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This paper reports on work at IBM’s Austin
and Burlington laboratories concerning fast
hardware implementations of general-purpose
lossless data compression algorithms,
particularly for use in enhancing the data
capacity of computer storage devices or
systems, and transmission data rates for
networking or telecommunications channels.
The distinctions between lossy and lossless
compression and static and adaptive
compression techniques are first reviewed.
Then, two main classes of adaptive
Lempel-Ziv algorithm, now known as LZ1 and
LZ2, are introduced. An outline of early work
comparing these two types of algorithm is
presented, together with some fundamental
distinctions which led to the choice and
development of an IBM variant of the LZ1
algorithm, ALDC, and its implementation in
hardware. The encoding format for ALDC is
presented, together with details of IBM’s
current fast hardware CMOS compression
engine designs, based on use of a content-
addressable memory (CAM) array. Overall

compression results are compared for ALDC
and a number of other algorithms, using the
CALGARY data compression benchmark file
corpus. More recently, work using small
hardware preprocessors to enhance the
compression of ALDC on other types of data
has shown promising results. Two such
algorithmic extensions, BLDC and cLDC, are
presented, with the results obtained on
important data types for which significant
improvement over ALDC alone is achieved.

Introduction

Several years ago the author began work in Austin to
review a variety of data compression algorithms for
possible use in improving the capacity of PCMCIA
memory cards. These were being considered as removable
storage devices for some of IBM’s notebook computers,
and the initial emphasis was simply to improve capacity
for FLASH versions of these cards in particular, as the
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costs of this technology were at that time too high
compared to diskettes for such applications.

The scope of the work quickly expanded, however, as it
became apparent that data compression technology could
have tremendous implications for some major IBM
business segments. In particular, its deployment within
computer systems to enhance DASD storage capacity, or
to increase the effective bandwidth of networking data
channels, would present a major competitive advantage.

Lossy compression techniques, often used on image
data, achieve better compression by discarding some
of the original image (for example, the fine detail
information). This is not, however, acceptable for general-
purpose use. The data could be financial transactions,
accounts, reservation information, executable code and so
on, and must therefore be identical to the original when
retrieved. Lossless data compression techniques must be
used in such situations.

Some compression techniques are static—for example,
the CCITT Group 3 algorithm employed in fax data
transmission. This works by encoding in a more efficient
manner a set of predefined sequences, or strings of data,
which are expected to occur frequently. If these do
not in fact occur in the data, such algorithms do not
achieve compression. Another example would be a text-
compression algorithm based on a model of the vocabulary
and syntax of the English language. This can achieve good
compression on English, but does very poorly on French
or German text, executable computer code modules, or
other data types.

Static algorithms can be very effective when used in
large databases of a relatively uniform data type, for
example a mailing list of customer names and addresses.
Even if constantly being updated, the character sequences
such as “Street,” “Avenue,” “Jones,” or “Smith” are still
likely to occur frequently within such a database. For
general-purpose data storage or transmission, however, it
is not possible to rely on such expectations, and adaptive
methods must be used.

Adaptive data compression techniques try to construct
models, or look for data sequences derived in some
fashion from recent experience. The algorithm thus adapts
dynamically to different types of data. There are two
classes of adaptive algorithm which are generally
acknowledged to be among the most effective, yielding
good compression over a wide range of data types. These
were both first proposed by A. Lempel and J. Ziv, in 1977
and 1978, and are commonly now referred to as LZ1 and
LZ2 respectively [1-3].

Lempel-Ziv algorithms are symbol-based; that is, they
operate on data one character (usually a byte) at a time.
They achieve compression by locating frequently occurring
sequences of such symbols in the input data stream, which
are then recoded in more compact fashion. There can be
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static implementations of LZ1 and LZ2, but they are
usually made adaptive. The main distinction between the
two classes of algorithm is in the data structure employed
and the way references to sequences are coded.

LZ1 algorithms adapt by maintaining a sliding-window
history buffer, which can be thought of as a byte-wide shift
register. Each incoming data byte is shifted into this
history in sequence, the oldest entry being discarded once
the history becomes full. LZ2 uses a more complex
dictionary structure, which is adapted by adding new
sequences to it. The heuristic generally used for this is to
append the next incoming data character after using a
dictionary entry, to that entry, thus forming a new
dictionary entry. Various heuristics are employed once the
dictionary is filled: Some software implementations delete
the least recently used entry, but the approach usually
taken in hardware is to freeze the dictionary, at least
while its contents (as measured by the compression
achieved) seem to be relevant to the incoming data
stream. If compression falls off, such approaches can reset
the dictionary and begin to rebuild it, using newer data.

For LZ1, compression is achieved by encoding backward
references to the history, specifying a location and a byte
count or length. If it is not possible to match the input to
a sequence in the history, LZ1 algorithms will output data
coded explicitly, usually one byte at a time. Generally,
there is a penalty for this: Typically an eight-bit byte is
encoded as nine bits. Compression can be obtained once a
match of two or more bytes in length is found within the
history.

LZ2 algorithms encode a series of dictionary entry
numbers, the data and its length both being available from
the dictionary entry. When the dictionary is first set up, all
possible single-character values are initially included. This
ensures that any input data stream can always be encoded.
As the dictionary grows, matches are found to entries in
the dictionary that have longer sequences. Typically, an
LZ2 dictionary may be 4096 entries in size, so a dictionary
reference is coded as 12 bits. Compression is then
obtained for matching entries two or more bytes in length.

Some results of early initial studies on LZ1 and LZ2 are
presented, leading to the conclusion that LZ1 has some
distinct advantages, in particular for disk storage use.

It not only shows better compression on the smaller

data block sizes that are desirable for random-access
applications, it is also particularly amenable to a fast and
simple CMOS hardware implementation based on the use
of a content-addressable memory (CAM) array. This
allows the input data-string-matching operations required
for LZ1 compression to be performed very efficiently at
high speeds, in less silicon area than that of a single chip.

