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This  paper describes a modular, graphical, 
fully implemented CAD tool  for building timers 
to model computer pipelines.  The complete 
system is composed of three parts which 
can exist independently but have  been fully 
integrated to provide a user-friendly CAD tool. 
These parts are, first, modular nets (MNETS), a 
new modeling concept for modular, graphical 
implementation of pipeline structures of any 
kind; second, the implementation of various 
MNETS modules and macros in a VHDL library 
similar to logic and circuit design libraries; and 
third, the integration of parts 1 and 2 into an 
existing graphical entry framework, the EDA 
Wizard graphical editor. A graphical model is 
constructed by interconnecting basic building 
blocks using the graphical tool, similarly to the 
way circuits and logic are designed. Selection 
of a menu option  will produce a VHDL 
description of this graphical model, which 
can subsequently be simulated on a VHDL 
simulator. This  paper concentrates on part 1, 
the features of  MNETS which make it 

inherently modular and consequently 
graphical. The two crucial requirements, 
namely the construct  for  storing of state and 
a control mechanism for  the passing of state, 
are unique to MNETS and are discussed 
in detail, with comparisons to other 
methodologies. A brief discussion of some 
features and macros available in the existing 
MNETS library is included, as well as  one 
simple modeling example.  This library can be 
accessed on  the IBM Andrew file system, AFS. 
A detailed MNETS user/design manual is 
available which describes MNETS in detail,  as 
well as the library, memory hierarchy design, 
and modeling. 

1. Introduction 
MNETS is a  unique  pipeline-modeling  methodology with 
the key advantage of providing true  modularity in the 
construction of a  timer  model. (A timer is a  trace-driven 
model  that  counts  the  number of processor cycles required 
to pass a given instruction  stream  through  a  pipeline.) 
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This  modularity is inherent in the basic structure of 
MNETS  and provides the  additional  advantage of being 
readily adaptable  to  graphical-editor  interfaces  for 
constructing any model.  The key features which permit 
this  are  the  use of a well-defined construct  for  holding 
state,  and well-defined,  never-changing, local control 
signals for  the passing of state.  Each  state of a  pipeline is 
represented by a  token in a box (latch), which is clocked 
like  an  ordinary  pipeline  latch; simple logic, local to  each 
box, determines  whether any given token will pass from its 
source box to  a  destination box based on the  current  state 
of the  source box and simple, modular  control signals 
received from  target boxes.  Every box which  holds a  state 
is a  source on its output  side  and  a  target  on its input 
side, similar to  a masterlslave latch.  Thus,  the logical 
structure of MNETS is very similar to  that of an  actual 
system pipeline.  In  essence, it is an extremely simplified 
version of a small portion of the logic of the  actual 
computer  pipeline  being  modeled. As a  result,  an  MNETS 
model will look  and  behave much like  the  actual  pipeline 
structure.  To build a  pipeline  model, several fundamental 
modules  are  required;  these  are  interconnected by the 
designer  to  create  a specific model. 

by instantiating library modules  and  macros  on  an  AIX* 
window using a  graphical  editor as the  user  interface. 
Connections  are  made in the usual “rubber-band”  fashion. 
Once  the  model is graphically constructed,  the  selection of 
a  menu  option  produces  a  compilable  VHDL  code file. 
From this point on, any simulator  capable of handling 
VHDL  record  data types can  be  used.’  The  combined 
MNETS,  graphical  editor,  and  VHDL system provide a 
widely available, versatile  set of tools  that  can  be used to 
enter,  edit, modify, simulate,  debug, check, and  capture  a 
design in a highly modular, easily understood  fashion. 

The  MNETS  concepts  are  independent of the  input 
method  used,  and  thus  can  be  implemented in any 
programming language.’ VHDL has been  chosen as the 
underlying language primarily because  graphical  input 
methods  and  simulators  are readily  available. For  the 
graphical  user  interface,  the  EDA  Wizard  graphical  editor 
was chosen since  it is also  readily  available, is very user- 
friendly, and  can  produce  a  VHDL  description of a 
graphical  model.  Various  graphical  editors  can  be  used, 
since  none of them  needs  nor has  any  knowledge of 
MNETS; e.g., there  are  no  constructs in  Wizard itself 
which are specific to  MNETS.3 

root,  the  user  need  not know VHDL unless a  custom 

In using the full MNETS system, a  user  creates  a  model 

Although  MNETS uses the  VHDL  language  at its  basic 

I A Cadence  MTI  (Model  Technology  Inc.)  VHDL  simulator was used in this 
work. 

MNETS using  Pascal  programs  (see [l]). 

Visual VHDL, View Logic, or  SimScript. 

Pascal was originally  used.  Various  processor  pipelines  have  been  modeled in 

Other  graphical  interfaces  can  he  and  have  been used-Summit Design  Inc. 
a1 4 
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macro is needed which is not in the design  library, cannot 
be built from existing library functions,  and  cannot  be 
obtained  elsewhere. 

The  application of MNETS  concepts is not limited to 
pipelines. In  fact,  the  constructs of storing  and passing of 
state  can  be used in other  programming tools,  as  discussed 
in Section 11. 

2. Comparison of MNETS with other timer 
modeling tools 
Readers  familiar with circuit  design  systems know that  one 
can build and  test  software  models of circuits using a 
completely graphical  interface provided by computer-aided 
design (CAD)  tools such  as ASTAP, ASX, SPICE,  and 
Cadence.  In such systems, the  user typically “instantiates” 
within the working  window of a  computer  screen  the 
various necessary transistors,  capacitors,  and  other 
components available  in the design  library to build the 
model.  The  components  are  interconnected by using a 
mouse  to click on  component  terminals  and wire the 
components in a  straightforward  manner.  The  graphical 
editor typically provides a variety of services to  permit 
editing  and customizing the  model.  The  model  can  be 
simulated  at any stage by compiling and  running it  with a 
choice of input waveforms. Typically, the  CAD system  also 
provides various  tools  for analyzing and debugging the 
model, as well as capturing  the  results.  In  an  analogous 
manner,  a logic designer  can build and  test logic models 
using a  completely  graphical  interface  for  entering,  testing, 
and  capturing logic circuits. In  fact,  such logic tools  are 
typically a  part of the circuit  design  systems mentioned 
above. 

In  order  to  understand  the significance of MNETS, 
it is important  to recognize that while many graphical 
inputieditor systems exist (e.g., Summit  Design, View 
Logic, SimScript), such  systems typically require  the  user 
to define the basic objects  for  interconnections.  The 
choice of objects is of fundamental  importance.  For 
circuit analysis, objects  consistent with circuit  design are 
essential:  transistors,  capacitors, resistors, etc. Similarly, 
we know the  objects  consistent with logic design to  be 
AND,  OR,  and  NOT in one logic family, and  NOR 
gates  and  NAND  gates in others.  These building  blocks 
inherently  include  a  set of consistent, well-defined input 
and  output signals. The  total design  system  in these  cases 
includes  a library of such constructs,  and usually some 
useful macros built entirely  from  the basic constructs. 
Thus,  even  before we start  to  construct  a circuit or logic 
model, we have  clearly  in  mind the basic  building  blocks 
and  interconnection signals which are  to  be  used. For 
modeling computer pipelines, we need comparable basic 
objects which are consistent with pipeline design. Such 
objects are nonexistent or not obvious, and as a result, each 
modeler has traditionally built hislher own such objects or 
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‘procedures, ” with hislher own input,  output, and control 
signals. MNETS provides these basic objects and signals,  and 
has all of the desired features described above, This is the 
fundamental purpose of MNETS. 

has resulted in a variety of modeling  techniques.  Often, 
the  modeler builds the  entire  model using computer 
languages such as C, C + + ,  Pascal, FORTRAN,  or PL1. 
Invariably,  such models  are  nonmodular,  not  reusable,  and 
require  the assistance of the original coder  to  understand, 
change,  and  debug. As a  result,  a  second  approach is to 
implement  a  pipeline design language which attempts  to 
circumvent some of these  limitations. However, these  are 
invariably quite cryptic, and difficult to  learn  and  to 
remember.  The basic building blocks are  higher-order 
logic constructs  but  are  implemented as code  words  and 
parameters.  While  some systems may provide  limited 
graphical  input assistance, none have  primitive graphical 
pipeline building  blocks nor  a  graphical  interface which 
even  begins to  resemble  those available  in  circuit and logic 
design systems. As  a  result, such tools  for building timers 
are  not only extremely difficult to  learn  and use, but 
once  the  model is constructed,  there is still no single, 
consistent,  graphical view of the design, just  code.  It is 
difficult for even the  designer  to go  back and  determine 
just  what  the  model is doing. There is virtually no 
reusability, and new models  are typically constructed 
“from  scratch.” 

