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This  paper  describes the implementation of 
a  combined JBlG and ABIC compression- 
decompression  engine,  which  has been 
integrated into  a  digital  document- 
processing  microcontroller  used in imaging 
applications. 

Introduction 
With  print  resolution  for digital documents rising to 
1200 dpi,  the  requirements  for  controller memory and 
controller  throughput  arc increasing  steadily for  both  print 
and digital copy applications.  Storage  requirements  are 
dictated by features such as collation or duplexing, which 
make use of full  image storage. 

of subsequent pages takes place  while  previous  pages arc 
printed in order  to  keep  the  output  engine continuously 
busy. Pages Pn are split into  bands Pr, By for  that  purpose. 
This  requires  quasi-simultaneous  compression of the 
rendercd  or  scanned  and  screened images to  storage  and 
repetitive  decompression of the  stored images for  print. 
This  can  bc accomplished either by providing separate 
compression and  decompression  cngines  or by supplying 

As  shown in Table 1 for  thc  case of a  copier,  generation 

a single engine with  sufficient throughput  to allow time- 
sharing  between  compression  and  decompression tasks. 

To  meet  the  real-time  constraints of laser  engines 
(once  a  page is started, it is necessary to  keep up with 
the  engine), predictability or low data  dependency of 
the  throughput is very important.  At 1200 dpi,  a single 
letter-size  page  contains  approximately 128 million pixel 
elements,  or 16 MB of bitonal  data.  A high average 
compression  ratio as well as good worst-case  compression 
behavior is therefore  essential.  Adaptive  arithmetic 
compression as used in ABIC [l, 21 and  JBIG [3, 41 
provides by far  the best average  and  worst-case 
compression  ratios on bitonal  data. 

compression  methods  that  convert  an image stream  into 
a binary fraction.  This is accomplished  in two steps- 
an  image preprocessing  (model  unit)  and  a  subsequent 
adaptive  arithmetic coding  process. Figure 1 shows the 
basic architecture of a JBIG compressor. 

JBIG  and its predecessor  ABIC  are  adaptive  arithmetic 

The  image  preprocessing extracts  individual  image pixels 
and  converts  them  into a context word correlated with the 
pixel to  be  coded.  In  other words, each individual pixel 
of the  complete image  has as additional  information an 
associated context describing the  neighboring pixels 
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7 JBIG compressor architecture for compression and decompression. 

Table 1 Copier  pipeline  with  JBIG  shared  for  compression 
and decompression. 

Time Scun Scale and JBIG  JBIG Print 
screen compress * decompress * 

"These tasks ,hare the  time interval? T,. 

as well as their  spatial  relationship.  At  the  edges of the 
data matrix or image,  special rules apply for context  bits 
outside  the  actual image or  data matrix. JBIG uses a 
context built from  ten neighboring pixels of the  current 
pixel being examined.  These  are  taken  either  from  the 
previous  line and  the  current  line  or  from  the two 
previous  lines and  the  current  line. Also, one  context bit 
from  the previous  line can  be  replaced by a more  distant 
pixel in the  current line to pick up  horizontal  frequencies 
to improve the  compression  ratio.  These  options  are 
programmable  parameters. How each image pixel is 
associated with its context  and how image pixels make up 
a  context  are shown below in the  model unit  discussion. 

An  adaptive  arithmetic  coder consists of an  adapter  and 
the so-called arithmetic  coder.  The  adapter  contains  a 
storage  table memory, which, for example, in the  case of 
JBIG, has  1024 (2'") entries.  The context  bits are used as 

an index into  this  table  memory.  The  information 
elements  stored in each  entry  are  the  expected value 
for  the  current pixel given the  surrounding pixel values 
defined by the context, and  a probability  index for this 
expected  value.  Both  the probability  indices and  the 
expected value are  adapted dynamically to  optimize 
compression.  The  probability indices are  converted  into a 
binary fraction  that  can  be viewed as an  interval width. 
The  higher  the probability of an expected value,  the lower 
is the  information  content of an event  confirming the 
expected value, and, accordingly, the  chosen size for 
the  corresponding interval. For  each image pixel being 
coded,  the  adapter passes the interval  size Qe and a flag, 
specifying to  the  arithmetic  coder  whether  or  not 
the  expectation  for this image pixel has  been  met. 

