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This  paper  discusses the performance of 
bilevel-image arithmetic coders, ABIC  and 
JBIG,  and  Lempel-Ziv  string  compressors, 
ALDC  and  BLDC. Images are analyzed  for 
typical  and worst-case throughput  and  latency 
as a  function of compression.  A  relationship 
between the compressibility of an image 
and the throughput performance of the 
compression  algorithm  is demonstrated. 
Generally,  throughput performance of the 
bilevel-image arithmetic coders decreased as 
image entropy  increased.  Inversely,  the  bilevel- 
image string  compressor (BLDC) revealed that 
increased  entropy  improved  throughput 
performance.  Experimental  results based on 
hardware implementations  have been provided 
and  analyzed. 

Introduction 
The  performance of data  compression  algorithms is  of 
concern  to  the system architects.  This  paper discusses the 
performance  characteristics in relation  to  the  compression 
achieved by the  different lossless data compression 
algorithms available  as  IBM Blue Logic cores. Two 
performance  characteristics of concern  that have an effect 
in overall system performance  are  throughput  and latency. 

The  Adaptive Bilevel Image  Compression  (ABIC) 
algorithm  performs lossless data  compression  on bilevel 
images [l]. The  algorithm utilizes the  Q-coder  adaptive 
binary arithmetic  coder  to  produce  a finite-precision 
binary fraction  that uniquely  identifies the  sequence of 
bits in the  raw-data image  [2, 31. The  coder processes the 

individual  bits of the raw data  stream, calculating the 
probability of the symbol (binary bit value)  on  the basis of 
the  context  obtained  from  a  template  applied  to  the raw 
data.  The probability represents  the  prediction of the 
more  probable symbol (MPS)  [or, inversely, the less 
probable symbol (LPS)]  to  be  encountered next. 
Maintaining  the interval calculation within the  order of 
unity requires  renormalization of the  code  string  and 
interval  size. The processing of an MPS potentially 
produces  one  renormalization,  and  the processing 
of an LPS can  potentially  produce  up  to  12 
renormalizations.  Each  renormalization  produces  one  bit 
of coded  data. 

The  Joint Bi-level Image  Experts  Group  (JBIG) defined 
a lossless data compression algorithm  suited  for bilevel 
images that utilizes the  QM-coder  adaptive  binary 
arithmetic  coder [4, 51. The  QM-coder  produces  an 
infinite-precision  binary fraction uniquely  identifying the 
sequence of raw data bits. The  IBM  Blue Logic core 
implementations of the  JBIG  and  ABIC  macros [6] utilize 
the  Qx-coder, which incorporates  both  the  Q-coder  and 
QM-coder [7]. 

algorithm [8, 91 is the  IBM  implementation of Lempel-Ziv 
compression  algorithm 1 (LZ1) [lo]. The  LZ1  algorithm 
defines a fixed-size sliding window, conceptually  a history 
of the previous symbols processed, used to  perform 
pattern  matching against the incoming data  stream. 
The  ALDC  algorithm defines a symbol to  be  one byte 
of data,  and  supports history buffer sizes of 512, 1024, 
and 2048 bytes. Sequences of bytes that  match  sequences 
maintained within the history  buffer are  represented in the 
coded  data as copy-pointer  and  match-length  code words. 

The  adaptive lossless data  compression  (ALDC) 
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Bytes which cannot  be  included in matches  are  encoded as 
literals with a flag bit. 

The  ALDC  compression  algorithm has been  extended 
with a  bit-map-optimized  preprocessor,  referred  to as 
BLDC,  to  enhance  the algorithm’s capabilities when 
compressing bilevel  images [8, 91. The  BLDC  preprocessor 
utilizes a  run-length  encoding  scheme  that defines  byte- 
sized run-length  codes which are readily processed by the 
ALDC  core. 

Any differences  between  these  compression algorithms, 
such  as  wrappers  and  marker  codes, have been 
disregarded in  this  study to  permit  a basic comparison 
of compression  performance of the  algorithms  and 
implementations. Additionally, overhead  due  to system 
interfaces  has  been  set  aside  because of the  differences 
in implementations  among  the  compression  cores. 