The lack of basic, consistent  objects  for  pipeline design 

In direct  contrast  to this, the  inherent  properties of 
MNETS allow the  user  to  construct  a  timer  model of a 
computer  pipeline, memory  hierarchy, or any “clocked” 
information flow process,  in a  manner  analogous  to  that 
used by circuit and logic designers. MNETS consists of a 
small set of design modules  (objects)  from which the user 
can  construct  a  timedstate flow control  model of any 
pipeline.  Just  as  a logic designer  can build any logic 
function  or  computer  from  the  three basic gates  AND, 
OR, and  INVERT, simple  pipelining  in MNETS  requires 
three types of MNETS  modules,  and typically four  to six 
fundamental types of modules  can  be  used  to build an 
average  pipeline, including decoders  and  virtual-address 
translation  modules.  Such  modularity greatly simplifies the 
overall logical  complexity. 

In addition  to  the object modules,  MNETS provides a 
variety of macros  from which a  large  number of models 
can  be  constructed.  Some of these macros are  functions, 
such  as address-translation  units,  decoders,  and delay 
macros  for  modeling chip-crossing  delays. If the  designer 
needs  a custom macro, it can be  constructed  and 
embedded in the library. In many  cases, new macros 
can  be built from existing library  modules, using the 
interactive  graphics  tool. However, if the  required  function 
cannot  be built in this manner,  the final  logic of the  macro 
is coded in the  VHDL  language. 
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3. Similarities  and  differences between MNETS 
and actual pipelines 
The  essential similarity between  MNETS  and  an  ordinary 
pipeline is that  both use latches  to hold state,  the  time  to 
transfer  state  from  one  latch  to  the next downstream latch 
is the system cycle time,  and  the  transferlnontransfer 
control of state  between  latches is an  inherent  part of the 
pipeline  structure.  The  difference is that  an  ordinary 
pipeline  contains all of the logic, both  data flow and 
control,  to  process  the  data.  Timers  assume  that  the  data 
processing will be  correct logically and  that all logic 
functions will complete  correctly within the  allotted 
machine cycle time. A timer will only “time,”  or, literally, 
determine  the cycle count to answer the  question,  “How 
many machine cycles will be  required  to  process  a given 
instruction  trace  through  a given pipeline?”  A  trace 
is just  a flat list (branches  unrolled) of all of the  actual 
instructions which a  processor would “see” in running  the 
program.  We  can think of each of the  various  registers 
(state  holders) as  holding a  token, which is passed or  not 
passed to the next register of the  pipeline,  depending  on 
certain  control signals. These  control signals will stall or 
hold a  token  (token = state) in a given register  whenever 
the  downstream  target  register  cannot  accept  the  token 
(state)  for  whatever  reason.  Stalls  are  not  predictable 
a priori and  are  the  source of deviation of the  actual 
processing time  from any simple  analytical calculation 
which assumes no such  stalls or conflicts. 

Given the  idea of state as basically a  token which is 
passed and  timed  through  the  pipeline  registers,  the most 
important  difference  between  MNETS  and  usual  pipeline 
models, as well as all other design methodologies, is 
the  concept of local control for the passing of state. 
Other systems in the  past have  allowed basically an 
unconstrained,  unstructured,  global type of control logic. 
This invariably leads  to  code which can  almost never be 
modular  or  reusable.  In  addition, such  complex control 
structures  render  the  model  understandable only to  the 
original coder,  and changing and  reuse  are extremely 
difficult. Also, one  cannot  look  at  the  model  and have 
even the most  simple idea of what is modeled,  or of the 
general  structure.  MNETS simplifies all such control 
structures by using a  standard  set of four local control 
signals at  each  module of the  pipeline which controls  the 
flow  of the  state  token.  This gives MNETS  the  property 
of being modular  and easily changed.  For many  cases, 
changing the  pipeline consists of removing or  adding  a 
pipeline  module  and plugging in the  same  control signals 
again.  This is illustrated  later4 in a  modeling  example. 

Users  familiar with Petri  nets will recognize a similarity to  MNETS.  However, 
not only do  P-nets lack a well-defined structure  for  representing  state,  but  there is 
no structured  method for control  of  state passing. That is what “timed”  P-nets 
attempt  to  do,  but still in an  unstructured  manner  and  thus still unsuccessfully. See 
[l] for  a discussion of Petri  nets. 
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4. Essential concepts in MNETS modeling 
Let us start with a very simple portion of a  computer 
pipeline  to  see how this part might be  modeled in 
MNETS. We  use  a  pipeline  path  extracted  from  the fixed- 
point  unit of a  generic  processor, which  consists of virtual 
address  generation  and  cache a c ~ e s s . ~  This is shown in 
Figure l (a) .  We  start with the access of the  general- 
purpose  register  (GPR) file for  three  operands of 
32 bits each, which are  latched in the  base, index, and 
displacement  registers.  This  represents  one  stage of the 
pipeline.  At  the next pipeline  stage,  these  three  operands 
are  added  together to produce  a  virtual  address  (VA) of 
48 bits  (size is not  important)  latched in the VA register. 
This  VA is used in the next pipeline  stage  to access a 
cache  directory  and array. We  assume  a one-cycle cache, 
meaning  that  both  the  directory  and  array access are 
completed in one cycle, and  the  data will be  latched in the 
data-out  register  at  the  end of this cycle if a  cache hit 
results. If a  cache miss results, we assume  for simplicity 
that  the  entire  pipeline  halts  (stalls) until the missed data 

For more details about MNETS modeling of this type of pipeline,  see [ I ,  21. The 
design manual o f  131 deals mainly with memory hierarchy  pipelines. 

are  retrieved  and  the  pipeline is restarted, causing the 
translation  to  be  redone.  In  an  actual  pipeline,  the  data 
register would typically be written back into  one of the 
GPRs in addition  to  being  latched in a  register,  but we 
are neglecting this  for now. 

For  a  fast  pipeline, all three  operands would be 
accessed from  the  GPR file on the  same cycle. These 
three  integers would  have to be added with appropriate 
modulo shift to give a 48-bit result.  Various bit fields of 
this 48-bit virtual  address will have to  be  selected 
appropriately in order  to  address  the cache directory  and 
array  correctly for  the  particular  type of organization (e.& 
late-select  or  other,  congruence class/set associativity size). 
The  cache  array is accessed, and typically 64 or 128  bits of 
data  are  latched in the  data-out  register. 

