
A fast by D. J. Craft

hardware data
compression
algorithm and
some algorithmic
extensions

This paper reports on work at IBM's Austin
and Burlington laboratories concerning fast
hardware implementations of general-purpose
lossless data compression algorithms,
particularly for use in enhancing the data
capacity of computer storage devices or
systems, and transmission data rates for
networking or telecommunications channels.
The distinctions between lossy and lossless
compression and static and adaptive
compression techniques are first reviewed.
Then, two main classes of adaptive
Lempel-Ziv algorithm, now known as LZ1 and
LZ2, are introduced. An outline of early work
comparing these two types of algorithm is
presented, together with some fundamental
distinctions which led to the choice and
development of an IBM variant of the LZ1
algorithm, ALDC, and its implementation in
hardware. The encoding format for ALDC is
presented, together with details of IBM's
current fast hardware CMOS compression
engine designs, based on use of a content-
addressable memory (CAM) array. Overall

compression results are compared for ALDC
and a number of other algorithms, using the
CALGARY data compression benchmark file
corpus. More recently, work using small
hardware preprocessors to enhance the
compression of ALDC on other types of data
has shown promising results. Two such
algorithmic extensions, BLDC and cLDC, are
presented, with the results obtained on
important data types for which significant
improvement over ALDC alone is achieved.

Introduction
Several years ago the author began work in Austin to
review a variety of data compression algorithms for
possible use in improving the capacity of PCMCIA
memory cards. These were being considered as removable
storage devices for some of IBM's notebook computers,
and the initial emphasis was simply to improve capacity
for FLASH versions of these cards in particular, as the

An carllcr ver\ion o f this paper was puhlishcd in the procccdingt of a wurkrhop
held Jwnt ly w~th t he IEBE Data Compression Conlerence in Snowbird, Utah,
March 31, IYYS, chairman Rohcrt L. Renncr.

IBM J . RES. DEVELOP. VOL. 42 NO. h NOVEMBER 1998 D. I. CRAFT

733

734

costs of this technology were at that time too high
compared to diskettes for such applications.

The scope of the work quickly expanded, however, as it
became apparent that data compression technology could
have tremendous implications for some major IBM
business segments. In particular, its deployment within
computer systems to enhance DASD storage capacity, or
to increase the effective bandwidth of networking data
channels, would present a major competitive advantage.

Lossy compression techniques, often used on image
data, achieve better compression by discarding some
of the original image (for example, the fine detail
information). This is not, however, acceptable for general-
purpose use. The data could be financial transactions,
accounts, reservation information, executable code and so
on, and must therefore be identical to the original when
retrieved. Lossless data compression techniques must be
used in such situations.

Some compression techniques are static-for example,
the CCITT Group 3 algorithm employed in fax data
transmission. This works by encoding in a more efficient
manner a set of predefined sequences, or strings of data,
which are expected to occur frequently. If these do
not in fact occur in the data, such algorithms do not
achieve compression. Another example would be a text-
compression algorithm based on a model of thc vocabulary
and syntax of the English language. This can achieve good
compression on English, but does very poorly on French
or German text, executable computer code modules, or
other data types.

Static algorithms can be very effective when used in
large databases of a relatively uniform data type, for
example a mailing list of customer names and addresses.
Even if constantly being updated, the character sequences
such as “Street,” “Avenue,” “Jones,” or “Smith” are still
likely to occur frequently within such a database. For
general-purpose data storage or transmission, however, it
is not possible to rely on such expectations, and adaptive
methods must be used.

Adaptive data compression techniques try to construct
models, or look for data sequences derived in some
fashion from recent experience. The algorithm thus adapts
dynamically to different types of data. There are two
classes of adaptive algorithm which are generally
acknowledged to be among the most effective, yielding
good compression over a wide range of data types. These
were both first proposed by A. Lempel and J. Ziv, in 1977
and 1978, and are commonly now referred to as LZ1 and
LZ2 respectively [1-31.

Lempel-Ziv algorithms are symbol-based; that is, they
operate on data one character (usually a byte) at a time.
They achieve compression by locating frequently occurring
sequences of such symbols in the input data stream, which
are then recoded in more compact fashion. There can be

static implementations of LZ1 and LZ2, but they are
usually made adaptive. The main distinction between the
two classes of algorithm is in the data structure employed
and the way references to sequences are coded.