The IBM Microelectronics Division subsequently
implemented the CAM-based design approach for one
variant of LZ1, called ALDC (adaptive lossless data
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compression). The ALDC algorithm is now used in a large
number of both IBM and OEM computer storage and
telecommunications devices, laser printers, and operating
systems. It has been accepted as an ISO and IEC
standard, an ECMA standard, an ANSI standard, and a
QIC standard.

ALDC compression ratios depend on the data, but are
such that capacity for a typical computer DASD storage
system can be increased by a factor of 2 to 3 by
deployment of this algorithm. Many commercial computer
customers often purchase systems for which the DASD
cost is the dominant factor, ranging from tens of
thousands to millions of dollars per system, so clearly this
kind of increase in DASD storage capacity, for less cost
than one additional chip, is a significant advance.

More recent work on using small hardware
preprocessors to improve the compression of ALDC for
other data types has shown promising results. The BLDC
algorithm, which combines ALDC with specialized
preprocessor hardware for high-resolution binary
bitmapped image data, is described. Results are given for
one typical application, in this case a set of laser printer
page image data files. Compression improvement over
ALDC ranges from 1.5 to more than three times better.

Finally, the cLDC algorithm is described, and some
application results are given. This algorithm includes a
pair of cascaded preprocessors, designed to operate
automatically and recode a data stream only when their
specific types of data occur. BLDC preprocessing works
well on only bitmapped image data, so for other data
types the preprocessor must be switched out, or
compression will be worse than ALDC. cLDC compression
is never worse than ALDC, but can be significantly better
on those data types for which the preprocessors operate.
One cLDC preprocessor recodes runs of identical data
bytes, and this is followed by one designed to recode the
Unicode format, an increasingly important text data
coding standard used by Java** and other Internet-based
applications. ALDC compresses Unicode versions of
ASCII text files some 40% worse than the original ASCII,
but cLDC is able to remove this penalty completely. In
addition, cLDC does almost as well as BLDC on
bitmapped image data, so it combines in a single
algorithm the capability of ALDC and BLDC with
additional improved performance.

Algorithms for DASD or networking
applications

Deciding on a suitable lossless algorithm for DASD
capacity or network bandwidth enhancement is not simple.
From a systems viewpoint, it soon becomes clear that not
only are several algorithm characteristics of importance,
they tend to vary widely among different candidates.
Effective compression clearly matters, but other
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considerations may in fact sometimes outweigh this. The
data used for algorithm evaluation often can markedly
influence compression results, and this then leads to the
difficult question of what is in fact representative data.

Some of the more important characteristics to be
considered must include the compression ratio and its
robustness across different types of data, the complexity of
the algorithm (whether it is amenable to a hardware or a
software implementation), and the resulting costs and
speed.

Algorithms, or their implementations, can differ in their
symmetry, so that compression versus decompression
might be more or less difficult or complex to implement.
Some implementations also compromise data compression
effectiveness in order to achieve faster speed, and
others may exhibit a significant falloff in compression
performance if used on smaller amounts or blocks of data.
This can be an extremely important characteristic for
random-access storage or telecommunications systems
applications. Some algorithms achieve good compression
but require a two-pass technique. An initial pass over a
block of data is used to determine the best algorithmic
approach and/or optimal encoding method to be used.
The second pass then performs the actual compression
operation. However, this is feasible only for buffered
applications, tends to be more complex to implement,
and cannot achieve the same speeds as a single-pass
approach. Utilities such as PKZIP do employ this
approach very successfully for archival applications.

A great deal of initial work was done on algorithm
comparisons, and it led to three general conclusions
(although it is not possible to show all of the results in a
paper of this scope). First, the LZ classes of algorithm
were confirmed as best for general-purpose use.

Second, it was noted that more complex software LZ2
implementations tended to compress somewhat better than
LZ1 on larger amounts of more compressible kinds of
data, such as text files, but were less effective on smaller
amounts of less compressible data, such as executable
code modules.

Third, it became evident that the design compromises
necessary to implement the LZ2 algorithm in hardware
were in fact affecting data compression performance
significantly, to the point that LZ1 was in general
superior.

Some results from this early work are depicted in Table 1,
which compares hardware LZ algorithm implementations
available from Stac Electronics (STAC), Advanced
Hardware Architectures (AHA), and Infochip Systems
Incorporated (ISI). The STAC algorithm is an LZ1 with a
history size of 2048 bytes. This is compared with two
implementations of LZ2, DCLZ from AHA and a quite

similar algorithm from ISI. All three implementations 735
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Table 1  Compression results—hardware LZ1 and LZ2
algorithm implementations.

File data type DCLZ ISI STAC LZ2/1

(%) (%) (%)

ISI test data 13.7 13.6 193 0.71
Japanese Business 23.1 23.4 196 1.19
English Legal 39.8 398 334 1.19
Lotus 123 work files 453 450 358 1.26
DB4 database 46.5 474 359 131
S/370 object code 396 417 367 1.11
English Technical 414 425 404 1.03
RS/6000 object 659 655 552 1.19
80 X 86 object (MSDOS) 702 712 571 1.24
80 X 86 object (misc.) 71.0 719 381 1.23
Mandelbrot images 809 80.8 73.0 1.11

used comparable chip technology, with similar costs and
compression speeds.

The LZ2 algorithms, DCLZ and ISI, were very close in
their compression performance, but STAC did significantly
better. Results are presented as a percentage of the
original size of the given data type. Thus, 100 MB of legal
English compresses down to 39.8 MB using either DCLZ
or ISI, but will compress to 33.4 MB using STAC. To
arrive at an overall figure of merit, given this similarity
of DCLZ and ISI, the column LZ2/1 was calculated as
[(DCLZ + ISI)/2 X STAC], in effect comparing the
average compression achieved by DCLZ and IST with that
achieved using STAC.

