Modular nets
(MNETYS):

A modular
design
methodology
for computer
timers

by R. E. Matick

This paper describes a modular, graphical,
fully implemented CAD tool for building timers
to model computer pipelines. The complete
system is composed of three parts which

can exist independently but have been fully
integrated to provide a user-friendly CAD tool.
These parts are, first, moduiar nets (MNETS), a
new modeling concept for modular, graphical
implementation of pipeline structures of any
kind; second, the implementation of various
MNETS modules and macros in a VHDL library
similar to logic and circuit design libraries; and
third, the integration of parts 1 and 2 into an
existing graphical entry framework, the EDA
Wizard graphical editor. A graphical model is
constructed by interconnecting basic building
blocks using the graphical tool, similarly to the
way circuits and logic are designed. Selection
of a menu option will produce a VHDL
description of this graphical model, which

can subsequently be simulated on a VHDL
simulator. This paper concentrates on part 1,
the features of MNETS which make it

inherently modular and consequently
graphical. The two crucial requirements,
namely the construct for storing of state and
a control mechanism for the passing of state,
are unique to MNETS and are discussed

in detail, with comparisons to other
methodologies. A brief discussion of some
features and macros available in the existing
MNETS library is included, as well as one
simple modeling example. This library can be
accessed on the IBM Andrew file system, AFS.
A detailed MNETS user/desigh manual is
available which describes MNETS in detail, as
well as the library, memory hierarchy design,
and modeling.

1. Introduction

MNETS is a unique pipeline-modeling methodology with
the key advantage of providing true modularity in the
construction of a timer model. (A timer is a trace-driven
model that counts the number of processor cycles required
to pass a given instruction stream through a pipeline.)

“Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) cach
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

813

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

R. E. MATICK

814

This modularity is inherent in the basic structure of
MNETS and provides the additional advantage of being
readily adaptable to graphical-editor interfaces for
constructing any model. The key features which permit
this are the use of a well-defined construct for holding
state, and well-defined, never-changing, local control
signals for the passing of state. Each state of a pipeline is
represented by a token in a box (latch), which is clocked
like an ordinary pipeline latch; simple logic, local to each
box, determines whether any given token will pass from its
source box to a destination box based on the current state
of the source box and simple, modular control signals
received from target boxes. Every box which holds a state
is a source on its output side and a target on its input
side, similar to a master/slave latch. Thus, the logical
structure of MNETS is very similar to that of an actual
system pipeline. In essence, it is an extremely simplified
version of a small portion of the logic of the actual
computer pipeline being modeled. As a result, an MNETS
model will look and behave much like the actual pipeline
structure. To build a pipeline model, several fundamental
modules are required; these are interconnected by the
designer to create a specific model.

In using the full MNETS system, a user creates a model
by instantiating library modules and macros on an AIX*
window using a graphical editor as the user interface.
Connections are made in the usual “rubber-band” fashion.
Once the model is graphically constructed, the selection of
a menu option produces a compilable VHDL code file.
From this point on, any simulator capable of handling
VHDL record data types can be used.' The combined
MNETS, graphical editor, and VHDL system provide a
widely available, versatile set of tools that can be used to
enter, edit, modify, simulate, debug, check, and capture a
design in a highly modular, easily understood fashion.

The MNETS concepts are independent of the input
method used, and thus can be implemented in any
programming language.” VHDL has been chosen as the
underlying language primarily because graphical input
methods and simulators are readily available. For the
graphical user interface, the EDA Wizard graphical editor
was chosen since it is also readily available, is very user-
friendly, and can produce a VHDL description of a
graphical model. Various graphical editors can be used,
since none of them needs nor has any knowledge of
MNETS; e.g., there are no constructs in Wizard itself
which are specific to MNETS.’

Although MNETS uses the VHDL language at its basic
root, the user need not know VHDL unless a custom

I A Cadence MTI (Model Technology Inc.) VHDL simulator was used in this
work.,

2 Pascal was originally used. Various processor pipelines have been modeled in
MNETS using Pascal programs (see [1]).

3 Other graphical interfaces can be and have been used——Summit Design Inc.
Visual VHDL, View Logic, or SimScript.

R. E. MATICK

macro is needed which is not in the design library, cannot
be built from existing library functions, and cannot be
obtained elsewhere.

The application of MNETS concepts is not limited to
pipelines. In fact, the constructs of storing and passing of
state can be used in other programming tools, as discussed
in Section 11.

2. Comparison of MNETS with other timer
modeling tools
Readers familiar with circuit design systems know that one
can build and test software models of circuits using a
completely graphical interface provided by computer-aided
design (CAD) tools such as ASTAP, ASX, SPICE, and
Cadence. In such systems, the user typically “instantiates”
within the working window of a computer screen the
various necessary transistors, capacitors, and other
components available in the design library to build the
model. The components are interconnected by using a
mouse to click on component terminals and wire the
components in a straightforward manner. The graphical
editor typically provides a variety of services to permit
editing and customizing the model. The model can be
simulated at any stage by compiling and running it with a
choice of input waveforms. Typically, the CAD system also
provides various tools for analyzing and debugging the
model, as well as capturing the results. In an analogous
manner, a logic designer can build and test logic models
using a completely graphical interface for entering, testing,
and capturing logic circuits. In fact, such logic tools are
typically a part of the circuit design systems mentioned
above.

In order to understand the significance of MNETS,
it is important to recognize that while many graphical
input/editor systems exist (e.g., Summit Design, View
Logic, SimScript), such systems typically require the user
to define the basic objects for interconnections. The
choice of objects is of fundamental importance. For
circuit analysis, objects consistent with circuit design are
essential: transistors, capacitors, resistors, etc. Similarly,
we know the objects consistent with logic design to be
AND, OR, and NOT in one logic family, and NOR
gates and NAND gates in others. These building blocks
inherently include a set of consistent, well-defined input
and output signals. The total design system in these cases
includes a library of such constructs, and usually some
useful macros built entirely from the basic constructs.
Thus, even before we start to construct a circuit or logic
model, we have clearly in mind the basic building blocks
and interconnection signals which are to be used. For
modeling computer pipelines, we need comparable basic
objects which are consistent with pipeline design. Such
objects are nonexistent or not obvious, and as a result, each
modeler has traditionally built his/her own such objects or

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

“procedures,” with his/her own input, output, and control
signals. MNETS provides these basic objects and signals, and
has all of the desired features described above. This is the
fundamental purpose of MNETS.

The lack of basic, consistent objects for pipeline design
has resulted in a variety of modeling techniques. Often,
the modeler builds the entire model using computer
languages such as C, C++, Pascal, FORTRAN, or PL1.
Invariably, such models are nonmodular, not reusable, and
require the assistance of the original coder to understand,
change, and debug. As a result, a second approach is to
implement a pipeline design language which attempts to
circumvent some of these limitations. However, these are
invariably quite cryptic, and difficult to learn and to
remember. The basic building blocks are higher-order
logic constructs but are implemented as code words and
parameters. While some systems may provide limited
graphical input assistance, none have primitive graphical
pipeline building blocks nor a graphical interface which
even begins to resemble those available in circuit and logic
design systems. As a result, such tools for building timers
are not only extremely difficult to learn and use, but
once the model is constructed, there is still no single,
consistent, graphical view of the design, just code. It is
difficult for even the designer to go back and determine
just what the model is doing. There is virtually no
reusability, and new models are typically constructed
“from scratch.”