LZ1 algorithms adapt by maintaining a sliding-window
history buffer, which can be thought of as a byte-wide shift
register. Each incoming data byte is shifted into this
history in sequence, the oldest entry being discarded once
the history becomes full. LZ2 uses a more complex
dictionary structure, which is adapted by adding new
sequences to it. The heuristic generally used for this is to
append the next incoming data character after using a
dictionary entry, to that entry, thus forming a new
dictionary entry. Various heuristics are employed once the
dictionary is filled: Some software implementations delete
the least recently used entry, but the approach usually
taken in hardware is to freeze the dictionary, at least
while its contents (as measured by the compression
achieved) seem to be relevant to the incoming data
stream. If compression falls off, such approaches can reset
the dictionary and begin to rebuild it, using newer data.

For LZ1, compression is achieved by encoding backward
references to the history, specifying a location and a byte
count or length. If it is not possible to match the input to
a sequence in the history, LZ1 algorithms will output data
coded explicitly, usually one byte at a time. Generally,
there is a penalty for this: Typically an eight-bit byte is
encoded as nine bits. Compression can be obtained once a
match of two or more bytes in length is found within the
history.

numbers, the data and its length both being available from
the dictionary entry. When the dictionary is first set up, all
possible single-character values are initially included. This
ensures that any input data stream can always be encoded.
As the dictionary grows, matches are found to entries in
the dictionary that have longer sequences. Typically, an
LZ2 dictionary may be 4096 entries in size, so a dictionary
referencc is coded as 12 bits. Compression is then
obtained for matching entries two or more bytes in length.

Some results of early initial studies on LZ1 and LZ2 are
presented, leading to the conclusion that LZ1 has some
distinct advantages, in particular for disk storage use.
It not only shows better compression on the smaller
data block sizes that are desirable for random-access
applications, it is also particularly amenable to a fast and
simple CMOS hardware implementation based on the use
of a content-addressable memory (CAM) array. This
allows the input data-string-matching operations required
for LZ1 compression to be performed very efficiently at
high speeds, in less silicon area than that of a single chip.

The IBM Microelectronics Division subsequently
implemented the CAM-based design approach for one
variant of LZ1, called ALDC (adaptive lossless data

LZ2 algorithms encode a series of dictionary entry

D J. CRAFT IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

compression). The ALDC algorithm is now used in a large
number of both IBM and OEM computer storage and
telecommunications devices, laser printers, and operating
systems. It has been accepted as an I S 0 and IEC
standard, an ECMA standard, an ANSI standard, and a
QIC standard.

such that capacity for a typical computer DASD storage
system can be increased by a factor of 2 to 3 by
deployment of this algorithm. Many commercial computer
customers often purchase systems for which the DASD
cost is the dominant factor, ranging from tens of
thousands to millions of dollars per system, so clearly this
kind of increase in DASD storage capacity, for less cost
than one additional chip, is a significant advance.

More recent work on using small hardware
preprocessors to improve the compression of ALDC for
other data types has shown promising results. The BLDC
algorithm, which combines ALDC with specialized
preprocessor hardware for high-resolution binary
bitmapped image data, is described. Results are given for
one typical application, in this case a set of laser printer
page image data files. Compression improvement over
ALDC ranges from 1.5 to more than three times better.

Finally, the cLDC algorithm is described, and some
application results are given. This algorithm includes a
pair of cascaded preprocessors, designed to operate
automatically and recode a data stream only when their
specific types of data occur. BLDC preprocessing works
well on only bitmapped image data, so for other data
types the preprocessor must be switched out, or
compression will be worse than ALDC. cLDC compression
is never worse than ALDC, but can be significantly better
on those data types for which the preprocessors operate.
One cLDC preprocessor recodes runs of identical data
bytes, and this is followed by one designed to recode the
Unicode format, an increasingly important text data
coding standard used by Java** and other Internet-based
applications. ALDC compresses Unicode versions of
ASCII text files some 40% worse than the original ASCII,
but cLDC is able to remove this penalty completely. In
addition, cLDC does almost as well as BLDC on
bitmapped image data, so it combines in a single
algorithm the capability of ALDC and BLDC with
additional improved performance.

ALDC compression ratios depend on the data, but are

Algorithms for DASD or networking
applications
Deciding on a suitable lossless algorithm for DASD
capacity or network bandwidth enhancement is not simple.
From a systems viewpoint, it soon becomes clear that not
only are several algorithm characteristics of importance,
they tend to vary widely among different candidates.
Effective compression clearly matters, but other

IBM J . RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

considerations may in fact sometimes outweigh this. The
data used for algorithm evaluation often can markedly
influence compression results, and this then leads to the
difficult question of what is in fact representative data.

