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This paper reports on work at IBM's Austin 
and Burlington laboratories concerning fast 
hardware implementations of general-purpose 
lossless data compression algorithms, 
particularly  for use in enhancing the data 
capacity of computer storage devices or 
systems, and transmission data rates for 
networking or telecommunications channels. 
The distinctions between lossy and lossless 
compression and static and adaptive 
compression techniques are first reviewed. 
Then, two main classes of adaptive 
Lempel-Ziv algorithm, now  known as  LZ1 and 
LZ2, are introduced. An outline of early work 
comparing these two types of algorithm is 
presented, together with some fundamental 
distinctions  which led to the choice and 
development of an IBM variant of the LZ1 
algorithm, ALDC, and its implementation in 
hardware.  The encoding format  for ALDC is 
presented, together with details of IBM's 
current  fast hardware CMOS compression 
engine designs, based on use of a content- 
addressable memory (CAM)  array.  Overall 

compression results are compared for ALDC 
and a number of other algorithms, using the 
CALGARY data compression benchmark file 
corpus. More recently, work using small 
hardware preprocessors to enhance the 
compression of ALDC on other types of data 
has shown promising results. Two such 
algorithmic extensions,  BLDC  and  cLDC,  are 
presented, with  the results obtained on 
important data types for which significant 
improvement over  ALDC  alone is achieved. 

Introduction 
Several years  ago  the  author  began work in Austin  to 
review a variety of data  compression  algorithms  for 
possible use in  improving the capacity of PCMCIA 
memory cards.  These  were  being  considered as removable 
storage devices for some of IBM's notebook computers, 
and  the initial emphasis was simply to improve  capacity 
for  FLASH versions of these  cards in particular, as the 
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costs of this  technology were  at  that  time  too high 
compared to diskettes  for such  applications. 

The  scope of the work quickly expanded, however, as it  
became  apparent  that  data  compression technology  could 
have tremendous  implications  for  some  major  IBM 
business segments.  In  particular, its deployment within 
computer systems to  enhance  DASD  storage capacity, or 
to  increase  the effective bandwidth of networking data 
channels, would present a major  competitive  advantage. 

Lossy compression  techniques,  often used on  image 
data, achieve better  compression by discarding  some 
of the original image  (for example, the fine detail 
information).  This is not, however, acceptable  for  general- 
purpose use. The  data could be financial transactions, 
accounts,  reservation  information,  executable  code  and so 
on,  and must therefore  be  identical to the original  when 
retrieved. Lossless data  compression  techniques must be 
used  in  such situations. 

Some  compression  techniques  are static-for example, 
the  CCITT  Group  3  algorithm employed  in fax data 
transmission.  This works by encoding in a more efficient 
manner a set of predefined  sequences,  or strings of data, 
which are  expected  to  occur  frequently. If these  do 
not in fact occur in the  data, such algorithms  do  not 
achieve compression.  Another example  would be a text- 
compression  algorithm  based  on  a  model of thc vocabulary 
and syntax of the English language.  This  can achieve good 
compression  on English, but  does very poorly on  French 
or  German text, executable  computer  code  modules,  or 
other  data types. 

Static  algorithms  can  be very effective  when used in 
large  databases of a relatively uniform  data type, for 
example a mailing list of customer  names  and  addresses. 
Even if constantly being  updated,  the  character  sequences 
such as “Street,”  “Avenue,”  “Jones,”  or  “Smith”  are still 
likely to occur frequently within  such a database.  For 
general-purpose  data  storage  or  transmission, however,  it 
is not possible to rely on such expectations,  and  adaptive 
methods must be  used. 

Adaptive  data  compression  techniques try to  construct 
models, or  look  for  data  sequences derived  in some 
fashion  from  recent  experience.  The  algorithm thus adapts 
dynamically to  different types of data.  There  are two 
classes of adaptive  algorithm which are generally 
acknowledged to  be  among  the most  effective,  yielding 
good  compression over a wide range of data types. These 
were  both first proposed by A.  Lempel  and J. Ziv, in  1977 
and 1978, and  are commonly now referred to as LZ1  and 
LZ2 respectively [ 1-31. 

Lempel-Ziv algorithms  are symbol-based; that is, they 
operate  on  data  one  character (usually a  byte) at a time. 
They achieve compression by locating frequently  occurring 
sequences of such symbols in the  input  data  stream, which 
are  then  recoded in more  compact  fashion.  There  can  be 

static  implementations of LZ1 and  LZ2,  but they are 
usually made  adaptive.  The main distinction  between  the 
two classes of algorithm is in the  data  structure employed 
and  the way references  to  sequences  are  coded. 

LZ1 algorithms  adapt by maintaining a sliding-window 
history buffer, which can be thought of as a byte-wide  shift 
register.  Each incoming data byte is shifted  into this 
history  in sequence,  the  oldest  entry  being  discarded  once 
the history becomes full. LZ2 uses a more complex 
dictionary structure, which is adapted by adding new 
sequences  to  it.  The  heuristic generally  used for this is to 
append  the next incoming data  character  after using a 
dictionary  entry,  to  that  entry,  thus  forming a new 
dictionary  entry.  Various heuristics are  employed  once  the 
dictionary is filled: Some  software  implementations  delete 
the least  recently  used entry, but the  approach usually 
taken in hardware is to  freeze  the  dictionary,  at  least 
while its contents (as measured by the  compression 
achieved)  seem  to  be  relevant  to  the  incoming  data 
stream. If compression falls off, such approaches  can  reset 
the dictionary and begin to  rebuild  it, using newer  data. 

For LZ1, compression is achieved by encoding backward 
references  to  the history, specifying a  location  and  a byte 
count  or  length. If it is not possible to  match  the  input  to 
a sequence in the history, LZ1  algorithms will output  data 
coded explicitly, usually one byte at a time.  Generally, 
there is a  penalty  for this: Typically an eight-bit byte is 
encoded as nine bits. Compression  can  be  obtained  once a 
match of two or  more bytes in length is found within the 
history. 

numbers,  the  data  and its length  both  being available from 
the dictionary entry.  When  the dictionary is first set  up, all 
possible single-character values are initially included.  This 
ensures  that any input  data  stream  can always be  encoded. 
As the dictionary grows, matches  are  found  to  entries in 
the  dictionary  that have longer  sequences. Typically, an 
LZ2 dictionary may be 4096 entries in  size, so a dictionary 
referencc is coded as 12 bits. Compression is then 
obtained  for  matching  entries two or  more bytes  in length. 