So far, this path specifies only the flow  of data. 
In  parallel with this, and usually not specified, is the 
control logic. Its  path is not so simple, nor  clear.  It must 
control  the  enabling of all of the  registers,  GPR file, 
directory,  and  array,  and also send signals to  the  ALU 
(arithmetic/logic  unit) specifying and  performing  the 
ADD,  etc. so as  to  maintain  proper flow and  latching of 
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the  data.  This logic tends  to  be customized to  the 
application  and is usually much less well ordered  than  the 
data flow. In any case, a  timer would model only the  state 
flow and  not  the full logic of the pipeline. 

methodologies,  no  consistent  method exists, nor  are  there 
any simple or  graphical  constructs  to aid in the  modeling. 
The  programmer might decide  to  consider  each  state of 
the system as an  entry in a two-dimensional array,  or  a 
linear list, or in any of a  number of other  formats. A 
variety of methods have been  and  continue  to  be used. 
There  are design languages which are  intended  to aid the 
construction of pipelines,  but  none  are  graphical  or have 
the reusability feature of MNETS. No matter what method 
is chosen for  representing  state, all lack the simple, 
consistent, well-defined system for  storing of state  and 
control signals for  the passing of state  that  are  needed  for 
modularity  and reusability. Control signals tend  to be 
global,  much  like that of the  actual  pipeline  (although of 
course  simpler, since only part of the  pipeline is modeled). 
As such,  the  control  structure  ends  up being custom  code, 
which is seldom  reusable.  It is not possible to give a 
graphical  representation of the  model  and  relate it to  the 
corresponding  parts of the  pipeline, since a  one-to-one 
correspondence  does  not exist. 

By comparison,  an  MNETS  model provides a simple 
representation of the  data  path,  understandable by any 
designer, as  shown in Figure l(b).  For  the  sake of 
understanding, we start at the  output of the  GPR file. 
Since a  timer  does  not typically process any data,  there 
is no  need  for any of the  data  contained in the  three 
operand  registers.  Instead,  the fact that  an access and  a 
pending  add  are ready is indicated by a 1 in a  one-bit 
ALU register  latch, which is the  state  or  token specifying 
this condition  (the  record  part of this  latch is discussed 
shortly).  Continuing  downstream  along  this  same  path, 
the ALU need  not  be  modeled  at all, since no  data  are 
processed.  The virtual address, VA, will previously  have 
been  calculated  and is contained in the  input  trace.  This 
VA is passed along as an  integer field of the  record'  part 
of the  one-bit  state  latch.  Thus,  the 48-bit virtual  address 
register in the  actual  pipeline is replaced by a  one-bit VA 
register latch  with  an attached  integer field in a  record. 

In most cases of interest,  directory  translation  for hits, 
misses, and  appropriate timing of all reloads is necessary, 
since these  are  a crucial part of the  pipeline stalls. In 
MNETS,  there  are VHDL logic macros available for 
various  directory  organizations  (see [3], Chapters 4 and 5) 
which need no special implementation. In fact, if the 
translation  macros available  in the  MNETS library are 
suitable,  the  modeler  has very little to  do except 

To  model this logic using typical state-of-the-art 

VHDL allows  signals  to  be  defined  as  records  (similar  to  those in C o r  Pascal), 
su the  modeler  need  not  provide a hardware  hit-by-bit  representatlon of integers 
and  other such data. 
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instantiate  the  macro  and  connect  the  MNETS  control 
signal,  as  shown later in example FirstEx. Thus,  the  cache 
directory  hardware is replaced by an available translation 
macro. Since a one-cycle cache was assumed,  the  cache 
array is not  needed  at all, because  no  data  are actually 
accessed in a  timer. As detailed  later, if a multicycle cache 
was assumed, as is necessary in other levels of cache 
(L2, L3), the  array is still very simple, just  a down counter 
to provide a  pipeline stall for  the  number of cycles equal 
to  the  array access time.  The  data-out  register is just  a 
one-bit  latch  and may or may not  need  a  record  part, 
depending  on  the full model complexity. Thus we see  that 
MNETS provides a  graphical  one-to-one  correspondence 
between  the  actual  pipeline  and  its  model,  but with an 
enormous simplification. This is of great  value in building, 
testing,  debugging, and reusing the  model. 

State passing is very complex in an  actual  pipeline,  and 
still  complex in typical timer models. In  marked  contrast, 
this is one of the most  significant advantages of MNETS. 
The  controls  are all local in MNETS,  rather  than global, 
as  in actual  pipelines  and  other models,  as indicated in 
Figure 1. The local control  concept makes MNETS 
modules reusable-just plug and unplug module  control 
signals to  add,  delete,  or  change  the  model.  The  control 
structure which allows this is a set of four fundamental, 
unique signals common to all pipelines that work  as follows. 
Referring  to  Figure 1, we see  that when the  translation 
macro has a miss, it  really is indicating  that it is stalled on 
the  current cycle, cannot  complete  the  last  request,  and 
will not  accept any new input  state. A signal,  called  Wait 
Exception  on  Current  (WEC) cycle, is used for this and is 
propagated back upstream  to notify any module which 
might try to  send  a new state to it. This is shown in 
Figure 2. In this  case, the stalliwait  signal, WEC,  goes 
back upstream  to  the VA register. Now, on  the  same 
cycle, the VA register's  local logic interprets this input 
signal to  mean  that  the  target  for  the VA is not available, 
so obviously it should hold  its state if it is a 1 and likewise 
send  out  a  WEC = 1 signal indicating  that it is stalled  on 
this cycle. Thus, its WEC will be  propagated back 
upstream  to  the ALU register. If the VA register is empty 
(as  indicated by its state being a logical 0), it can in fact 
accept  a new state  and  thus  does  not  set its WEC  to 1; 
i.e., it does  not have to stall, since it is empty  and  can  be 
filled. The  same is true for all such state  registers.  Thus, 
the stall  signal WEC  for  the  current cycle is evaluated 
locally and  propagates as a 1 (stall) only as far back 
upstream as an  actual stall will occur. As can  be  seen in 
Figure 2, the  WEC  output signal from  each  state  register 
is connected  to  a  control  input  terminal  labeled  DSE, 
which stands  for  Down-Stream  Exception.  This  input 
means  that  the  target  to which this state is headed is 
stalling on this cycle if DSE = 1, and is not stalling on 
this cycle if DSE = 0. The  reason  for  different  names will 81 7 

R. E. MATICK 



81 8 

Local control logic functions 

ALU registers 
DSE = Down-stream exception: 
Downstream stall occurred, so if 
latch is 1, hold state and  notify 
upstream modules by setting 
WEC = 1. 

Local 

Virtual address register 
Cache cannot translate virtual 

hold the VA and  notify  upstream 
modules  by setting WEC = 1. 

address request on this cycle; 

Translation Cache translation produces a 
macro miss; notify  upstream  modules 

by setting WEC = 1. 

Data register 

is chosen so that it can pass state if other  conditions 
permit, while the  sources  not  Used will hold  state.  This 
is shown later in an example. The  Used signal  can be 
thought of as a type of enable signal to  indicate  to  an 
upstream  module  that it  has now, on the  current cycle, 
been  processed  and  can  be  dropped if allowed by any 
attached  DSE signal. Thus,  the  fundamental unit for 
holding and passing state in a  pipeline is the Basic 
Pipeline  Module  (BPM) shown in Figure  3(a).  It consists 
of a  one-bit latch with a bit input X, a bit output Y, 
and  a local control logic section with bit-input signals 
DEE = dependent-event  exception,  DSE = down-stream 
exception,  and  U = Used,  and  a single bit-output  control 
signal WEC = wait exception on current cycle. As was 
discussed above, in many paths of a  pipeline it is necessary 
to pass along  certain  information (usually obtained  from 
the  input  trace  or  translation  macro) such  as the  virtual 
address,  the  operation  to  be  performed (e.g., load,  store, 
other),  and  sometimes  additional  details.  Such  information 
is carried in a  separate  record field attached  to  a  one-bit 
latch, as indicated in Figure 3(b). Its  input is the  record 

1 Local control logic functions and signals for a simple pipeline with 

BPM 

Used 
U 

__c 

become  more  clear below, but  the  fundamental  reason is 
that  for  some cases, this  DSE  input  does  not always have 
to  come  from  the  WEC of the  downstream  module.  It  can 
come  from  other  control signals, or  from  a  combination of 
several  other  control signals, usually ANDed  or  ORed 
together. 