In direct contrast to this, the inherent properties of
MNETS allow the user to construct a timer model of a
computer pipeline, memory hierarchy, or any “clocked”
information flow process, in a manner analogous to that
used by circuit and logic designers. MNETS consists of a
small set of design modules (objects) from which the user
can construct a timer/state flow control model of any
pipeline. Just as a logic designer can build any logic
function or computer from the three basic gates AND,
OR, and INVERT, simple pipelining in MNETS requires
three types of MNETS modules, and typically four to six
fundamental types of modules can be used to build an
average pipeline, including decoders and virtual-address
translation modules. Such modularity greatly simplifies the
overall logical complexity.

In addition to the object modules, MNETS provides a
variety of macros from which a large number of models
can be constructed. Some of these macros are functions,
such as address-translation units, decoders, and delay
macros for modeling chip-crossing delays. If the designer
needs a custom macro, it can be constructed and
embedded in the library. In many cases, new macros
can be built from existing library modules, using the
interactive graphics tool. However, if the required function
cannot be built in this manner, the final logic of the macro
is coded in the VHDL language.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

3. Similarities and differences between MNETS
and actual pipelines

The essential similarity between MNETS and an ordinary
pipeline is that both use latches to hold state, the time to
transfer state from one latch to the next downstream latch
is the system cycle time, and the transfer/nontransfer
control of state between latches is an inherent part of the
pipeline structure. The difference is that an ordinary
pipeline contains all of the logic, both data flow and
control, to process the data. Timers assume that the data
processing will be correct logically and that all logic
functions will complete correctly within the allotted
machine cycle time. A timer will only “time,” or, literally,
determine the cycle count to answer the question, “How
many machine cycles will be required to process a given
instruction trace through a given pipeline?” A trace

is just a flat list (branches unrolled) of all of the actual
instructions which a processor would “see” in running the
program. We can think of each of the various registers
(state holders) as holding a token, which is passed or not
passed to the next register of the pipeline, depending on
certain control signals. These control signals will stall or
hold a token (token = state) in a given register whenever
the downstream target register cannot accept the token
(state) for whatever reason. Stalls are not predictable

a priori and are the source of deviation of the actual
processing time from any simple analytical calculation
which assumes no such stalls or conflicts.

Given the idea of state as basically a token which is
passed and timed through the pipeline registers, the most
important difference between MNETS and usual pipeline
models, as well as all other design methodologies, is
the concept of local control for the passing of state.

Other systems in the past have allowed basically an
unconstrained, unstructured, global type of control logic.
This invariably leads to code which can almost never be
modular or reusable. In addition, such complex control
structures render the model understandable only to the
original coder, and changing and reuse are extremely
difficult. Also, one cannot look at the model and have
even the most simple idea of what is modeled, or of the
general structure. MNETS simplifies all such control
structures by using a standard set of four local control
signals at each module of the pipeline which controls the
flow of the state token. This gives MNETS the property
of being modular and easily changed. For many cases,
changing the pipeline consists of removing or adding a
pipeline module and plugging in the same control signals
again. This is illustrated later’ in a modeling example.
mith Petri nets will recognize a similarity to MNETS. However,
not only do P-nets lack a well-defined structure for representing state, but there is
no structured method for control of state passing. That is what “timed” P-nets

attempt to do, but still in an unstructured manner and thus still unsuccessfully. See
[1] for a discussion of Petri nets.

R. E. MATICK

816

p————— GPR
_- \L Access . (general-pultpose
register) file

Il’ ! 1 \

Local control logic

/
/ Enable [——j—_ Control | 1" state =
,I ,L - ’l Base I I Index—l I Displacement l Record | 1-bit latch logic AL[; ?serea dy
i 1 - - :
i Global \ ALU register
\ control logic \ Selectand do
1 | ADD
\ oo L ALU
1 h (arithmetic- T
! 1 logi i CPU
\ ogic unit)
{ 1
1 ‘\ L v
{
| VA (virtual Y h . Control | “1” state =
| - - - - .
" \l address) (Record 1-bit latch logic VA is ready
,' || + VA register
1 Access
] -
l I _________ ~ & ~ T~
irector -~
l' ! 2 Tery Translation =~ “1” = do translate;
! ,'-‘ ___Access macro “0” = do nothing
! / T~~~ [Cache
i / array
4 \
\\ Plan ‘L { Control
Seaas T TTTET | Dataregister —— (™ ontro “1” state =
Record | 1-bit latch fogic data out is ready
; Data register
(a) ®)

4. Essential concepts in MNETS modeling

Let us start with a very simple portion of a computer
pipeline to see how this part might be modeled in
MNETS. We use a pipeline path extracted from the fixed-
point unit of a generic processor, which consists of virtual
address generation and cache access.” This is shown in
Figure 1(a). We start with the access of the general-
purpose register (GPR) file for three operands of

32 bits each, which are latched in the base, index, and
displacement registers. This represents one stage of the
pipeline. At the next pipeline stage, these three operands
are added together to produce a virtual address (VA) of
48 bits (size is not important) latched in the VA register.
This VA is used in the next pipeline stage to access a
cache directory and array. We assume a one-cycle cache,
meaning that both the directory and array access are
completed in one cycle, and the data will be latched in the
data-out register at the end of this cycle if a cache hit
results. If a cache miss results, we assume for simplicity
that the entire pipeline halts (stalls) until the missed data

5 For more details about MNETS modeling of this type of pipeline, see [1, 2]. The
design manual of {3} deals mainly with memory hierarchy pipelines.

R. E. MATICK

are retrieved and the pipeline is restarted, causing the
translation to be redone. In an actual pipeline, the data
register would typically be written back into one of the
GPRs in addition to being latched in a register, but we
are neglecting this for now.

For a fast pipeline, all three operands would be
accessed from the GPR file on the same cycle. These
three integers would have to be added with appropriate
modulo shift to give a 48-bit result. Various bit fields of
this 48-bit virtual address will have to be selected
appropriately in order to address the cache directory and
array correctly for the particular type of organization (e.g.,
late-select or other, congruence class/set associativity size).
The cache array is accessed, and typically 64 or 128 bits of
data are latched in the data-out register.

So far, this path specifies only the flow of data.

In parallel with this, and usually not specified, is the
control logic. Its path is not so simple, nor clear. It must
control the enabling of all of the registers, GPR file,
directory, and array, and also send signals to the ALU
(arithmetic/logic unit) specifying and performing the
ADD, etc. so as to maintain proper flow and latching of

IBM J. RES. DEVEIOP. VOL. 42 NO. 6 NOVEMBER 1998

the data. This logic tends to be customized to the
application and is usually much less well ordered than the
data flow. In any case, a timer would model only the state
flow and not the full logic of the pipeline.

To model this logic using typical state-of-the-art
methodologies, no consistent method exists, nor are there
any simple or graphical constructs to aid in the modeling.
The programmer might decide to consider each state of
the system as an entry in a two-dimensional array, or a
linear list, or in any of a number of other formats. A
variety of methods have been and continue to be used.
There are design languages which are intended to aid the
construction of pipelines, but none are graphical or have
the reusability feature of MNETS. No matter what method
is chosen for representing state, all lack the simple,
consistent, well-defined system for storing of state and
control signals for the passing of state that are needed for
modularity and reusability. Control signals tend to be
global, much like that of the actual pipeline (although of
course simpler, since only part of the pipeline is modeled).
As such, the control structure ends up being custom code,
which is seldom reusable. It is not possible to give a
graphical representation of the model and relate it to the
corresponding parts of the pipeline, since a one-to-one
correspondence does not exist.

