Performance
as a function

of compression

by F. A. Kampf

This paper discusses the performance of
bilevel-image arithmetic coders, ABIC and
JBIG, and Lempel-2Ziv string compressors,
ALDC and BLDC. Images are analyzed for
typical and worst-case throughput and latency
as a function of compression. A relationship
between the compressibility of an image

and the throughput performance of the
compression algorithm is demonstrated.
Generally, throughput performance of the
bilevel-image arithmetic coders decreased as
image entropy increased. Inversely, the bilevel-
image string compressor (BLDC) revealed that
increased entropy improved throughput
performance. Experimental resuits based on
hardware implementations have been provided
and analyzed.

Introduction
The performance of data compression algorithms is of
concern to the system architects. This paper discusses the
performance characteristics in relation to the compression
achieved by the different lossless data compression
algorithms available as IBM Blue Logic cores. Two
performance characteristics of concern that have an effect
in overall system performance are throughput and latency.
The Adaptive Bilevel Image Compression (ABIC)
algorithm performs lossless data compression on bilevel
images [1]. The algorithm utilizes the Q-coder adaptive
binary arithmetic coder to produce a finite-precision
binary fraction that uniquely identifies the sequence of
bits in the raw-data image [2, 3]. The coder processes the

individual bits of the raw data stream, calculating the
probability of the symbol (binary bit value) on the basis of
the context obtained from a template applied to the raw
data. The probability represents the prediction of the
more probable symbol (MPS) [or, inversely, the less
probable symbol (LPS)] to be encountered next.
Maintaining the interval calculation within the order of
unity requires renormalization of the code string and
interval size. The processing of an MPS potentially
produces one renormalization, and the processing

of an LPS can potentially produce up to 12
renormalizations. Each renormalization produces one bit
of coded data.

The Joint Bi-level Image Experts Group (JBIG) defined
a lossless data compression algorithm suited for bilevel
images that utilizes the QM-coder adaptive binary
arithmetic coder [4, 5]. The QM-coder produces an
infinite-precision binary fraction uniquely identifying the
sequence of raw data bits. The IBM Blue Logic core
implementations of the JBIG and ABIC macros [6] utilize
the Qx-coder, which incorporates both the Q-coder and
QM-coder [7].

The adaptive lossless data compression (ALDC)
algorithm [8, 9] is the IBM implementation of Lempel-Ziv
compression algorithm 1 (LZ1) [10]. The LZ1 algorithm
defines a fixed-size sliding window, conceptually a history
of the previous symbols processed, used to perform
pattern matching against the incoming data stream.

The ALDC algorithm defines a symbol to be one byte

of data, and supports history buffer sizes of 512, 1024,

and 2048 bytes. Sequences of bytes that match sequences
maintained within the history buffer are represented in the
coded data as copy-pointer and match-length code words.
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Bytes which cannot be included in matches are encoded as
literals with a flag bit.

The ALDC compression algorithm has been extended
with a bit-map-optimized preprocessor, referred to as
BLDC, to enhance the algorithm’s capabilities when
compressing bilevel images [8, 9]. The BLDC preprocessor
utilizes a run-length encoding scheme that defines byte-
sized run-length codes which are readily processed by the
ALDC core.

Any differences between these compression algorithms,
such as wrappers and marker codes, have been
disregarded in this study to permit a basic comparison
of compression performance of the algorithms and
implementations. Additionally, overhead due to system
interfaces has been set aside because of the differences
in implementations among the compression cores.

® Throughput

During data compression/decompression, the amount of
data changes during the processing of the data stream
according to the applied algorithm. To realistically
compare different algorithms, the definition of throughput
must be independent of the effects of the data
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compression process. Therefore, throughput as the rate
at which raw data units (i.e., bits or bytes) are processed
provides the relative performance figure from which
comparisons can be made.

The rate of compressed data is related to the
throughput by the compression ratio. In an ideal
algorithm, the compression operation processes one
data unit per algorithm cycle. Degradation from this
ideal is due to characteristics of the algorithm and the
implementation. To simplify this discussion, it is assumed
that an implementation cycle (i.e., clock cycle) is
equivalent to an algorithm cycle.

Data compression algorithms that utilize the arithmetic
coder, such as JBIG and ABIC, are structured around a
one-bit data unit. Therefore, the maximum performance
level of these algorithms is one bit per cycle. Other
algorithms which are based upon string matching
(Lempel-Ziv), such as ALDC and BLDC, process a data
unit of one byte, and the maximum performance level of
these algorithms is one byte per cycle.