Throughput 
During  data compressionidecompression, the  amount of 
data  changes  during  the processing of the  data  stream 
according  to  the  applied  algorithm.  To realistically 
compare  different algorithms, the definition of throughput 
must be  independent of the  effects of the  data 

compression process. Therefore,  throughput as the  rate 
at which raw data units (ix., bits or bytes) are  processed 
provides the  relative  performance figure from which 
comparisons  can  be  made. 

The  rate of compressed  data is related  to  the 
throughput by the  compression  ratio.  In  an ideal 
algorithm,  the  compression  operation  processes  one 
data unit per  algorithm cycle. Degradation  from  this 
ideal is due  to  characteristics of the  algorithm  and  the 
implementation.  To simplify this  discussion,  it is assumed 
that  an  implementation cycle (;.e., clock cycle) is 
equivalent  to  an algorithm cycle. 

coder, such  as JBIG  and  ABIC,  are  structured  around  a 
one-bit  data  unit.  Therefore,  the maximum performance 
level of these  algorithms is one bit per cycle. Other 
algorithms which are  based  upon  string  matching 
(Lempel-Ziv),  such  as ALDC  and  BLDC, process a  data 
unit of one byte, and  the maximum performance level of 
these  algorithms is one byte per cycle. 

Latency 
Latency  in the classic sense  cannot  be  applied  to  data 
compression  algorithms.  The delay observed  between  the 
first unit of raw data  and  the first unit of compressed  data 
cannot  be  considered as  latency. If the raw data is highly 
compressible,  the first unit of compressed  data may be 
delayed a  considerable  amount of time. Also, owing to  the 
nature of compression,  the  compressed  data  tends  to  be 
intermittent, with the possible result  that  the first unit of 
compressed  data  appears quickly, followed by a long 
pause.  This typically has no real  impact  on system 
performance, since the  raw-data  rate is of overall 
importance.  A  pause in the processing of raw data is 
indicated by a lower throughput  rate.  On  the basis of 
these  factors,  another view of latency has  been  considered. 

Since performance is associated with the processing of 
raw data,  and  throughput  accounts  for  the  rate of the raw 
data, latency  can be considered  the delay before  or  after 
an  operation when raw data is not  being  processed. 
The delay between  the last  unit of raw data  and  the  last 
unit of compressed  data is a  period of time in which data 
compression is occurring, but the raw data  has  completed 
processing. This can be considered  an  impact  to system 
performance.  During this period, use of the  compression 
core  for  the next operation  cannot  proceed.  Therefore, 
as  shown in Figure 1, compression latency is the  time 
required  to flush out  the  remaining  buffered  compressed 
data  after processing the last unit of raw data. 

During  decompression  operations,  the last  unit of raw 
data may not  be  produced from the  compressed  data 
stream until well after  the last data unit has begun 
processing.  This is indicative of highly compressed  data 
sets.  However,  thc delay between  the first unit of raw 

Data  compression  algorithms  that utilize the  arithmetic 
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data following the first unit of compressed  data  can  be 
considered latency,  as  shown  in Figure 2. The  greater  the 
latency, the  greater  the delay before  the next operation 
can  commence. 

Random images 
To  make  a  fair  comparison of the  performances of 
different  data  compression  algorithms,  a  set of patterns 
are  needed  that  are  not biased toward  one  algorithm.  In 
this  study, the  set of patterns (i.e.,  images) were  generated 
randomly  and  were of varying probability. This  approach 
provides  images of varying compressibility and  does  not 
create images that may be suited to a  particular  template 
organization or history buffer size. 

The  process of generating  a  random  image utilized the 
given probability for  each  image  to  determine  the value of 
each individual  bit. As  the  probability of a black  pel (bit 
eq:lal to binary 1) approaches 0.5, the  image  becomes 
more  random  and less predictable,  thus less compressible. 
And  a probability of a black pel  close to 0.0 provides 
a very uniform image  that is highly predictable  and 
compressible. Figure 3 displays the effects of varying the 
probability of a black  pel on  the  randomly  generated 
images. 