By comparison, an MNETS model provides a simple
representation of the data path, understandable by any
designer, as shown in Figure 1(b). For the sake of
understanding, we start at the output of the GPR file.
Since a timer does not typically process any data, there
is no need for any of the data contained in the three
operand registers. Instead, the fact that an access and a
pending add are ready is indicated by a 1 in a one-bit
ALU register latch, which is the state or token specifying
this condition (the record part of this latch is discussed
shortly). Continuing downstream along this same path,
the ALU need not be modeled at all, since no data are
processed. The virtual address, VA, will previously have
been calculated and is contained in the input trace. This
VA is passed along as an integer field of the record” part
of the one-bit state latch. Thus, the 48-bit virtual address
register in the actual pipeline is replaced by a one-bit VA
register latch with an attached integer field in a record.

In most cases of interest, directory translation for hits,
misses, and appropriate timing of all reloads is necessary,
since these are a crucial part of the pipeline stalls. In
MNETS, there are VHDL logic macros available for
various directory organizations (see [3], Chapters 4 and 5)
which need no special implementation. In fact, if the
translation macros available in the MNETS library are
suitable, the modeler has very little to do except

% VHDL allows signals to be defined as records (similar to those in C or Pascal),
so the modeler need not provide a hardware bit-by-bit representation of integers
and other such data.

IBM J. RES, DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

instantiate the macro and connect the MNETS control
signal, as shown later in example FirstEx. Thus, the cache
directory hardware is replaced by an available translation
macro. Since a one-cycle cache was assumed, the cache
array is not needed at all, because no data are actually
accessed in a timer. As detailed later, if a multicycle cache
was assumed, as is necessary in other levels of cache

(L2, L3), the array is still very simple, just a down counter
to provide a pipeline stall for the number of cycles equal
to the array access time. The data-out register is just a
one-bit latch and may or may not need a record part,
depending on the full model complexity. Thus we see that
MNETS provides a graphical one-to-one correspondence
between the actual pipeline and its model, but with an
enormous simplification. This is of great value in building,
testing, debugging, and reusing the model.

State passing is very complex in an actual pipeline, and
still complex in typical timer models. In marked contrast,
this is one of the most significant advantages of MNETS.
The controls are all local in MNETS, rather than global,
as in actual pipelines and other models, as indicated in
Figure 1. The local control concept makes MNETS
modules reusable—just plug and unplug module control
signals to add, delete, or change the model. The controt
structure which allows this is a set of four fundamental,
unique signals common to all pipelines that work as follows.
Referring to Figure 1, we see that when the translation
macro has a miss, it really is indicating that it is stalled on
the current cycle, cannot complete the last request, and
will not accept any new input state. A signal, called Wait
Exception on Current (WEC) cycle, is used for this and is
propagated back upstream to notify any module which
might try to send a new state to it. This is shown in
Figure 2. In this case, the stall/wait signal, WEC, goes
back upstream to the VA register. Now, on the same
cycle, the VA register’s local logic interprets this input
signal to mean that the target for the VA is not available,
so obviously it should hold its state if it is a 1 and likewise
send out a WEC = 1 signal indicating that it is stalled on
this cycle. Thus, its WEC will be propagated back
upstream to the ALU register. If the VA register is empty
(as indicated by its state being a logical 0), it can in fact
accept a new state and thus does not set its WEC to 1;
i.e., it does not have to stall, since it is empty and can be
filled. The same is true for all such state registers. Thus,
the stall signal WEC for the current cycle is evaluated
locally and propagates as a 1 (stall) only as far back
upstream as an actual stall will occur. As can be seen in
Figure 2, the WEC output signal from each state register
is connected to a control input terminal labeled DSE,
which stands for Down-Stream Exception. This input
means that the target to which this state is headed is
stalling on this cycle if DSE = 1, and is not stalling on
this cycle if DSE = 0. The reason for different names will

R. E. MATICK

817

818

Local control logic functions

WEC T .1 ALU registers

Local DSE = Down-stream exception:
(] oc ;
Record | 1-bit latch . |psg | Downstream stall occurred, so if
: control logic latch is 1, hold state and notify

ALU register upstream modules by setting
WEC = 1.
V ' WEC Virtual address register

- Local Cache cannot translate virtual

(Record] 1-bit latch control logic DSE (address request on this cycle;
hold the VA and notify upstream

modules by setting WEC = 1.

VA register

Translation logic

Cache translation produces a
miss; notify upstream modules
by setting WEC = 1.

Translation
macro

»
(Record 1-bit latch

Local
control logic

Data register

Local control logic functions and signals for a simple pipeline with
an assumed cache miss and full stall.

become more clear below, but the fundamental reason is
that for some cases, this DSE input does not always have
to come from the WEC of the downstream module. It can
come from other control signals, or from a combination of
several other control signals, usually ANDed or ORed
together.

There are two other local control signals required for
general modeling of pipelines, which have the same
ultimate function, namely to determine locally whether the
local state should hold, reset to 0, or accept a new state.
Each specifies a different logic condition, and all work
together to fully model any pipeline. These two additional
control signals are Dependent-Event Exception (DEE)
and a Used (U) control signal, as shown in Figure 3(a).
The function and timing of each of these signals is
detailed later, in Section 7. In essence, DEE prevents a
new state from being accepted but lets the current state
pass out if it can. DEE provides a means for specifying
that a needed resource or condition must be met before a
new input can be accepted. The Used signal, U, is needed
for cases where two or more sources (states) must pass
through a priority selection and only one can be chosen,
the other stalling. The Used signal specifies which source

R. E. MATICK

is chosen so that it can pass state if other conditions
permit, while the sources not Used will hold state. This
is shown later in an example. The Used signal can be
thought of as a type of enable signal to indicate to an
upstream module that it has now, on the current cycle,
been processed and can be dropped if allowed by any
attached DSE signal. Thus, the fundamental unit for
holding and passing state in a pipeline is the Basic
Pipeline Module (BPM) shown in Figure 3(a). It consists
of a one-bit latch with a bit input X, a bit output Y,

and a local control logic section with bit-input signals
DEE = dependent-event exception, DSE = down-stream
exception, and U = Used, and a single bit-output control
signal WEC = wait exception on current cycle. As was
discussed above, in many paths of a pipeline it is necessary
to pass along certain information (usually obtained from
the input trace or translation macro) such as the virtual
address, the operation to be performed (e.g., load, store,
other), and sometimes additional details. Such information
is carried in a separate record field attached to a one-bit
latch, as indicated in Figure 3(b). Its input is the record

BPM
T Bit input Wait exception, current cycle
X WEC
4
] Dependent event
1-bit M/S Local exception
Used latch control DEE
U — logic
v -] Down-stream
exception
v DSE
Bit output Y
(a)
CBPM
Record input Bit input ‘Wait exception, current cycle
Xa X WEC
i !
A | «— Dependent event

1-bit basic pipeline
module with control
logic, as above

exception DEE

l«— Down-stream

Used exception DSE
U
\ R
Record output Bit output Y
Ya
®

Schematic of the elementary structure and control signals of the
most basic MNETS pipelining modules: (a) One-bit basic pipeline
module (BPM) with four modular, local control signals; (b) one
record plus one-bit compound basic pipeline module (CBPM) with
i the same four modular, local control signals.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

signal Xa, and output is the same record signal, now
called Ya. The record can be defined to have almost any
type and number of fields (VHDL records), but certain
types have been defined and are inherent in the MNETS
macros in the library provided. In any case, the record
passes along with the one-bit state automatically; no user
intervention is needed.

