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Code size  efficiency  is a critical parameter in 
the design of computer  systems  for  embedded 
applications.  This  paper  describes a method 
for  improving code size  efficiency  involving 
the use of compression  techniques to reduce 
the size of the stored code, and on-the-fly 
hardware decompression at full  processor 
speed  for  execution. A simple  frequency-based 
encoding  scheme  for PowerPC@ code achieves 
a typical code size  reduction  to 60% of the 
original  size. A corresponding  decompression 
core has been implemented  for an embedded 
microprocessor, such as the PowerPC 401”. 
The compression/decompression scheme 
operates in a manner  transparent  to the 
processor  and  requires  no  changes to such 
tools as compilers,  linkers,  and  loaders. 

Introduction 
The  continuing validation of Moore’s law [l] with regard 
to  microcontrollers  has  made  the cost of embedded 
computation  smaller  and smaller. Today’s 32-bit 
microcontrollers occupy less space  than  the  8-bit 
microcontrollers of only five years ago,  yet  have 10 to 100 
times  the  computational power. This  trend  has  led  to 
newer designs incorporating  the  more powerful processors 
in equipment  and appliances. 

Taking  advantage of this increased  processor power 
and increasing application complexity, the sizes of the 
programs  running on these  embedded  controllers have 
grown  exponentially. The silicon area  and cost of the 
program memory of a  common  embedded  application 
now overshadow  the size and cost of the  processor. For 
example, in an  application such  as a high-end hard-disk 

drive, where an embedded  processor may occupy a silicon 
area of about six square millimeters, the  program memory 
for  that  processor  takes 20 to 40 square millimeters. 
Thus,  some design  focus has  turned again to  the size of 
memory for  computer  programs. 

Different  microcontroller  manufacturers have dealt with 
program size problems by modifying their  architectures in 
different ways. One  method is to  create  a new architecture 
with consistently  smaller instructions; however, the 
programming  environment  changes,  and all  new tools must 
be  created.  Another way is to  add  processor  front  ends 
that will interpret  a set of smaller  instructions with limited 
capabilities. The  same  programming  environment is used, 
but new instructions  mean  that  the  tools  change again. 
Third, new instructions  are  added  to  the  architecture, 
usually to  combine  the functionality of several instructions 
in the existing instruction  set.  The  requirement  for new 
or modified tools is less in  this  case, but still remains 
significant. 

These  solutions all share  a significant problem: They 
affect the  programming  development  tools. Since each 
one involves a new set of instructions, any  assemblers, 
compilers, linkers, and  debuggers must be  reworked  for 
the new architectures.  These modifications require money 
and  time  to  implement,  particularly if the  tool 
implementors  are  separate  tool  vendors. 

Concepts 
The goals for  reducing  the  instruction  storage  space  for 
the  PowerPC* [2] were  therefore  to significantly reduce 
instruction  store  space, minimize performance  restrictions 
on the  processor, avoid restricting  processor capability, 
and minimize required modifications to  development tools. 
The last restriction was clearly a difficult one. How  could 
an  instruction  architecture  be modified to  reduce  the 
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space it takes  without making  significant  tool changes? 
Clearly we could not modify the  instruction  format,  nor 
modify how the  processor  sees its environment. 

of a  processor  core  that is attached  to its environment 
via an  on-chip bus, the  processor local bus (PLB).  The 
processor's memory  and I/O devices  sit on this  bus, 
providing the  processor with  its view of the  operating 
environment.  The debugging interface is handled by an 
extension to  the  JTAG [3] interface, which is connected  to 
a special port  to  the  processor  core. Using this  port,  a 
special  tool allows an  external  computer  to  manage 
program debugging and system control, which are 
conducted  through  the  processor's  PLB  interface.  Thus, as 
long  as the  processor is attached  to  interfaces providing 
standard  formats, it doesn't  matter how the  program  data 
arc actually stored. 