Some  results of early  initial studies  on  LZ1  and  LZ2  are 
presented,  leading  to  the conclusion that  LZ1 has some 
distinct advantages, in particular  for disk storage use. 
It  not only shows better  compression  on  the  smaller 
data block sizes that  are  desirable  for  random-access 
applications, it is also particularly  amenable to a fast  and 
simple CMOS  hardware  implementation  based  on  the use 
of a  content-addressable memory (CAM)  array.  This 
allows the  input  data-string-matching  operations  required 
for  LZ1  compression  to  be  performed very efficiently at 
high speeds, in less silicon area  than  that of a single  chip. 

The IBM Microelectronics Division subsequently 
implemented  the  CAM-based design approach  for  one 
variant of LZ1, called ALDC  (adaptive lossless data 

LZ2  algorithms  encode a series of dictionary  entry 
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compression).  The  ALDC  algorithm is now used  in  a large 
number of both  IBM  and  OEM  computer  storage  and 
telecommunications devices, laser  printers,  and  operating 
systems. It  has  been  accepted as  an I S 0  and  IEC 
standard,  an  ECMA  standard,  an  ANSI  standard,  and a 
QIC  standard. 

such  that capacity for a  typical computer  DASD  storage 
system can be  increased by a factor of 2 to 3 by 
deployment of this  algorithm. Many commercial  computer 
customers  often  purchase systems for which the  DASD 
cost is the  dominant  factor, ranging from  tens of 
thousands to millions of dollars  per system, so clearly this 
kind of increase in DASD  storage capacity, for less cost 
than  one  additional chip, is a  significant advance. 

More  recent work on using  small hardware 
preprocessors to improve the  compression of ALDC  for 
other  data types has shown  promising  results. The  BLDC 
algorithm, which combines  ALDC with  specialized 
preprocessor  hardware  for  high-resolution binary 
bitmapped  image  data, is described.  Results  are given for 
one typical application, in this  case a set of laser  printer 
page  image  data files. Compression  improvement over 
ALDC  ranges  from 1.5 to  more  than  three  times  better. 

Finally, the  cLDC  algorithm is described,  and  some 
application  results  are given. This  algorithm  includes a 
pair of cascaded  preprocessors, designed to operate 
automatically  and  recode a data  stream only  when their 
specific types of data  occur.  BLDC  preprocessing works 
well on only bitmapped  image  data, so for  other  data 
types the  preprocessor must be switched out, or 
compression will be worse than  ALDC.  cLDC  compression 
is never worse than  ALDC,  but  can be significantly better 
on those  data types for which the  preprocessors  operate. 
One  cLDC  preprocessor  recodes  runs of identical  data 
bytes, and this is followed by one designed to  recode  the 
Unicode  format,  an increasingly important text data 
coding standard  used by Java**  and  other  Internet-based 
applications.  ALDC  compresses  Unicode versions of 
ASCII text files some 40% worse than  the original ASCII, 
but  cLDC is able  to  remove this penalty completely. In 
addition,  cLDC  does almost  as well as BLDC on 
bitmapped  image  data, so it combines in a  single 
algorithm  the capability of ALDC  and  BLDC with 
additional  improved  performance. 

ALDC  compression  ratios  depend  on  the  data, but are 

Algorithms for DASD or networking 
applications 
Deciding on a suitable lossless algorithm  for  DASD 
capacity or  network bandwidth enhancement is not simple. 
From a  systems  viewpoint, it soon becomes  clear  that  not 
only are several  algorithm characteristics of importance, 
they tend  to vary widely among  different  candidates. 
Effective compression clearly matters,  but  other 
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considerations may in fact  sometimes outweigh  this. The 
data used for  algorithm  evaluation  often  can markedly 
influence compression  results,  and this then  leads  to  the 
difficult question of what is in fact  representative  data. 

Some of the  more  important  characteristics  to be 
considered  must  include  the  compression  ratio  and its 
robustness across different types of data,  the complexity of 
the  algorithm  (whether it is amenable  to a hardware  or a 
software  implementation),  and  the  resulting  costs  and 
speed. 

symmetry, so that  compression versus decompression 
might be  more  or  less difficult or complex to implement. 
Some  implementations also compromise  data  compression 
effectiveness  in order to achieve faster  speed,  and 
others may exhibit  a  significant falloff in compression 
performance if used on  smaller  amounts  or blocks of data. 
This  can  be  an extremely important  characteristic  for 
random-access  storage  or  telecommunications systems 
applications.  Some  algorithms achieve good  compression 
but require a  two-pass technique. An initial pass over  a 
block of data is used to determine  the  best  algorithmic 
approach  and/or  optimal  encoding  method to  be used. 
The  second  pass  then  performs  the  actual  compression 
operation. However,  this is feasible only for  buffered 
applications,  tends to be more complex to  implement, 
and  cannot achieve the  same  speeds as  a  single-pass 
approach.  Utilities such  as PKZIP  do  employ this 
approach very successfully for archival applications. 

comparisons,  and it led  to  three  general conclusions 
(although it is not possible to show  all of the  results in a 
paper of this scope).  First,  the  LZ classes of algorithm 
were confirmed  as  best for  general-purpose  use. 

Second, it was noted  that  more complex software  LZ2 
implementations  tended  to  compress  somewhat  better  than 
LZ1 on larger  amounts of more  compressible kinds of 
data, such  as  text files, but  were less effective on  smaller 
amounts of less compressible  data, such  as executable 
code  modules. 