There are a few (very few) other basic modules needed
to model a pipeline, and there are a number of variants of
these basic modules just for simplicity of modeling (e.g.,
not all modules need all the local control signals). But in
all cases, and fundamental to this design methodology, the
same local control signals are used for all modules and all
macros at all levels of the design hierarchy. This is the
feature which makes MNETS modular and easy to
understand, defines reusable modules, and makes models
simple to design and change. In addition it makes each
module separately testable with a common test generator,
and pluggable into the model. Although no formal
derivation or confirmation is available, this set of control
signals appears to be fundamental and unique. Thus far,
they have been able to model all control flow structures,
which is a necessity in achieving any modular, object-
oriented modeling construct. An obvious result of this is
that other users, if attempting to use this methodology,
should rot introduce additional control signals, since this
destroys its simplicity and modularity.

5. Clocking, timing, and passing of state

The MNETS pipeline model works very much like an
actual pipeline. A two-phase clock paces the pipeline state
registers (an understanding of this is important as well

as extremely educational in understanding pipelines in
general). In an actual pipeline such as that in Figure 1,
each register has a two-phase clock input. On the Begin
clock TB (which clock is Begin is purely arbitrary), the
clock signal rises and causes all state registers to broadcast
their internal state into the combinatorial logic network.
After a time equal to the maximum delay of the logic, all
input signals to all state registers will have reached their
correct, final value, but the input to each register (latch) is
blocked during this clock phase. At this time, the Begin
clock TB goes to 0 and the second clock, TE, rises. This
TE clock enables the input stage of all the state registers.
Whether or not a new input is accepted usually depends
on a number of additional external enable signals provided
by the global control logic. In MNETS a similar but
simplified modular structure and timing sequence is used,
as follows. All MNETS modules which latch state have
implicit two-phase clock inputs. These signals do not show
up as terminals on the various modules such as those in
Figure 3, because they can be declared in a special way

as global signals in VHDL (see [3], Section 1.11.4). As a
result, any module can use these signals internally and

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Clock TE

Use control signals to
1. Hold state
2. Reset state = 0, or
3. New input state

AN Wait exception, current cycle
v InputX(TB) WEC (TB)
N
o
N
. -
X State machine Dependent event
Any procedure, latch, exception
macro, other DEE (TB)

Used

U (TB) (Latch new/old state at TE)

e g
Down-stream
exception

l DSE (TB)
_ > Output Y (TB) A
Clock TB . o
Broadcast state -7

Evaluate all control signals - ~ . - ~ - ~

State machine of any kind, with four modular, local control signals
for passing of state.

need not declare them. This implicit use of clocks and the
resulting sequence of events is illustrated in Figure 4.

On the Begin clock TB goes to 1, and all modules which
hold state place this state on their Y outputs, which
broadcast their state into the MNETS network in a
manner similar to that of an actual pipeline. These state
signals flow to other modules and start generating the
various control signals at time TB. Each module with
control input signals DEE, DSE, and/or U looks at these
inputs and its own state, and as a consequence sets its own
WEC to 1 or 0 at this time (TB). All modules complete this
signal evaluation at TB. Actually, all modules are basically
“zero time” circuits and evaluate on the rise time, since
no actual circuit delay is simulated. Thus, the processor
clock or cycle time is totally arbitrary, picked to match the
pipeline being modeled. After the first half of the cycle,
the End clock time TE becomes 1, and TB goes to 0 at
the same instant. The only function performed at time TE
is for all modules with state to decide, on the basis of the
input control signals, whether they will hold previous
state, reset to 0 state, or enable a new state from the
signals X/Xa. Subsequently, the clock time moves to TB
again, and all modules broadcast their state on their
output terminals, Y. Those modules which held state will
broadcast the same state as previously. Those with new
state, whether it be 0 or new X/Xa values, will likewise
broadcast their states. The re-evaluation of all control
signals takes place, and on the next TE, the state passing,

R. E. MATICK

819

820

Xal l X1 T WECI1 =0
R B 4 BPM1
! Record s tL:“i:nl o|BSBL=1 Clock TE
______ ate token = 0 | <—— N
Clock TB Either
Broadcast state sl Y1=0 1. Hold old state
and L 2. Reset to state = 0
evaluate all or
control signals .~ 3. Accept new
. y g
oo X2 =1 WEC2 = 1 state mput
n d BPM2
C Latch 2 DSE2 = 1
' Y State token = 1| ¢——
. e Y2=1
. AR o
, A
| WEC3 =1
Lox=l BPM3
Larch3 |DSE3 =1
B

State token = 1

Ry . lYS =1

Pipeline section illustrating use and function of control signals
DSE (down-stream exception) and WEC (wait exception, current
cycle).

holding, or resetting occurs as before. Thus, the pipeline
progresses in a manner completely analogous to a real
pipeline. However, the control logic is all local, the
modules are all modular and pluggable, and the model is
graphical.

6. Control signal functions, timing, and uses
In the most general case, an MNETS module which
contains a state latch can have all four control signals,
namely inputs DEE, DSE, and U, and output WEC. First,
an example for DSE alone is discussed (shown in Figure §),
then an example for DEE alone (shown in Figure 6)

and an example for U (shown in Figure 7). After these,
the full logic for a module with all control signals is
presented. It should be kept clearly in mind that every
module which holds a state is a source on its output side,
and a target on its input side.

® Control signal down-stream exception, DSE

The primary function of this signal, as indicated
previously, is to inform an upstream source module that
the downstream target will not accept a new state token
on this cycle. It is up to the source module to decide what
to do with this information. In general, the source looks at
its DSE, DEE, and U signals as well as its current state
token in order to decide whether to hold, reset, or accept

R. E. MATICK

a new state. The simplest case occurs when the module
has no DEE nor U input signal or one or both are present
but do not affect the state evaluation. As an example,
consider the path in which three basic pipeline modules
(BPMs) are connected as shown in Figure 5, where it is
assumed that initially Latch 1 = 0 while Latch 2 and
Latch 3 are both 1 tokens with all U = 1 and all DEE = 0
if present (equivalent to not being present, as shown).

On the first Begin clock, time TB1, all BPMs broadcast
their tokens, 1 or 0, to their respective Y outputs. Assume
that on this TB1 the control signal DSE3 on BPM3 is a 1,
indicating that the target of BPM3 (not shown) will not
accept a token on this cycle. The control logic in BPM3
looks at the DSE3 = 1, and since its state token in

Latch 3 is 1, it recognizes that it will not be able to move
downstream on the upcoming TE1, so it sets its WEC3 = 1.
This makes DSE2 = 1. The control logic in BPM2 sees

its DSE2 = 1 and its state token in Latch 2 also as 1, so it
obviously will not be able to move on the upcoming TEI1,
and it also sets its WEC = 1. As a result, DSE1 = 1, but
its control logic sees that its state token in Latch 1 = 0,
meaning that it is empty, i.e., no token to move.
Therefore, BPM1 can accept a new token on the
upcoming TE and thus sets its WEC1 = 0. This tells

any module above BPM1 that its state transfer, if any,

will be successful.

Subsequently, at time TE1, Latch 3 and Latch 2 both
hold the current state, while Latch 1 accepts a new input
X, whatever X may be. This X could be a 1 or a 0; it does
not matter, since BPM1 must accept whatever token is
sent from its upstream source (not shown) and this could
be 1 or 0. Note that if these BPMs were compound BPMs,
having a record field input Xa, output Ya, and internal
latches all having a record field, these records would
follow the respective tokens. Record 2 in Latch 2 and
Record 3 in Latch 3 would remain the same on TE1, while
Record 1 in Latch 1, which was initially null (actually
“don’t care”), would accept the new Xal record (shown
dotted) at TEL.