® [atency

Latency in the classic sense cannot be applied to data
compression algorithms. The delay observed between the
first unit of raw data and the first unit of compressed data
cannot be considered as latency. If the raw data is highly
compressible, the first unit of compressed data may be
delayed a considerable amount of time. Also, owing to the
nature of compression, the compressed data tends to be
intermittent, with the possible result that the first unit of
compressed data appears quickly, followed by a long
pause. This typically has no real impact on system
performance, since the raw-data rate is of overall
importance. A pause in the processing of raw data is
indicated by a lower throughput rate. On the basis of
these factors, another view of latency has been considered.

Since performance is associated with the processing of
raw data, and throughput accounts for the rate of the raw
data, latency can be considered the delay before or after
an operation when raw data is not being processed.

The delay between the last unit of raw data and the last
unit of compressed data is a period of time in which data
compression is occurring, but the raw data has completed
processing. This can be considered an impact to system
performance. During this period, use of the compression
core for the next operation cannot proceed. Therefore,
as shown in Figure 1, compression latency is the time
required to flush out the remaining buffered compressed
data after processing the last unit of raw data.

During decompression operations, the last unit of raw
data may not be produced from the compressed data
stream until well after the last data unit has begun
processing. This is indicative of highly compressed data
sets. However, the delay between the first unit of raw
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data following the first unit of compressed data can be
considered latency, as shown in Figure 2. The greater the
latency, the greater the delay before the next operation
can commence.

& Random images

To make a fair comparison of the performances of
different data compression algorithms, a set of patterns
are needed that are not biased toward one algorithm. In
this study, the set of patterns (i.e., images) were generated
randomly and were of varying probability. This approach
provides images of varying compressibility and does not
create images that may be suited to a particular template
organization or history buffer size.

The process of generating a random image utilized the
given probability for each image to determine the value of
cach individual bit. As the probability of a black pel (bit
equal to binary 1) approaches 0.5, the image becomes
more random and less predictable, thus less compressible.
And a probability of a black pel close to 0.0 provides
a very uniform image that is highly predictable and
compressible. Figure 3 displays the effects of varying the
probability of a black pel on the randomly generated
images.

Arithmetic coders

Typically arithmetic coding algorithms process one bit of
raw data during each cycle. Degradation from this ideal
throughput performance occurs during the renormalization
process. A bit of data is produced for each
renormalization of the interval (A) and code (C) registers
within the coder. However, under some conditions,
multiple-bit renormalizations are required. Processing
does not continue until all additional renormalizations
have completed. Therefore, each extra (>1)
renormalization incurred during processing can add
additional cycles to the processing of the raw data,
reducing the data rate. Experimentation has shown a
relationship between the amount of renormalization and
the compression ratio from which a correspondence can
be drawn.

o ABIC throughput
The IBM Blue Logic core implementation of the ABIC
algorithm processes and produces up to one bit per cycle.
When extra renormalizations are encountered, the
processing of input data bits pauses while the additional
output bits are generated. The greater the number of
multiple-bit renormalizations, the lower the data rate.
Three sets of random images were used to characterize
ABIC throughput performance. Additionally, a set of test
images were analyzed to determine the difference between
actual images and random images. The normalized results
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are graphically presented as a percentage of the raw data
amount in Figure 4. Each point on the graph corresponds
to the result of compressing these images and designates
the number of extra renormalizations incurred during
processing in relation to the resulting amount of
compressed data.

According to the experimental results, the smallest
random-image size appears to have incurred a lesser
penalty from extra renormalization cycles. As random-
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image size increases, the points solidify into a well-defined
line. The worst-case performance encountered correlates
to random images obtaining about 10% compression,
where the data rate is at 80% of maximum (0.80 bit per
cycle). All of the test images performed better than the
random images in both data rate and compression ratio,
as shown in the graph. Since the random images can be
interpreted as noisy patterns, it is reasonable to predict
that realistic images will generally perform better.

Given an image of 100% LPS, expansion is due only to
the final flushing of the coding registers and generates no
multiple-bit renormalization cycles. However, the worst
expansion encountered during testing was found to be
about 5% (compression ratio of 0.95:1). This occurred in
all three random-image sizes, though the impact on
performance decreased as the expansion increased. This
behavior correlates to the coding inefficiency displayed
by the Q-coder compression adaptation process [11].