Arithmetic  coders 
Typically arithmetic coding algorithms  process  one bit of 
raw data  during  each cycle. Degradation  from this ideal 
throughput  performance  occurs  during  the  renormalization 
process. A bit of data is produced  for  each 
renormalization of the interval (A)  and  code  (C)  registers 
within the  coder. However, under  some  conditions, 
multiple-bit renormalizations  are  required. Processing 
does  not  continue  until all additional  renormalizations 
have completed.  Therefore,  each  extra (>1) 
renormalization  incurred  during processing can  add 
additional cycles to  the processing of the raw data, 
reducing  the  data  rate.  Experimentation has  shown a 
relationship  between  the  amount of renormalization  and 
the  compression  ratio  from which a  correspondence  can 
be  drawn. 

ABIC throughput 
The  IBM Blue  Logic core  implementation of the  ABIC 
algorithm  processes  and  produces  up  to  one bit per cycle. 
When  extra  renormalizations  are  encountered,  the 
processing of input  data  bits  pauses while the  additional 
output bits are  generated.  The  greater  the  number of 
multiple-bit renormalizations,  the lower the  data  rate. 

Three  sets of random images were used to  characterize 
ABIC  throughput  performance. Additionally, a  set of test 
images  were  analyzed to  determine  the  difference between 
actual images and  random images. The  normalized  results 
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I ABIC performance graph. 

are graphically presented as a  percentage of the raw data 
amount in Figure 4. Each  point  on  the  graph  corresponds 
to  the result of compressing  these images and  designates 
the  number of extra  renormalizations  incurred  during 
processing in relation  to  the  resulting  amount of 
compressed  data. 

According to the  experimental  results,  the smallest 
random-image size appears  to have incurred  a lesser 
penalty  from  extra  renormalization cycles. As random- 
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image size increases,  the  points solidify into  a well-defined 
line. The worst-case performance  encountered  correlates 
to  random images obtaining  about 10% compression, 
where  the  data  rate is at 80% of maximum (0.80 bit  per 
cycle). All of the  test images performed  better  than  the 
random images in both  data  rate  and  compression  ratio, 
as  shown  in the  graph. Since the  random images can  be 
interpreted as noisy patterns, it is reasonable  to  predict 
that  realistic images will generally perform  better. 

Given an  image of 100% LPS, expansion is due only to 
the final  flushing of the coding registers  and  generates  no 
multiple-bit  renormalization cycles. However, the worst 
expansion encountered  during  testing was found  to  be 
about 5% (compression  ratio of 0.9S:l). This  occurred in 
all three  random-image sizes, though  the  impact  on 
performance  decreased as the expansion increased.  This 
behavior  correlates  to  the coding inefficiency displayed 
by the  Q-coder  compression  adaptation  process [ll]. 

Another  expansion  characteristic of the  ABIC  algorithm 
relates  to  the  handling of a carry. The  ABIC  compression 
algorithm provides for  the  resolution of a  carry within 
the  decoder.  A carry is placed within the  compressed 
data  stream by the  encoder  through  a  method known 
as bit stuffing. Bit stuffing  occurs whenever  a OxFF byte is 
generated  during  compression,  inserting  a stuff bit  before 
the next  bit of coded  data.  This  action  inherently  increases 
the  amount of compressed  data. However, only a  sequence 

of MPSs will generate  multiple OxFF bytes, which in turn 
are highly compressible, obviating the  impact of the stuff 
bit.  Additionally, MPS renormalizations  cannot  produce 
multiple-bit  renormalizations.  Consequently,  during high 
levels of compression,  the  increased  frequency of MPSs 
reduces  the  number of multiple-bit  renormalizations, 
lessening the  impact  on  data  rate.  This is evident in the 
plotted  experimental  data showing all curves approaching 
the  origin. 