The simple, direct  solution  to  the  code size problem is 
to  make  the  contents of the memory smaller,  leading us 

As shown  in Figure 1, all embedded  PowerPCs consist 

808 to investigate code  compression.  The most common 
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Table 1 Symbol frequencies. 

Symbol TOP Bottom 
no. 

1 4768 12963 
2 3782 3101 
3 2346 2815 
4 2038 2594 
5 1764 2315 
6 1500 1957 
7 1015 1863 
8 994 1825 
9 963 1532 

10 930 1507 
11 846 1288 
12 794 1221 
13 770 1152 
14 702 998 
15 662 871 
16 581 866 

in fact,  that  a  compression by replacing each half of the 
instruction  from  a  custom  substitution  table  for  that half 
produced substantially better  results  than using a 
combined  table. 

Figure 3 and Table 1 show a  portion of the  frequency 
distribution of values of the  top half of instructions 
compared with the  bottom half of instructions  from a 
program  for  an  embedded  controller.  The two halves 
differ both in the most frequent values and in the 
distribution  of  those values. The  bottom half of the 
instruction  has  a much  higher count  for  the most frequent 
symbol than  does  the  top half. The  occurrence  frequencies 
drop  more sharply for  the  bottom  than  the  top, crossing 
over  at  about symbol number 56. Each of the lists of 
unique symbols is over 3800 entries long.  Many of the 
symbols occur only once.  These  great  differences in the 
early  shape of the curves  led us to  decide  to  encode  the 
two halves of the  instructions  separately  and  to pick a 
near-optimal  substitution symbol set  for  each of the 
instruction halves,  as  shown in Figure 4. 

Each symbol format consists of a tag of two or  three 
bits followed by a symbol value,  shown by a  number of 
bits (each bit represented by n). In the  top half encoding, 
the first symbol format, with a  tag of 00, can  encode  eight 
symbols. The  second symbol format, with tag 01, can 
encode 32 more symbols, and so on. We pick the eight 
most frequent symbols to be  encoded in format 00, the 
next 32 most frequent  to be encoded in symbol format 01, 
down to  those  least  frequent symbols for which wc use the 
original  16-bit literal value,  shown with L representing 
each bit, encoded in format 111. A notable  feature is that 
the first encoding of the  bottom half of the  instructions 

IBM J. RES.  DEVELOP.  VOL. 42 N O .  h NOVEMBER 1998 

Top half encoding 

F( 
F( 

F l  
F l  

11 1 LLLLLLLLLLLLLLLL 

Bottom half encoding 

m 
U WI 

F l  
pqTzzq 

] [ I l l  I LLLLLLLLLLLLLLLL I 

PLB 

t r 
processor core 

t 

Decompression 

Memory 

contains only one value: zero.  Zero is so prevalent  that 
statistically  it deserves  an  encoding of its own. 

The  net Compression factor with this technique is that 
the  compressed  code is typically about  56% of the original 
size. 

Implementation 
Since we previously observed that the processor accesses 
the memory via the PLB, the obvious  place to put the 
decompression unit was on thc PLB just in front of the 
memory. Figure 5 shows that  the  decomprcssion unit 
accepts  the processor's addresses  and  then looks them  up 
in the  compressed memory. Thus,  the  processor uses 
instructions  and  addresses  them  just as though  the  code 
were not  compressed. 

To  fetch  an  instruction,  the  processor provides the 
decompression unit the  address of the original, 
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Table 2 Compression factor with matching and 
mismatching compilers. 

Matching Mismatching 
compiler compiler 

(%I (%) 

ate 55 
csh 60 
disk1 67 
disk2 55 
disk3 66 
disk4 65 

96 
100 
101 
105 
101 
102 

uncompressed  instruction.  The  decompression  unit maps 
the  address  to  the  location  at which the  compressed 
instruction is kept, in a  presumably smaller space. 
We define the index table as a two-column map of 
“uncompressed  space”  addresses  to  “compressed  space” 
addresses.  Theoretically,  for every address  the  processor 
presents,  the index table  has  a  location of the  compressed 
instruction. 