Another expansion characteristic of the ABIC algorithm
relates to the handling of a carry. The ABIC compression
algorithm provides for the resolution of a carry within
the decoder. A carry is placed within the compressed
data stream by the encoder through a method known
as bit stuffing. Bit stuffing occurs whenever a 0xFF byte is
generated during compression, inserting a stuff bit before
the next bit of coded data. This action inherently increases
the amount of compressed data. However, only a sequence
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of MPSs will generate multiple OxFF bytes, which in turn
are highly compressible, obviating the impact of the stuff
bit. Additionally, MPS renormalizations cannot produce
multiple-bit renormalizations. Consequently, during high
levels of compression, the increased frequency of MPSs
reduces the number of multiple-bit renormalizations,
lessening the impact on data rate. This is evident in the
plotted experimental data showing all curves approaching
the origin.

® JBIG throughput

The JBIG algorithm provides options for different
templates, with a movable adaptive-template bit and
indication of identical lines (typical prediction). The
variations of template formats are obviated by the use of
random patterns, causing all configurations to encounter
the same probability. The use of typical prediction was not
considered, since this requires comparison of each line
and would cause significant overhead, resulting in reduced
throughput. Essentially, to perform typical prediction,
each line must be examined completely before processing
can proceed, and the arithmetic coder state must be
altered. Alternately, the state of the coder must be
preserved, and it must be restored when a line is found to
be typical. For the purpose of this study, the overhead of
the JBIG header and floating marker codes was not
counted. Only the amount of compressed data contained
in the single stripe generated by the compression process
was counted to determine the compression ratio.

As with ABIC, the IBM Blue Logic core
implementation of the JBIG algorithm processes
and produces up to one bit per cycle. When extra
renormalizations are encountered, the processing of input
data bits pauses while the additional output bits are
generated. The greater the number of multiple-bit
renormalizations, the lower the data rate.

The same three sets of random images and set of test
images were used to characterize JBIG throughput
performance. The normalized results are graphically
presented as a percentage of the raw-data amount in
Figure 5. The results, though generated with the JBIG
three-line template, are indicative of both template
configurations. Each point on the graph corresponds to
the result of compressing these images and designates
the number of extra renormalizations incurred during
processing in relation to the resulting amount of
compressed data.

As random-image size increases, the points solidify into
a well-defined line. Compression ratios greater than 1.25:1
approach this line from below. However, for compression
ratios less than 1.25:1, the characteristic is reversed. The
worst-case performance encountered appears with the
smallest random-image size, which produced an expansion
of about 18% along with a data rate of 73% of maximum
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(0.73 bits per cycle). This is in part due to the initial
learning states of the QM-coder probability-estimation
state machine. When an image is generally not compressible,
the initial probability estimation of the QM-coder
overcompensates away from the 50/50-probability state,
which is subsequently encountered by continued
processing. Small images may complete processing during
a period when adaptation has not settled toward the
50/50-probability nontransient state indicative of
uncompressible data.

Ignoring the upturned curve of the smallest random-
image size, the worst-case performance encountered
correlates to random images obtaining about 20%
compression, where the data rate is at 78% of maximum
(0.78 bits per cycle). All of the test images performed
better than the random images in both data rate and
compression ratio, as shown in the graph. Since the
random images can be interpreted as noisy patterns, it is
reasonable to predict that realistic images will generally
perform better.

The worst expansion encountered during testing was
found to be about 18% (compression ratio of 0.85:1). This
occurred in the smallest of the random-image sizes, which
also contained the highest penalty for renormalization.
However, the JBIG algorithm reserves marker codes
that can be imbedded into the data stream. To prevent
confusion between marker codes and coded data, any
occurrence of the escape byte (0xFF) in the coded data
is expanded by appending a byte of 0x00 data. This
convention can produce large expansion in some images.

Additional images were generated to evaluate the
impact of byte stuffing. These images produce coded data
containing all 1s when compressed, forcing the JBIG
compression algorithm to add the stuff byte. The
production of the stuff byte (eight additional output bits)
creates a pause in processing and thus affects the data
rate. The experimental results are displayed as “100%
byte-stuffed images” in Figure 6. The curves created from
the random and test images are included in the graph for
reference. These results indicate how a small set of the
pattern space can degrade JBIG compression significantly.

8 ABIC latency

At the termination of the ABIC compression process, any
remaining compressed data must be flushed. This process
includes flushing any significant data within the code (C)
register, the spacer bits, and up to seven coded bits
awaiting output. Another consideration is that the last raw
bit processed may cause a multiple-bit renormalization.
Given that an LPS can incur at most 12 renormalizations,
plus the 23 bits that can be flushed from the C register,
the worst-case latency is no more than 35 bits. In the
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process of aligning data with byte boundaries,

this may produce up to six bytes of data. Therefore, the
worst-case latency of the compression algorithm is then
48 cycles.