JBIG throughput 
The  JBIG  algorithm provides options  for  different 
templates, with a movable adaptive-template bit and 
indication of identical lines  (typical prediction).  The 
variations of template  formats  are  obviated by the  use of 
random  patterns, causing  all configurations  to  encounter 
the  same probability. The  use of typical prediction was not 
considered, since this  requires  comparison of each  line 
and would cause significant overhead,  resulting in reduced 
throughput. Essentially, to  perform typical prediction, 
each  line must be examined completely  before processing 
can  proceed,  and  the  arithmetic  coder  state must be 
altered.  Alternately,  the  state of the  coder must be 
preserved,  and it  must be  restored  when  a  line is found  to 
be typical. For  the  purpose of this  study, the  overhead of 
the  JBIG  header  and floating marker  codes was not 
counted. Only the  amount of compressed  data  contained 
in the single stripe  generated by the  compression  process 
was counted  to  determine  the  compression  ratio. 

implementation of the  JBIG  algorithm  processes 
and  produces  up  to  one  bit  per cycle. When  extra 
renormalizations  are  encountered,  the processing of input 
data  bits  pauses while the  additional  output bits are 
generated.  The  greater  the  number of multiple-bit 
renormalizations,  the lower the  data  rate. 

images were used to  characterize  JBIG  throughput 
performance.  The  normalized  results  are graphically 
presented as a  percentage of the  raw-data  amount in 
Figure 5. The  results,  though  generated with the  JBIG 
three-line  template,  are indicative of both  template 
configurations. Each  point  on  the  graph  corresponds  to 
the  result of compressing  these images and  designates 
the  number of extra  renormalizations  incurred  during 
processing  in relation  to  the  resulting  amount of 
compressed  data. 

As random-image size increases,  the  points solidify into 
a well-defined line.  Compression  ratios  greater  than 1.2S:l 
approach this line  from below.  However, for  compression 
ratios less than 1.25:1, the  characteristic is reversed.  The 
worst-case  performance  encountered  appears with the 
smallest random-image size, which produced  an  expansion 
of about 18% along with a  data  rate of 73% of maximum 

As  with ABIC,  the  IBM Blue  Logic core 

The  same  three  sets of random images and  set of test 
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(0.73 bits  per cycle). This is in part  due  to  the initial 
learning  states of the  QM-coder  probability-estimation 
state machine. When  an image is generally not compressible, 
the initial  probability estimation of the  QM-coder 
overcompensates away from  the 50150-probability state, 
which is subsequently  encountered by continued 
processing.  Small  images may complete processing during 
a  period when adaptation has not  settled  toward  the 
50150-probability nontransient  state indicative of 
uncompressible  data. 

image size, the  worst-case  performance  encountered 
correlates  to  random images obtaining  about 20% 
compression,  where  the  data  rate is at 78% of maximum 
(0.78 bits  per cycle). All of the  test images performed 
better  than  the  random images  in both  data  rate  and 
compression  ratio, as  shown  in the  graph. Since the 
random images can  be  interpreted as noisy patterns, it is 
reasonable  to  predict  that  realistic images will generally 
perform  better. 

The worst  expansion encountered  during  testing was 
found  to be about 18% (compression  ratio of 0.85:l).  This 
occurred in the smallest of the  random-image sizes, which 
also  contained  the highest penalty  for  renormalization. 
However, the  JBIG algorithm reserves  marker  codes 
that  can be imbedded  into  the  data  stream.  To  prevent 
confusion  between  marker  codes  and  coded  data, any 
occurrence of the  escape byte (OxFF) in the  coded  data 
is expanded by appending  a byte of 0x00 data.  This 
convention  can  produce  large expansion  in some images. 

Additional images  were generated  to  evaluate  the 
impact of byte  stuffing. These images produce  coded  data 
containing all 1s when compressed, forcing the  JBIG 
compression  algorithm  to  add  the stuff byte. The 
production of the stuff byte (eight  additional  output bits) 
creates  a  pause in  processing and  thus affects the  data 
rate.  The  experimental  results  are displayed  as "100% 
byte-stuffed  images" in Figure 6. The curves created  from 
the  random  and  test images are included in the  graph  for 
reference.  These  results  indicate how a small set of the 
pattern  space  can  degrade  JBIG  compression significantly. 