There  are two other local control signals required  for 
general  modeling of pipelines, which have the  same 
ultimate  function, namely to  determine locally whether  the 
local state  should  hold,  reset  to 0, or  accept  a new state. 
Each specifies a  different logic condition,  and all work 
together  to fully model any pipeline.  These two additional 
control signals are  Dependent-Event  Exception  (DEE) 
and  a  Used  (U)  control signal,  as  shown  in Figure 3(a). 
The  function  and timing of each of these signals is 
detailed  later, in Section 7. In essence, DEE prevents  a 
new state  from  being  accepted  but  lets  the  current  state 
pass  out if it can.  DEE provides a  means  for specifying 
that  a  needed  resource  or  condition must be  met  before  a 
new input  can  be  accepted.  The  Used signal, U, is needed 
for cases where two or  more  sources  (states) must  pass 
through  a  priority  selection  and only one  can  be  chosen, 
the  other stalling. The  Used signal specifies which source 
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Bit input Wait exception, current cycle 
X WEC 
I A 

Dependent event 
exception 
DEE 

Down-stream 
exception 
DSE 

latch control 
logic 

Bit output Y 
(a) 

Record input Bit input Wait exception, current cycle 

1-bit basic pipeline 
Dependent event 
exception DEE 

module with control 
logic, as above 

Down-stream 
exception DSE 

l u  I 
f t 

Record output Bit output Y 
Ya 

(b) 

! Schematic of the elementary structure and control signals of the 
' most basic MNETS pipelining modules: (a) One-bit hasic pipeline 
! module (BPM) with four modular, local control signals; (b) one 

record plus one-bit compound basic pipeline module (CBPM) with 
; the same  four modular, local control signals. 
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signal Xa,  and  output is the  same  record signal, now 
called Ya. The  record can be defined to have  almost any 
type and  number of fields (VHDL  records),  but  certain 
types  have been defined and  are  inherent in the  MNETS 
macros in the library provided. In any case, the  record 
passes  along with the  one-bit  state automatically; no user 
intervention is needed. 

There  are  a few (very few) other basic modules  needed 
to  model  a  pipeline,  and  there  are a number of variants of 
these basic modules  just  for simplicity of modeling (e.g., 
not all modules  need all the local control signals).  But  in 
all cases, and  fundamental  to this  design  methodology, the 
same local control signals are used for all modules  and all 
macros  at all levels of the design hierarchy.  This is the 
feature which makes  MNETS  modular  and easy to 
understand, defines reusable  modules,  and  makes  models 
simple to design and  change. In addition it makes  each 
module  separately  testable with a common test  generator, 
and pluggable into  the  model.  Although no formal 
derivation  or  confirmation is available,  this set of control 
signals appears  to be fundamental  and  unique.  Thus  far, 
they  have been  able  to  model all control flow structures, 
which is a necessity  in  achieving any modular,  object- 
oriented  modeling  construct.  An obvious result of this is 
that  other users, if attempting  to use  this methodology, 
should not introduce  additional  control signals,  since this 
destroys its simplicity and  modularity. 

5. Clocking, timing, and passing of state 
The  MNETS  pipeline  model works very much  like an 
actual  pipeline.  A two-phase clock paces the  pipeline  state 
registers  (an  understanding of this is important as well 
as  extremely educational in understanding  pipelines in 
general). In an actual  pipeline such  as that in Figure 1, 
each  register  has  a  two-phase clock input. On the Begin 
clock TB (which clock is Begin is purely arbitrary),  the 
clock signal rises and causes all state  registers  to  broadcast 
their  internal  state  into  the  combinatorial logic network. 
After  a time equal  to  the maximum  delay of the logic, all 
input signals to all state  registers will have reached  their 
correct, final value,  but the  input  to  each  register  (latch) is 
blocked during this clock phase.  At this time,  the Begin 
clock TB  goes  to 0 and  the  second clock, TE, rises. This 
TE clock enables  the  input  stage of all the  state registers. 
Whether  or  not  a new input is accepted usually depends 
on a  number of additional  external  enable signals  provided 
by the global control logic. In MNETS  a similar  but 
simplified modular  structure  and timing sequence is used, 
as follows. All MNETS  modules which latch state have 
implicit  two-phase clock inputs.  These signals do  not show 
up as terminals on the various modules such  as those in 
Figure 3, because  they can  be  declared in a special way 
as  global  signals  in VHDL (see [3] ,  Section 1.11.4).  As a 
result, any module  can use these signals  internally and 
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Clock TE 
Use control signals to 

1. Hold state 
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\ 
\ Wait exception, current cycle 
\ Input X (TB) WEC (TB) 

I 4 

Used 
U= 

State machine 1 
Any procedure, latch, 
macro, other 

(Latch new/old state at TE) 

i 
,r Output Y (TB) 4 

ClockTB ,’ 
Broadcast state ’ 
Evaluate all control signals - - - - - - - , , ’ 

State machine of any kind, with four modular, local control signals 
1 for passing of state. 

need  not  declare  them.  This implicit use of clocks and  the 
resulting  sequence of events is illustrated in Figure 4. 

On the Begin clock TB  goes  to 1, and all modules which 
hold state  place this state on their Y outputs, which 
broadcast  their  state  into  the  MNETS  network in a 
manner similar to  that of an actual  pipeline.  These  state 
signals flow to  other  modules  and  start  generating  the 
various control signals at  time TB. Each  module with 
control  input signals DEE,  DSE,  and/or U looks  at these 
inputs  and its own state,  and as a consequence  sets its own 
WEC  to 1 or 0 at this time  (TB). All modules complete this 
signal  evaluation at TB. Actually, all modules  are basically 
“zero  time” circuits and  evaluate on the rise  time,  since 
no actual circuit  delay is simulated.  Thus,  the  processor 
clock or cycle time is totally arbitrary, picked to  match  the 
pipeline  being  modeled.  After  the first half of the cycle, 
the  End clock time TE becomes 1, and  TB  goes  to 0 at 
the  same  instant.  The only function  performed  at  time T E  
is for all modules with state  to  decide, on the basis of the 
input  control signals, whether they will hold  previous 
state,  reset  to 0 state,  or  enable a new state  from  the 
signals X/Xa.  Subsequently,  the clock time moves to  TB 
again, and all modules  broadcast  their  state on their 
output  terminals, Y. Those  modules which held state will 
broadcast  the  same  state as  previously. Those with new 
state,  whether it be 0 or new X/Xa values, will likewise 
broadcast  their  states.  The re-evaluation of all control 
signals takes  place,  and  on  the next TE,  the  state passing, 
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and 
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or 
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WEC3 = 1 
B X  
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Pipeline  section  illustrating use and  function of control  signals 
DSE (down-stream  exception)  and WEC (wait  exception,  current 
cycle). 

holding, or  resetting  occurs as before.  Thus,  the pipeline 
progresses in a  manner completely analogous to a real 
pipeline. However, the  control logic is all local, the 
modulcs  are all modular  and pluggable, and  the model is 
graphical. 

