A decompression

.D.H
core for PowerPC oramer

Code size efficiency is a critical parameter in
the design of computer systems for embedded
applications. This paper describes a method
for improving code size efficiency involving

the use of compression techniques to reduce
the size of the stored code, and on-the-fly
hardware decompression at full processor
speed for execution. A simple frequency-based
encoding scheme for PowerPC® code achieves
a typical code size reduction to 60% of the
original size. A corresponding decompression
core has been implemented for an embedded
microprocessor, such as the PowerPC 401™,
The compression/decompression scheme
operates in a manner transparent to the
processor and requires no changes to such
tools as compilers, linkers, and loaders.

Introduction

The continuing validation of Moore’s law [1] with regard
to microcontrollers has made the cost of embedded
computation smaller and smaller. Today’s 32-bit
microcontrollers occupy less space than the 8-bit
microcontrollers of only five years ago, yet have 10 to 100
times the computational power. This trend has led to
newer designs incorporating the more powerful processors
in equipment and appliances.

Taking advantage of this increased processor power
and increasing application complexity, the sizes of the
programs running on these embedded controllers have
grown exponentially. The silicon area and cost of the
program memory of a common embedded application
now overshadow the size and cost of the processor. For
example, in an application such as a high-end hard-disk

drive, where an embedded processor may occupy a silicon
area of about six square millimeters, the program memory
for that processor takes 20 to 40 square millimeters.
Thus, some design focus has turned again to the size of
memory for computer programs.

Different microcontroller manufacturers have dealt with
program size problems by modifying their architectures in
different ways. One method is to create a new architecture
with consistently smaller instructions; however, the
programming environment changes, and all new tools must
be created. Another way is to add processor front ends
that will interpret a set of smaller instructions with limited
capabilities. The same programming environment is used,
but new instructions mean that the tools change again.
Third, new instructions are added to the architecture,
usually to combine the functionality of several instructions
in the existing instruction set. The requirement for new
or modified tools is less in this case, but still remains
significant.

These solutions all share a significant problem: They
affect the programming development tools. Since each
one involves a new set of instructions, any assemblers,
compilers, linkers, and debuggers must be reworked for
the new architectures. These modifications require money
and time to implement, particularly if the tool
implementors are separate tool vendors.

Concepts

The goals for reducing the instruction storage space for
the PowerPC* [2] were therefore to significantly reduce
instruction store space, minimize performance restrictions
on the processor, avoid restricting processor capability,
and minimize required modifications to development tools.
The last restriction was clearly a difficult one. How could
an instruction architecture be modified to reduce the

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor. 807

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

T. M. KEMP ET AL.

808

PLB
? i {
PowerPC Memory /0

core

;

Embedded PowerPC system configuration.

[opcp | LI []

I-form |

{opcp | RT | RA D |
D-form

[opco | BO | B | BD [

B-form |

IOPCDLRT]RAiRB | xo ||

X-form I

PowerPC instruction formats.

space it takes without making significant tool changes?
Clearly we could not modify the instruction format, nor
modity how the processor sees its environment.

As shown in Figure 1, all embedded PowerPCs consist
of a processor core that is attached to its environment
via an on-chip bus, the processor local bus (PLB). The
processor’s memory and I/O devices sit on this bus,
providing the processor with its view of the operating
cnvironment. The debugging interface is handled by an
extension to the JTAG [3] interface, which is connected to
a special port to the processor core. Using this port, a
special tool allows an external computer to manage
program debugging and system control, which are
conducted through the processor’s PLB interface. Thus, as
long as the processor is attached to interfaces providing
standard formats, it doesn’t matter how the program data
arc actually stored.