Ignoring  the  upturned curve of the smallest random- 

ABIC latency 
At  the  termination of the  ABIC  compression process,  any 
remaining  compressed  data must be flushed. This  process 
includes flushing any significant data within the  code  (C) 
register,  the  spacer bits, and  up  to seven coded bits 
awaiting output.  Another  consideration is that  the last raw 
bit processed may cause  a multiple-bit renormalization. 
Given that  an LPS can  incur  at most 12 renormalizations, 
plus  the 23 bits that  can  be flushed from  the  C  register, 
the worst-case latency is no more  than 35 bits. In  the 
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process of aligning data with byte boundaries, 
this may produce  up  to six bytes of data.  Therefore,  the 
worst-case latency of the  compression  algorithm is then 
48 cycles. 

JBIG latency 
The  JBIG  compression  algorithm also  must flush any 
remaining  compressed  data  from  the  registers  at  the  end 
of the raw data  stream. However, the  JBIG  algorithm 
produces  an infinite-precision number which requires  that 
the carry be resolved  within the  encoder. Owing to this 
requirement,  coded  data  that  can  propagate  a carry  must 
be  buffered  until  a carry is produced  or  propagation 
becomes impossible. The  IBM  Blue Logic core 
implementation  maintains  a  stack  count of  OxFFs when 
coded  data is generated.  Upon  a carry, or  the  generation 
of a non-OxFF byte, the  stack is emptied.  When  the  stack 
is being  emptied, processing cannot  continue,  reducing  the 
data  rate. If the  output of the stack is a  series of  OxFF 
(carry-propagated), byte stuffing will occur,  adding 
additional cycles. 

performance of processing patterns  that  compress with 
high stack counts.  This  set of images contain examples 
of compression  both with and  without  a carry. To 
demonstrate  the  potential latency, any carries  are 

A set of diabolical  images were  generated  to analyze the 
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generated  on  the last bit of raw data.  The  results  are 
displayed in Figure 6. The  extra cycles include  the 
multiple-bit  renormalization penalty, the  stack-clearing 
penalty,  and,  if'applicable,  the byte-stuffing  penalty. 
Dashed  lines have been  added  for  reference  between 
the  sparse  data  points  and may not  portray  actual 
performance curves. The  random-image curves from 
Figure  5 have been  added  to  the  graph  for  reference. 

The  additional cycles incurred when clearing  the stack 
can be considered  added latency  when  they  occur after  the 
last  bit of raw data is processed. If the  stack is cleared 
before  the raw data  stream  terminates,  the  extra cycles 
can be viewed as a  throughput  impact. Displayed in 
Figure 6 is the  largest  number of stacked bytes (35086) 
encountered  during  experimentation. Given the few data 
points  generated,  a  relationship  between  stack  counts  and 
performance  cannot  be  inferred. 

Lempel-Ziv coders 
Lempel-Ziv pattern-matching  algorithms utilize a history- 
buffer width based  upon  the width of the  processed  data 
unit. Typically a byte represents  the  data  unit; however, 
some  implementations utilize half and full words.  History- 
buffer  lengths may also be varied in an  attempt  to 
increase  the  compression  ratio by providing a  greater 
range over which string matches can be located. 

Inherently,  implementations must buffer  some 
compressed  data  because  the size of a  coded-data  unit 
exceeds that of the  raw-data  unit.  This  permits  more 
consistent  generation of output  data,  since  coded  data is 
generated  intermittently.  Degradation  from  the maximum 
throughput  performance  can  occur when  coding expands 
and  produces  data  at  a  greater  rate  than  output can be 
generated. 

ALDC throughput 
The  ALDC  algorithm  performance  can  degrade only when 
the  data  expands  during  compression.  The IBM  Blue 
Logic core  implementation of the  ALDC  algorithm 
operates  upon  a byte-size data unit  with a history buffer 
length of 512, 1024, or 2048. The  implementation of the 
ALDC  algorithm avoids  this bottleneck of expanding  data 
by providing a two-byte-wide interface  to  generate  output. 
Without  the expansion bottleneck,  ALDC  compression 
consistently operates  at  the  ideal  throughput  performance 
(one byte per cycle) regardless of the  compression  ratio 
obtained.  Because of the lack of limiting factors,  no 
experimentation was performed utilizing the  ALDC 
algorithm. 