Some of the more important characteristics to be
considered must include the compression ratio and its
robustness across different types of data, the complexity of
the algorithm (whether it is amenable to a hardware or a
software implementation), and the resulting costs and
speed.

symmetry, so that compression versus decompression
might be more or less difficult or complex to implement.
Some implementations also compromise data compression
effectiveness in order to achieve faster speed, and
others may exhibit a significant falloff in compression
performance if used on smaller amounts or blocks of data.
This can be an extremely important characteristic for
random-access storage or telecommunications systems
applications. Some algorithms achieve good compression
but require a two-pass technique. An initial pass over a
block of data is used to determine the best algorithmic
approach and/or optimal encoding method to be used.
The second pass then performs the actual compression
operation. However, this is feasible only for buffered
applications, tends to be more complex to implement,
and cannot achieve the same speeds as a single-pass
approach. Utilities such as PKZIP do employ this
approach very successfully for archival applications.

comparisons, and it led to three general conclusions
(although it is not possible to show all of the results in a
paper of this scope). First, the LZ classes of algorithm
were confirmed as best for general-purpose use.

Second, it was noted that more complex software LZ2
implementations tended to compress somewhat better than
LZ1 on larger amounts of more compressible kinds of
data, such as text files, but were less effective on smaller
amounts of less compressible data, such as executable
code modules.

Algorithms, or their implementations, can differ in their

A great deal of initial work was done on algorithm

Third, it became evident that the design compromises
necessary to implement the LZ2 algorithm in hardware
were in fact affecting data compression performance
significantly, to the point that LZ1 was in general
superior.

which compares hardware LZ algorithm implementations
available from Stac Electronics (STAC), Advanced
Hardware Architectures (AHA), and Infochip Systems
Incorporated (ISI). The STAC algorithm is an LZ1 with a
history size of 2048 bytes. This is compared with two
implementations of LZ2, DCLZ from AHA and a quite
similar algorithm from ISI. All three implementations

Some results from this early work are depicted in Table 1,

735

D. J. CRAFT

736

Table 1 Compression results-hardware LZ1 and LZ2
algorithm implementations.

IS1 test data 13.7 13.6 19.3 0.71
Japanese Business 23.1 23.4 19.6 1.19
English Legal 39.8 39.8 33.4 1.19
Lotus 123 work files 45.3 45.0 35.8 1.26
DB4 database 46.5 41.4 35.9 1.31
Si370 object code 39.6 41.7 36.7 1.11
English Technical 41.4 42.5 40.4 1.03
RSi6000 object 65.9 65.5 55.2 1.19
80 X 86 object (MSDOS) 70.2 71.2 57.1 1.24
80 X 86 object (misc.) 71.0 71.9 58.1 1.23
Mandelbrot images 80.9 80.8 73.0 1.1 1

used comparable chip technology, with similar costs and
compression speeds.

The LZ2 algorithms, DCLZ and ISI, were very close in
their compression performance, but STAC did significantly
better. Results are presented as a percentage of the
original size of the given data type. Thus, 100 MB of legal
English compresses down to 39.8 MB using either DCLZ
or ISI, but will compress to 33.4 MB using STAC. To
arrive at an overall figure of merit, given this similarity
of DCLZ and ISI, the column LZ2/l was calculated as
[(DCLZ t ISI)/2 X STAC], in effect comparing the
average compression achieved by DCLZ and IS1 with that
achieved using STAC.

of data types, and it is clear that the two LZ2
implementations are quite similar, but LZ1 compression is
between 3% and 31% better. The one exception to this is
unfortunately from a set of test data supplied from one of
the two LZ2 manufacturers for marketing purposes. It
undoubtedly shows that some kinds of data compress
better using LZ2 than LZ1, but in our experience it is
quite anomalous, and is probably atypical.

Other fundamental differences between LZ1 and LZ2
became evident from this early work. More complex LZ2
algorithms achieved up to 20% better compression than LZ1
on large blocks of data, but simpler LZ2 implementations,
using the dictionary-freeze heuristic, could be up to 40%
worse on data blocks of the smaller sizes desirable for DASD
storage and communications systems applications.

LZ1 also tends to be highly asymmetric, in that
decompression is very easy and fast in software or
hardware, compared to compression. Most computer
systems typically read DASD data about four times more
often than writing, so this is an advantage. With LZ2, both
data compression and decompression can be much more
complex, depending on the dictionary-management
heuristic employed.