The simple, direct solution to the code size problem is
to make the contents of the memory smaller, leading us
to investigate code compression. The most common

T. M. KEMP ET AL.

20

M Bottom
Top

Occurrences (thousands)

1 5 10 15
Symbols ordered by frequency

Frequency analysis of instruction half values.

compression algorithms in use today are table lookup,
either adaptive, as with Lempel-Ziv [4] or static, e.g.,
Huffman [5]. An adaptive solution seemed inappropriate
for the application, since adaptive lookup schemes depend
on a history of the preceding symbols in a sequential file.
A static symbol-based lookup mechanism avoids this
problem, since decoding any particular symbol requires no
knowledge of any preceding symbols. Thus, we elected to
use a static encoding scheme. The next task was to choose
the symbols and a specific encoding scheme.

The best known simple static compression mechanism,
as described by Huffman, is simple substitution of symbols
of a shorter length than the originals for the most
frequent symbols, and longer for symbols occurring less
frequently. The most obvious symbol choice for PowerPC
is the instruction. It is regular and is always 32 bits long.
Figure 2 shows the main instruction formats.

We performed a frequency analysis of full 32-bit-
instruction-sized symbols over a large set of PowerPC
code, and found that the size of the substitution symbol
set was not advantageous. There are too many different
common instructions, none of which occur frequently
enough to provide an advantage. We needed a smaller
set of symbols.

Dividing the instructions in two to provide 16-bit
symbols produced a better set. Notice from Figure 2
that the top half of an instruction always contains the
instruction opcode (OPCD). In the case of the D-form
and X-form instructions, the next two fields, RT and RA,
are always registers. The bottom half of the instructions
are often immediate values (D) or branch displaccments
(D, BD). Observing the basic differences in the two halves
of the instruction, we did separate frequency analyses on
the two halves and discovered that the frequencies of
values in the two sets were quite different—so different,

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 1 Symbol frequencies.

Symbol Top Bottom
no.
1 4768 12963
2 3782 3101
3 2346 2815
4 2038 2594
5 1764 2315
6 1500 1957
7 1015 1863
8 994 1825
9 963 1532
10 930 1507
11 846 1288
12 794 1221
13 770 1152
14 702 998
15 662 871
16 581 866

in fact, that a compression by replacing each half of the
instruction from a custom substitution table for that half
produced substantially better results than using a
combined table.

Figure 3 and Table 1 show a portion of the frequency
distribution of values of the top half of instructions
compared with the bottom half of instructions from a
program for an embedded controller. The two halves
differ both in the most frequent values and in the
distribution of those values. The bottom half of the
instruction has a much higher count for the most frequent
symbol than does the top half. The occurrence frequencies
drop more sharply for the bottom than the top, crossing
over at about symbol number 56. Each of the lists of
unique symbols is over 3800 entries long. Many of the
symbols occur only once. These great differences in the
carly shape of the curves led us to decide to encode the
two halves of the instructions separately and to pick a
near-optimal substitution symbol set for each of the
instruction halves, as shown in Figure 4.

Each symbol format consists of a tag of two or three
bits followed by a symbol value, shown by a number of
bits (each bit represented by n). In the top half encoding,
the first symbol format, with a tag of 00, can encode eight
symbols. The second symbol format, with tag 01, can
encode 32 more symbols, and so on. We pick the eight
most frequent symbols to be encoded in format 00, the
next 32 most frequent to be encoded in symbol format 01,
down to those least frequent symbols for which we use the
original 16-bit literal value, shown with L representing
each bit, encoded in format 111. A notable feature is that
the first encoding of the bottom half of the instructions

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Top half encoding Bottom half encoding

EE
—

OE

nnnnnnn

=
HIB|E

[111 L |

[1 T [T |

Compressed symbol format.

PLB
PowerPC Decompression Vo
processor core unit
i Memory

JTAG

Embedded PowerPC configuration with decompression.

contains only one value: zero. Zero is so prevalent that
statistically it deserves an encoding of its own.

The net compression factor with this technique is that
the compressed code is typically about 56% of the original
S1Z€.