Worst-case expansion of the  ALDC compression 
algorithm is observed in data  patterns  that  do  not  repeat 
over lengths exceeding the size of the history  buffer. With 
a byte-size  (eight  bits) data  unit,  encoding  a  raw-data byte 
that  cannot  be  encoded within a  string  match  generates 
nine  bits of coded  data.  When  data is generally random, 
the  number of string  matches  approaches  0%,  and 
the expansion of the raw data  approaches  the limit of 
12.5%. 

BLDC throughput 
The  BLDC compression algorithm is derived  from  the 
mating of a  run-length  encoding  scheme  and  the  ALDC 
coding algorithm.  This  particular  approach is suited  to 
bilevel images. The  IBM  Blue Logic core  implementation 
of the  BLDC  algorithm  interfaces with the  ALDC 
implementation  and is limited by its  one-byte-per-cycle 
throughput.  The  performance of the  BLDC  algorithm is 
degraded  from  ideal  when  the  run-length  encoding 
generates  data  at  a  rate  greater  than  one byte per cycle. 
This  occurs with images containing many short  runs. 

BLDC  throughput  performance. Additionally, the  same 
set of test images  used with the  arithmetic  coders  were 
analyzed to  determine  the  difference  between  actual 
images and  the  random images.  Finally,  since BLDC is 
sensitive to  checkerboard  patterns, images containing 
alternating bits were also  analyzed. The  normalized results 
are graphically presented as a  percentage of the  raw-data 
amount in Figure 7. Each  point  on  the  graph  corresponds 
to  the  result of compressing  these images and  designates 

Three  sets of random images were used to  characterize 
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the  number of extra cycles incurred  during processing in 
relation  to  the  resulting  amount of compressed  data. 

On  the basis of the  experimental  results, images of 
alternating bits  displayed the worst data  rate.  Although 
the  compression  ratio  obtained was high ( l O : l ) ,  the  data 
rate was 53% of maximum (0.53 bytes per cycle). Of the 
random images, the smallest  size incurred  the  least 
penalty because of the  ALDC  bottleneck,  when  correlated 
to  compression  ratio, As size is increased,  the  points 
solidify into  a well-defined line, displaying a  greater 
degradation in throughput. As the  amount of compressed 
data  increases,  decreasing  the  compression  ratio,  the 
number of extra processing cycles accordingly increases, 
and system performance is decreased  as  a  consequence. 

ratio  than  the  random images. However,  the  test images 
suffered  more  from  throughput  bottlenecks, consistently 
showing a lower data  rate.  The  characteristics 
demonstrated by the  experimental  results  indicate  that 
realistic images,  while  yielding better  compression  than 
noisy random images, do  not yield better  Performance. 

The worst-case  expansion of the  run-length coding 
algorithm  does  not  correlate  to  the worst-case  expansion 
of the  BLDC  algorithm.  The  run-length  and  ALDC 
coding algorithms  complement  each  other,  and maximum 
expansion by the  run-length  encoder is compensated by 
reasonable  compression by the  ALDC  encoder.  This is 
observed in the  experimental  results of the  alternating bit 
patterns.  The  worst-case  compression  that  can  be observed 
with the  BLDC Compression algorithm occurs when  an 
image displays sequences of short  runs  that  generate only 
small  string matches when processed by the  ALDC  portion 
of the  algorithm.  The  worst-case expansion encountered 
during  experimentation was observed  to  be  about  80% 
(compression  ratio of 0.55:l).  This  occurred in the 
smallest of the  random-image sizes and  correlates  to  the 
worst  expansion of an infinite  image size, demonstrated  to 
be  around 80%. 

