binary 
adaptive  arithmetic  decoder.  The  compressed  data CD and 
a  context cx from  the decoder’s model unit (not shown) 
are  input  to  the  arithmetic  decoder,  DECODERx.  The 
decoder’s output is the decision D. The  encoder  and 
decoder  model  units must  supply exactly the  same  context 
cx for  each given decision. 

through  INITDECx.  Contexts, CX, and bytes of 
compressed  data  (as  needed)  are  read  and passed on to 
DECODEx  until all contexts have been  read.  When all 
contexts have been  read,  the  coded  data has been 
decompressed. 

estimation  tables  to  either  the  ABIC values (Table 3) or 
the  JBIG values (Table 4). For all ABIC images, the index 
of the MPS  probability estimate I (CX) and  the  more 
probable symbol MPS (CX) for all contexts  are  both  set  to 
0. This is also  true  for  the first stripe of all JBIG images 
and any  images that  use  a  forced  reset  between  stripes. If 
a  JBIG image does  not  reset  the  contexts  between  stripes, 

782 the  context  indices  and  more  probable symbols remain as 

DECODERx (Figure 19) initializes the  Qx-coder 

INITDECx (Figure 20) initializes the probability- 
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they were  at  the  end of the previous stripe of this  layer. 
B is initialized to 0x80. C is initialized to 0. BYTEINx is 
called to  read in a byte of compressed  data. C is left- 
shifted by 8. BYTEINx is called to  read in another byte of 
coded  data.  For  ABIC images, C is left-shifted by 4; CT is 
decremented by 4; and A is initialized to 0x8000. For  JBIG 
images, c is left-shifted by 8; BYTEINx is called a  third 
time;  and A is initialized to 0. For  implementations  in 
which A has  more  than 16 bits,  it is initialized to 0x10000. 

Chigh is less than Qe [ 1 (ex) I ,  LPS-EXCHANGEx  and 
RENORMDx  are  called,  and  DECODEx  completes. If 
Chigh is greater  than  or  equal  to Qe [I (CX) I ,  Chigh is 
decremented by Qe [I ( CX) I .  If A is less than 0x8000, 
MPS-EXCHANGEx  and  RENORMDx  are called; 
otherwise,  the decision, D, is set  to MPS (CX) . D is 
returned  to  the calling DECODERx  routine. 

LPS-EXCHANGEx (Figure 22) tests which algorithm 
is used. If the  algorithm is ABIC, A is set  to Qe [I (CX) ] 
and D is set  to  the  LPS  value, i.e., 1 - MPS (CX) . If 
SWITCH [ I (Cx) I is set, MPS (CX) is inverted.  The index, 
1 (CX), is updated with NLPS [I (CX) 1 .  The  decoded 
decision D is returned  to  the calling routine. 

Qe [I (CX) 1 .  If A is greater  than  or  equal  to Qe [I (CX) 1 ,  
the  ABIC  path is taken as  above; otherwise, A is set to 
Qe [I (CX) I ,  D is set  to MPS (CX), and  the I  (CX) is 
updated with NMPS [I (CX) 3 .  The  decoded decision D is 
returned  to  the calling routine. 

is used. If the  algorithm is ABIC, D is set  to MPS (CX) . 
The index, I ( CX), is updated with NMPS [I (CX) 1 .  The 
decoded decision D is returned  to  the calling routine. 

Qe[I(CX)].IfAisgreaterthanorequaltoQe[I(CX)], 
the  ABIC  path is taken as  above; otherwise, D is set  to  the 
LPS value, 1 - MPS (CX). If SWITCH [I (CX) I is set, 
MPS (CX) is inverted.  The index, 1  (CX) , is updated with 
NLPS [I (cx) I .  The  decoded decision D is returned  to  the 
calling routine. 

decrements CT until A is greater  than  or  equal  to 0x8000. 
Before  each shift, if CT is 0, BYTEINx is called to  read in 
another byte of compressed  data.  Once A is greater  than 
or  equal  to 0x8000, if the  algorithm is JBIG  and CT equals 
0, BYTEINx is called  again. 

If the  algorithm is ABIC, bit stuffing is used.  For bit 
unstuffing, B is tested. If B is OxFF, one byte of 
compressed  data is read  from CD, and B is set  equal  to  it. 
C is incremented by B left-shifted 12 bits. The  counter CT 
is set equal  to 7, indicating  that  the byte includes  a  stuffed 
bit. If B is not  equal to OxFF, one byte of compressed  data 
is read  from cD, and B is set  equal  to  it. C is incremented 

DECODEx (Figure 21) decrements A by Qe [I (CX) 3 .  If 

If the  algorithm is JBIG, A is tested against 

MPS-EXCHANGEx (Figure 23) tests which algorithm 

If the  algorithm is JBIG, A is tested against 

RENORMDx (Figure 24) left-shifts A and C and 

BYTEINx (Figure 25) tests which algorithm is used. 
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P BYTEINx 

Yes No 

Read one byte from CD 

CT = 8 CT = I 
C=C+(B<<ll) C = C + (B << 12) 

Set B equal to it Set B equal to it 
Read one byte from CD 

B = Ox00 Read one byte from CD 
Set B equal to it 

- 
Read one byte from CD 

by B left-shifted 11 bits. The  counter CT is set  to 8, 
indicating  that  eight  bits  are  to  be  processed  before 
another byte of compressed  data is needed. 

If the  algorithm is not  ABIC,  a  test is done  to  see 
whether all of the  compressed  data  has  been  read  from 
CD. If all the  data  has  been  read, B is set equal  to 0x00. If 
not,  a new byte is read  from CD, and B is set  equal  to  it. If 
B is equal  to OxFF, the next byte is read  from CD. Once B 
is set,  increment c by an inverted B left-shifted by eight 
bits. CT is set  to 8. 
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