Thus,  the basic algorithm  for  the  decompression unit is 
as follows: 

1. Receive  memory address of instruction  from  processor. 
2.  Look  up  compressed  address in  index table. 
3. Fetch  compressed  instruction  from memory. 
4. Decompress  instruction by looking up  uncompressed 

5. Return  instruction  to  processor. 
symbols. 

The  performance of this  simple  algorithm is somewhat 
slow. Presuming  a one-cycle  memory, we must take  one 
cycle to  look  up  the  compressed  address,  one cycle to 
fetch  the  compressed  instruction,  and  one cycle to 
decompress,  for  a  total of three cycles. We have 
implemented  some  optimizations  to  improve this  latency. 

Optimizations 
In the  compressed memory space,  to  optimize memory 
usage, we pack  the  compressed symbols as tightly as 
possible.  Since the  lengths of the symbols are  not  a 
convenient  modulo of addressable memory, it is difficult 
to  address every  possible instruction. If every instruction 
were  addressed  at  the bit level, the index table would 
grow to an unacceptable size, reducing  the  advantages 
of compression.  Rather  than using one index table 
entry  per  instruction, we divide the  code  into fixed-size 
“compression blocks” and  provide  an index table  entry 
for each.  This  approach  controls  the size of the  table. 
However, it has  the  disadvantage  that since we cannot 
easily locate individual instructions within a  compressed 

space, we must search  for  the  desired  instruction  from  the 
beginning of each block of compressed  instructions. As 
compression block  size grows, the  average  random access 
time increases. A good engineering  compromise  puts  the 
compression block  size at 64 bytes,  with  16 instructions in 
a  compression block. Our  performance is improved  here, 
since once  the block is accessed, the  decompression  unit 
can  pipeline  the  stages of the  decompression, yielding a 
three-cycle  initial  latency,  with a  rate of one  instruction 
per cycle. 

The  PowerPC  processors  are  cached  and usually fetch 
cache  lines  rather  than single instructions.  When  a 
compression block is retrieved  from  memory  and 
decompressed,  the  instructions in the  compression block 
sequentially  after  those specifically requested  are  kept. 
We  presume  that  the  processor will continue executing 
instructions  sequentially  and will therefore  request  the 
next cache line’s worth of instructions.  The  decompression 
unit will be  able  to  provide  these  instructions with no 
memory or  decompression latency. Pairs of compression 
blocks are always kept  together, so that  as  the  processor 
sequentially asks for  the first address of the  second 
compression block, the  decompression  engine  can  locate 
it  directly without  use of the index,  saving a cycle. 

PowerPCs have memory  management  units as well. 
A bit (here called the “K” bit)  can  be  placed in the  TLB 
entries  for  a  virtual memory manager  and  in  the  storage 
attribute  register  for  real-mode  managers.  It  can  be  used 
to  indicate, on a  page basis, whether or not  compression 
is implemented.  This allows small routines with critical 
performance  requirements  to  remain  uncompressed in the 
midst of a  larger system of compressed  code. 

Measurements 
We evaluated  the  compression  mechanism by compressing 
a  number of programs  compiled by a variety of compilers. 
We  found  that two factors greatly  affect the  degree  to 
which a  program may be  compressed:  compiler  selection 
and  application execution  effects. 