6. Control  signal  functions,  timing,  and uses 
In the most general case, an  MNETS  module which 
contains  a  state latch can have all four  control signals, 
namely inputs  DEE,  DSE,  and U, and  output  WEC.  First, 
an example for DSE  alone is discussed (shown in Figure S), 
then an  example for  DEE  alone (shown in Figure 6) 
and an  example for U (shown in Figure 7). After  these, 
the full logic for  a  module with all control signals is 
presented.  It  should  be  kept clearly in mind that every 
module which holds a  state is a  source  on its output  side, 
and  a  target on its input  side. 

Control signal down-stream exception, DSE 
The primary function of this  signal,  as indicated 
previously, is to inform  an upstream  source  module  that 
the  downstream  target will not  accept  a new state  token 
on this cycle. It is up  to  the  source  module to decide what 
to  do with this information. In general,  the  source looks at 
its DSE,  DEE,  and U signals  as well as  its current  state 

820 token in order  to  decide  whether to hold, reset,  or  accept 

a new state.  The simplest case occurs  when the  module 
has no DEE  nor U input signal or one  or  both  are  present 
but do  not affect the  state  evaluation. As  an  example, 
consider  the  path in which three basic pipeline  modules 
(BPMs) are  connected as  shown in Figure 5, where it is 
assumed  that initially Latch 1 = 0 while Latch 2  and 
Latch 3 are both 1 tokens with all U = 1 and all DEE = 0 
if present  (equivalent  to not being present, as  shown). 
On  thc first Begin clock, time  TBI, all BPMs broadcast 
their  tokens, 1 or 0, to  their respective Y  outputs. Assume 
that on this TB1  the  control signal DSE3 on BPM3 is a  1, 
indicating  that  the  target of BPM3 (not shown) will not 
acccpt a  token on this cycle. The  control logic in BPM3 
looks at  the  DSE3 = 1, and  since its state  token in 
Latch 3 is 1, it recognizes that it will not  be  able  to move 
downstream on the upcoming TEI, so it sets its WEC3 = 1. 
This  makes  DSE2 = 1.  The  control logic in BPM2  sees 
its DSE2 = 1  and its state  token in Latch  2 also  as 1, so it 
obviously will not be  able  to move on the upcoming TE1, 
and it  also sets  its  WEC = 1. As a  result,  DSEl = 1,  but 
its control logic sees that its state  token in Latch 1 = 0, 
meaning  that it is empty, Le., no token  to move. 
Therefore,  BPMl  can  accept  a new token on the 
upcoming TE  and  thus  sets its WECl = 0. This tells 
any module  above  BPMl  that its state  transfer, if any, 
will be successful. 

Subsequently,  at  time  TE1,  Latch  3  and  Latch  2  both 
hold the  current  state, while Latch 1 accepts  a new input 
X, whatever  X may be. This X could be  a 1 or  a 0; it does 
not  matter, since BPMl must accept  whatever  token is 
sent from its upstream  source (not shown)  and this could 
bc 1 or 0. Note  that if these BPMs were  compound BPMs, 
having a  record field input  Xa,  output  Ya,  and  internal 
latches all having a  record field, these  records would 
follow the respective tokens.  Record  2 in Latch  2  and 
Record  3 in Latch  3 would remain  the  same on TE1, while 
Record 1 in Latch 1, which was initially null  (actually 
"don't  care"), would accept  the new Xal  record (shown 
dotted)  at  TE1. 

9 Control signal dependent-event exception, DEE 
The primary function of this control signal is to prevent 
any new state  from  entering  the latch of a BPM (or any 
module with a  state  latch)  for any reason.  The typical 
reasons  for  a  DEE  input  to  be 1 are  that  some  resource 
or  a  particular logical state  or  condition  needed  at this 
stage is not available. Thus,  the  entering of this state must 
be prevented until  this needed  condition is available. This 
logical structure  can  be achieved with the  MNETS  model 
of Figure 6. The  dependent  resource  can  be  another 
MNETS  module,  a  macro, or a  separate logical construct. 
At clock time TB, if the  dependent  resource i s  busy, it will 
set its WECdr = 1.  This  sets  DEE1 = 1, so the  control 
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logic in BPMl  sets its WECl = 1. At clock time  TE,  this 
will stall any upstream  source which has  BPMliLatch 1 as 
its target. If the  Latch 1 state  token was initially 1 at TB 
of the cycle in which DEE  became 1, its state  token will 
drop  to  the  downstream  target  and  Latch 1 will reset  to 0 
(if other  control signals do  not  prevent  this).  Thus, while a 
new state  cannot  enter  the  module because of DEE,  the 
current  state of the latch can move out of this module 
independent of DEE  (but  dependent  on  DSE  and  U, if 
either is present). 

Control signal Used, U 
An  important,  but not the only, function of the  Used (U) 
control signal is in conjunction with a priority  selection 
module, in which there  are  multiple  sources  headed  for 
the  same  target  and only one  canimust  be  selected.  This is 
illustrated in Figure 7 ,  which shows two sources,  BPMl 
and BPM2, both trying to reach  the  same  target, BPM3. 
The  DSE  inputs may or may not be needed  on  BPMl  and 
BPM2, depending on the  pipeline.  Regardless,  the  U 
signals play the  same  role.  For example, suppose initially 
that  Latch 1 and  Latch  2  both have state  tokens = I. At 
clock time  TB,  both  YI  and  Y2 = 1 ,  making both  XA  and 
XB = 1. The  priority logic of the  module is assumed  to 
select  XA  before XB, so XA is selected  and  transferred 
immediately to  the  Yp  output  (there is no  internal  latch, 
so no  state is held  in any priority  module in the  MNETS 
library).  At  the  same time, at TB, U signal UA is set to 1 
and  UB is set  to 0 by the  priority  module, making U1 = 1 
and  U2 = 0. If there  are no DSE  inputs  on  Latch 1 or 
Latch  2 (Le., assume  that  DSE is not  needed  for  the 
moment),  then since U I  = 1 (it  has been  Used),  Latch 1 
logic sets its WECl = 0. At  the  same time, Latch  2 has 
U2 = 0 (it has  not  been  Used), so it sets its WEC2 = 1. 
At clock time  TE,  Latch 1 drops its token to the  target 
Latch  3  and  accepts  a new state  input from its X1, while 
Latch 2 holds the  current  state  token. If Latch 1 and 
Latch 2 both have DSE  inputs  from  WEC3 of the  target, 
the above sequence still occurs if WEC3 = 0 at clock time 
TB. If it should  happen  that  WEC3 = 1 at  time TB, the 
BPM2 behavior will not change (it holds state) but Latch 1 
is different.  Even  though signal U I  will still be  set  to 1, 
the  DSEl = 1 input  to  BPMl will cause  the  control logic 
to set WECl = 1 and hold the  current  Latch 1 state  token 
at clock time  TE.  The  reason, obviously, is that  the  target, 
BPM3, is not going to move at  TE, since  its WEC3 = I. 
Thus  the  source,  BPMliLatch 1 for  the given set of states, 
even though it was Used  (U1 = l ) ,  sees that its token  has 
a  DSE = 1,  so it cannot  and must not move. 

