A JBIG-ABIC
compression
engine

for digital
document
processing

by K. M. Marks

This paper describes the implementation of
a combined JBIG and ABIC compression-
decompression engine, which has been
integrated into a digital document-
processing microcontroller used in imaging
applications.

Introduction

With print resolution for digital documents rising to

1200 dpi, the requirements for controller memory and
controller throughput are increasing steadily for both print
and digital copy applications. Storage requirements are
dictated by features such as collation or duplexing, which
make use of full image storage.

As shown in Table 1 for the case of a copier, generation
of subsequent pages takes place while previous pages are
printed in order to keep the output engine continuously
busy. Pages P are split into bands P B_for that purpose.
This requires quasi-simultaneous compression of the
rendercd or scanned and screened images to storage and
repetitive decompression of the stored images for print.
This can be accomplished either by providing separate
compression and decompression engines or by supplying

a single engine with sufficient throughput to allow time-
sharing between compression and decompression tasks.

To meet the real-time constraints of laser engines
(once a page is started, it is necessary to keep up with
the engine), predictability or low data dependency of
the throughput is very important. At 1200 dpi, a single
letter-size page contains approximately 128 million pixel
elements, or 16 MB of bitonal data. A high average
compression ratio as well as good worst-case compression
behavior is therefore essential. Adaptive arithmetic
compression as used in ABIC [1, 2} and JBIG {3, 4}
provides by far the best average and worst-case
compression ratios on bitonal data.

JBIG and its predecessor ABIC are adaptive arithmetic
compression methods that convert an image stream into
a binary fraction. This is accomplished in two steps—
an image preprocessing (model unit) and a subsequent
adaptive arithmetic coding process. Figure 1 shows the
basic architecture of a JBIG compressor.

The image preprocessing extracts individual image pixels
and converts them into a context word correlated with the
pixel to be coded. In other words, each individual pixel
of the complete image has as additional information an
associated context describing the neighboring pixels

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copicd or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/98/$5.00 © 1998 IBM

[BM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

K. M. MARKS

753

754

Image Symbols
bit [_——
stream _f o Control [Arithmetic
——{ Mode - .
Context Adapter coder | Compressed
> Probabilities data
Image Symbols
bit
steam | rodel * Control | Arithmetic
~<+———1Mode —
Context Adapter _ | coder [Compressed
Probabilities data

JBIG compressor architecture for compression and decompression.

Table 1 Copier pipeline with JBIG shared for compression
and decompression.

Time Scan Scale and JBIG JBIG Print
screen compress* decompress*
T(l n 4] Pnf] B7 Pu*] B(w Pn*/n B3 Pn¥m B2
T, Pl P, B, P B P, .B P _.B;
T, n P2 P, B, P, B, P . Bs P_.B
T,] P, B, P, B, P B P, . B;
T, n P4 P, B, P, B, P _.B; P . B
TS H 5 Pn B4 Pn B3 Pnfm +1 BU Prl‘m B7
T, n Po P, B, P B, P _,.B s—m-1 By
T7 n 7 Pn B6 Pn BS Pn*m+1 BZ Pn*m+1 Bl
T, P, B, PB P, B P _,aBs P, B

*These tasks share the time intervals T, .

as well as their spatial relationship. At the edges of the
data matrix or image, special rules apply for context bits
outside the actual image or data matrix. JBIG uses a
context built from ten neighboring pixels of the current
pixel being examined. These are taken either from the
previous line and the current line or from the two
previous lines and the current line. Also, one context bit
from the previous line can be replaced by a more distant
pixel in the current line to pick up horizontal frequencies
to improve the compression ratio. These options are
programmable parameters. How each image pixel is
associated with its context and how image pixels make up
a context are shown below in the model unit discussion.
An adaptive arithmetic coder consists of an adapter and
the so-called arithmetic coder. The adapter contains a
storage table memory, which, for example, in the case of
JBIG, has 1024 (2'°) entries. The context bits are used as

K. M. MARKS

an index into this table memory. The information
elements stored in each entry are the expected value

for the current pixel given the surrounding pixel values
defined by the context, and a probability index for this
expected value. Both the probability indices and the
expected value are adapted dynamically to optimize
compression. The probability indices are converted into a
binary fraction that can be viewed as an interval width.
The higher the probability of an expected value, the lower
is the information content of an event confirming the
expected value, and, accordingly, the chosen size for

the corresponding interval. For each image pixel being
coded, the adapter passes the interval size Qe and a flag,
specifying to the arithmetic coder whether or not

the expectation for this image pixel has been met.