Comparisons were done for a very extensive range
of data types, and it is clear that the two LZ2
implementations are quite similar, but LZ1 compression is
between 3% and 31% better. The one exception to this is
unfortunately from a set of test data supplied from one of
the two LZ2 manufacturers for marketing purposes. It
undoubtedly shows that some kinds of data compress
better using LZ2 than LZ1, but in our experience it is
quite anomalous, and is probably atypical.

Other fundamental differences between LZ1 and LZ2
became evident from this early work. More complex LZ2
algorithms achieved up to 20% better compression than LZ1
on large blocks of data, but simpler LZ2 implementations,
using the dictionary-freeze heuristic, could be up to 40%
worse on data blocks of the smaller sizes desirable for DASD
storage and communications systems applications.

LZ1 also tends to be highly asymmetric, in that
decompression is very easy and fast in software or
hardware, compared to compression. Most computer
systems typically read DASD data about four times more
often than writing, so this is an advantage. With LZ2, both
data compression and decompression can be much more
complex, depending on the dictionary-management
heuristic employed.

Finally, during the course of this work, the LZ1
approach was found to lend itself especially well to
extremely fast and efficient hardware implementations
involving the use of a CAM to store the history. This was
particularly attractive for use in high-performance tape
and disk storage applications, and led directly to the
development of the ALDC variant of LZ1.

CAM-based LZ1 compression hardware
There are two fundamental requirements for
implementation of the LZ1 data compression algorithm.
First, each byte of input data processed must be entered
in sequence into a history structure, the oldest one being
discarded once this history becomes full. Second, to
achieve compression, the incoming data stream must be
compared with the current history content to determine
whether it matches a sequence, or string of bytes,

which occurred recently and is thus still within the
history.

Figure 1 shows some of the internal dataflow of the
CAM-based ALDC compressor. The CAM’s parallel
processing capability not only allows extremely fast
compression; it also permits what we call an exhaustive
search. Incoming data bytes are compared to all possible
candidates in the history in one cycle. Software LZ1
algorithms must limit the search processing in order to
achieve an acceptable speed. This would be called a
partial search, since all possibilities are not in fact
considered. As a consequence, ALDC is able to achieve
comparable data compression using smaller history sizes.
This generally will also yield better compression on
smaller data block sizes, since such a history is filled, and
thus fully effective, at an earlier point in processing the
block.

The design operates by performing what we call a
SEARCH_WRITE in one associative cycle of the CAM,
for each incoming data byte. The current history is held in
the CAM, and to start a string-matching operation, the
SEARCH part of an initial SEARCH_WRITE cycle is
used to SET all bits in the PS register corresponding to
CAM locations where a match with the incoming data byte
is found.

The WS register has only a single bit set, and this
determines the CAM location to which the incoming data
byte value is stored during the WRITE part of the cycle.
Once the cycle is complete, the WS and PS registers are
shifted by one bit position, ready to process the next byte
of data.

The WRITE part of the cycle essentially does the
required LZ1 history update function by storing each
incoming byte processed, in sequence, to consecutive
CAM locations. The single bit in the WS register wraps
around to the first location after the last one is reached,
and so this design uses what we call a circular history,
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Hardware needed for ALDC-1 compressor (512-byte history):

® 512-word X 8-bit content-addressable memory (CAM array)
® Three 512-bit selector registers (WS, PS, and SS)

o Two 8-bit input data buffer registers (IDBR and B_IDBR)

® Two 512-way OR functions for MATCH and PS_SET outputs
® One 8-bit counter (matching string count)

® Resolver and output alignment circuits (not shown)

Internal dataflow outline—CAM-based ALDC compressor.

rather than the classical linear or sliding-window history
structure, as originally proposed for LZ1. The two are
equivalent in function, however.

Once a match is started, the SEARCH portions of
subsequent SEARCH_WRITE cycles are used only to
RESET the PS register bits, adjacent to history locations
where there is a mismatch. As long as at least one PS bit
is still left SET, the string-matching process continues,
wrapping around the history indefinitely, unless an upper
limit to the matching string length set by the length count
encoding format is reached. A counter is incremented
each SEARCH_WRITE cycle to track the length of the
matching data string, and the PS content is loaded into
the SS register before each shift of the PS and WS
registers. When an incoming data byte occurs which
breaks a string match, the SEARCH_WRITE cycle for
that data byte will result in all PS bits being RESET. This
condition is detected by the PS_SET output OR gate,
shown in Figure 1. The total length for this matching
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string is then available from the counter STR_CTR, while
the END position(s) of string(s) are marked by one or
more bits in register SS. One of these ending points is
selected by the resolver circuitry (not shown), and the
start point is computed by an addition of the STR_CTR
value (modulo the history size) to its address value. A
COPY_POINTER is then encoded and output for this
string, and a new string-matching operation is begun.

A more detailed operational description can be found in
[4]. Designs of this kind can process one input byte for
each SEARCH_WRITE cycle of the CAM, and are
capable of extremely fast compression speeds. IBM’s
production CMOS 5 processes now easily yield a
SEARCH_WRITE cycle time for the CAM of less than
10 ns, so sustained input data rates of 100 MB/s are
readily achieved. At compression ratios of 2X to 3X,
average output data rates thus range from 33 to 50 MB/s
and are well matched to the raw data speeds of high-
performance DASD and archival tape storage devices.