® Control signal dependent-event exception, DEE

The primary function of this control signal is to prevent
any new state from entering the latch of a BPM (or any
module with a state latch) for any reason. The typical
reasons for a DEE input to be 1 are that some resource
or a particular logical state or condition needed at this
stage is not available. Thus, the entering of this state must
be prevented until this needed condition is available. This
logical structure can be achieved with the MNETS model
of Figure 6. The dependent resource can be another
MNETS module, a macro, or a separate logical construct.
At clock time TB, if the dependent resource is busy, it will
set its WECdr = 1. This sets DEE1 = 1, so the control

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

logic in BPM1 sets its WEC1 = 1. At clock time TE, this
will stall any upstream source which has BPM1/Latch 1 as
its target. If the Latch 1 state token was initially 1 at TB
of the cycle in which DEE became 1, its state token will
drop to the downstream target and Latch 1 will reset to 0
(if other control signals do not prevent this). Thus, while a
new state cannot enter the module because of DEE, the
current state of the latch can move out of this module
independent of DEE (but dependent on DSE and U, if
either is present).

o Control signal Used, U

An important, but not the only, function of the Used (U)
control signal is in conjunction with a priority selection
module, in which there are multiple sources headed for
the same target and only one can/must be selected. This is
illustrated in Figure 7, which shows two sources, BPM1
and BPM2, both trying to reach the same target, BPM3.
The DSE inputs may or may not be needed on BPM1 and
BPM2, depending on the pipeline. Regardless, the U
signals play the same role. For example, suppose initially
that Latch 1 and Latch 2 both have state tokens = 1. At
clock time TB, both Y1 and Y2 = 1, making both XA and
XB = 1. The priority logic of the module is assumed to
select XA before XB, so XA is selected and transferred
immediately to the Yp output (there is no internal latch,
so no state is held in any priority module in the MNETS
library). At the same time, at TB, U signal UA is set to 1
and UB is set to 0 by the priority module, making Ul =1
and U2 = 0. If there are no DSE inputs on Latch 1 or
Latch 2 (i.e., assume that DSE is not needed for the
moment), then since Ul = 1 (it has been Used), Latch 1
logic sets its WEC1 = (. At the same time, Latch 2 has
U2 = 0 (it has not been Used), so it sets its WEC2 = 1.
At clock time TE, Latch 1 drops its token to the target
Latch 3 and accepts a new state input from its X1, while
Latch 2 holds the current state token. If Latch 1 and
Latch 2 both have DSE inputs from WEC3 of the target,
the above sequence still occurs if WEC3 = 0 at clock time
TB. If it should happen that WEC3 = 1 at time TB, the
BPM2 behavior will not change (it holds state) but Latch 1
is different. Even though signal Ul will still be set to 1,
the DSE1 = 1 input to BPM1 will cause the control logic
to set WECI = 1 and hold the current Latch 1 state token
at clock time TE. The reason, obviously, is that the target,
BPM3, is not going to move at TE, since its WEC3 = 1.
Thus the source, BPM1/Latch 1 for the given set of states,
even though it was Used (U1 = 1), sees that its token has
a DSE = 1, so it cannot and must not move.

Note that the DSE and Used signals work together as a
sort of op code to move one or hold both sources. Also
note that BPM2 can move only if the BPM1 state token is
0, owing to the priority logic of the priority module. While
the priority modules in the MNETS library have primarily

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

i
BPM DEE=1 .
Latch)
State token = 1 .
. WECdr = 1
————— »- ----- '
Clock TB E
Broadcast state Y
Evaluate all Output Y
control signals D i
ependent
Clock TE resource
Reject input X and either

Hold current state, or
Reset to 0 (dependent on U and DSE)

Control signal dependent event exception, DEE.

”

Latch 2
State
token = 1

Latch 1
Ul=1 State
>1| token = 1

UsedUA =1

BPM3
Latch3 }]----
State

token = 1) jg---
Clock TB Clock TE
Broadcast state Latch 1 accept new input
Evaluate all Y3 Latch 2 hold old state = 1
control signals Latch 3 accept Latch 1 token

: Control signal Used, U (and DSE) configured with priority
g selection module.

a straight ranking selection, A > B > C, etc., for input A,
B, C, etc., the logic is written in extremely simple VHDL
code and can easily be changed to almost any logic.

R. E. MATICK

821

822

7. General case of all control signals present
on module

In the most general case, a module can have DSE, DEE,
and U inputs. The control logic in such modules looks at
all of these signals at time TB in order to decide what
value to assign WEC at this TB and whether the latch
should hold, reset, or accept a new state at TE. The logic
is as follows (see specific modules in the MNETS library
for the actual VHDL code).

If
state token = 1 at TB
Then
If
DSE=1orU =20
Then
Set WEC = 1 at TB (Current state cannot
and move downstream,
hold state at TE so hold; DEE is a
“don’t care”
in this case.)
Else
If
DSE = 0and U = 1 and DEE = 0
Then
Set WEC = 0 at TB (Current state can
and move downstream
accept new state input at TE and there is no
dependent event
exception stall.)
Else
If
DSE = 0and U = 1 and DEE =1
Then
Set WEC = 1 at TB (Current state can
and move downstream
reset state to 0 at TE but new state cannot
be accepted because
of DEE stall.)
End If
If
state token = 0 at TB
Then
If
DEE = 0
Then
Set WEC = 0 at TB (Latch is empty and
and there is no DEE stall,
accept new state at TE SO accept new state;
DSE is “don’t care”
in this case and
U =1 if state = 0.)
Else
If
DEE =1
Then
Set WEC =1 at TB (Latch is empty but
and new state cannot be
hold state at TE accepted because of
DEE stall.)
End If

R. E. MATICK

8. Multicycle stall on a basic pipeline module
using down counter

It is possible for certain stages of the pipeline to require
multiple cycles before the state token can even attempt to
pass from source to target. For instance, if the ALU in
Figure 1 is doing a multiply or divide or certain shifts, or
if a stage such as VA needs memory access to an L2 cache
or main memory, or cache reloads are required, then

this stage of the pipeline must stall for the appropriate
number of cycles. These stalls are almost always provided
by a simple, fundamental module called a down counter.
The essential idea is that during the initial loading of this
stage of the pipeline, an associated down counter is also
loaded with an integer count value which will give the
desired number of cycles of stall. On each subsequent
cycle, the counter generates an output signal WEC =1
and decrements its internal count value by 1. This down
counter continues decrementing its internal count value
and generating WEC = 1 on each cycle until an
appropriate count is reached (0 or 1, discussed in [3]),
when it will generate WEC = 0, which remains 0 until a
new count value is entered. This WEC is used as DSE,
DEE, or whatever inputs are necessary to stall the
corresponding states of the pipeline. The down counter
has an external enable signal, En, to tell it to load the
integer count value, Nin. However, this enable signal is
internally shut off while any previous entry is still counting
down (i.e., cannot accept a new Nin value as long as it is
generating a WEC = 1 output signal). Only at the end of
counting down (i.c., when WEC is 0) is the enable input
able to insert a new count value, Nin. The details of the
down counter operation are discussed below.