Implementation
Since we previously observed that the processor accesses
the memory via the PLB, the obvious place to put the
decompression unit was on thc PLB just in front of the
memory. Figure 5 shows that the decompression unit
accepts the processor’s addresses and then looks them up
in the compressed memory. Thus, the processor uses
instructions and addresses them just as though the code
were not compressed.

To fetch an instruction, the processor provides the

decompression unit the address of the original, 809

T. M. KEMP ET Al.

810

Table 2 Compression factor with matching and
mismatching compilers.

Matching Mismatching
compiler compiler
(%) (%)
ate 55 96
csh 60 100
diskl 67 101
disk2 55 105
disk3 66 101
disk4 65 102

uncompressed instruction. The decompression unit maps
the address to the location at which the compressed
instruction is kept, in a presumably smaller space.
We define the index table as a two-column map of
“uncompressed space” addresses to “compressed space”
addresses. Theoretically, for every address the processor
presents, the index table has a location of the compressed
instruction.

Thus, the basic algorithm for the decompression unit is
as follows:

Receive memory address of instruction from processor.

. Look up compressed address in index table.

. Fetch compressed instruction from memory.

. Decompress instruction by looking up uncompressed
symbols.

5. Return instruction to processor.

T N

The performance of this simple algorithm is somewhat
slow. Presuming a one-cycle memory, we must take one
cycle to look up the compressed address, one cycle to
fetch the compressed instruction, and one cycle to
decompress, for a total of three cycles. We have
implemented some optimizations to improve this latency.

Optimizations

In the compressed memory space, to optimize memory
usage, we pack the compressed symbols as tightly as
possible. Since the lengths of the symbols are not a
convenient modulo of addressable memory, it is difficult
to address every possible instruction. If every instruction
were addressed at the bit level, the index table would
grow to an unacceptable size, reducing the advantages
of compression. Rather than using one index table
entry per instruction, we divide the code into fixed-size
“compression blocks” and provide an index table entry
for each. This approach controls the size of the table.
However, it has the disadvantage that since we cannot
easily locate individual instructions within a compressed

T. M. KEMP ET AL.

space, we must search for the desired instruction from the
beginning of each block of compressed instructions. As
compression block size grows, the average random access
time increases. A good engineering compromise puts the
compression block size at 64 bytes, with 16 instructions in
a compression block. Our performance is improved here,
since once the block is accessed, the decompression unit
can pipeline the stages of the decompression, yielding a
three-cycle initial latency, with a rate of one instruction
per cycle.

The PowerPC processors are cached and usually fetch
cache lines rather than single instructions. When a
compression block is retrieved from memory and
decompressed, the instructions in the compression block
sequentially after those specifically requested are kept.
We presume that the processor will continue executing
instructions sequentially and will therefore request the
next cache line’s worth of instructions. The decompression
unit will be able to provide these instructions with no
memory or decompression latency. Pairs of compression
blocks are always kept together, so that as the processor
sequentially asks for the first address of the second
compression block, the decompression engine can locate
it directly without use of the index, saving a cycle.

PowerPCs have memory management units as well.

A bit (here called the “K” bit) can be placed in the TLB
entries for a virtual memory manager and in the storage
attribute register for real-mode managers. It can be used
to indicate, on a page basis, whether or not compression
is implemented. This allows small routines with critical
performance requirements to remain uncompressed in the
midst of a larger system of compressed code.

Measurements
We evaluated the compression mechanism by compressing
a number of programs compiled by a variety of compilers.
We found that two factors greatly affect the degree to
which a program may be compressed: compiler selection
and application execution effects.

The first factor is related to whether the compiler
used for the program matches the symbol table in the
decompression unit. Various C language compilers use
very different methods of allocating registers and
generating instruction sequences. The instructions
generated by a compiler map to a set of input symbols,
particularly for the top half of the instructions, that may
have an entirely different frequency spectrum than that
for instructions generated by another compiler. The
compressed images generated from a program compiled,
for example, by the GNU C compiler and compressed with
a symbol table generated from a frequency spectrum
specific to programs generated by the AIX* XL.C
compiler show remarkably poor, and sometimes negative,
compression. See Table 2 for some specific examples.