Algorithms,  or  their  implementations,  can differ  in their 

A great  deal of initial  work was done  on  algorithm 

Third, it became  evident  that  the design compromises 
necessary to  implement  the  LZ2  algorithm in hardware 
were in fact affecting data  compression  performance 
significantly, to  the  point  that LZ1 was in general 
superior. 

which compares  hardware  LZ  algorithm  implementations 
available from  Stac  Electronics  (STAC),  Advanced 
Hardware  Architectures  (AHA),  and  Infochip Systems 
Incorporated  (ISI).  The  STAC  algorithm is an  LZ1 with  a 
history  size of 2048 bytes. This is compared with two 
implementations of LZ2,  DCLZ  from  AHA  and a quite 
similar algorithm  from  ISI. All three  implementations 

Some results from this early work are depicted in Table 1, 
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Table 1 Compression results-hardware LZ1 and LZ2 
algorithm implementations. 

IS1 test data 13.7 13.6 19.3 0.71 
Japanese Business 23.1 23.4 19.6 1.19 
English Legal 39.8 39.8 33.4 1.19 
Lotus 123 work  files 45.3 45.0 35.8 1.26 
DB4 database 46.5 41.4 35.9 1.31 
Si370 object code 39.6 41.7 36.7 1.11 
English Technical 41.4 42.5 40.4 1.03 
RSi6000 object 65.9 65.5 55.2 1.19 
80 X 86 object (MSDOS) 70.2 71.2 57.1 1.24 
80 X 86 object (misc.) 71.0 71.9 58.1 1.23 
Mandelbrot images 80.9 80.8 73.0 1.1 1 

used comparable  chip technology,  with  similar costs  and 
compression  speeds. 

The  LZ2 algorithms, DCLZ  and ISI, were very close  in 
their  compression  performance,  but  STAC  did significantly 
better.  Results  are  presented as a  percentage of the 
original size of the given data type. Thus, 100 MB of legal 
English compresses down to 39.8 MB using either  DCLZ 
or ISI, but will compress  to 33.4 MB using STAC. To 
arrive  at  an  overall figure of merit, given this  similarity 
of DCLZ  and ISI, the  column  LZ2/l was calculated as 
[(DCLZ t ISI)/2 X STAC], in effect comparing  the 
average  compression achieved by DCLZ  and IS1 with that 
achieved  using STAC. 

of data types, and it is clear  that  the two LZ2 
implementations  are  quite similar, but  LZ1  compression is 
between 3% and 31% better.  The  one  exception  to this is 
unfortunately  from a set of test  data  supplied  from  one of 
the two LZ2  manufacturers  for  marketing  purposes.  It 
undoubtedly shows that  some kinds of data  compress 
better using LZ2  than  LZ1,  but in our  experience it is 
quite  anomalous,  and is  probably  atypical. 

Other  fundamental  differences  between LZ1 and  LZ2 
became  evident  from this early work. More complex LZ2 
algorithms achieved up to 20% better compression  than LZ1 
on  large blocks of data, but simpler LZ2 implementations, 
using the dictionary-freeze heuristic, could be  up  to 40% 
worse on  data blocks of the smaller sizes desirable  for  DASD 
storage  and  communications systems applications. 

LZ1 also tends  to  be highly asymmetric,  in that 
decompression is very easy and fast in software  or 
hardware,  compared  to  compression. Most computer 
systems typically read  DASD  data  about  four  times  more 
often  than writing, so this is an advantage.  With  LZ2,  both 
data  compression  and  decompression  can  be much more 
complex, depending  on  the  dictionary-management 
heuristic employed. 

Comparisons  were  done  for a very extensive range 
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Finally, during  the  course of this  work, the  LZ1 
approach was found  to  lend itself especially well to 
extremely fast  and efficient hardware  implementations 
involving the  use of a  CAM  to  store  the history. This was 
particularly  attractive  for use  in high-performance  tape 
and disk storage  applications,  and  led directly to  the 
development of the  ALDC  variant of LZ1. 

CAM-based LZ1 compression hardware 
There  are two fundamental  requirements  for 
implementation of the  LZ1  data  compression  algorithm. 
First,  each byte of input  data  processed must be  entered 
in sequence  into  a history structure,  the  oldest  one  being 
discarded  once this  history becomes full. Second,  to 
achieve compression,  the incoming data  stream must be 
compared with the  current history content  to  determine 
whether  it  matches a sequence,  or  string of bytes, 
which occurred recently and is thus still  within the 
history. 

CAM-based  ALDC  compressor.  The CAM’s parallel 
processing  capability not only allows extremely fast 
compression; it also permits what we call an exhaustive 
search.  Incoming  data bytes are  compared  to all  possible 
candidates in the history in  one cycle. Software  LZ1 
algorithms must limit the  search processing  in order  to 
achieve an  acceptable  speed.  This would be called a 
partial  search, since  all  possibilities are  not in fact 
considered.  As a consequence,  ALDC is able to achieve 
comparable  data  compression using smaller history sizes. 
This generally will also yield better  compression  on 
smaller data block sizes, since  such a history is filled, and 
thus fully effective, at an earlier  point in  processing the 
block. 

The design operates by performing  what we call a 

Figure 1 shows some of the  internal dataflow of  the 

SEARCH-WRITE in one associative cycle of the  CAM, 
for  each incoming data byte. The  current history is held in 
the  CAM,  and  to  start  a  string-matching  operation,  the 
SEARCH  part of an  initial SEARCH-WRITE cycle is 
used to  SET all  bits  in the PS register  corresponding  to 
CAM  locations  where a match with the incoming data byte 
is found. 

The WS register has only a single bit set,  and this 
determines  the  CAM  location to which the incoming data 
byte  value is stored  during  the  WRITE  part of the cycle. 
Once  the cycle is complete,  the WS and PS registers  are 
shifted by one bit position, ready to  process  the next byte 
of data. 

The  WRITE  part of the cycle essentially does  the 
required  LZ1 history update  function by storing  each 
incoming  byte processed, in sequence,  to consecutive 
CAM  locations.  The single  bit in the WS register wraps 
around  to  the first location  after  the last one is reached, 
and so this  design  uses  what we call a  circular history, 
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Input data reg (IDBR) Data in 

"i String counter (STR-CTR) I 
Hardware needed for ALDC-I compressor (5 12-byte history): 

512-word X %hit content-addressable memory  (CAM array) 
Three 512-hit selector registers (WS, PS, and SS) 
Two  %hit  input data buffer registers (IDBR and  B-IDBR) 
Two 5 12-way  OR functions for MATCH  and PS-SET outputs 
One &bit counter (matching string count) 
Resolver and output alignment circuits (not shown) 

rather  than  thc classical linear  or sliding-window history 
structure, as originally proposed  for LZ1. The two are 
equivalent in function, however. 