D. J. CRAFT
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<Compressed_Data> := [ 0 <LITERAL> |1 <COPY_PTR>] 1 <CONTROL>
<LITERAL> := <b><b><b><b><b><b><b><b> (8-bit byte data)
<b> =011 (the | symbol denotes OR)

<COPY_PTR> := <length_code> <displacement>

<length_code> := (the length coding can be 2, 4, 6, 8, or 12 bits)

(length_code) (field value) (COPY_PTR length)
00 (0 ( 2 bytes) |
01 (D ( 3 bytes) |
10 00 (2 ( 4 bytes) |
10 11 (3 ( 7 bytes) |
110 000 ( 6 ( 8 bytes) |
110 111 (13 (15 bytes) |
1110 0000 ( 14) (16 bytes) 1
1110 1111 ( 29) (31 bytes) !
1111 0000 0000 ( 30) (32 bytes) |
1111 1110 1110 (268) (270 bytes) |
1111 1110 1111 (269) (271 bytes)
<displacement> := <b><b><b><b><b><b><b><b><b> (9-bit)
<CONTROL> =
(ctl_code) (field value) (control specified)
1111 1111 0000 (270) (the 12-bit field
........... . values of 270 to
"""""" e 284 are reserved
1111 1111 1110 (284) codes and cannot
be used)
1111 1111 1111 (285) (End_Marker control)

(@)

( identical to ALDC_1 definition except for 10-bit displacement field )
<displacement> := <b><b><b><b><b><b><b><b><b><b> (10-bit)

(b)

(identical to ALDC_1 definition except for 11-bit displacement field )

<displacement> := <b><b><b><b><b><b><b><b><b><b><b> (11-bit)
©)

Formal definitions of ALDC algorithms: (a) ALDC-1 (512-byte
history); (b) ALDC-2 (1024-byte history); (c) ALDC-4 (2048-byte
history).

st

LZ1 decompression is relatively simple, requiring only
a byte-wide SRAM of the same size as the history. An
address counter is used, in much the same way as the
WS pointer in the CAM, to store each output data byte
sequentially into this SRAM. This satisfies the history
update requirement. Decoding of COPY_POINTERS
simply requires that the specified string be copied out of
the SRAM once its start address and the byte count have
been decoded. Output of each decompressed data byte
thus requires one READ_WRITE cycle of the SRAM,
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analogous to the CAM’s SEARCH_WRITE cycle during
compression. In the READ phase, the data byte is fetched
from its location in the history. It is then both output and
copied to the current update location in this same history
SRAM during the WRITE phase. Control is relatively
trivial, and one small counter with two SRAM address
register/counters (one for READ, one for WRITE), is all
that is required. Decompression speeds can be made faster
than compression speeds in the same technology, if
required, but there has been no demand for this as yet.

The initial IBM ALDC chips used entirely separate
decompression and compression engines [5] and were
in fact configured so that both could be operated
simultaneously. However, in our later designs, we chose to
add a conventional address decoder to the CAM so that it
can also function as an SRAM during an LZ1 decode
function. This results in a very compact hardware
encoder/decoder, which we call a CRAM design,
as it combines a compression engine CAM and a
decompression engine RAM into one silicon array. The
CRAM designs are as fast as their predecessors, but
cannot offer simultancous compression/decompression
on separate data streams.

The CRAM-based family of ALDC lossless high-speed
hardware compression designs are available either as
separate chips, or preferably as ASIC cores, for
integration on a single chip with other functions. These
are the smallest and fastest solutions in the industry,
offering speeds up to 100 MB/s and requiring a chip area
of less than 5 mm” using IBM’s current production CMOS
process. For the few customers requiring simultaneous
compression/decompression capability, we can therefore
put two such CRAM engines on the same chip, and the
silicon area needed is still modest.

ALDC encoding structure

LZ1 algorithms encode their compressed output

as a mixture of what are called LITERALS and
COPY_POINTERS. COPY_POINTERS include two
components, a byte count and a displacement. The latter
indicates to a decompressor the start location within its
history from which it must begin copying the matching
data string. LITERALS usually encode a single byte of
data which did not form part of a matching string. The
COPY_POINTERS provide compression if the length and
displacement components can be encoded in fewer bits
of information than the specified data byte string.

An LZ1 decompressor builds and maintains an identical
history copy, which it updates in the same manner as the
encoder, as each LITERAL or COPY_POINTER is
processed. Both histories are initially set empty at the
start of an operation. The encoder history becomes
different while a pointer is being generated, but once
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the decoder has processed this pointer, the histories are
identical once more.

The CAM-based designs can be used with any LZ1
encoding scheme, but always process all possible matching
data strings to find the longest, and this has implications
for optimal COPY_POINTER encoding. Extensive tests
showed that the displacement components had a tendency
to be distributed uniformly over the history address space,
so a flat binary field, base-2 log of the history size in
length, is used in ALDC to give optimal encoding for the
displacement. The length component values were found
to be very similar to classical LZ1 distributions, highly
skewed toward the low end of the range, but with some
incidence of higher values on much of our internal
IBM data.

There are two reasons for this: Many commercial
applications tend to fill unused fields with blanks or
leading-zero values; also, assemblers and compilers often
load all arrays, variables, and other storage areas with
zeros for consistency in case the areas are referenced
before being properly initialized.

Therefore, we elected to use a variable code for the
length component encoding, as published by Brent [6] and
others. A variety of encoding schemes were tried on our
data, and a logarithmic code (suggested by E. Karnin of
IBM Haifa in a private communication) was finally used
in modified form. This was limited to a maximum-length-
count component of 271 bytes, with some spare codes
reserved for future architectural use.

The scheme originally proposed by Storer and
Szymanski [7], then implemented as LZSS and published
by Bell [8], provides an effective way to differentiate
between LITERAL and COPY_POINTERS, and is also
used in the ALDC coding scheme.

Figure 2 details the ALDC encoding format for the
three defined history sizes of 512, 1024, and 2048 bytes,
which we refer to as ALDC_1, ALDC_2, and ALDC_4,
respectively. This is because the CAM-based designs all
use a 512-byte CAM history array macro, and one, two,
or four of these are laid down on the chip as needed.

ALDC_1 was the initial preferred history size, since the
CAM occupies most of the design area and we found that
doubling history size roughly doubles cost and power, but
provides a much smaller increase in data compression
ratio. As the density of our CMOS processes has
increased, it is now likely that ALDC_2 will replace
ALDC_1 as a preferred history size.

The ALDC algorithm is now the QIC-154 tape
compression standard for the quarter-inch cartridge
tape drive industry. Also, it has been accepted as the
ECMA-222, ISO/IEC 15200, and ANSI x3.280-1996 data
compression standards. References [9] and [10] contain
additional descriptive material on ALDC.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 2  Overall compression results on file
CALGARY_CORPUS, various algorithms.