IBM J. RES. DEVELOP, VOL. 42 NO. 6 NOVEMBER 1998

The dynamic properties of the program execution
determine how much delay due to decompression is
experienced. Two factors affect the execution the most
strongly: basic block size and working set size. A basic
block is a set of instructions which has no branches and
is executed linearly. Since the decompression unit is
prefetching and decompressing blocks before the
computer asks for them, performance depends on the
percentage of time that the processor actually asks for
data from a prefetched block. If the average basic block
size is large, this prefetching activity is generally successful
at hiding the decompression latency. The working set is
the set of instructions that are most frequently executed.
In a caching system, if this working set is smaller than
the cache size, memory is infrequently accessed. For a
compressed memory, the less the memory is accessed, the
less frequently the decompression latency occurs. Thus,
programs that execute a small part of their actual code set
will execute proportionately faster.

The IBM Microelectronics Division has implemented
the decompression core in IBM CMOS 5§ ASIC
technology and added it to the PowerPC core catalog. The
decompression core consists of 25484 logic cells, and the
lookup table ROM for two 512-entry tables is 10814 cells
(memory and access logic). Silicon area for the core is
about 1 mm”’.

Future work
In the future, we would like to address a couple of issues.
One is to improve addressing efficiency further, so that
when a cache line near the end of a compression block
is requested, the decompression unit, remembering the
location of the last decompression block, will prefetch and
decompress the next block, further reducing latency.
Another is the problem of latency when a branch is
taken to an arbitrary location. The average latency is the
basic three cycles, plus half the number of instructions in
a compression block, a total of 11 cycles in the present
implementation. In a system that experiences a low cache-
hit ratio, this latency becomes significant. This may be
addressed by keeping a branch address cache in the
decompression unit. This would eliminate the index table
lookup and the counting of instructions in the
compression block.

Conclusions
Overall, it is possible to reduce the size of PowerPC code
significantly through compression. The net compression,
including the index tables, for average programs is to
about 60% of the original program size. This is a more
dense code than for any other 32-bit processor, RISC or
CISC.

This method of reducing the code size is simple and
inexpensive, and it required no changes to compilers,

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

assemblers, or linkers. One step, the compression step,
must be added to the code creation chain. The
compression program is run on the load image after
linking and relocating. The JTAG-based debuggers that
use the processor’s instruction and data trap capabilities
need not be changed either. A debugger that sets program
traps by modifying memory must be aware of the
compression.

A particular implementation of this compression
mechanism is compiler-dependent, but only by differences
in the symbols loaded in the symbol tables. Thus, a single
design with a separately programmed ROM or flash
memory will suffice for a variety of uses.

The granularity of the compression is based entirely on
memory, rather than on a mode of the processor. Thus,

a single thread of execution may switch in and out of
compressed code effortlessly. The performance penalty of
this implementation is minor if the program’s cache hit
ratio is reasonable. That is, if the processor is reading
instructions from its instruction cache most of the time,
the compressed memory access delays do not occur often
enough to have a significant impact.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. http:/jwww.intel.com/intel/museum/25anniv/htmli/hofimoore.htm .

2. The PowerPC Architecture: A Specification for a New Family
of RISC Processors, C. May, Ed., ISBN 1-55860-316-6,
Morgan Kaufmann Publishers, San Francisco, 1994.

3. Joint Testing Architecture Group, IEEE Standard No.
1149.1-1990, American National Standards Institute,
Washington, DC, 1990.

4. Willard L. Eastman, Abraham Lempel, Jacob Ziv, and
Martin Cohn, “Apparatus and Method for Compressing
Data Signals and Restoring the Compressed Data Signals,”
U.S. Patent 4,464,650, August 7, 1984.