Oncc a match is started,  the  SEARCH  portions of 
subsequent  SEARCH-WRITE cycles are used only to 
RESET  the PS register bits, adjacent  to history locations 
where  there is a mismatch.  As  long  as at least one PS bit 
is still left SET, the  string-matching proccss continues, 
wrapping  around  the history indefinitely,  unless an  upper 
limit to  the  matching string length  set by the  length  count 
encoding  format is reached.  A  counter is incremented 
each  SEARCH-WRITE cycle to track the  length of the 
matching data  string,  and  the PS content is loaded  into 
the SS register  before  each shift of thc PS and WS 
registers.  When an  incoming data byte occurs which 
breaks a string match,  the  SEARCH-WRITE cycle for 
that  data byte will result in all PS bits being  RESET.  This 
condition is detected by the PS-SET output  OR  gate, 
shown in Figure 1. The  total  length  for this matching 

string is then available from  the  counter STR-CTR, while 
the END position(s) of string(s)  are  marked by one  or 
more bits in register SS. One of these  ending  points is 
selected by the resolver  circuitry (not  shown),  and  the 
start  point is computed by an  addition of the STR-CTR 
value (modulo  the history  size) to its address value. A 
COPY-POINTER is then  encoded  and  output  for  this 
string, and  a new string-matching  operation is begun. 

[4]. Designs of this kind  can  process one  input byte for 
each  SEARCH-WRITE cycle of the  CAM,  and  are 
capable of extremely fast Compression speeds. IBM's 
production  CMOS 5 processes now easily yield a 
SEARCH-WRITE cycle time  for  the  CAM of less than 
10 ns, so sustained  input  data  rates of 100 MB/s arc 
readily  achieved. At  compression  ratios of 2X to 3X,  

average  output  data  rates  thus  rangc  from 33 to 50 MB/s 
and  are well matched  to  the raw data  speeds of high- 
performance DASD and archival tape  storage devices. 

A  more  detailed  operational  description  can be found in 
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<Compressed-Data> : = [ 0 <LITERAL> I 1 <COPYPTR>] 1 <CONTROL> 
<LITERAL> := <b><b><b><b><b><b><b><b> @bit byte data) 

<b> := 0 I 1 (the I symbol denotes OR) 

<COPY-F'TR> : = <length-code> <displacement> 
<length-code> := (the length coding can be 2, 4, 6, X, or 12 bits) 

(length-code) (field value) (COPY-PTR length) 
00 ( 0) ( 2 bytes) I 
01 ( 1) ( 3 bytes) I 
10 00 ( 2) ( 4 bytes) I 

10  11 ( 5 )  ( 7 bytes) I 
110 000 ( 6) ( X bytes) I 

110 111 ( 13) 
11  10 0000 ( 14) 

1110  1111 ( 29) ( 31 bytes) I 
1111 0000 0000 ( 30) (32 bytes) I 

1111  1110  1110 (268) 
1111  1110  1111 (269) 

. . . .  . . .  . . . . . .  . . . .  . . .  . . . . . .  

. . . . . .  . . .  . . . . . .  . . . . . .  . . .  . . . . . .  
( 15 bytes) I 
( 16 bytes) I 

. . . . . . . .  . . .  . . . . . .  . . . . . . . .  . . .  . . . . . .  

. . . . . . . . . . . .  . . .  . . . . . .  . . . . . . . . . . . .  . . .  . . . . . .  
(270 bytes) I 
(271 bytes) 

<displacement> := <b><b><b><b><b><b><b><b><b> (9-bit) 

<CONTROL> : = 

(ctl-code) (field value) (control specified) 

1111 
. . . .  . . . .  
1111 

1111 

1 111 0000 
. . . . . . .  . . . . . . .  
111  1110 

111  1111 

(270) 

(2x4) 

(the 12-bit field 
. . .  values of 270 to 

284 are reserved 

be used) 
codes and cannot 

. . .  

( identical to ALDC-1 definition except for 10-bit displacement field ) 
<displacemeno := <b><b><b><b><bz<b><b><b><b><b> (10-bit) 

(b) 

( identical to ALDC-I definition except for 1 l-bit displacement field ) 
<displacement> := <b><b><b><b><b><b><b><b><b><b><b> (ll-bit) 

(C) 

LZ1  decompression is relatively  simple, requiring only 
a byte-wide SRAM of the  same size as the history. An 
address  counter is used, in  much the  same way as  the 
WS pointer in the  CAM, to store  each  output  data byte 
sequentially  into this SRAM.  This satisfies the history 
update  requirement.  Decoding of COPY-POINTERS 
simply requires  that  the specified  string be  copied  out of 
the  SRAM  once its start  address  and  the byte count have 
been  decoded.  Output of each  decompressed  data byte 

738 thus  requires  one  READ-WRITE cycle of the  SRAM, 

analogous to the CAM's SEARCH-WRITE cycle during 
compression.  In  the  READ  phase,  the  data byte is fetched 
from its location in the history. It is then  both  output  and 
copied to  the  current  update  location in this same history 
SRAM  during  the  WRITE  phase.  Control is relatively 
trivial, and one small counter with two SRAM  address 
registericounters (one for  READ, one for  WRITE), is all 
that is required.  Decompression  speeds can be  made  faster 
than  compression  speeds in the  same technology, if 
required,  but  there has been  no  demand  for this  as  yet. 