The  coder  contains  an  accumulator c to  generate  the 
compressed  code word as well as an  accumulator A to 
track  the  actual interval width.  Initial  conditions  are C = 0 
and A = 1.0000. For  each pixel being coded,  the interval 
size is adapted; if the pixel meets  the  expected value, the 
value in A is replaced by A - Qe; otherwise  the  value in A 

is replaced by Qe. The value in C is replaced by C t Qe or 
retains its  value  accordingly. Whenever A drops below 
0.75, both A and C are shifted left until A is again greater 
than  or  equal  to 0.75. This allows the  coder  to  generate  a 
binary fraction of infinite  precision with an  accumulator of 
finite  precision. The  compression of the coding is based  on 
the fact that  for pixels with a high probability  for  the 
expected value, Qe is very small and  therefore can be 
subtracted many times  from A before an  underflow  occurs 
and  the  simultaneous  renormalization of C with A 
generates  code bits. 

accumulated  code  word.  Then  the  unit  trics  to  subtract Qe 
from C. If Qe can  be  subtracted  from C without causing C 

to underflow, it must  have been  added  during encoding; 
Le., the pixel being coded  equaled  the  expected  value. 
Otherwise, c retains its value,  and  the pixel being  coded 
did not  equal  the expected  value. A is processed  the  same 
way as during  encoding. 

Most significantly, JBIG allows specific accommodations 
for  halftone images that  other  compression  methods such 
as  T.4 or  T.6 fax compression  do  not  offer.  JBIG provides 
more capability for  tuning  the  template of the  model unit 
to particular images and has a higher-resolution probability 
estimation,  both of which can  help  to improve the 
compression  ratio. However,  ABIC's  bit stuffing is more 
efficient than  JBIG's byte stuffing and is not  prone  to  the 
considerable worst-case uncertainty in throughput caused by 
carry resolution  during  compression [5, 61. 

With  no  compression  hardware existing at  the  time  that 
could support  the  requirements of the  multifunction 
peripheral  market, Xionics decided in 1995 to  develop 

Decoding works similarly by loading C with the 
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such  a core as part of their  integrated  MFP silicon 
solution,  XipChip,  and  began a collaboration with IBM 
Microelectronics  to  develop a bitonal  compression 
solution.  This  paper  describes  the  implementation of 
this combined  JBIG  and  ABIC  compression  and 
decompression  engine  for digital document processing 
equipment  and  the  design  tradeoffs  made  to  meet 
throughput  requirements.  XipChip is shipped today 
as  one of Xionics' multifunction  peripheral  solutions. 

Combined  JBIG  and  ABIC  compression  and 
decompression  engine 

Overall engine architecture 
The  combined  compression  engine  preserves a partitioning 
similar to  that of the original ABIC  hardware [l]. As 
shown  in Figure 2, it  consists of three  major  modules:  the 
model  unit,  the  Qx-coder [ 5 ] ,  and  the  bus  interface logic. 
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Model unit 
The  model  unit provides three pieces of functionality- 
generation of the  context  for  the  Qx-coder;  generation 
of the  input pixel for  compression  and assembly of the 
image  from  the  decompressed pixels; and  management 
of the  input  and  output buffers. 

The  model  unit allows selection  from  among  three 
different  templates  for  context  generation:  the seven-bit 
ABIC  template [Figure 3(a)]; the two-line JBIG  template 
[Figure 3(b)]; or  the three-line JBIG template [Figure 3(c)]. 
The  number following the X identifies the bit number 
within the  context.  The  ABIC  template  wraps  around 
from  the previous line  and  to  the next line  at  line 
boundaries, while the  JBIG  templates  pad  the  context with 
O-bits at  the beginning and  end of each  line.  In  addition, 
the  JBIG  templates  implement  the  adaptive  template  bit 
identified by an A instead of an X. It is shown in its 
default  position.  It  can  be  programmed  for a horizontal 755 
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(a) ABIC template; (b) JBIG two-line  template; (c) JBIG three-line 
template. 

offset of up  to 128 to allow picking up of halftone 
frequencies [see the  JBIG  template extensions at  the left 
in Figures  3(a)  and  3(b)].  Furthermore, in JBIG  mode  the 
model unit can  be  programmed  to  check  for typical 
prediction. 

Rather  than  implementing  complete  line  buffers  for  the 
template  reference lines, the  model  unit  implements  three 
256-bit  buffers. These  buffers hold the  currently active 
parts of the  lines  and move like  a window through  the 
image. The  buffers  are  implemented with separate 
controls  for  master  and slave flip-flops. This allows the 
unit  to  pipeline  the  read accesses and  prefetch  the next 
256 bits  for  each  line  into  the  master  latches while  it is 
working  on the previously loaded 256 bits stored in the 
slave latches.  This avoids pipeline stalls due  to  data 
fetching.  In  addition,  the moving windows do  not  impose 
any restriction  on  the image width, as do fixed buffers 
used in other  implementations.  Image width and height 
are  restricted only by the size of the  counters  and a  small 
overhead  for  the image boundaries.  Image width and 
height are limited to  65530 pixels. 