& JBIG latency

The JBIG compression algorithm also must flush any
remaining compressed data from the registers at the end
of the raw data stream. However, the JBIG algorithm
produces an infinite-precision number which requires that
the carry be resolved within the encoder. Owing to this
requirement, coded data that can propagate a carry must
be buffered until a carry is produced or propagation
becomes impossible. The IBM Blue Logic core
implementation maintains a stack count of 0xFFs when
coded data is generated. Upon a carry, or the generation
of a non-0xFF byte, the stack is emptied. When the stack
is being emptied, processing cannot continue, reducing the
data rate. If the output of the stack is a series of 0xFF
(carry-propagated), byte stuffing will occur, adding
additional cycles.

A set of diabolical images were generated to analyze the
performance of processing patterns that compress with
high stack counts. This set of images contain examples
of compression both with and without a carry. To
demonstrate the potential latency, any carries are
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generated on the last bit of raw data. The results are
displayed in Figure 6. The extra cycles include the
multiple-bit renormalization penalty, the stack-clearing
penalty, and, if applicable, the byte-stuffing penalty.
Dashed lines have been added for reference between
the sparse data points and may not portray actual
performance curves, The random-image curves from
Figure 5 have been added to the graph for reference.
The additional cycles incurred when clearing the stack
can be considered added latency when they occur after the
last bit of raw data is processed. If the stack is cleared
before the raw data stream terminates, the extra cycles
can be viewed as a throughput impact. Displayed in
Figure 6 is the largest number of stacked bytes (35086)
encountered during experimentation. Given the few data
points generated, a relationship between stack counts and
performance cannot be inferred.

Lempel-Ziv coders

Lempel-Ziv pattern-matching algorithms utilize a history-
buffer width based upon the width of the processed data
unit. Typically a byte represents the data unit; however,
some implementations utilize half and full words. History-
buffer lengths may also be varied in an attempt to
increase the compression ratio by providing a greater
range over which string matches can be located.
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Inherently, implementations must buffer some
compressed data because the size of a coded-data unit
exceeds that of the raw-data unit. This permits more
consistent generation of output data, since coded data is
generated intermittently. Degradation from the maximum
throughput performance can occur when coding expands
and produces data at a greater rate than output can be
generated.

® ALDC throughput

The ALDC algorithm performance can degrade only when
the data expands during compression. The IBM Blue
Logic core implementation of the ALDC algorithm
operates upon a byte-size data unit with a history buffer
length of 512, 1024, or 2048. The implementation of the
ALDC algorithm avoids this bottleneck of expanding data
by providing a two-byte-wide interface to generate output.
Without the expansion bottleneck, ALDC compression
consistently operates at the ideal throughput performance
(one byte per cycle) regardless of the compression ratio
obtained. Because of the lack of limiting factors, no
experimentation was performed utilizing the ALDC
algorithm.

Worst-case expansion of the ALDC compression
algorithm is observed in data patterns that do not repeat
over lengths exceeding the size of the history buffer. With
a byte-size (eight bits) data unit, encoding a raw-data byte
that cannot be encoded within a string match generates
nine bits of coded data. When data is generally random,
the number of string matches approaches 0%, and
the expansion of the raw data approaches the limit of
12.5%.

® BLDC throughput
The BLDC compression algorithm is derived from the
mating of a run-length encoding scheme and the ALDC
coding algorithm. This particular approach is suited to
bilevel images. The IBM Blue Logic core implementation
of the BLDC algorithm interfaces with the ALDC
implementation and is limited by its one-byte-per-cycle
throughput. The performance of the BLDC algorithm is
degraded from ideal when the run-length encoding
generates data at a rate greater than one byte per cycle.
This occurs with images containing many short runs.
Three sets of random images were used to characterize
BLDC throughput performance. Additionally, the same
set of test images used with the arithmetic coders were
analyzed to determine the difference between actual
images and the random images. Finally, since BLDC is
sensitive to checkerboard patterns, images containing
alternating bits were also analyzed. The normalized results
are graphically presented as a percentage of the raw-data
amount in Figure 7. Each point on the graph corresponds
to the result of compressing these images and designates
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the number of extra cycles incurred during processing in
relation to the resulting amount of compressed data.

On the basis of the experimental results, images of
alternating bits displayed the worst data rate. Although
the compression ratio obtained was high (10:1), the data
rate was 53% of maximum (0.53 bytes per cycle). Of the
random images, the smallest size incurred the least
penalty because of the ALDC bottleneck, when correlated
to compression ratio. As size is increased, the points
solidify into a well-defined line, displaying a greater
degradation in throughput. As the amount of compressed
data increases, decreasing the compression ratio, the
number of extra processing cycles accordingly increases,
and system performance is decreased as a consequence.