The initial IBM  ALDC  chips used entirely  separate 
decompression  and  compression  engines [5] and  were 
in fact configured so that  both could be  operated 
simultaneously. However,  in our  later designs, we chose to 
add  a  conventional  address  decoder to the  CAM so that it 
can also function as an  SRAM  during an LZ1  decode 
function.  This  results in a very compact  hardware 
encoderidecoder, which we call a  CRAM design, 
as  it combines  a  compression  engine  CAM  and  a 
decompression  engine  RAM  into  one silicon  array. The 
CRAM designs are as  fast  as their  predecessors,  but 
cannot  offer  simultaneous  compressionidecompression 
on  separate  data  streams. 

hardware compression  designs are available either as 
separate  chips,  or  preferably as ASIC  cores,  for 
integration on a single chip with other  functions.  These 
are  the smallest and  fastest  solutions in the industry, 
offering speeds  up to 100 MBis and  requiring a chip  area 
of less than 5 mm2 using  IBM's current  production  CMOS 
process. For  the few customers  requiring  simultaneous 
compressionidecompression capability, we can therefore 
put two such CRAM  engines  on  the  same chip, and  the 
silicon area  needed is still modest. 

The  CRAM-based family of ALDC lossless high-speed 

ALDC encoding  structure 
LZ1  algorithms  encode  their  compressed  output 
as a mixture of what  are  called  LITERALS  and 
COPY-POINTERS.  COPY-POINTERS  include two 
components,  a byte count  and  a  displacement.  The  latter 
indicates  to  a  decompressor  the  start  location within  its 
history from which it must  begin  copying the  matching 
data string. LITERALS usually encode  a single  byte of 
data which did  not  form  part of a matching  string.  The 
COPY-POINTERS provide compression if the length and 
displacement  components  can  be  encoded in fewer  bits 
of information  than  the specified data byte string. 

history copy, which it updates in the  same  manner as the 
encoder, as each  LITERAL  or  COPY-POINTER is 
processed.  Both  histories  are initially set  empty  at  the 
start of an  operation.  The  encoder history becomes 
different while a pointer is being  generated,  but  once 

An LZ1 decompressor builds and  maintains  an  identical 
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the  decoder  has  processed this pointer,  the  histories  are 
identical  once  more. 

The  CAM-based designs  can be used with any LZ1 
encoding  scheme, but always process all  possible matching 
data strings to find the longest, and this  has  implications 
for  optimal  COPY-POINTER  encoding. Extensive tests 
showed that  the  displacement  components  had a tendency 
to  be  distributed uniformly  over the history address  space, 
so a flat binary  field,  base-2 log of the history size in 
length, is used in ALDC  to give optimal  encoding  for  the 
displacement.  The length component values were  found 
to  be very similar to classical LZ1  distributions, highly 
skewed  toward the low end of the  range,  but with some 
incidence of higher values on much of our  internal 
IBM  data. 

There  are two reasons  for this: Many commercial 
applications  tend  to fill unused fields with blanks or 
leading-zero values;  also, assemblers  and  compilers  often 
load all arrays,  variables, and  other  storage  areas with 
zeros  for consistency in case the  areas  are  referenced 
before being properly initialized. 

length  component  encoding, as  published by Brent [6] and 
others.  A variety of encoding  schemes  were  tried on our 
data,  and  a  logarithmic  code (suggested by E. Karnin of 
IBM  Haifa in a  private  communication) was finally used 
in modified form.  This was limited to  a  maximum-length- 
count  component of 271 bytes, with some  spare  codes 
reserved  for  future  architectural use. 

Therefore, we elected  to  use  a  variable  code  for  the 

The  scheme originally proposed by Storer  and 
Szymanski [7], then  implemented as LZSS and  published 
by Bell [8], provides an effective way to  differentiate 
between  LITERAL  and  COPY-POINTERS,  and is also 
used  in the  ALDC coding scheme. 

Figure 2 details  the  ALDC  encoding  format  for  the 
three defined  history sizes of 512, 1024, and 2048 bytes, 
which we refer  to as ALDC-1, ALDC-2, and ALDC-4, 
respectively. This is because  the  CAM-based designs all 
use a 512-byte CAM history array  macro,  and  one, two, 
or  four of these  are laid down on the  chip as needed. 

ALDC-1 was the initial preferred history size,  since the 
CAM  occupies most of the design area  and we found  that 
doubling history size roughly doubles cost and power,  but 
provides a much smaller  increase in data  compression 
ratio. As the density of our  CMOS  processes  has 
increased, it is now likely that ALDC-2 will replacc 
ALDC-1 as a  preferred history  size. 

The  ALDC algorithm is now the QIC-154 tape 
compression  standard  for  the  quarter-inch  cartridge 
tape drive industry. Also,  it  has been  accepted as the 
ECMA-222,  ISO/IEC 15200, and ANSI x3.280-1996 data 
compression  standards.  References [9] and  [lo]  contain 
additional descriptive material on ALDC. 
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Table 2 Overall compression results on file 
CALGARY-CORPUS, various algorithms. 

Algorithm Compressed results 
(bytes) 

SXTERSE 

COMPRESS 

ALDC-4 

ALDC-2 

ALDC-1 

STAC-F 

STAC-H 

I IT-F 

IIT-H 

DCLZ 

IS1 

IDRC 

1,256,864 
(2.59) 

1,361,713 
(2.39) 

1,442,563 
(2.25) 

1,538,420 
(2.11) 

1,648,880 
(1.97) 

1,798,568 
(1.81) 

1,500,746 
(2.17) 

1,744,897 
(1.86) 

1,507,689 
(2.16) 

1,638,296 
(1.99) 

1,562,716 
(2.08) 

2,005,340 
(1.62) 

Comparative  results on the CALGARY corpus 
Table 2 compares results obtained using some twelve 
algorithm  variants to compress  the  entire  CALGARY 
corpus of test  data.  The  CALGARY  corpus is a  standard 
set of mostly textual  data of various  kinds, but it  also 
contains  some  source  code,  executable  code,  an image 
data example, and  some  geodesic  data [ 1 I]. The original 
size of the  CALGARY-CORPUS file is 3251493 bytes; 
it is simply the  corpus files concatenated in the following 
order: BIB, BOOK1,  BOOK2,  GEO, NEWS, OBJ1,  OBJ2, 
PAPERl,  PAPER2,  PAPER3,  PAPER4,  PAPERS, 
PAPER6,  PIC,  PROGC,  PROGL,  PROGP,  and  TRANS. 

Software LZ1 algorithms  from  Integrated  Information 
Technology (IIT)  and  STAC  Electronics  (STAC), used 
in some of their PC disk-doubler  products,  are available 
in FAST  and HI compression versions. These  are 
distinguished by use of the -F and -H suffixes, 
respectively. Each of these  algorithm  variants uses a 
2048-byte history  size. 