Note  that  the  DSE  and  Used signals  work together as a 
sort of op code  to move one or hold both sources.  Also 
note  that  BPM2  can move only if the  BPMl  state  token is 
0, owing to  the  priority logic of the priority module. While 
the  priority  modules in the  MNETS library  have  primarily 

WECl = 1 

Input X 

WECdr = 1 
."" 4"" 

Clock TB 
Broadcast  state t 
Evaluate  all output Y 
control signals 
Clock TE 
Reject  input X and  either 
Hold current  state, or 
Reset to 0 (dependent on U  and DSE) 

(e) Dependent 

Used UA = 1 
selection 

Used UB = 0 

BPM3 

Clock TB Clock TE 
Broadcast  state 
Evaluate  all  Latch  2 hold old state = 1 

Latch 1 accept new input 

control signals Latch  3 accept Latch 1 token 

. . . , . . . , I 

1 Control signal Used, U (and DSE) configured with  priority 
1 selection module. 
8 

a straight  ranking  selection, A > B > C, etc., for input  A, 
B, C, etc.,  the logic is written in  extremely  simple VHDL 
code  and  can easily be  changed  to  almost any logic. 
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7. General case of all  control  signals  present 
on module 
In the most general case, a  module  can have DSE,  DEE, 
and U inputs.  The  control logic  in  such modules looks at 
all of these signals at  time  TB in order  to  decide what 
value  to assign WEC  at  this  TB  and  whether  the  latch 
should  hold,  reset,  or  accept  a new state  at  TE.  The logic 
is as follows (see specific modules  in  the  MNETS library 
for  the  actual  VHDL  code). 

If 
state  token = 1 at   TB 

Then 
If 

Then 
DSE = 1 or  U = 0 

Set   WEC = 1 at   TB (Current  state  cannoi 
and move  downstream, 
hold  state  at TE so hold; DEE is a 

“don’t  care” 
in  this  case.) 

Else 
If 

Then 
DSE = 0 and U = 1 and DEE = 0 

Set   WEC = 0 a t   TB (Current  state  can 
and move  downstream 
accept  new  state  input  at TE and  there is no 

dependent  event 
exception  stall.) 

Else 
If 

DSE = 0 and U = 1 and DEE = 1 
Then 

Set   WEC = 1 at   TB 
and 
reset  state  to 0 at  TE 

End If 
If 

state  token = 0 a t   TB 
Then 

If 
D E E  = 0 

Then 
Se t   WEC = 0 a t   T B  
and 
accept  new  state  at  TE 

Else 
If 

D E E  = 1 
Then 

Se t   WEC = 1 a t   T B  
and 
hold  state  at TE 

822 End If 
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(Current  state  can 
move  downstream 
but  new  state  canhot 
be  accepted  because 
of DEE stall.) 

(Latch is empty  and 
there is no DEE stall, 
so accept  new  state; 
DSE is “don’t  care” 
in this  case  and 
U + 1 if state = 0.) 

(Latch is empty  but 
new  state  cannot  be 
accepted  because of 
D E E  stall.) 

8. Multicycle  stall on a  basic  pipeline  module 
using down counter 
It is possible for  certain  stages of the  pipeline  to  require 
multiple cycles before  the  state  token  can  even  attempt  to 
pass from  source  to  target.  For  instance, if the  ALU in 
Figure 1 is doing  a multiply or divide or  certain shifts, or 
if a  stage  such  as  VA  needs memory  access to  an L2 cache 
or main memory,  or  cache  reloads  are  required,  then 
this stage of the  pipeline  must stall for  the  appropriate 
number of cycles. These stalls are  almost always provided 
by a  simple,  fundamental  module  called  a down counter. 
The  essential  idea is that  during  the  initial  loading of this 
stage of the  pipeline,  an  associated down counter is also 
loaded with an  integer  count value which will give the 
desired  number of cycles of stall.  On  each  subsequent 
cycle, the  counter  generates  an  output signal WEC = 1 
and  decrements its internal  count  value by 1. This down 
counter  continues  decrementing its internal  count  value 
and  generating  WEC = 1 on each cycle until an 
appropriate  count is reached (0 or 1,  discussed  in [3]), 
when  it will generate  WEC = 0, which remains 0 until  a 
new count  value is entered.  This  WEC is used  as DSE, 
DEE,  or  whatever  inputs  are necessary to stall the 
corresponding  states of the  pipeline.  The down counter 
has  an  external  enable signal, En,  to  tell it to  load  the 
integer  count  value, Nin.  However, this  enable signal is 
internally  shut off while  any  previous entry is still counting 
down (Le., cannot  accept  a new Nin  value  as  long as it is 
generating  a  WEC = 1 output signal).  Only at  the  end of 
counting down (Le., when  WEC is 0) is the  enable  input 
able  to  insert  a new count value,  Nin. The  details of the 
down counter  operation  are discussed  below. 

Fixed number of cycles of stall 
An  example of the typical use of a down counter is shown 
in Figure 8 and works  as follows. Assume  that  the  token 
which enters  source  BPMl always requires  three cycles 
before  dropping  to  target BPM2. A down counter is 
inserted  between  the two stages  and  provides this three- 
cycle fixed pipeline  stall as follows. At clock time TB, if 
the  enable  input  En = 1 and  the  current  internal  count 
value is 0 (or 1 but  going  to 0), the Nin input  integer is 
accepted  as  the new count value at  subsequent clock time 
TE.  Also  at  TB, if the  internal  count value is greater  than 
1, the  counter logic sets  its  WECdc = 1 and  rejects any 
new input  count  integer Nin, regardless of the  En signal 
value.  In this particular  example, this WECdc is used  as a 
direct  dependent-event-exception  (DEE2)  input on BPM2, 
and  the  WEC2 of BPM2 is the  DSEl of BPM1. The  result 
of this connection is that  BPM2 will reject any new input 
token  for  three cycles, and  BPMl will hold the 1 token  for 
three cycles. At  the  end of the  third cycle, token 1 (and 
any associated  record, if a  compound  BPM is used) will 
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Multicycle pipeline stall using a down counter  and target with 
j DEE input. 

drop to BPM2, and  BPMl will accept any new input  state. 
A  state-token passingitiming diagram is shown  in Figure 9 
for this  case. The overall logic of the down counter is 
as follows: 

At clock time TB If internal COUNT > 1, set WEC = 1; 
Else If COUNT = 0 or 1. set WEC = 0. 

At clock time TE If COUNT > 1, set COUNT = 

COUNT - 1; 
Else If COUNT = 0 or 1, 

then If En = 1, set COUNT = N ,  
Else (if En = 0) set COUNT = 0. 

Variation of pipeline  connection for rnulticycle stall using 
down counter 
In  Figure X, it was assumed that  the  target is another 
pipeline  module, BPM2, which has a DEE  input.  This 
DEE control signal prevents  the  transfer of the 1 token 
from  source  to  target until the  WECdc of the down 
counter goes to 0. This is the simplest method of control 
when the  target  has such a DEE input. However,  in some 
cases, the  output of such a  module might be the  output 
terminal of a macro  and  cannot know a priori just what 
the  target might be  (for  instance,  the  output  terminal 
of the memory reload  register,  the  fetch  register of the 
L2Simple macro in [3], Section 5.6). The  target  for this 
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7 Token timing diagram showing a multicycle stall between two 
j BPMs, provided by a down counter generating WEC = 1 while 
: COUNT > 1 (at TB). 

t En option (if other control signals are 
present on BPM source) 

WECdc 

Down 
counter 

Yand 

Alternative configuration for multicycle stall to an unknown target, 
: or target without DEE input, using a down counter. 

source, which will later  be  connected  to this macro  output, 
can be one of any number of destinations.  To  be most 
general,  the  output of the  source is locally prevented  from 
propagating any further by the use of an  AND  gate  on its 
Y output, as  shown  in Figure 10. The signal WECdc is 
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used as a direct  input  to  DSEl of the  source, which stalls 
the  token in BPMl until  the down counter  WECdc  goes 
to 0. At  the  same  time,  the  inverse of signal WECdc is 
ANDed with the  output  Y of BPM1, which also makes 
signal Yand = 0 until  the down counter  WECdc  goes  to 0. 
Thus, this Yand signal will go to 1 only after  the  counter 
has  counted down the  appropriate  number of cycles. After 
this  countdown, signal Yand will be  a 1 for only one cycle 
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any case,  this  Yand will have the  correct timing and  can 
be used  directly as an  input  to any module with or  without 
any DEE  input. 