The coder contains an accumulator C to generate the
compressed code word as well as an accumulator A to
track the actual interval width. Initial conditions are ¢ = 0
and A = 1.0000. For each pixel being coded, the interval
size is adapted; if the pixel meets the expected value, the
value in A is replaced by A — Qe; otherwise the value in A
is replaced by Qe. The value in C is replaced by C + Qe or
retains its value accordingly. Whenever A drops below
0.75, both A and C are shifted left until A is again greater
than or equal to 0.75. This allows the coder to generate a
binary fraction of infinite precision with an accumulator of
finite precision. The compression of the coding is based on
the fact that for pixels with a high probability for the
expected value, Qe is very small and therefore can be
subtracted many times from A before an underflow occurs
and the simultaneous renormalization of C with A
generates code bits.

Decoding works similarly by loading ¢ with the
accumulated code word. Then the unit tries to subtract Qe
from c. If Qe can be subtracted from C without causing C
to underflow, it must have been added during encoding;
i.e., the pixel being coded equaled the expected value.
Otherwise, C retains its value, and the pixel being coded
did not equal the expected value. A is processed the same
way as during encoding.

Most significantly, JBIG allows specific accommodations
for halftone images that other compression methods such
as T.4 or T.6 fax compression do not offer. JBIG provides
more capability for tuning the template of the model unit
to particular images and has a higher-resolution probability
estimation, both of which can help to improve the
compression ratio. However, ABIC’s bit stuffing is more
efficient than JBIG’s byte stuffing and is not prone to the
considerable worst-case uncertainty in throughput caused by
carry resolution during compression [5, 6].

With no compression hardware existing at the time that
could support the requirements of the multifunction
peripheral market, Xionics decided in 1995 to develop

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

INBIT N
CONTEXT[0:9]
CODE_IN[0:7]
B HANDSHAKES N
OUTBIT
DMA_DIN[0:63] .
- Model unit - CODE_OUT(0:7] Qx-coder unit
DMA_HANDSHAKES
DMA_DOUT}0:63] 3 Y Y 1 =
—) o
— e} ~) é =)
I z| Bl B 20z o g EE
=R q 2l & <| 8 g < &
5l & - M| el =g - al 4
S a @ & A Z E
ol S| =& o &
m = @]
= &)
v ¥

OPB_ADDR([0:31]
OPB_RW
OPB_HANDSHAKES

OPB_DIN[0:31]

On-chip peripheral bus logic

OPB_DOUTI(0:31]

OPB_HANDSHAKES

Partitioning of ABIC-JBIG macro.

such a core as part of their integrated MFP silicon
solution, XipChip, and began a collaboration with IBM
Microelectronics to develop a bitonal compression
solution. This paper describes the implementation of
this combined JBIG and ABIC compression and
decompression engine for digital document processing
equipment and the design tradeoffs made to meet
throughput requirements. XipChip is shipped today

as one of Xionics’ multifunction peripheral solutions.

Combined JBIG and ABIC compression and
decompression engine

® Overall engine architecture

The combined compression engine preserves a partitioning
similar to that of the original ABIC hardware [1]. As
shown in Figure 2, it consists of three major modules: the
model unit, the Qx-coder [5)], and the bus interface logic.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Model unit
The model unit provides three pieces of functionality—
generation of the context for the Qx-coder; generation

of the input pixel for compression and assembly of the
image from the decompressed pixels; and management

of the input and output buffers.