® Fixed number of cycles of stall

An example of the typical use of a down counter is shown
in Figure 8 and works as follows. Assume that the token
which enters source BPM1 always requires three cycles
before dropping to target BPM2. A down counter is
inserted between the two stages and provides this three-
cycle fixed pipeline stall as follows. At clock time TB, if
the enable input En = 1 and the current internal count
value is 0 (or 1 but going to 0), the Nin input integer is
accepted as the new count value at subsequent clock time
TE. Also at TB, if the internal count value is greater than
1, the counter logic sets its WECdc = 1 and rejects any
new input count integer Nin, regardless of the En signal
value. In this particular example, this WECdc is used as a
direct dependent-event-exception (DEE2) input on BPM2,
and the WEC2 of BPM2 is the DSE1 of BPM1. The result
of this connection is that BPM2 will reject any new input
token for three cycles, and BPM1 will hold the 1 token for
three cycles. At the end of the third cycle, token 1 (and
any associated record, if a compound BPM is used) will

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Option: N passed as a parameter
from an upstream CBPM

ANDI --eeeen
>—D—

\ WEC

X1

BPM1
source DSE1

WEC2
X2

DEE2
BPM2 <——J En

target DSE2

»

WECdc

‘CJ

Down
counter

DEE input.

drop to BPM2, and BPM1 will accept any new input state.
A state-token passing/timing diagram is shown in Figure 9

for this case. The overall logic of the down counter is
as follows:

At clock time TB If internal COUNT > 1, set WEC = 1;
Else If COUNT = 0 or 1, set WEC = 0.

At clock time TE If COUNT > 1, set COUNT =
COUNT - 1;
Else If COUNT = 0 or 1,
then If En = 1, set COUNT = N,
Else (if En = 0) set COUNT = 0.

® Variation of pipeline connection for multicycle stall using
down counter

In Figure 8, it was assumed that the target is another
pipeline module, BPM2, which has a DEE input. This
DEE control signal prevents the transfer of the 1 token
from source to target until the WECdc of the down
counter goes to 0. This is the simplest method of control
when the target has such a DEE input. However, in some
cases, the output of such a module might be the output
terminal of a macro and cannot know a priori just what
the target might be (for instance, the output terminal

of the memory reload register, the fetch register of the
L2Simple macro in [3], Section 5.6). The target for this

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Multicycle pipeline stall using a down counter and target with

Input X1

BPM1 state
token

| |
Down counter : : ! ! :
count value 0 3,3 2
Down counter | 1 |
WECdc = |) |
DEE2=WECI[0 0|1 1,1 1/0 01 1

BPM2 state I ! ' !
| i t 1
token o olo olo olo M
B

A @ " Three cycles source to target

State tokens

Token timing diagram showing a multicycle stall between two
BPMs, provided by a down counter generating WEC = 1 while
COUNT > 1 (at TB).

i

En option (if other control signals are
present on BPM source)

' ¥ V-3
X
WEC
BPM1 Ei Ni WECde
n in
source DSE! Y |
Down
counter
Y
1
~J
Yand

Alternative configuration for multicycle stall to an unknown target,
or target without DEE input, using a down counter.

source, which will later be connected to this macro output,
can be one of any number of destinations. To be most
general, the output of the source is locally prevented from
propagating any further by the use of an AND gate on its
Y output, as shown in Figure 10. The signal WECdc is

R. E. MATICK

823

824

| e

DEE
—
Bagic pipeline
) U module (BPM)
— . DSE
-—
'
Nin (integer).
Gt X (bit)
Enbi - | :
k S WEC ' l
Up
counter
‘ lx‘ ‘TWEC } Xa; lx TWEC
- Y
‘ DEE
- Delay macros
of various types
FIFO
DSE (see [31, Ch.7)
-—
Yay lY l Y

g L S A

‘ ‘ L 'DEE
Compound basic e
pipeline module
CBPM
L (CBPM) DSE
——e

N
i I R A

. Translation DEE
(Set assoc., word/block/cache size) B
See[3),Chs. 4 and Sfor DSE
detailed macros) ——
Ya l l Y
ClkGen EOF OpGenText DSE
————

RIS

Modules with no state (Input to output at TB, no TE)

Number

(constant) Yn (n = integer; e.g. 2, 4, 8 etc.)

Decode
file ids of Xa

Y=0Y=1or
Y = null (fixed signal value)
oo

Fixed
signal
1, 0, null

2 General classes of MNETS modules and macros.

used as a direct input to DSE1 of the source, which stalls
the token in BPM1 until the down counter WECdc goes
to 0. At the same time, the inverse of signal WECdc is
ANDed with the output Y of BPM1, which also makes

signal Yand = 0 until the down counter WECdc goes to 0.

Thus, this Yand signal will go to 1 only after the counter

has counted down the appropriate number of cycles. After
this countdown, signal Yand will be a 1 for only one cycle
unless some other signal holds the token in the source. In

R. E. MATICK

any case, this Yand will have the correct timing and can
be used directly as an input to any module with or without
any DEE input.

® [nteger numbers for down counter

A fixed value of Nin for a down counter is typically
needed and easily obtained from an MNETS library
module called NUMBER#, where r is the desired integer
value. For instance, modules NUMBER3 and NUMBERS

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

give an integer output signal of value 3 and 5, respectively.
These modules can be instantiated and “wired” to the down
counter Nin pin in Wizard just like any other module.

® Variable number of cycles of stall

While most stages of a pipeline will have a fixed value for
the number of cycles of stall, there are cases for which the
down counter Nin integer is not fixed and/or not known in
advance. Depending on the situation, there are several
simple methods for accommodating these features. If the
counter delay is variable, but known or calculated when
the original trace is produced, the Nin value can be passed
as a field in the record part of the Xa input. When the
down counter is enabled, this value is easily extracted and
passed to the Nin input of the down counter, as shown by
the dotted line in Figure 8.

9. Basic modules in MNETS

From the above discussion, it can already be inferred

that three important modules for MNETS modeling are

1) the basic pipeline module, BPM, and its companion, the
compound basic pipeline module, CBPM; 2) the down
counter module; and 3) the priority module. These three,
shown with the most general set of control signals in
Figure 11, are the most useful, basic modeling components
and appear repeatedly in any model. In addition to these
basic modules, there are others which, while not used as
often, are nevertheless required to build a pipeline model,
particularly memory hierarchy models. The complete
MNETS library is contained in two AFS directories,
namely

« afs/watson/projectss M/MNETS/AVHDL/Admods.
« afs/watson/projectss M/MNETS/AVHDL/Admacro8.

These fall into a few general classes, such as those
illustrated in Figure 11. Some of these components are
the following:

o First-in-first-out (FIFO) stack
This is a typical type of FIFO register stack, but with
MNETS control signals for passing or holding state and
a selectable stack size.

e Translation macros
Translation macros are used to translate a given virtual
(linear, effective) address into the physical cache
address, in a manner which mimics the actual hardware
directories. The cache size, line size, set associativity,
and logical word size (size of accessed data) are input
parameters, and several different types are available,
e.g., inclusive and noninclusive).

 Clock generation (CLKGEN)
All pipeline modules require two clocks, TB and TE, as
described previously. Once instantiated in a model, the

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

CLKGEN module generates these clocks automatically.
In addition, the clock signals TB and TE are global; i.c.,
all modules and macros in the schematic can “see” these
global clocks without the user having to make any direct
connections (see Figure 14, shown later).

Trace reader and formatter (OpGenText)

This module reads a text input trace from an AIX text
file and puts each instruction on its Y/Ya output. This
output serves as the driving input to the remainder of

the model.

Metering counter (up counter)

This module is used as a type of metering device. It
starts from an internal count of 0 value and adds 1 at
the end (time TE) of each cycle when its input enable
signal, En, is 1 at the begin time, TB, of that cycle.
This is used as a means to count the number of misses,
misses with castout, ¢tc. in the translation modules and
can be used as a metering device in any model, as
needed.