Integer numbers for down counter 
A fixed value of Nin for  a down counter is typically 
needed  and easily obtained  from an MNETS library 
module called NUMBERn,  where n is the  desired  integer 
value. For  instance,  modules  NUMBER3  and  NUMBER5 
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give an integer output signal of value 3 and 5 ,  respectively. 
These modules can be instantiated  and  “wired” to the down 
counter Nin pin in Wizard just like any other module. 

Variable number of  cycles  of  stall 
While most stages of a  pipeline will have a fixed value for 
the  number of cycles of stall, there  are cases for which the 
down counter Nin integer is not fixed and/or  not known in 
advance.  Depending on the  situation,  there  are several 
simple methods  for  accommodating  these  features. If the 
counter delay is variable,  but known or  calculated when 
the original trace is produced,  the Nin value can  be passed 
as a field in the  record  part of the Xa input.  When  the 
down counter is enabled, this  value is easily extracted  and 
passed to  the Nin input of the down counter, as  shown by 
the  dotted  line in Figure 8. 

9. Basic  modules  in MNETS 
From  the above  discussion, it can already  be  inferred 
that  three  important  modules  for  MNETS modeling are 
1) the basic pipeline module, BPM, and its companion,  the 
compound basic pipeline module, CBPM; 2) the down 
counter module; and 3) the priority module. These  three, 
shown with the most general set of control signals in 
Figure 11, are  the most  useful,  basic  modeling components 
and  appear  repeatedly in any model.  In  addition  to  these 
basic modules,  there  are  others which, while not used  as 
often,  are  nevertheless  required  to build a  pipeline  model, 
particularly  memory  hierarchy  models. The  complete 
MNETS library is contained in two AFS  directories, 
namely 

afs/watson/projects/M/MNETS/AVHDL/Admod8. 
afs/watson/projects/M/MNETS/AVHDL/Admacro8. 

These fall into  a few general classes,  such  as those 
illustrated in Figure 11. Some of these  components  are 
the following: 

First-in-first-out (FIFO) stack 
This is a typical type of FIFO  register  stack,  but with 
MNETS  control signals for passing or holding state  and 
a  selectable  stack size. 
Translation macros 
Translation  macros  are used to  translate  a given virtual 
(linear, effective) address  into  the physical cache 
address, in a  manner which mimics the  actual  hardware 
directories.  The  cache size, line size,  set associativity, 
and logical word  size  (size of accessed data)  are  input 
parameters,  and several different types are available, 
e.g., inclusive and noninclusive). 

All pipeline  modules  require two clocks, TB  and  TE, as 
described previously. Once  instantiated in a  model,  the 

9 Clock generation (CLKGEN) 

CLKGEN  module  generates  these clocks automatically. 
In  addition,  the clock signals TB  and  TE  are global;  i.e., 
all modules  and  macros in the  schematic  can  “see”  these 
global  clocks without  the user having to  make any direct 
connections  (see  Figure 14, shown later). 

This  module  reads  a text input  trace  from  an  AIX text 
file and  puts each instruction  on its  Y/Ya output.  This 
output serves  as the driving input  to  the  remainder of 
the model. 

Trace  reader and formatter (OpGenText) 

Metering counter (up counter) 
This  module is used  as a type of metering device. It 
starts  from  an  internal  count of 0 value  and  adds 1 at 
the  end  (time  TE) of each cycle when its input  enable 
signal, En, is 1 at  the begin time, TB, of that cycle. 
This is used  as a  means to count  the  number of misses, 
misses with castout,  etc. in the  translation  modules  and 
can be used  as a  metering device in any model, as 
needed. 

10. Object-oriented program  modeling 
The most important  element in MNETS modeling, the 
concept of local control  for  the passing of state, is 
achieved by the  use of a  set of four well-defined, 
consistent, never-changing control signals at all levels. 
Every module,  component,  or  macro which contains  a 
latch or holds and passes state in any manner via the 
clocks has  either all four  or  some necessary subset of 
these  four  control signals. There  are  no exceptions, and 
any user who constructs  a custom macro must adhere  to 
this  design rule. By so doing, one achieves a design that 
has a control  structure  at all nested levels which is 
identical to that  at  the lowest levels, as illustrated in 
Figure 12. This  makes  the  models easy to  build,  edit,  and 
reuse,  and above all else, easy to understand  at  some  time 
long  after  implementation.  The use of a few well- 
defined control signals  removes all of the complex 
interdependencies  one normally encounters when each 
modeler has to choose  hisiher own control signal structure 
and definitions. 

By adhering  to this consistent  structure,  one  obtains 
a  pure,  object-oriented  programming methodology for 
pipelines. The  objects all have consistent  and well-defined 
parameters which are passed between  them, namely the 
consistent  set of control signals and  input/output  state 
signals. Modularity is just another word for  objects with 
consistent  parameters passed between all levels of object 
definition,  including nested  objects within  objects. 

11. Embedding  other  modeling  techniques 
within  the MNETS object-oriented framework 
The  essence of MNETS  modularity  stems  from  direct 
incorporation of the  fundamental  state-transition flow- 
control  conditions  required in any pipeline.  The two 
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fundamental  control mechanisms for  state-transition 
determination,  required in any methodology, are easily 
seen  from  the previous  discussion: 

1. Are all necessary resources available  in order to start 
the  state  transition?  (DEE = dependent-event 
exception) 

transition? 
a. Has this state  been  acted  upon? (U = Used) 
b. If Used,  can  it move to the  target?  (DSE = down- 

2. Can (will) the  current  status allow completion of state 

stream  exception) 

These  concepts  and  the  resulting  four  control signals 
are not, and need not be, limited to  the  particular  MNETS 
modules defined here.  In  fact, it is easily conceivable that 
other  models could use  these signals to  make  their  code 
modular,  reusable,  easier  to  construct  and use, and have 
all the  advantages of MNETS. If properly  constructed, 
such models could be easily and conveniently integrated 
into  and used  with the  MNETS  modules  and macros. 

12. Model example 
A simple, complete  modeling example presented in detail 
in [3], Chapter 1, is a  model  named FirstEx. It  has  the 
logical structure  illustrated in Figure 13 and  the  actual, 
final MNETSiWizard  schematic in Figure 14. The  trace of 
instructions is read by the  OpGenText  component  from  a 
file. The  instructions  are  placed  on  the  output of the 
OpGenText  component  and fed into  a  pipeline consisting 
of a  compound basic pipeline  module  CBPMDse with only 
a  DSE  control  input  (no U or  DEE) followed by another 
identical  CBPMDse.  The first pipeline  stage (first to 
second)  can  be  thought of as the  instruction  decode  stage, 
requiring  one  processor cycle; the  second  pipeline  stage 
can  be  thought of as address  generation  and  cache access 
on  the  same cycle. Alternatively, one  can think of these 
two stages as address  generation  between first and  second, 
with only cache access on  the  second  stage.  The  actual 
representation would depend  on  the  actual  pipeline.  In 
either case, the  latter  stage accesses a simple,  one-cycle 
cache which is assumed to operate as follows. A full 
translation using a library macro TransLlincl (described in 
[3], Chapter 4) is performed.  There  are  no  castouts,  no 
unlocks, and only simple translation hits or misses. If a  hit 
occurs, nothing  extra  happens.  This is equivalent to the 
request  being  found in one cycle and successfully used by 
the  processor. If a miss occurs, the  request  drops  through 
to  the  output YMiss, so CBPMDse2  can  accept  a new 
state,  but it is subsequently stalled for  NR cycles. This is 
achieved by loading  the down counter if the  translation 
output YMiss = 1. This  simulates  a fixed reload  time, 
wherein  the  upstream  pipeline fully stalls on  a miss. The 
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and graphically  wired together.  This  Wizard  model is 
nothing  more  than  a graphical  drawing  consisting of a 
list of box (component)  names, pins,  signals with type 
definitions, interconnections,  and  some  other  needed 
information.  Fortunately  Wizard knows how to  create 
compilable  VHDL  programs  from such graphical drawings 
and  requires only clicking on a VHDL  button. 