Qx-coder 
The Qx-coder comprises two modules,  the  adapter  and  the 
coder.  They  are  pipelined  for  optimal  performance  and 
hide  the  adapter’s memory-access  latency whenever 
possible. This is an  implementation of the  Qx-coder 

756 described in [5]. 
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Adapter The  adapter (Figure 4) implements  the  adapter 
memory and  the  hardware  tables  to  convert  the  stored 
Q-index values to  the  Q-values used by the  coder  and  to 
generate  the  Q-index  transitions  for  adaptation.  The 
adapter memory has  separate  read  and write ports  to 
allow updating  the memory  while fetching new values for 
subsequent coding steps.  The memory is 16 bits wide so as 
to  be  able  to  fetch a pair of indices and  MPS values  with 
each access. This is important  for  decompression  speed, 
where  the  last  bit  generated will not  be available  in time 
to  become  part of the  adapter memory address. By 
reading  both  the value for a decoded 1-bit and  the  value 
for a decoded 0-bit, and by having dual  hardware  tables 
for  the  simultaneous  conversion of the  Q-indices  to 
Q-values, the  correct  Q-value  can  be  selected with a 
fast multiplexer  as soon as the  bit  becomes available. In 
addition, it detects  whether  the  same memory location will 
be accessed on  subsequent accesses. For memory updates, 
the  updated values are  cached in a register until the  actual 
memory update  has  occurred, so that they can  be accessed 
without  update latency  in case they are  needed  for  the 
next  coding step.  The  adapter memory has 512 entries  to 
accommodate  the  larger  contexts of the  JBIG  template. 
For  ABIC  compression, only the lower 64 entries of the 
memory are used. The  hardware  tables  for  Q-value 
generation  and  Q-index  transitions  implement  both  the 
Q-coder  tables  for  ABIC  and  the  QM-coder  tables  for 
JBIG.  One  can  decide which tables  are  to  be used  when 
setting  up  the  unit  and  program accordingly. 

Coder The  implementation of the  coder  combines 
aspects of the original ABIC  hardware design [ l ]  with the 
changes  required  for  JBIG.  The native coding  convention 
for this coder is the  original  ABIC coding. JBIG  data 
streams  are  handled by inverting the  code on its way out 
for  compression  and  on  the way in for  decompression,  as 
described in the  companion  paper [SI  by Slattery  and 
Mitchell in this issue. 

Besides the  handling of byte  stuffing and  the  insertion 
and  stripping of escape  sequences,  the  major  difference 
compared  to  the original ABIC design is the 
implementation of the  renormalization shifts. The 
renormalization logic is part of the critical  timing path in 
the  coder  and  therefore  required a thorough analysis. The 
use of a barrel  shifter  accommodating all possible  shifts 
would  have increased  the minimum cycle time of the 
coder significantly. On  the  other  hand,  adding  additional 
clock cycles for all required shifts  would  have reduced 
throughput  in a  similar way. A statistical analysis of the 
shifts occurring  during coding  showed that  the vast 
majority of shifts occurring  are by one bit  position 
only. Therefore it was decided  to  insert in-line one-bit 
shifter logic into  the  data  path  to  facilitate shifts by one 
bit without  requiring  an  additional cycle. The  advantage of 
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this approach is that  the  depth of the shift logic is small 
enough so that it does  not significantly increase  the cycle 
time of the  coder.  Additional cycles are  required only for 
the less frequent multibit  shifts. Additional  details can be 
found in the  companion  paper [6] by Kampf in this issue. 

The  coder also supports  the  generation of trailing zeros 
on  the  input  code  stream  during  decode as  long  as the 
end of the  document is not reached.  This is required  to 
automatically  handle  truncated  encodings,  where  trailing 
zeros have been removed as allowed by the  JBIG 
standard. 

Physical  implementation  and  throughput 
analysis 
The unit  has been synthesized to 80  MHz in CMOS 5s 
and  CMOS  5SE  and  integrated  into Xionics  XipChip 
imaging microcontrollers.  Tests with real-life  images in 
digital copier  applications have been  conducted, using an 
image width of 4992 pixels and  a  band  height of 64 to 80 
lines. These  tests have  consistently shown a  throughput 
of more  than 64 million pixels per  second  at 75-MHz 
operation of the  unit.  This allows up to 15 ppm 
throughput  at 1200 dpi  and  up  to 60 ppm throughput 
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at 600 dpi  sharing  the  unit  for  compression  and 
decompression. Assuming a worst-case compression  ratio 
of 2:1, the  external memory bandwidth  required by the 
macro is 20 MBis for  the two-line template  and 28 MBis 
for  the  three-line  template. 

Summary 
We have described  the  implementation of a  combined 
JBIG and  ABIC compressionidecompression engine  for 
digital  imaging applications.  It provides both  the flexibility 
to  handle  both JBIG and  ABIC  data bases and image 
width to  65530 pixels and  the high sustainable  throughput 
required  for  state-of-the-art digital copier  and  collated 
print  and copy applications. 
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