10. Object-oriented program modeling
The most important element in MNETS modeling, the
concept of local control for the passing of state, is
achieved by the use of a set of four well-defined,
consistent, never-changing control signals at all levels.
Every module, component, or macro which contains a
latch or holds and passes state in any manner via the
clocks has either all four or some necessary subset of
these four control signals. There are no exceptions, and
any user who constructs a custom macro must adhere to
this design rule. By so doing, one achieves a design that
has a control structure at all nested levels which is
identical to that at the lowest levels, as illustrated in
Figure 12. This makes the models easy to build, edit, and
reuse, and above all else, easy to understand at some time
long after implementation. The use of a few well-
defined control signals removes all of the complex
interdependencies one normally encounters when each
modeler has to choose his/her own control signal structure
and definitions.

By adhering to this consistent structure, one obtains
a pure, object-oriented programming methodology for
pipelines. The objects all have consistent and well-defined
parameters which are passed between them, namely the
consistent set of control signals and input/output state
signals. Modularity is just another word for objects with
consistent parameters passed between all levels of object
definition, including nested objects within objects.

11. Embedding other modeling techniques
within the MNETS object-oriented framework
The essence of MNETS modularity stems from direct
incorporation of the fundamental state-transition flow-
control conditions required in any pipeline. The two

R. E. MATICK

825

826

Macro3 *WEC
Macrol f
— __ VEC
- > W >
Macro2 * WEC]‘j
DSE
v, e W o
Macro5 WEC
Macro4
U -
I

Design of a memory hierarchy, or any pipeline in MNETS,

showing consistent, object-oriented modularity at all levels.

Clock

R. E. MATICK

Instruction read and
immediate dump

Instruction decode

'

Addr. gen. and
cache access

Cache address translation,
no state token held

Cache array

OpGen: read trace into
pipeline in O cycles

First pipeline stage

Second pipeline stage

Directory

Cache access delay for
miss/reload

Schematic of pipeline stages for first example, FirstEx.

fundamental control mechanisms for state-transition
determination, required in any methodology, are easily
seen from the previous discussion:

1. Are all necessary resources available in order to start
the state transition? (DEE = dependent-event
exception)

2. Can (will) the current status allow completion of state
transition?

a. Has this state been acted upon? (U = Used)
b. If Used, can it move to the target? (DSE = down-
stream exception)

These concepts and the resulting four control signals
are not, and need not be, limited to the particular MNETS
modules defined here. In fact, it is easily conceivable that
other models could use these signals to make their code
modular, reusable, easier to construct and use, and have
all the advantages of MNETS. If properly constructed,
such models could be easily and conveniently integrated
into and used with the MNETS modules and macros.

12. Model example

A simple, complete modeling example presented in detail
in [3], Chapter 1, is a model named FirstEx. It has the
logical structure illustrated in Figure 13 and the actual,
final MNETS/Wizard schematic in Figure 14. The trace of
instructions is read by the OpGenText component from a
file. The instructions are placed on the output of the
OpGenText component and fed into a pipeline consisting
of a compound basic pipeline module CBPMDse with only
a DSE control input (no U or DEE) followed by another
identical CBPMDse. The first pipeline stage (first to
second) can be thought of as the instruction decode stage,
requiring one processor cycle; the second pipeline stage
can be thought of as address generation and cache access
on the same cycle. Alternatively, one can think of these
two stages as address generation between first and second,
with only cache access on the second stage. The actual
representation would depend on the actual pipeline. In
either case, the latter stage accesses a simple, one-cycle
cache which is assumed to operate as follows. A full
translation using a library macro TransLlincl (described in
[3], Chapter 4) is performed. There are no castouts, no
unlocks, and only simple translation hits or misses. If a hit
occurs, nothing extra happens. This is equivalent to the
request being found in one cycle and successfuily used by
the processor. If a miss occurs, the request drops through
to the output YMiss, so CBPMDse2 can accept a new
state, but it is subsequently stalled for NR cycles. This is
achieved by loading the down counter if the translation
output YMiss = 1. This simulates a fixed reload time,
wherein the upstream pipeline fully stalls on a miss. The

IBM J. RES. DEVELGP. VOL. 42 NO. 6 NOVEMBER 1998

ClkGenl

CBPMDsel
ya y DSR

Xal[X[WEC
CBPMDse2 P
o v D&B . Slg&gljﬂl
L |]

Xa[WEC

tranLlincl1

L 5 s qut(}
e ;(h DseUL

f Cim kn }’ 1y
/Block DseMiss
eifh

YHit YaHit _¥YMiss Yd“i:i ‘([[Ysl‘[YCO YaCo

Lo Lo

,/ \
Numberd |
T

1

En Nin’

DOWNCI

DEE = 1 input to translation sets its WECtr = 1 so that Assuming the user has the EDA Wizard graphical

the WECdc stalls the translation from generating any editor available, and access to the Andrew file system, the

more outputs, and stalls CBPMDse2 as well. After NR construction of such a model requires only minutes. The

cycles, WECdc goes to 0 and the pipeline restarts. needed components are instantiated in the usual manner 827

IBM 1. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 R. E. MATICK

828

and graphically wired together. This Wizard model is
nothing more than a graphical drawing consisting of a

list of box (component) names, pins, signals with type
definitions, interconnections, and some other needed
information. Fortunately Wizard knows how to create
compilable VHDL programs from such graphical drawings
and requires only clicking on a VHDL button.

Thus, the model and VHDL code generation require
nothing more than Wizard and the MNETS design library.
To simulate the VHDL code, any simulator can be used as
long as it is capable of handling record data types. The
compilation, simulation, and running of this or any model
are totally independent of the MNETS/Wizard design
system described above. Details of running this example
on the MTI system are given in [3].

It can be seen from the above that when needed
components are available, it is quite simple to graphically
build a pipeline model. Since much of the drudgery is
automated, the user can concentrate on the important
issues. Experience, both personal and general, has shown
that the modeler will spend as much or more time in
trying to decide or find out exactly what is to be modeled,
than in actually building the model. This is because there
are so many options and details in the actual pipeline
that it is impossible to consider and decide them all
beforehand. MNETS allows the user to start with a
simpler model and add more complexity as the design
becomes clearer. Also, it forces the designer to face early
on those important issues which can seriously affect
performance. All timing points and stalls must be
included, similar to those of the actual pipeline, to obtain
an accurate performance predictor.

13. Model testing

MNETS has a distinct advantage in testing over other
methodologies. Each module or macro can be tested
independently, similar to the way in which electronic
components can be tested. We attach a signal generator,
in this case an OpGen module, which supplies input
signals from a special-purpose trace if necessary. Then we
observe the output signals and can run various test cases.
Once fully tested, the macro is entered into the library.
This has been done for most modules and macros.
Assuming that all underlying macros have been fully
tested, a new model need only test for the new states
resulting from the interconnection of these macros. If
necessary, a new model can be built in steps. Even more
useful, if a simulator such as the MTI VSIM is used, the
module/macro signals at any point in the model can be
essentially traced on a software “oscilloscope” just as for
a circuit or logic design. These can be saved and studied
later and manipulated in various ways, greatly facilitating
the testing.