5. D. A. Huffman, “A Method for the Construction of
Minimum-Redundancy Codes,” Proc. IRE 40, No. 9,
1098-1101 (1952).

Received December 9, 1997; accepted for publication
June 10, 1998

T. M. KEMP ET AL.

811

812

Timothy M. Kemp IBM Microelectronics Division, Almaden
Research Center, 650 Harry Road, San Jose, California 95120
(kemp@vnet.ibm.com). Mr. Kemp is a Storage Platform
Architect for the IBM Microelectronics Division. He received
a B.S. degree in electrical engineering and computer science
from the University of California at Berkeley in 1971 and
joined the IBM Advanced Systems Development Division in
1972, Mr. Kemp has worked on a wide variety of systems,
including industrial process control, operating systems,
network databases, compilers, and electronic computer-aided
design. Most recently, he has concentrated on developing
electronics architectures for hard-disk drives.

Robert K. Montoye IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,

New York 10598 (montoye@us.ibm.com). Dr. Montoye is a
Research Staff Member in the Experimental Systems group.
He received his B.S. in 1977 in physics and his M.S. in 1981
and Ph.D. in 1983 in computer science from the University of
Illinois. Joining IBM in 1983, he designed and implemented
the RS/6000 floating-point unit. After pursuing interests
outside IBM from 1990 to 1995, he returned to IBM to focus
on high-performance and cost-effective memory systems. Dr.
Montoye is a member of the IBM Academy of Technology; he
has published a number of technical papers and holds twelve
patents.

Jeffrey D. Harper IBM Microelectronics Division, 11400
Burnet Road, Austin, Texas 78758 (jdharper@us.ibm.com).
Mr. Harper received the B.S. and M.S. degrees in electrical
engineering from Auburn University in 1986 and 1988
respectively. He joined the Systems Technology Division at
IBM in Austin in 1988 and served as technical lead of the
PowerMite decompression macro hardware development.
Mr. Harper is currently working in the IBM Microelectronics
World Wide Field Design Center developing custom ASICs
utilizing the IBM Blue Logic technology.

John D. Palmer IBM Research Division, Almaden

Research Center, 650 Harry Road, San Jose, California 95120
(jpalmer@almaden.ibm.com). After receiving a B.S. in applied
mathematics from Clemson University, Mr. Palmer joined
IBM in 1969 at the Poughkeepsie, New York, Development
Laboratory, where he worked in TSO development. Following
a two-year military leave of absence, he was assigned to the
IBM Advanced Development Laboratory in Los Gatos,
California, working on IMS and imaging projects. From 1974
to 1982 Mr. Palmer was an MVS system programmer at
several different IBM research facilities and development
laboratories. He has since worked in research and research
management on multisystem IMS and DB2 projects, and his
current assignment is in disk-drive microcode and electronics
at the IBM Almaden Research Center in San Jose, California.
His current interests are in error analysis, disk-drive
performance, processor integration, and microcode structure.

Daniel J. Auerbach IBM Research Division, Almaden
Research Center, 650 Harry Road, San Jose, California 95120
(dja@almaden.ibm.com). Dr. Auerbach is Manager of the
DASD Controller Architecture and Electronics Department
at the IBM Almaden Research Center. He received a Ph.D.
degree in physics from the University of Chicago; before
joining IBM in 1978, Dr. Auerbach served on the faculty of

T. M. KEMP ET AL.

Johns Hopkins University. His research interests include
information storage systems, the design of parallel computers,
and the dynamics of gas-surface interactions. His work on gas—
surface interactions involves the use of molecular-beam and
laser-spectroscopic techniques to allow quantum-state-specific
studies of the microscopic details of fundamental gas-surface-
interaction processes underlying materials processing. Before
assuming his present management post, Dr. Auerbach was
Department Group Manager of Science and Technology,
Almaden Research Center.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