Algorithm Compressed results
(bytes)
SXTERSE 1,256,864
(2.59)
1,361,713
COMPRESS (2.39)
ALDC_4 1,442,563
(2.25)
ALDC_2 1,538,420
(2.11)
ALDC_1 1,648,880
(1.97)
STAC_F 1,798,568
(1.81)
STAC_H 1,500,746
(2.17)
IIT_F 1,744,897
(1.86)
IIT_H 1,507,689
(2.16)
DCLZ 1,638,296
(1.99)
ISI 1,562,716
(2.08)
IDRC 2,005,340
(1.62)

Comparative results on the CALGARY corpus
Table 2 compares results obtained using some twelve
algorithm variants to compress the entire CALGARY
corpus of test data. The CALGARY corpus is a standard
set of mostly textual data of various kinds, but it also
contains some source code, executable code, an image
data example, and some geodesic data [11]. The original
size of the CALGARY_CORPUS file is 3251493 bytes;
it is simply the corpus files concatenated in the following
order: BIB, BOOK1, BOOK2, GEO, NEWS, OBJ1, OBJ2,
PAPER1, PAPER2, PAPER3, PAPER4, PAPERS,
PAPERSG, PIC, PROGC, PROGL, PROGP, and TRANS.

Software LZ1 algorithms from Integrated Information
Technology (IIT) and STAC Electronics (STAC), used
in some of their PC disk-doubler products, are available
in FAST and HI compression versions. These are
distinguished by use of the _F and _H suffixes,
respectively. Each of these algorithm variants uses a
2048-byte history size.

The LZ2 algorithms are represented by SXTERSE, a
complex IBM internal software implementation; DCLZ,
a hardware algorithm implementation from Advanced 739
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Full-page bitmap (FPBM) image of a U.S. Internal Revenue
Service form — file 1040FPBM.

Hardware Architectures (AHA); a very similar algorithm
from Infochip Systems Incorporated (ISI); and
COMPRESS, a standard utility available within UNIX.**

IDRC, an IBM arithmetic coder hardware algorithm
used on the 3480 and 3490 mainframe tape drives, is also
included. The overall compression ratios are shown in
brackets under the output file sizes in bytes.

Notice that ALDC_4, at the same history size of 2048
bytes, compresses better than either STAC_H or IIT_H,
but more significantly, compression for ALDC does not
fall off very much at the smaller history sizes. The faster
software implementations, STAC_F and IIT_F, however,
pay greater penalties in compression ratio for their
increased speed, and ALDC_1 still shows better
compression on only a 512-byte history size. This is
primarily because the faster software implementations do
not pursue an exhaustive search strategy over all possible
matching strings within their history structures, so as to
reduce the processing requirements and hence improve
compression speed.
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BLDC extension of ALDC for bitmap image data

Small laser printers are a common output device for
business and other personal computer system applications,
and are thus manufactured in large volumes. It is
necessary that an image to be printed be available in
bitmap form within the printer before starting to move a
sheet of paper through the print path, as the process
requires constant speed to achieve acceptable print
quality. At high resolution, a significant amount of DRAM
is required within such printers for page image storage,
and microcoded compression algorithms are used to
reduce the cost. The performance of these becomes a
serious limitation as image resolutions and print speeds
increase.

Conventional LZ1 algorithms do not perform especially
well on data of this type, but by adding a small hardware
preprocessor to recode the bitmap data stream before
feeding to an ALDC compressor, a much better overall
result is achieved.

The method adopted is simply to encode consecutive
runs of identical data bits as a single-byte-count field,

THIS PAGE PRINTED USING Microsoft Truelmage.

PRINTER CAPABILITY PAGE
(Print This File On Your Prlmer To See What You Get}

This page will help you ur of yt i printer. It
the use of white text on black background and other features which not alf printers have.

T i ‘Reverse Text printed
Reverse Text in white on tap of kt. If your printer cannot print white text on a btack
background, you will see only a biack box.

The word “Under from the phrase “Text Under Graphics* should be
completely obscured by the opaque circle on tap of it

Text Graphics

The word “Under” from the phrase “Text Under Graphics” should be
amall obscured by the transparent clrcle on top of 1. On PostScr
Graphlcs B o ; handle m‘g

picture will lock |dem|::s| to the one directly above.

.,;,9.10,12.14.18,24.36,48,7 2

The box outline to the left Is
drawn with 3 black ruling lines
and its fower right hand cormer Is
completely obscured by an opa-
que circle {i.e., graphlcs).

The numbers tothe leftrepresent
arange of point sizes between 6
and 72 point. if the size Is not
avallable in your printer, the
number will print in the nearest
avallable size.

This ruling line around the page
goes right 1o edge of the physical
page. When printed, the white
space outside the ruling fine rep-
resents the “dead” space to
which your printer can't print.

FPBM image of a laser printer test page — file ABILFPBM.

— ) —
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assuming that the data begin with at least a single 0 bit.
Provided this is so, and runs less than a length of 254
occur, the encoded bytes are simply the run-length values
for Os and 1s alternately. The value 255 is an extended
count code, indicating that the additional length of this
run over 254 bits is continued on the next byte, encoded
in the same fashion. Byte value 00 denotes a run length of
zero; it is used if the data do not begin with a 0 bit, with the
next byte value describing the length of the first run of 1s.

The code byte-stream output from this preprocessor
is then fed into a standard ALDC_1 encoder. For
decompression, an ALDC decoder generates code byte
values which are then fed into a hardware postprocessor
to reconstruct the original data bit stream.