The  LZ2  algorithms  are  represented by SXTERSE,  a 
complex IBM  internal  software  implementation;  DCLZ, 
a  hardware  algorithm  implementation  from  Advanced 739 
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Hardware  Architectures  (AHA);  a very similar algorithm 
from  Infochip Systems Incorporated (ISI); and 
COMPRESS, a  standard utility  available  within UNIX.** 

IDRC,  an  IBM  arithmetic  coder  hardware  algorithm 
used on  the 3480 and 3490 mainframe  tape drives, is also 
included.  The overall compression  ratios  are shown  in 
brackets  under  the  output file sizes  in  bytes. 

Notice  that ALDC-4, at  the  same history size of 2048 
bytes, compresses  better  than  either STAC-H or IIT-H, 
but  more significantly, compression  for  ALDC  does  not 
fall off very much at  the  smaller history  sizes. The  faster 
software  implementations, STAC-F and IIT-F, however, 
pay greater  penalties in compression  ratio  for  their 
increased  speed,  and ALDC-1 still shows better 
compression on only a 512-byte  history  size. This is 
primarily because  the  faster  software  implementations  do 
not  pursue  an exhaustive search  strategy over all possible 
matching  strings within their history structures, so as to 
reduce  the processing requirements  and  hence improve 
compression  speed. 

BLDC extension of ALDC for bitmap  image data 
Small laser  printers  are a common  output device for 
business and  other  personal  computer system applications, 
and  are  thus  manufactured in  large  volumes. It is 
necessary that  an image to  be  printed be available  in 
bitmap  form within the  printer  before  starting  to move a 
sheet of paper  through  the  print  path, as the process 
requires  constant  speed  to achieve acceptable  print 
quality. At high resolution, a significant amount of DRAM 
is required within  such printers  for page  image storage, 
and  microcoded  compression  algorithms  are  used  to 
reduce  the cost. The  performance of these  becomes  a 
serious  limitation as image resolutions  and  print  speeds 
increase. 

Conventional LZ1 algorithms  do  not  perform especially 
well on  data of this  type, but by adding a small hardware 
preprocessor  to  recode  the  bitmap  data  stream  before 
feeding  to  an  ALDC  compressor,  a much better overall 
result is achieved. 

The  method  adopted is simply to  encode consecutive 
runs of identical  data bits  as a single-byte-count field, 
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assuming that  the  data begin  with at  least  a single 0 bit. 
Provided  this is so, and  runs less than  a  length of 254 
occur,  the  encoded bytes are simply the  run-length values 
for 0s and 1s alternately.  The value 255  is an  extended 
count  code,  indicating  that  the  additional  length of this 
run over 254 bits is continued on the next byte, encoded 
in the  same  fashion. Byte value  00 denotes  a  run  length of 
zero;  it is used if the  data  do  not begin with a 0 bit, with the 
next byte value describing the length of the first run of 1s. 

The  code  byte-stream  output  from this preprocessor 
is then  fed  into  a  standard ALDC-1 encoder.  For 
decompression,  an  ALDC  decoder  generates  code byte 
values which are  then  fed  into  a  hardware  postprocessor 
to  reconstruct  the original data bit stream. 

The  hardware circuitry for this additional processing 
function  requires  an  increase in silicon area  that is quite 
small compared  to  that  for  ALDC,  and it is able  to 
operate  at  comparable  speed.  This  combined  algorithm 
[I21 is termed  bitmapped lossless data  compression,  or 
BLDC. Other types of preprocessor could be devised for 

nat distento spiritus ore? 
Quid tam g r a d  so- 

Quid parit haec rables, 
quid sacer late iuror? 
Veri-, io1 rediere viceq 
celebremu. honores 
Veris,ethocsubeatMusa 
perennis OPUS. 

L 

other image data  applications,  for example gray scale or 
color,  and lossless or lossy compression. 

Figures 3-7 show some example  laser  printer full-page 
bitmap  (FPBM)  test images. The 1040FPBM form is 
very typical, since many software  applications for tax 
preparation,  mortgage  loan processing, insurance loss or 
medical  claims, and so on use such printers to output 
similar  forms, with the individual data  included. 

One example each  for most of the  other image  types is 
shown, with the  names of similar  image files (not shown) 
following in parentheses. ABILFPBM (FONTFPBM and 
SPRLFPBM  are  similar) is a  printer capability  page. 
BWPlFPBM  (BWP2FPBM,  BWP3FPBM,  and 
BWP4FPBM  are  similar) shows a  personal publishing 
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Table 3 shows results  for  both ALDC-1 and BLDC-1 
algorithms (512-byte  history  size), on  both 600-dpi and 
1200-dpi-resolution  versions of all the  bitmap  test  image 
data files. Original sizes for  these  were  about 4 MB  at 
600-dpi resolution  and  about 16 MB  for  the 1200-dpi 
versions. BLDC-1 shows an  improvement over 
ALDC-1, ranging from  about 1.32 to 2.76 times 
better  on 600-dpi data.  On 1200-dpi data, 
improvement  ranges  from  about 1.32 to 3.34 times 
better. 

The  theoretical maximum compressions  attainable  from 
ALDC  and  BLDC  are  about 90:l and  2700:l respectively, 
but  for most laser  printers  used in commercial business 
applications like these, typical data  compression  ratios 
achieved with BLDC-1 are likely to  range  from  7:l  to  20:l 
at 600 dpi, and  from  about 10:l to 40:l at 1200 dpi. The 
improved  compression  at  the  higher  resolutions is largely 
due  to  the  preprocessor, which is itself more effective on 

742 longer  run  lengths. 

Input (original) data stream r- cLm algorithm PI q"l p z - l  
preprocessor - preprocessor - compress 

Output (compressed) data stream 4 
(a) 

Input (compressed) data stream r-. CLDCalgorithm .- 

decompress 

output (original) data stream -J 
(b) 

1 Compressioddecompression block diagrams-cLDC-2 algorithm 
(ALDC-2 denotes 1024-byte history): (a) Compression; (b) de- 1 compression. 

cLDC  general-purpose  extension of ALDC 
BLDC  demonstrated  the effectiveness of the  preprocessor 
concept,  but  the  scope of the  algorithm was restricted  to 
data  for which the  preprocessor was designed.  The 
ALDC  algorithm is still available from a BLDC  chip 
implementation, by disabling the  preprocessor. However, 
this  requires  some knowledge of the type of data  being 
processed,  and this may not always be available. 