Thus,  the  model  and  VHDL  code  generation  require 
nothing  more  than Wizard and  the  MNETS design  library. 
To  simulate  the  VHDL  code, any simulator can be used as 
long as it is capable of handling  record  data types. The 
compilation,  simulation,  and  running of this or any  model 
are totally independent of the  MNETSiWizard design 
system described above. Details of running this  example 
on  the  MTI system are given in [3]. 

It can be  seen  from  the above that when needed 
components  are available,  it is quite simple to graphically 
build a pipeline  model. Since  much of the  drudgery is 
automated,  the  user can concentrate  on  the  important 
issues. Experience,  both  personal  and  general,  has shown 
that  the  modeler will spend as  much or  more  time in 
trying to  decide  or find out exactly what is to  be  modelcd, 
than in  actually  building the  model.  This is because  there 
are so many options  and  details in the  actual  pipeline 
that it is impossible to  consider  and  decide  them all 
beforehand.  MNETS allows the  user  to  start with a 
simpler  model  and  add  more complexity as the design 
becomes  clearer. Also,  it forces  the  designer  to  face  early 
on those  important issues which can  seriously  affect 
performance. All timing points  and stalls  must be 
included, similar to  those of the  actual  pipeline,  to  obtain 
an  accurate  performance  predictor. 

13. Model testing 
MNETS  has  a  distinct  advantage in testing over other 
methodologies.  Each  module  or  macro  can  be  tested 
independently, similar to the way  in which electronic 
components  can  be  tested.  We  attach  a signal generator, 
in  this case  an  OpGen  module, which supplies  input 
signals from a special-purpose  trace if necessary. Then we 
observe  the  output signals and  can  run  various  test cases. 
Once fully tested,  the  macro is entered  into  the library. 
This  has  been  done  for most modules  and macros. 
Assuming that all underlying macros have been fully 
tested,  a new model  need only test  for  the new states 
resulting  from  the  interconnection of these macros. If 
necessary, a new model  can  be built in steps.  Even  more 
useful, if a simulator such  as the  MTI  VSIM is used, the 
moduleimacro signals at any point in the  model  can  be 
essentially traced on a  software “oscilloscope” just as for 
a circuit or logic design. These can be saved and  studied 
later  and  manipulated in various ways, greatly facilitating 
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14. Interactive design tool 
A major  issue in all timer  models is that  the  number of 
instructions which can  be  simulated in any reasonable  time 
is a very small fraction of any actual  running  time of the 
system being  modeled.  The  fundamental  problem  stems 
from the  fact  that any model  running  on a current 
computer, trying to  simulate a future,  faster  computer, will 
be  orders of magnitude slower in processing instructions. 
If every  design change  requires  rerunning of very long 
traces, few options will be  explored.  The use of reduced 
traces  to allow faster  evaluation  without compromising 
accuracy is a  step in the right direction,  but we still need  a 
better system. Running long traces against some  particular 
design  merely gives a final answer of cycles per  instruction 
for  a given trace.  Although  some  other  internal statistics 
can bc  accumulated, this is a tedious design  process. A 
better  mcthod is desired  for design optimization,  and a 
new mode of thinking is required. 

The  author’s vision of the  future design system is an 
interactive  one in which the user  looks dynamically at  the 
MNETS  graphical  model on the  screen, watching tokens 
pass from  module  to  module.  The  interactive system will 
be  capable of color-coding  various tokens  along  paths  at 
the choice of the  user. In addition,  the system will have a 
built-in  capability to  increase  the  color intensity of tokens 
as they  stall at any one  module, intensity  increasing  with 
each successive stall to  indicate a hot  spot.  The  user  thcn 
applies  certain  selected  and/or  reduced  traces  and looks 
for  hot  spots in the  pipeline flow. This would indicate 
points of significant  stall and could be  seen quickly for 
certain  input  conditions.  The user can  attempt  to  remove 
the stalls by changing the  pipeline,  rerunning  the  trace, 
and looking for  the  hot  spots again. Various  sets of critical 
trace  conditions could be  maintained  and used for such 
design optimization.  Once  a supposedly “more  optimum” 
pipeline is achieved, a full trace  can  be  run  for  total cycles 
per instruction and  compared with the previous  designs. In 
this way, a  more  optimum design can  be achieved  much 
more rapidly, to give the  designer significant  insights into 
the  pipelinc  operation  and  bottlenecks.  A  graphical design 
tool  such  as  MNETS is readily adaptable  for such  an 
interactive,  optimized design  system. 

Conclusions 
MNETS  methodology is a new approach  to modeling. 
While the initial step is always difficult, the  advantages 
should be  clear  enough  to justify a new approach.  Past 
and  current  techniques used to  model  pipelines  are 
becoming more  and  more difficult without  some kind 
of modular  approach. 

A  fundamental  point which should  be  kept clearly in 
mind is that all timer  models  reduce ultimately to  nothing 
more  than  a  method  for  representing  state, plus a set of 
nested i f .  . . then . . . else  (or essentially similar)  control 
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statements  for  passing  state.  The  different  methodologies 
for  constructing  models  only  determine  the  manner  in 
which  the  state  variables  and  control  statements will be  
selected,  how  they  are  structured,  and  how  they  are 
entered by the  modeler.  When  there  are no established 
rules  or  fundamental  constructs,  the  modeler is free  to 
pick  and  use  state  variables  and  control  statements  in any 
fashion;  this is what  makes  programs  nonmodular  and 
nonreusable. In essence,  MNETS is merely a way to 
impose a well-structured  discipline  on  the  choice of 
state  variables as well as the  structure  and use of 
i f .  . . t h e n .  . . else control  statements. 

MNETS  not  only  provides  such a modular  approach 
with a graphical  user  interface, it also  contains  a 
framework  which  can  evolve  to  a  dynamic,  interactive 
design  optimizer  as  well  as  incorporate  other  modeling 
tools. By incorporating  the  same  basic  clocking  and  local 
control  signal  structure,  almost  any  program  procedure 
can  interface  directly  with  MNETS  models. 

Appendix: Hardware implementation of MNETS 
The  various  basic  modules  in  MNETS  look  like  electronic 
macros. In fact,  modules  such  as  the  basic  pipeline 
module,  down  counter,  priority,  as  well as various 
decoders,  FIFO,  etc.  could  be  implemented  directly  in 
electronic  circuits  and  used  to  build  pipelines.  It  has  been 
suggested by Eric  Kronstadt,  Wilm  Donath,  and  others 
that  such  modules  could  be  mapped  onto  an  EVE [4] or  
EVE-like  hardware  simulator to achieve  orders-of- 
magnitude  increases  in  processing  speed.  This  issue  has 
not  been  pursued  but  is  an  enticing  thought.  One  problem, 
however, is how  to  “simulate”  translation  units.  These  are 
macros  containing  the  MNETS  control  signals,  which  can 
be  simulated,  but  state  variables  (directory  entries)  are 
currently  implemented  as  arrays of records,  stored  in 
memory.  It  would  be  desirable to not have to do  the  full 
binary  implementation of such  macros,  but  the  advantages 
and  disadvantages  have  not  been  assessed. If this  is  not a 
limitation,  models  capable of processing  very  large 
instruction  traces  become  possible. 
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