The hardware circuitry for this additional processing
function requires an increase in silicon area that is quite
small compared to that for ALDC, and it is able to
operate at comparable speed. This combined algorithm
[12] is termed bitmapped lossless data compression, or
BLDC. Other types of preprocessor could be devised for

Lexmark Intemational Lexmark Intemationat

ARTWORK CRE [t ocerPrinter 40AW) TATOR ADOBE ILLUSTRATOR IS A TRADEMARK OF ADOBE SYSTEMS INCORPORATED.
6249 msec

Black and White Bkt
Giganteum.

Dii timuere scelus. Forte aliquies

‘scopulirecubans in vertice pastor, Roscida

oto ra e et st

ait, “hac certe caruisti nocte puella,

Phoebe, tua, celeres quae retineretcquos.”

Lacta suas repetit silvas, pharetramaue
resumit Cynthia, Luciferas ut videt alta

Quid tam grande so-
nat distento spiritus ore?
Quid parit haec rables,
quid sacer iste furor?
Verls, lo! redi vices;

raptaturinenduacacli, Perque vagas nubes
corpore tiber ¢o. Perque umbras, perque
antra feror, penetralia vatum,

Et mihi fana patent interiors Dena,.
Inmifurque animus toto quic agatur
Otympo, i

celebremus honores
Veris, et hoc subeatMusa
perennis opus.

When se perpetuo Tempus ss revolubile
gyro Iam revocat Zephyros, vere tepente,
novos. Indui-
turque brev
Tellus
Teparata iu-
ventam,

soluta
geludulce vi-
rescit humus.
Fallor? nn et
nobis redeunt
incarmina vi-
res, Ingeni-
umque mihi
‘munere veris
adest? Mu-
nere  veris
adest,
iterumque vi-
gescit ab illo
{Quis putet?)
atque aliquod
iam sibi pos-
it opus.
Castalis ante
osculos, bifidumque cacumen obermat, Et
‘mihi Pyrenen somniz nocte ferunt. Conci-
taquq arcano fervent mihi pectora motu,
Et furor, et sonitus me sacer intus agit,
Delius ipse venit. lam mihi mens liquidi

meos. Quid tam grande sonat distento
spisitus ore? Quid parit hacc rabies, quid
sacer iste furor? Veris, io! rediere vices;
celebremus honores Veris, et hoc subeat
Musa perenis opus. [am sol, Aethiopss
fugiens Tithoniaque arva, Flectitad Arc-
toas aurea lore plagas. Est breve noctis
iter, brevis est mora noctis opacac, Hor-

rids cum tenebris exulat il suis. lamque
Lycaonivsplaustrum caeleste Bodtes Non
fonga sequirtur fessus ut ante via, Nunc
etiam soltas ciroum Lovis atria toto Excu-

rotas, Et tenues ponens, radios gaudere
videtur Officitun fieri tam penetralia va-
tum breve fratris ope. “Desere,” Phoebus
uid, “thalamas, Aurora seniles; Quid fu-
vat effoeto procubuissc toro? Te manet
Aeolides viridi venator in herba; Surge;
fuos ignes altus Hymettus habet.” Flava
verecundo dea crimen in ore fatetur, Et
‘matutinos oscius urget equos.

Exuit invisam Tellus rediviva senec-
tam, Et cupit amplexus, Phocbe, subire
tuos. Et cupit, et digna est; quid enim
formosius illa, Pandit ut omniferos luxu-
riosa inus, Atque Arabum spirat messes,
ctab ore veausto Mitia cum Paphiis fon-

dit amosma rosis? Ecce, coronatur sacro
frons ardua fuco, Cingit ut Idacam pinea
turris Pim; Et vario madidos intexit flore
capillos, Floribusetvisaestpolsscplacere
suis, Floribus effusos et erat redimita

Page 1

FPBM image of a laser-printed black-and-white photograph
combined with text from a personal publishing application — file

BWPIFPBM.
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FPBM image of a computer-generated graphic image — file
GOLFFPBM.

other image data applications, for example gray scale or

color, and lossless or lossy compression.

Figures 3-7 show some example laser printer full-page
bitmap (FPBM) test images. The 1040FPBM form is
very typical, since many software applications for tax
preparation, mortgage loan processing, insurance loss or
medical claims, and so on use such printers to output
similar forms, with the individual data included.

One example each for most of the other image types is
shown, with the names of similar image files (not shown)
following in parentheses. ABILFPBM (FONTFPBM and
SPRLFPBM are similar) is a printer capability page.
BWP1FPBM (BWP2FPBM, BWP3FPBM, and
BWP4FPBM are similar) shows a personal publishing
page, with text plus a halftone image. GOLFFPBM
(MEOWFPBM is similar) is a typical business image
graphic. The SCOPFPBM example (STARFPBM is
similar) is another personal publishing page, but with text
and line drawings. File MOREFPBM (not shown) is a
typical business invoice/order form.

D. J. CRAFT
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Ventura Scoop

SPECIAL EDITION

APTOS POST TYPOGRAPHY

MARCH, 1967

Xerox
Shows Off
Ventura
Publisher at
Conference

BEVERLY HILLS (VP) — Xerox Cor-
poration has introduced version 1.1 of its
first electronic publishing software
product thatruns on industry standard:

sonal computers. Xerox chose 1he
Seybold Conference to announce the
price and availability of the pew revision

Shuttle

This Is an exampie of an AutoCAD
DXF fite converted using the
axternal DXF converter, and then
brought into Ventura Publisher
using the Load Text/Picture
function.

Conference nttendees were impressed by
the eighty-one new features, 2 of which
were added without compromising
speed of the product and its depth of
functionality.

Product now widely avaflable.

‘The Xerox Desktop Publishing Software
Serics: Ventora Publister Bditionisavail-
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Pactel), and the Xerox Busincss Software  publishing

Contervia (800)-822-8221, and the Xerox

genera] line sales force. Commented one
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Jet.
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IBM LaserPrinter 40A
16383 msec

FPBM image of a different laser-printed page combining text with
line drawings — file SCOPFPBM.