All of the  test  images  maintained  a  higher  compression 

ALDC latency 
As stated  earlier,  implementations of the Lempel-Ziv 
pattern-matching  compression  algorithms must buffer 
coded  data  to avoid a  bottleneck  to  throughput 
performance.  The IBM  Blue  Logic core  implementation 
buffers  up  to two bytes before  outputting  coded  data. 
When  the raw data  stream  terminates,  the  ALDC  coder 
completes  the coding of the  last byte and  terminates  the 
coded  data with an  end  marker. 

The maximum amount of data  that may be buffered 
preceding  the last raw-data byte is 15 bits. If coding of the 
last raw byte terminates  a  string match but cannot be 
included in that  match, it can  produce  up  to  31 bits of 
coded  data  (largest copy pointer + coded  literal).  In 
addition to the  end  marker (13  bits), the  coder must 
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potentially flush out 59 bits of coded  data. Since data is 
processed  on byte boundaries,  this  creates  a worst-case 
latency of eight cycles. This is in addition  to any cycles 
required  for  the  last byte of raw data  to  traverse  the 
internal coding  pipeline. 

BLDC latency 
Latency in the  BLDC  compression algorithm is a 
combination of the worst run-length-coding latency and 
the worst ALDC coding  latency. The last  byte of raw data 
may contain  alternating bits, expanding in the  run-length- 
coding portion of BLDC  up  to eight  times.  Since the 
ALDC  coder  processes only one byte per cycle, the  run- 
length  coder is throttled.  This  produces  the  worst-case 
performance in both  throughput  and latency. The eight 
additional cycles, when added  to  the  ALDC worst-case 
latency of eight cycles, reveal that  the  BLDC worst-case 
latency  can  attain 16 cycles. 

Summary 
This  paper discusses the  performance of lossless data 
compression  algorithms available  as  IBM Blue Logic 
cores. A  general  relationship  between  the compressibility 
of an image and  the  throughput  performance of the 
compression  algorithms included in the study was 
established.  Although  the  experimentation was based  upon 
hardware  implementations of the  compression algorithms, 
the  results also  reflect the  potential of software 
implementations. 

The  use of random images in analyzing the bilevel- 
image  arithmetic  coders,  ABIC  and  JBIG,  indicates  a 
relationship  between multiple-bit renormalizations  and  the 
compressibility of an image. The  ABIC bilevel-image 
arithmetic  coder  demonstrated  a worst-case performance 
of at least 80% of the maximum data  rate (0.8  bits per 
cycle) with a minimally compressible random image. All 
genuine images processed displayed better  performance 
characteristics  than  the  set of random images. 

Although  experimentation  demonstrated  the  JBIG 
bilevel-image arithmetic  coder to be  vulnerable  to 
diabolical  images, with some  expanding  up  to 175%, 
genuine images do  not  demonstrate  the  same results. 
Generally,  the  JBIG algorithm demonstrated  a worst-case 
performance of 73% of the  ideal  data  rate (0.73 bits per 
cycle) when a  random image of  low compressibility is 
encountered. 

Analysis of the Lempel-Ziv string-comprcssing 
algorithm,  ALDC, showed that  performance is not 
affected by the compressibility of the raw image.  Provided 
there  are  no  bottlenecks in transferring  data,  the 
maximum data  rate of one byte  per cycle is always 
maintained.  With  run-length  preprocessor extension 
to  ALDC  (BLDC),  the processing of random images 
indicates  that  decreased  compression  ratios  correlate  to 765 
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decreased  throughput  performance. However, genuine 
images demonstrated  an inverse relationship,  producing 
better  compression  but worse performance.  The diabolical 
checkerboard  image revealed a  throughput  performance of 
53% (0.53 bytes per cycle) while obtaining  a compression 
ratio of 1O:l. 

For  the most part,  the latency encountered by the 
compression  algorithms is minimal, with the exception of 
the  JBIG  compression  algorithm.  The use of diabolical 
images  showed the  characteristic of stacking OxFF bytes 
until  a carry is resolved, creating  the possibility that  a 
large  amount of the  compressed  data may be  buffered 
within the  coder. If the  potential  for  a  carry  has  not  been 
resolved before  the  completion of processing, time is 
required  to  clear  the  coded  data  buffered in the stack. 
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