The first factor is related  to  whether  the  compiler 
used for  the  program  matches  the symbol table in the 
decompression  unit.  Various C language  compilers  use 
very different  methods of allocating  registers  and 
generating  instruction  sequences.  The  instructions 
generated by a  compiler  map  to  a  set of input symbols, 
particularly  for  the  top half of the  instructions,  that may 
have an  entirely  different  frequency  spectrum  than  that 
for  instructions  generated by another  compiler.  The 
compressed images generated  from  a  program  compiled, 
for example, by the GNU C compiler  and  compressed with 
a symbol table  generated  from  a  frequency  spectrum 
specific to  programs  generated by the AIX* XLC 
compiler show remarkably  poor,  and  sometimes negative, 
compression.  See Table 2 for  some specific examples. 
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The dynamic properties of the  program  execution 
determine how much  delay due  to  decompression is 
experienced. Two factors affect the  execution  the most 
strongly:  basic  block  size and working  set  size. A basic 
block is a  set of instructions which has no branches  and 
is executed linearly.  Since the  decompression  unit is 
prefetching  and  decompressing blocks before  the 
computer asks for  them,  performance  depends on the 
percentage of time  that  the  processor actually asks for 
data  from  a  prefetched block. If the  average basic  block 
size is large,  this prefetching activity is generally successful 
at hiding the  decompression latency. The working set is 
the  set of instructions  that  are most frequently executed. 
In  a caching  system, if this  working set is smaller  than 
the  cache size,  memory is infrequently accessed. For  a 
compressed memory, the less the memory is accessed, the 
less frequently  the  decompression latency  occurs. Thus, 
programs  that  execute  a small part of their  actual  code  set 
will execute  proportionately  faster. 

The  IBM  Microelectronics Division has  implemented 
the  decompression  core in IBM  CMOS 5s ASIC 
technology and  added it to the  PowerPC  core  catalog.  The 
decompression  core consists of 25484 logic cells, and  the 
lookup  table  ROM  for two 512-entry tables is 10814 cells 
(memory  and access  logic).  Silicon area  for  the  core is 
about 1 mm2. 

Future  work 
In the  future, we would  like to address  a  couple of issues. 
One is to improve  addressing efficiency further, so that 
when a  cache  line  near  the  end of a  compression block 
is requested,  the  decompression  unit,  remembering  the 
location of the  last  decompression block, will prefetch  and 
decompress  the next  block, further  reducing latency. 

Another is the  problem of latency when a  branch is 
taken  to an arbitrary  location.  The  average  latency is the 
basic three cycles, plus half the  number of instructions in 
a  compression block, a  total of 11 cycles in the  present 
implementation. In a system that  experiences  a low cache- 
hit ratio, this  latency becomes significant. This may be 
addressed by keeping  a  branch  address  cache in the 
decompression  unit.  This would eliminate  the index table 
lookup  and  the  counting of instructions in the 
compression block. 

Conclusions 
Overall, it is possible to  reduce  the size of PowerPC  code 
significantly through  compression.  The  net  compression, 
including the index  tables, for  average  programs is to 
about 60% of the original program size. This is a  more 
dense  code  than  for any other 32-bit processor,  RISC  or 
CISC. 

This  method of reducing  the  code size is simple and 
inexpensive, and it required no changes  to  compilers, 

assemblers, or linkers. One  step,  the  compression  step, 
must be  added to the  code  creation  chain.  The 
compression  program is run on the  load  image  after 
linking and  relocating.  The  JTAG-based  debuggers  that 
use  the processor’s instruction  and  data  trap  capabilities 
need not be  changed  either. A debugger  that  sets  program 
traps by modifying  memory  must be  aware of the 
compression. 

mechanism is compiler-dependent, but only by differences 
in the symbols loaded in the symbol tables.  Thus,  a single 
design with a  separately  programmed  ROM  or flash 
memory will suffice for  a variety of uses. 

memory, rather  than on a  mode of the  processor.  Thus, 
a single thread of execution may switch in and  out of 
compressed  code effortlessly. The  performance  penalty of 
this implementation is minor if the program’s cache  hit 
ratio is reasonable.  That is, if the  processor is reading 
instructions  from its instruction  cache most of the  time, 
the  compressed memory  access  delays do  not occur often 
enough to have a significant impact. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

A particular  implementation of this compression 

The  granularity of the  compression is based  entirely on 
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