Table 3 shows results for both ALDC_1 and BLDC_1
algorithms (512-byte history size), on both 600-dpi and
1200-dpi-resolution versions of all the bitmap test image
data files. Original sizes for these were about 4 MB at
600-dpi resolution and about 16 MB for the 1200-dpi
versions. BLDC_1 shows an improvement over
ALDC_1, ranging from about 1.32 to 2.76 times
better on 600-dpi data. On 1200-dpi data,
improvement ranges from about 1.32 to 3.34 times
better.

The theoretical maximum compressions attainable from
ALDC and BLDC are about 90:1 and 2700:1 respectively,
but for most laser printers used in commercial business
applications like these, typical data compression ratios
achieved with BLDC_1 are likely to range from 7:1 to 20:1
at 600 dpt, and from about 10:1 to 40:1 at 1200 dpi. The
improved compression at the higher resolutions is largely
due to the preprocessor, which is itself more effective on
longer run lengths.
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Input (original) data stream

———m————— ¢LDC algofithm ————

Run Unicode

preprocessor preprocessor

ALDC_2
compress

Output (compressed) data stream

@

Input (compressed) data stream

e ¢LDC algorith ey

ALDC 2 Unicode Run
decompress postprocess postprocess
Output (original) data stream
(b)

Compression/decompression block diagrams —cLDC_2 algorithm
(ALDC_2 denotes 1024-byte history): (a) Compression; (b) de-
compression.

|
2

cLDC general-purpose extension of ALDC
BLDC demonstrated the effectiveness of the preprocessor
concept, but the scope of the algorithm was restricted to
data for which the preprocessor was designed. The
ALDC algorithm is still available from a BLDC chip
implementation, by disabling the preprocessor. However,
this requires some knowledge of the type of data being
processed, and this may not always be available.

Recent work has thus been directed to automatic
pre/postprocessors, which monitor a data stream
and recode data only if it is advantageous to do so.

A preprocessor monitors the input data, and its
corresponding postprocessor monitors the output.

Each uses the same heuristic to determine whether

or not it operates. When inactive, they simply pass

the data unchanged, in transparent fashion. Multiple
pre/postprocessors can then be cascaded, to extend the
range of data types over which an improvement can be
obtained without requiring any action or knowledge about
the data type from the using system.

An initial implementation of such an algorithm, called
cLDC, is shown in Figure 8. This algorithm employs two
cascaded pre/postprocessors, one designed to recode a run
of identical byte values, the other to detect and recode
Unicode-like data sequences. Unicode [13] is used by the
Java language and other Web-based applications. It is
likely to become a universal text-coding standard as the
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Table 3

Image bitmap data compression ratios (ALDC_1/BLDC_1, 600/1200 dpi). Because these files are all full-page

laser printer bitmap data, compressed as a single object, the compression ratio is an average for the entire page image.

File name ALDC_I/BLDC_I (at 600 dpi) ALDC_1/BLDC_I (at 1200 dpi)
1040FPBM (9.24:1)/(22.18:1) (13.81:1)/(41.69:1)
ABILFPBM (10.48:1)/(28.94:1) (16.68:1)/(55.69:1)
BWPIFPBM (4.56:1)/(6.55:1) (6.23:1)/(8.86:1)
BWP2FPBM (4.37:1)/(6.28:1) (5.97:1)/(8.19:1)
BWP3FPBM (4.73:1)/(6.22:1) (6.68:1)/(8.82:1)
BWP4FPBM (5.25:1)/(7.55:1) (7.78:1)/(12.35:1)
FONTFPBM (12.08:1)/(28.78:1) (18.07:1)/(52.68:1)
GOLFFPBM (12.18:1)/(20.11:1) (21.68:1)/(37.71:1)
MEOWFPBM (15.08:1)/(24.22:1) (20.36:1)/(43.77:1)
MOREFPBM (7.80:1)/(15.65:1) (13.87:1)/(22.24:1)
SCOPFPBM (5.59:1)/(9.33:1) (8.04:1)/(17.15:1)
SPRLFPBM (8.27:1)/(12.79:1) (12.87:1)/(23.88:1)
STARFPBM (5.35:1)/(8.12:1) (8.46:1)/(16.47:1)

Table 4 ALDC_2 vs. cLDC_2 compression results on CALGARY vs. U_CALGARY files. Files PAPERI1 through
PAPERG6 are concatenated to form one, and the entire corpus is concatenated in sequence to form the file ALL.

File name ASCIT ALDC 2 clLDC_2 Unicode ALDC_ 2 cLDC_2
BIB 111,261 59,524 59,525 222,524 83,344 59,533
BOOK1 768,771 452,776 452,816 1,537,544 615,344 452,786
BOOK2 610,856 315,114 315,227 1,221,714 436,006 315,122
GEO 102,400 78,308 78,440 102,400 78,308 78,440
NEWS 377,109 218,653 217,513 754,220 310,198 218,662
OBJ1 21,504 11,265 11,248 21,504 11,265 11,248
OBJ2 246,814 106,574 106,534 246,814 106,574 106,534
P1-P6 245,231 128,481 128,530 490,474 177,940 128,535
PIC 513,216 63,531 59,518 513,216 63,531 59,518
PROGC 39,611 18,816 18,929 79,224 26,304 18,827
PROGL 71,646 26,136 26,045 143,294 37,868 26,146
PROGP 49,379 17,942 17,701 98,760 26,417 17,950
TRANS 93,695 41,963 41,798 187,392 60,555 45,131
ALL 3,251,493 1,538,420 1,533,133 5,619,080 2,033,071 1,537,769

internationalization and standardization of software and
Web-based applications and e-business proliferate.

The run preprocessor simply retains the three
predecessor data byte values from its input stream.

If these are ever identical, it recodes by discarding
subsequent data bytes while the identicality persists.