The model unit allows selection from among three
different templates for context generation: the seven-bit
ABIC template [Figure 3(a)]; the two-line JBIG template
[Figure 3(b)]; or the three-line JBIG template [Figure 3(c)].
The number following the X identifies the bit number
within the context. The ABIC template wraps around
from the previous line and to the next line at line
boundaries, while the JBIG templates pad the context with
0-bits at the beginning and end of each line. In addition,
the JBIG templates implement the adaptive template bit
identified by an A instead of an X. It is shown in its
default position. It can be programmed for a horizontal

755

K. M. MARKS

756

X6] X5) X4 | X3]1X2

X1 X0 ?

@)

X9 X6|X5|X4]X3]|A2

IATlZSl..‘IATS x8| x7|x1 %o 2

(b

X9 | X8| X7

x6| x5 | xa| x3| a2
lATlZSl...lATS ataaT3| x1] %0 2

©

(a) ABIC template; (b) JBIG two-line template; (¢} JBIG three-line
template.

offset of up to 128 to allow picking up of halftone
frequencies [see the JBIG template extensions at the left
in Figures 3(a) and 3(b)]. Furthermore, in JBIG mode the
model unit can be programmed to check for typical
prediction.

Rather than implementing complete line buffers for the
template reference lines, the model unit implements three
256-bit buffers. These buffers hold the currently active
parts of the lines and move like a window through the
image. The buffers are implemented with separate
controls for master and slave flip-flops. This allows the
unit to pipeline the read accesses and prefetch the next
256 bits for each line into the master latches while it is
working on the previously loaded 256 bits stored in the
slave latches. This avoids pipeline stalls due to data
fetching. In addition, the moving windows do not impose
any restriction on the image width, as do fixed buffers
used in other implementations. Image width and height
are restricted only by the size of the counters and a small
overhead for the image boundaries. Image width and
height are limited to 65530 pixels.

Ox-coder

The Qx-coder comprises two modules, the adapter and the
coder. They are pipelined for optimal performance and
hide the adapter’s memory-access latency whenever
possible. This is an implementation of the Ox-coder
described in [5].

K. M. MARKS

Adapter The adapter (Figure 4) implements the adapter
memory and the hardware tables to convert the stored
Q-index values to the Q-values used by the coder and to
generate the Q-index transitions for adaptation. The
adapter memory has separate read and write ports to
allow updating the memory while fetching new values for
subsequent coding steps. The memory is 16 bits wide so as
to be able to fetch a pair of indices and MPS values with
each access. This is important for decompression speed,
where the last bit generated will not be available in time
to become part of the adapter memory address. By
reading both the value for a decoded 1-bit and the value
for a decoded 0-bit, and by having dual hardware tables
for the simultaneous conversion of the Q-indices to
Q-values, the correct Q-value can be selected with a

fast multiplexer as soon as the bit becomes available. In
addition, it detects whether the same memory location will
be accessed on subsequent accesses. For memory updates,
the updated values are cached in a register until the actual
memory update has occurred, so that they can be accessed
without update latency in case they are needed for the
next coding step. The adapter memory has 512 entries to
accommodate the larger contexts of the JBIG template.
For ABIC compression, only the lower 64 entries of the
memory are used. The hardware tables for Q-value
generation and Q-index transitions implement both the
Q-coder tables for ABIC and the QM-coder tables for
JBIG. One can decide which tables are to be used when
setting up the unit and program accordingly.

Coder The implementation of the coder combines
aspects of the original ABIC hardware design [1] with the
changes required for JBIG. The native coding convention
for this coder is the original ABIC coding. JBIG data
streams are handled by inverting the code on its way out
for compression and on the way in for decompression, as
described in the companion paper [5] by Slattery and
Mitchell in this issue.