Recent work has  thus  been  directed  to  automatic 
preipostprocessors, which monitor a data  stream 
and  recode  data only if it is advantageous  to do so. 
A preprocessor  monitors  the  input  data,  and its 
corresponding  postprocessor  monitors  the  output. 
Each  uses  the  same  heuristic  to  determine  whether 
or  not it operates.  When inactive,  they simply pass 
the  data  unchanged, in transparent  fashion.  Multiple 
preipostprocessors  can  then  be  cascaded,  to  extend  the 
range of data types  over which an  improvement  can  be 
obtained  without  requiring any action  or knowledge about 
the  data  type  from  the using  system. 

An initial implementation of such an  algorithm, called 
cLDC, is shown  in Figure 8. This  algorithm employs two 
cascaded  preipostprocessors,  one  designed  to  recode a run 
of identical byte  values, the  other  to  detect  and  recode 
Unicode-like  data  sequences.  Unicode [13] is used by the 
Java language  and  other  Web-based  applications.  It is 
likely to  become a universal  text-coding standard as the 
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Table 3 Image bitmap data compression ratios (ALDC-I/BLDC-1, 600/1200 dpi). Because these files are all full-page 
laser printer bitmap data, compressed as a single object, the compression ratio is an average for the  entire page image. 

File name ALDC-IIBLDC-I (at 600 dpi) ALDC-IIBLDC-1 (at 1200 dpi) 

1040FPBM 
ABILFPBM 
BWPlFPBM 
BWP2FPBM 
BWP3FPBM 
BWP4FPBM 
FONTFPBM 
GOLFFPBM 
MEOWFPBM 
MOREFPBM 
SCOPFPBM 
SPRLFPBM 
STARFPBM 

(9.24:1)/(22.18:1 
(10.48:1)1(28.94:1 
(4.56:1)/(6.55:1) 
(4.37:1)/(6.28:1) 
(4.73:1)/(6.22:1) 
(5.25:1)/(7.55:1) 

(12.08:1)/(28.78:1 
(12.18:1)/(20.11:1 

1 
1 

(15.08:1)/(24.22:1) 
(7.80:1)/(15.65:1) 
(5.59:1)/(9.33:1) 
(8.27:1)/(12.79:1) 
(5.35:1)/(8.12:1) 

(13.81:1)/(41.69:1) 
(16.68:1)/(55.69:1) 
(6.23:1)/(8.86:1) 

(6.68:1)/(8.82:1) 
(7.78:1)/(12.35:1) 

(18.07:1)/(52.68:1) 
(21.68:1)/(37.71:1) 
(20.36:1)/(43.77:1) 
(13.87:1)/(22.24:1) 
(8.04:1)/(17.15:1) 

(12.87:1)/(23.88:1) 
(8.46:1)/(16.47:1) 

(5.97:1)1(8.19:1) 

Table 4 ALDC-2 vs. cLDC-2 compression results on CALGARY vs. U-CALGARY files. Files PAPER1 through 
PAPER6 are  concatenated to form one, and the  entire corpus is concatenated in sequence to form the file ALL. 

BIB 
BOOK1 
BOOK2 
GEO 
NEWS 
OBJ 1 
OBJ2 
P1-P6 
PIC 
PROGC 
PROGL 
PROGP 
TRANS 
ALL 

111,261 
768,771 
610,856 
102,400 
377,100 

21,504 
246,814 
245,231 
513,216 
39,611 
71,646 
49,379 
93,695 

3,251,493 

59,524 
452,776 
315,114 

78,308 
218,653 

1 1,265 
106,574 
128,481 
63,531 
18,816 
26,136 
17,942 
41,963 

1,538,420 

59,525 
452,816 
315,227 

78,440 
217,513 

1 1,248 
106,534 
128,530 
59,518 
18,929 
26,045 
17,701 
41,798 

1,533,133 

222,524 
1,537,544 
1,221,714 

102,400 
754,220 

21,504 
246,814 
490,474 
513,216 

79,224 
143,294 
98,760 

187,392 
5,619,080 

83,344 
615,344 
436,006 

78,308 
310,198 

11,265 
106,574 
177,940 
63,531 
26,304 
37,868 
26,417 
60,555 

2,033,071 

59,533 
452,786 
315,122 

78,440 
218,662 

11,248 
106,534 
128,535 
59,518 
18,827 
26,146 
17,950 
45,131 

1,537,769 

internationalization  and  standardization of software  and 
Web-based  applications  and e-business proliferate. 

The  run  preprocessor simply retains  the  three 
predecessor  data byte  values from its input  stream. 
If these  are  ever  identical, it recodes by discarding 
subsequent  data bytes while the identicality  persists. 

An eight-bit counter is incremented  for  each byte 
discarded,  and  it is inserted  into  the  recoded  data  output 
when the  run  terminates. As for  BLDC, if the  run is long, 
a byte with the maximum count value is output,  and  a 
fresh count begins.  Long runs  are  thus  dramatically 
compressed,  but they are also  never seen by the  ALDC 
compressor.  The history remains filled with more diverse 
data,  and  the  string  matches upon which LZ1  compression 
depends  are likely to occur more  frequently  once  the run 
ends. 

The  Unicode  standard  uses two bytes to  encode  each 
character,  and  for many  text data files this results in a 
data  stream in which every other byte  value is identical. 
ALDC  does  compress  Unicode versions of such text files 
better  than  ASCII versions, but  because  the  source file 
is twice as large  to begin  with, the  end  result is still 
about 40% larger  than  for  ASCII.  The  cLDC  Unicode 
preprocessor  maintains  the  preceding  nine bytes of data 
from its input  data  stream,  and  operates if the five even- 
ordered  predecessor byte  values are  identical.  Recoding is 
then  accomplished by taking  input  data two bytes at  a 
time  instead of one,  discarding  the  even-ordered byte 
while  this  identicality  persists. A reserved  byte  value is 
inserted  into  the  recoded  output  to signal the  end of such 
a  Unicode-like  data  sequence. Originally,  identicality 
of three  even-ordered  predecessors was used  as the 743 
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Table 5 Bitmap image compression ratios (ALDC-2IBLDC-l/cLDC-2 at 600/1200 dpi). Because these files are all full- 
page laser printer bitmap data, compressed as a single object, the compression ratio is  an average for the entire page image. 