An eight-bit counter is incremented for each byte
discarded, and it is inserted into the recoded data output
when the run terminates. As for BLDC, if the run is long,
a byte with the maximum count value is output, and a
fresh count begins. Long runs are thus dramatically
compressed, but they are also never seen by the ALDC
compressor. The history remains filled with more diverse
data, and the string matches upon which LZ!1 compression
depends are likely to occur more frequently once the run
ends.
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The Unicode standard uses two bytes to encode each
character, and for many text data files this results in a
data stream in which every other byte value is identical.
ALDC does compress Unicode versions of such text files
better than ASCII versions, but because the source file
is twice as large to begin with, the end result is still
about 40% larger than for ASCIIL. The ¢cLDC Unicode
preprocessor maintains the preceding nine bytes of data
from its input data stream, and operates if the five even-
ordered predecessor byte values are identical. Recoding is
then accomplished by taking input data two bytes at a
time instead of one, discarding the even-ordered byte
while this identicality persists. A reserved byte value is
inserted into the recoded output to signal the end of such
a Unicode-like data sequence. Originally, identicality
of three even-ordered predecessors was used as the
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Table 5 Bitmap image compression ratios (ALDC_2/BLDC_1/cLDC_2 at 600/1200 dpi). Because these files are all full-
page laser printer bitmap data, compressed as a single object, the compression ratio is an average for the entire page image.

File name Image resolution 600 dpi Image resolution 1200 dpi
(ALDC_2)/(BLDC_1)/(cLDC_2) (ALDC_2)/(BLDC_1)/(cLDC_2)

1040FPBM (17.12:1)/(22.18:1)/(19.55:1) (14.57:1)/(41.69:1)/(33.14:1)
ABILFPBM (20.46:1)/(28.94:1)/(24.89:1) (17.24:1)/(55.69:1)/(44.46:1)
BWP1FPBM (5.90:1)/(6.55:1)/(6.08:1) (6.41:1)/(8.86:1)/(8.28:1)

BWP2FPBM (5.53:1)/(6.28:1)/(5.75:1) (6.36:1)/(8.19:1)/(7.62:1)

BWP3FPBM (6.06:1)/(6.22:1)/(6.25:1) (6.99:1)/(8.82:1)/(8.72:1)

BWPAFPBM (7.62:1)/(7.55:1)/(7.85:1) (8.04:1)/(12.35:1)/(11.83:1)
FONTFPBM (20.77:1)/(28.78:1)/(24.05:1) (19.01:1)/(52.68:1)/(43.72:1)
GOLFFPBM (18.05:1)/(20.11:1)/(20.75:1) (22.46:1)/(37.71:1)/(39.07:1)
MEOWFPBM (17.92:1)/(24.22:1)/(23.75:1) (27.56:1)/(43.77:1)/(36.22:1)
MOREFPBM (14.21:1)/(15.65:1)/(15.44:1) (14.17:1)/(22.24:1)/(25.80:1)
SCOPFPBM (7.75:1)/(9.33:1)/(8.19:1) (8.69:1)/(17.15:1)/(13.71:1)
SPRLFPBM (9.63:1)/(12.79:1)/(10.92:1) (13.25:1)/(23.88:1)/(18.60:1)
STARFPBM (7.92:1)/(8.12:1)/(8.20:1) (8.73:1)/(16.47:1)/(16.78:1)

condition, but English ASCII text files, with words such as
“inimitable,” then invoked preprocessor operation, so it
was extended to five to reduce occurrences of this condition.

The hardware to implement both pre/postprocessors is
trivial, requiring less than 10% of the CMOS chip area of
the ALDC CRAM engine itself. Speeds of such processors
are faster than ALDC in the same technology.

Table 4 shows a comparison between ALDC_2
and cLDC_2 (using 1024-byte history) on each of
the individual files in the CALGARY suite and the
U_CALGARY suite. The latter is the same as CALGARY
except that ASCII text files are replaced with their
Unicode versions.

Table 5 shows a comparison of cLDC_2 with BLDC_1
and ALDC_2 for the suite of FPBM binary image files at
1200 dpi. At the time BLDC was designed, the preferred
history size was 512 bytes, but subsequent density
improvements in the CMOS process have made it possible
to use 1024 as the preferred history size, so cLDC_2 and
ALDC_2 are used.

Conclusions
ALDC hardware implementations are easily the fastest
available and are also easily the least expensive in terms
of silicon area. The current CRAM designs achieve
100-MB/s sustained data compression or decompression
speeds (measured as input to a compressor or output of a
decompressor), for a silicon area in IBM’s production
CMOS 5 process of less than 10% of a small chip
(7 mm X 7 mm). The newer CMOS 6 and CMOS 7
processes will reduce the area even further and provide
additional increases in speed.

The compression approaches the effectiveness of more
complex, two-pass software algorithms, yet when compared

D. J. CRAFT

to software implementations using similar process
technology, it is more than 1000 times more cost-effective,
on a silicon area/speed product basis. The small size also
allows it to be readily integrated on-chip with other
functions (a microcontroller for example), and as such

it is well suited for incorporation into many different
kinds of computer storage peripheral devices.

The BLDC extension requires little additional silicon
area, extending the applicability of these designs to binary
bitmap image data compression, in addition to the
general-purpose lossless LZ1 capability.

The cLDC extension also takes little additional silicon
area and is in many ways superior to BLDC, since it
automatically extends the capability of the general-purpose
ALDC algorithm into the bitmapped image domain by
performing almost as well as BLDC, and also considerably
improves performance on Unicode data streams.

The CRAM compression technology is clearly able to
cover an extremely wide range of applicability. Its small
size allows integration into the smallest portable, hand-
held, or wireless applications, where it is much faster and
consumes far less power than software. It is viable for
integration even within “smart” credit-card devices
themselves. At the other end of the spectrum, this same
design and algorithm are already capable of providing
more than enough throughput for our most powerful
mainframes and network file servers. Using the more
advanced IBM CMOS 6 and CMOS 7 technologies, we
can easily fit multiple engines onto a single chip. In turn,
this allows us to design ALDC compression systems which
have sustained throughput in the gigabyte-per-second
range, if required, and should effectively meet system
storage and networking application requirements into the
next millennium.
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