R. E. MATICK

14. Interactive design tool

A major issue in all timer models is that the number of
instructions which can be simulated in any reasonable time
is a very small fraction of any actual running time of the
system being modeled. The fundamental problem stems
from the fact that any model running on a current
computer, trying to simulate a future, faster computer, will
be orders of magnitude slower in processing instructions.
If every design change requires rerunning of very long
traces, few options will be explored. The use of reduced
traces to allow faster evaluation without compromising
accuracy is a step in the right direction, but we still need a
better system. Running long traces against some particular
design merely gives a final answer of cycles per instruction
for a given trace. Although some other internal statistics
can be accumulated, this is a tedious design process. A
better method is desired for design optimization, and a
new mode of thinking is required.

The author’s vision of the future design system is an
interactive one in which the user looks dynamically at the
MNETS graphical model on the screen, watching tokens
pass from module to module. The interactive system will
be capable of color-coding various tokens along paths at
the choice of the user. In addition, the system will have a
built-in capability to increase the color intensity of tokens
as they stall at any one module, intensity increasing with
cach successive stall to indicate a hot spot. The user then
applies certain selected and/or reduced traces and looks
for hot spots in the pipeline flow. This would indicate
points of significant stall and could be seen quickly for
certain input conditions. The user can attempt to remove
the stalls by changing the pipeline, rerunning the trace,
and looking for the hot spots again. Various sets of critical
trace conditions could be maintained and used for such
design optimization. Once a supposedly “more optimum”
pipeline is achieved, a full trace can be run for total cycles
per instruction and compared with the previous designs. In
this way, a more optimum design can be achieved much
more rapidly, to give the designer significant insights into
the pipeline operation and bottlenecks. A graphical design
tool such as MNETS is readily adaptable for such an
interactive, optimized design system.

Conclusions

MNETS methodology is a new approach to modeling.
While the initial step is always difficult, the advantages
should be clear enough to justify a new approach. Past
and current techniques used to model pipelines are
becoming more and more difficult without some kind
of modular approach.

A fundamental point which should be kept clearly in
mind is that all timer models reduce ultimately to nothing
more than a method for representing state, plus a set of
nested if . .. then . . . else (or essentially similar) control

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

statements for passing state. The different methodologies
for constructing models only determine the manner in
which the state variables and control statements will be
selected, how they are structured, and how they are
entered by the modeler. When there are no established
rules or fundamental constructs, the modeler is free to
pick and use state variables and control statements in any
fashion; this is what makes programs nonmodular and
nonreusable. In essence, MNETS is merely a way to
impose a well-structured discipline on the choice of

state variables as well as the structure and use of

if ... then ... else control statements.

MNETS not only provides such a modular approach
with a graphical user interface, it also contains a
framework which can evolve to a dynamic, interactive
design optimizer as well as incorporate other modeling
tools. By incorporating the same basic clocking and local
control signal structure, almost any program procedure
can interface directly with MNETS models.

Appendix: Hardware implementation of MNETS
The various basic modules in MNETS look like electronic
macros. In fact, modules such as the basic pipeline
module, down counter, priority, as well as various
decoders, FIFO, etc. could be implemented directly in
electronic circuits and used to build pipelines. It has been
suggested by Eric Kronstadt, Wilm Donath, and others
that such modules could be mapped onto an EVE [4] or
EVE-like hardware simulator to achieve orders-of-
magnitude increases in processing speed. This issue has
not been pursued but is an enticing thought. One problem,
however, is how to “simulate” translation units. These are
macros containing the MNETS control signals, which can
be simulated, but state variables (directory entries) are
currently implemented as arrays of records, stored in
memory. It would be desirable to not have to do the full
binary implementation of such macros, but the advantages
and disadvantages have not been assessed. If this is not a
limitation, models capable of processing very large
instruction traces become possible.

Acknowledgments

Many people have been very helpful in various ways
throughout this endeavor; the author is especially indebted
to the following: Kenneth Sheppard and Kelvin Lewis for
help with the Cadence/MTTI system; Mark Williams and
Arthur Weiner for extraordinary assistance and extensions
to Wizard; Rene Miranda and Fateh Tipu for assistance
with VHDL; Deborra Zukowski for considerable assistance
in Pascal coding during some very early stages prior to
the adoption of VHDL; David LaPotin for his timely
suggestion to switch from Pascal to VHDL as the
underlying programming language; Ravi Nair for
suggesting the comparison to Petri nets; Winfried Wilcke

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

for pointing out the similarity of MNETS to object-
oriented programming, and Wilm Donath for insightful
discussions about modeling and improvements in this paper.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. R. E. Matick, “M-NETS: A Modular Modeling Technique
for General Use,” Research Report RC-15117, IBM Thomas
J. Watson Research Center, Yorktown Heights, NY,
November 7, 1989.

2. R. Matick, “Modular Technique for Constructing Control
Logic of a Pipelined Processor,” IBM Tech. Disclosure Bull.
32, No. 7, 403-425 (1989).

3. R. Matick, “Modular NETS (MNETS) User/Design
Manual; Cache/Memory Hierarchy Timer Modeling and
Design Using MNETS Methodology,” Research Report
RC-20288, Ver 1.0, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, June 1997.

4. D. Beece, G. Deibert, G. Papp, and F. Villante, “The IBM
Engineering and Verification Engine,” Proceedings of the
25th ACM/IEEE Design Automation Conference, Anaheim,
CA, June 12-15, 1988, IEEE Computer Society,
Washington, DC, 1988.

Received June 11, 1997; accepted for publication
August 17, 1998

Richard E. Matick IBM Thomas J. Watson Research

Center, P.O. Box 218, Yorktown Heights, New York 10598
(matick@watson.ibm.com). Dr. Matick received his B.S., M.S,,
and Ph.D. in electrical engineering from Carnegie Mellon
University in 1955, 1956, and 1958, respectively. He joined
IBM Research in 1958, and worked initially on thin magnetic
films, memories, and ferroelectric devices. As Manager of the
Magnetic Film Memory Group from 1962 to 1964, he received
an IBM Outstanding Invention Award for the invention and
development of the thick-film read-only memory. He later
accepted a half-year assignment at the IBM Laboratory in
Hursley, England, to develop that memory for System/360
applications. From 1965 to 1972, Dr. Matick was a member of
the technical staff of the IBM Director of Research, where his
assignments included responsibility for Research divisional
plans and service as Technical Assistant to the Director. In
1986 Dr. Matick received an IBM OQutstanding Innovation
Award for his contributions as co-inventor of “video RAM,”
which quickly became a commodity DRAM chip used in the
high-speed, high-resolution display-bit buffers required by 829

R. E. MATICK

830

most PCs and many workstations. For his work on high-
density CMOS cache memory design, which served as the
foundation for the high-speed functional cache system of
the IBM RISC System/6000 processor family, he received
an IBM Outstanding Technical Achievement Award in 1990.
He is currently working on VLSI memory chips, memory
hierarchies, and microprocessor design. Dr. Matick is the
author of Transmission Lines for Digital Networks, McGraw-
Hill, 1969 (an IEEE Press Classic Reissue of 1995), and
Computer Storage Systems and Technology, John Wiley, 1977.
He has also written chapters on memory for Introduction

to Computer Architecture, SRA, 1975 and 1980, and the
Electronics Engineers’ Handbook, second and third editions,
McGraw-Hill, 1982 and 1989, the topical section “Cache
Memory” in the Van Nostrand Reinhold Encyclopedia of
Computer Science, third edition, 1993, and numerous papers
on magnetic devices and memories, semiconductor memory
and logic, and virtual memory. Dr. Matick holds numerous
patents and is the author of a number of published invention

disclosures; he is a member of Eta Kappa Nu and a Fellow of

the IEEE.

R. E. MATICK

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