Besides the handling of byte stuffing and the insertion
and stripping of escape sequences, the major difference
compared to the original ABIC design is the
implementation of the renormalization shifts. The
renormalization logic is part of the critical timing path in
the coder and therefore required a thorough analysis. The
use of a barrel shifter accommodating all possible shifts
would have increased the minimum cycle time of the
coder significantly. On the other hand, adding additional
clock cycles for all required shifts would have reduced
throughput in a similar way. A statistical analysis of the
shifts occurring during coding showed that the vast
majority of shifts occurring are by one bit position
only. Therefore it was decided to insert in-line one-bit
shifter logic into the data path to facilitate shifts by one
bit without requiring an additional cycle. The advantage of

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

External address

Context

- Qvalue
> decoder

Table
select

Read address ; Write address
Memory 16
load data
16 16 Adapter
OPB data —<—»-| memory

16 -

Qvalue
- decoder

E—— Qvalue
decoder

Qindex |8

-

'§ Adapter block diagram.

this approach is that the depth of the shift logic is small
enough so that it does not significantly increase the cycle
time of the coder. Additional cycles are required only for
the less frequent multibit shifts. Additional details can be
found in the companion paper [6] by Kampf in this issue.

The coder also supports the generation of trailing zeros
on the input code stream during decode as long as the
end of the document is not reached. This is required to
automatically handle truncated encodings, where trailing
zeros have been removed as allowed by the JBIG
standard.

Physical implementation and throughput
analysis

The unit has been synthesized to 80 MHz in CMOS 5§
and CMOS 5SE and integrated into Xionics XipChip
imaging microcontrollers. Tests with real-life images in
digital copier applications have been conducted, using an
image width of 4992 pixels and a band height of 64 to 80
lines. These tests have consistently shown a throughput
of more than 64 million pixels per second at 75-MHz
operation of the unit. This allows up to 15 ppm
throughput at 1200 dpi and up to 60 ppm throughput

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

at 600 dpi sharing the unit for compression and
decompression. Assuming a worst-case compression ratio
of 2:1, the external memory bandwidth required by the
macro is 20 MB/s for the two-line template and 28 MB/s
for the three-line template.

Summary
We have described the implementation of a combined

JBIG and ABIC compression/decompression engine for
digital imaging applications. It provides both the flexibility
to handle both JBIG and ABIC data bases and image
width to 65530 pixels and the high sustainable throughput
required for state-of-the-art digital copier and collated
print and copy applications.

References

1. R. B. Arps, T. K. Truong, D. J. Lu, R. C. Pasco, and T. D.
Friedman, “A Multi-Purpose VLSI Chip for Adaptive Data
Compression of Bilevel Images,” IBM J. Res. Develop. 32,
775-795 (1988).

2. J. L. Mitchell and W. B. Pennebaker, “Optimal Hardware
and Software Arithmetic Coding Procedures for the
Q-Coder,” IBM J. Res. Develop. 32, 727-736 (1988).

3. ITU-T Rec. T.82/ISO/IEC 11544:1993 Information
Technology—Coded Representation of Picture and Audio

K. M. MARKS

757

758

Information—Progressive Bi-Level Image Compression
(JBIG standard).

4. W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image
Data Compression Standard, Van Nostrand Reinhold, New
York, 1993 (ISBN 0-442-01272-1).

5. M. J. Slattery and J. L. Mitchell, “The Qx-Coder,” IBM J.
Res. Develop. 42, 767-784 (1998, this issue).

6. F. A. Kampf, “Performance as a Function of
Compression,” IBM J. Res. Develop. 42, 759-766 (1998, this
issue).

Received April 1, 1998; accepted for publication
September 24, 1998

K. M. MARKS

Karl M. Marks Xionics Document Technologies, Inc.,

70 Blanchard Rd., Burlington, Massachusetts 01803. Mr. Marks
studied electrical engineering from 1980 to 1985 at the Ruhr-
University, Bochum, Germany, and Purdue University; he
received his Diploma in electrical engineering from the
Ruhr-University in 1985. From 1986 to 1988 he worked as

an assistant at the Institute for Electronic Devices at the
University of Dortmund, Germany. In 1988 he founded
MacroTek, which engaged in the design of support chips for
Motorola’s 88110 and IBM’s PowerPC 60x family. During
1995 and 1996 he worked for the Heinz-Nixdorf Institute

at the University of Paderborn, Germany, on the XipChip
project with Xionics Document Technologies. In 1996 he
joined Xionics as Senior Director of ASIC technology. He has
received patents for error detection and correction and L2
cache technology.

1BM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