All of the test images maintained a higher compression
ratio than the random images. However, the test images
suffered more from throughput bottlenecks, consistently
showing a lower data rate. The characteristics
demonstrated by the experimental results indicate that
realistic images, while yielding better compression than
noisy random images, do not yield better performance.

The worst-case expansion of the run-length coding
algorithm does not correlate to the worst-case expansion
of the BLDC algorithm. The run-length and ALDC
coding algorithms complement each other, and maximum
expansion by the run-length encoder is compensated by
reasonable compression by the ALDC encoder. This is
observed in the experimental results of the alternating bit
patterns. The worst-case compression that can be observed
with the BLDC compression algorithm occurs when an
image displays sequences of short runs that generate only
small string matches when processed by the ALDC portion
of the algorithm. The worst-case expansion encountered
during experimentation was observed to be about 80%
(compression ratio of 0.55:1). This occurred in the
smallest of the random-image sizes and correlates to the
worst expansion of an infinite image size, demonstrated to
be around 80%.

& ALDC latency

As stated earlier, implementations of the Lempel-Ziv
pattern-matching compression algorithms must buffer
coded data to avoid a bottleneck to throughput
performance. The IBM Blue Logic core implementation
buffers up to two bytes before outputting coded data.
When the raw data stream terminates, the ALDC coder
completes the coding of the last byte and terminates the
coded data with an end marker.

The maximum amount of data that may be buffered
preceding the last raw-data byte is 15 bits. If coding of the
last raw byte terminates a string match but cannot be
included in that match, it can produce up to 31 bits of
coded data (largest copy pointer + coded literal). In
addition to the end marker (13 bits}), the coder must
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potentially flush out 59 bits of coded data. Since data is
processed on byte boundaries, this creates a worst-case
latency of eight cycles. This is in addition to any cycles
required for the last byte of raw data to traverse the
internal coding pipeline.

& BLDC latency

Latency in the BLDC compression algorithm is a
combination of the worst run-length-coding latency and
the worst ALDC coding latency. The last byte of raw data
may contain alternating bits, expanding in the run-length-
coding portion of BLDC up to eight times. Since the
ALDC coder processes only one byte per cycle, the run-
length coder is throttled. This produces the worst-case
performance in both throughput and latency. The eight
additional cycles, when added to the ALDC worst-case
latency of eight cycles, reveal that the BLDC worst-case
latency can attain 16 cycles.

Summary

This paper discusses the performance of lossless data
compression algorithms available as IBM Blue Logic
cores. A general relationship between the compressibility
of an image and the throughput performance of the
compression algorithms included in the study was
established. Although the experimentation was based upon
hardware implementations of the compression algorithms,
the results also reflect the potential of software
implementations.

The use of random images in analyzing the bilevel-
image arithmetic coders, ABIC and JBIG, indicates a
relationship between multiple-bit renormalizations and the
compressibility of an image. The ABIC bilevel-image
arithmetic coder demonstrated a worst-case performance
of at least 80% of the maximum data rate (0.8 bits per
cycle) with a minimally compressible random image. All
genuine images processed displayed better performance
characteristics than the set of random images.

Although experimentation demonstrated the JBIG
bilevel-image arithmetic coder to be vulnerable to
diabolical images, with some expanding up to 175%,
genuine images do not demonstrate the same results.
Generally, the JBIG algorithm demonstrated a worst-case
performance of 73% of the ideal data rate (0.73 bits per
cycle) when a random image of low compressibility is
encountered.

Analysis of the Lempel-Ziv string-compressing
algorithm, ALDC, showed that performance is not
affected by the compressibility of the raw image. Provided
there are no bottlenecks in transferring data, the
maximum data rate of one byte per cycle is always
maintained. With run-length preprocessor extension
to ALDC (BLDC), the processing of random images

indicates that decreased compression ratios correlate to 765
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decreased throughput performance. However, genuine
images demonstrated an inverse relationship, producing
better compression but worse performance. The diabolical
checkerboard image revealed a throughput performance of
53% (0.53 bytes per cycle) while obtaining a compression
ratio of 10:1.

For the most part, the latency encountered by the
compression algorithms is minimal, with the exception of
the JBIG compression algorithm. The use of diabolical
images showed the characteristic of stacking OxFF bytes
until a carry is resolved, creating the possibility that a
large amount of the compressed data may be buffered
within the coder. If the potential for a carry has not been
resolved before the completion of processing, time is
required to clear the coded data buffered in the stack.
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