File name 

~ 

1040FPBM 
ABILFPBM 
BWPlFPBM 
BWP2FPBM 
BWPSFPBM 
BWP4FPBM 
FONTFPBM 
GOLFFPBM 
MEOWFPBM 
MOREFPBM 
SCOPFPBM 
SPRLFPBM 
STARFPBM 

Image resolution 600 dpi Image resolution 1200 dpi 
(ALDC-2)/(BLDC-l)/(cLDC-2) (ALDC-2)/(BLDC-l)/(cLDC-2) 

(17.12:1)/(22.lS:l)/(19.S5:1) (14.S7:1)/(41.69:1)/(33.14:1) 
(20.46:1)/(28.94:1)/(24.89:1) (17.24:1)/(55.69:1)/(44.46:1) 
(5.90:1)/(6.55:1)/(6.08:1) (6.41:l)/(X.X6:1)/(8.28:1) 
(5.S3:1)/(6.28:1)/(S.75:1) (6.36:1)/(X.19:1)/(7.62:1) 
(6.06:1)/(6.22:1)/(6.25:1) (6.99:l)/(X.X2:l)/(X.72:1) 
(7.62:1)/(7.55:1)/(7.85:1) (8.04:l)/(12.3S:1)/(11.83:1) 
(20.77:1)/[28.7X:l)/(24.05:1) (19.01:1)/(S2.6X:l)/(43.72:1) 
(18.05:1)/(20.11:1)/(20.75:1) (22.46:1)/(37.71:1)/(39.07:1) 
(17.92:1)/[24.22:1)/(23.75:1) (27..56:1)/(43.77:1)/(36.22:1) 
(14.21:1)/(15.6S:1)/(15.44:1) (14.17:1)/(22.24:1)/(25.80:1) 
(7.7S:1)/(9.33:1)/(8.19:1) (8.69:1)/(17.l5:1)/(13.71:l) 
(9.63:1)/(12.79:1)/(10.92:1) (13.25:1)/(23.X8:1)/(18.60:1) 
(7.92:l)/(X.12:l)/(8.20:1) (8.73:1)/(16.47:l)/(16.78:1) 

condition,  but English ASCII text files, with words  such  as 
“inimitable,”  then invoked preprocessor  operation, so it 
was extended to five to reduce  occurrences of this condition. 

The  hardware  to  implement  both  preipostprocessors is 
trivial, requiring less than  10% of the  CMOS  chip  area of 
the  ALDC  CRAM  engine itself. Speeds of such processors 
are  faster  than  ALDC in the  same technology. 

Table 4 shows a  comparison  between ALDC-2 
and cLDC-2 (using  1024-byte  history) on  each of 
the individual files in the  CALGARY  suite  and  the 
U-CALGARY suite.  The  latter is the  same as CALGARY 
except that  ASCII text files are  replaced with their 
Unicode versions. 

Table 5 shows a  comparison of cLDC-2 with BLDC-1 
and ALDC-2 for  the  suite of FPBM binary image files at 
1200 dpi.  At  the  time  BLDC was designed,  the  preferred 
history  size was 512 bytes, but  subsequent density 
improvements in the  CMOS  process have made it possible 
to  use 1024 as the  preferred history  size, so cLDC-2 and 
ALDC-2 are  used. 

Conclusions 
ALDC  hardware  implementations  are easily the  fastest 
available and  are also easily the least  expensive in terms 
of silicon area.  The  current  CRAM designs  achieve 
100-MBis sustained  data  compression  or  decompression 
speeds  (measured as input  to a compressor  or  output of a 
decompressor),  for  a silicon area in IBM’s production 
CMOS 5 process of less than  10% of a small chip 
(7 mm X 7 mm).  The  newer  CMOS 6 and  CMOS 7 
processes will reduce  the  area even further  and provide 
additional  increases in speed. 

The  compression  approaches  the effectiveness of more 
744 complex,  two-pass software algorithms,  yet  when compared 

to  software  implementations using similar process 
technology, it is more  than 1000 times  more cost-effective, 
on a silicon areaispeed  product basis. The small size also 
allows it to  be readily integrated  on-chip with other 
functions  (a  microcontroller  for  example),  and as such 
it is well suited  for  incorporation  into many different 
kinds of computer  storage  peripheral devices. 

The  BLDC extension requires  little  additional silicon 
area,  extending  the applicability of these designs to binary 
bitmap  image  data  compression, in addition  to  the 
general-purpose lossless LZ1 capability. 

area  and is in many ways superior  to  BLDC, since  it 
automatically  extends  the capability of the  general-purpose 
ALDC  algorithm  into  the  bitmapped  image  domain by 
performing  almost as well as BLDC,  and also  considerably 
improves performance  on  Unicode  data  streams. 

The  CRAM  compression technology is clearly able  to 
cover an extremely  wide range of applicability. Its small 
size allows integration  into  the smallest portable,  hand- 
held, or wireless applications,  where it is much faster  and 
consumes  far less power than software. It is viable for 
integration even  within “smart”  credit-card devices 
themselves. At  the  other  end of the  spectrum, this same 
design and algorithm are  already  capable of providing 
more  than  enough  throughput  for  our most  powerful 
mainframes  and  network file servers. Using  the  more 
advanced IBM  CMOS 6 and  CMOS 7 technologies, we 
can easily fit multiple engines  onto  a single chip. In turn, 
this allows us to design ALDC  compression systems which 
have sustained  throughput in the  gigabyte-per-second 
range, if required,  and  should effectively meet system 
storage  and  networking  application  requirements  into  the 
next millennium. 

The  cLDC extension  also takes  little  additional silicon 
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