Comparisons were done for a very extensive range

D. J. CRAFT

Finally, during the course of this work, the LZ1
approach was found to lend itself especially well to
extremely fast and efficient hardware implementations
involving the use of a CAM to store the history. This was
particularly attractive for use in high-performance tape
and disk storage applications, and led directly to the
development of the ALDC variant of LZ1.

CAM-based LZ1 compression hardware
There are two fundamental requirements for
implementation of the LZ1 data compression algorithm.
First, each byte of input data processed must be entered
in sequence into a history structure, the oldest one being
discarded once this history becomes full. Second, to
achieve compression, the incoming data stream must be
compared with the current history content to determine
whether it matches a sequence, or string of bytes,
which occurred recently and is thus still within the
history.

CAM-based ALDC compressor. The CAM’s parallel
processing capability not only allows extremely fast
compression; it also permits what we call an exhaustive
search. Incoming data bytes are compared to all possible
candidates in the history in one cycle. Software LZ1
algorithms must limit the search processing in order to
achieve an acceptable speed. This would be called a
partial search, since all possibilities are not in fact
considered. As a consequence, ALDC is able to achieve
comparable data compression using smaller history sizes.
This generally will also yield better compression on
smaller data block sizes, since such a history is filled, and
thus fully effective, at an earlier point in processing the
block.

The design operates by performing what we call a

Figure 1 shows some of the internal dataflow of the

SEARCH-WRITE in one associative cycle of the CAM,
for each incoming data byte. The current history is held in
the CAM, and to start a string-matching operation, the
SEARCH part of an initial SEARCH-WRITE cycle is
used to SET all bits in the PS register corresponding to
CAM locations where a match with the incoming data byte
is found.

The WS register has only a single bit set, and this
determines the CAM location to which the incoming data
byte value is stored during the WRITE part of the cycle.
Once the cycle is complete, the WS and PS registers are
shifted by one bit position, ready to process the next byte
of data.

The WRITE part of the cycle essentially does the
required LZ1 history update function by storing each
incoming byte processed, in sequence, to consecutive
CAM locations. The single bit in the WS register wraps
around to the first location after the last one is reached,
and so this design uses what we call a circular history,

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1YYX

PS shift WS shift
chain chain

SS
latches Cam array

" I =
T + +- Location 51 1 - 0

f- "-t Location 5 10 - 0
0 - - -
- - -

r
e " N " N N " 4 . "

S x : X X e z
0 " N Y cy " N cy c y - .
1
V Location 001
e
r - +-e Location 000

- -
- - - -
PS-SET

"t output "-t
(OR)

IDBR backup (B-IDBR)
Match "

output
(OR)

Input data reg (IDBR) Data in

"i String counter (STR-CTR) I
Hardware needed for ALDC-I compressor (5 12-byte history):

512-word X %hit content-addressable memory (CAM array)
Three 512-hit selector registers (WS, PS, and SS)
Two %hit input data buffer registers (IDBR and B-IDBR)
Two 5 12-way OR functions for MATCH and PS-SET outputs
One &bit counter (matching string count)
Resolver and output alignment circuits (not shown)

rather than thc classical linear or sliding-window history
structure, as originally proposed for LZ1. The two are
equivalent in function, however.

Oncc a match is started, the SEARCH portions of
subsequent SEARCH-WRITE cycles are used only to
RESET the PS register bits, adjacent to history locations
where there is a mismatch. As long as at least one PS bit
is still left SET, the string-matching proccss continues,
wrapping around the history indefinitely, unless an upper
limit to the matching string length set by the length count
encoding format is reached. A counter is incremented
each SEARCH-WRITE cycle to track the length of the
matching data string, and the PS content is loaded into
the SS register before each shift of thc PS and WS
registers. When an incoming data byte occurs which
breaks a string match, the SEARCH-WRITE cycle for
that data byte will result in all PS bits being RESET. This
condition is detected by the PS-SET output OR gate,
shown in Figure 1. The total length for this matching

string is then available from the counter STR-CTR, while
the END position(s) of string(s) are marked by one or
more bits in register SS. One of these ending points is
selected by the resolver circuitry (not shown), and the
start point is computed by an addition of the STR-CTR
value (modulo the history size) to its address value. A
COPY-POINTER is then encoded and output for this
string, and a new string-matching operation is begun.

[4]. Designs of this kind can process one input byte for
each SEARCH-WRITE cycle of the CAM, and are
capable of extremely fast Compression speeds. IBM's
production CMOS 5 processes now easily yield a
SEARCH-WRITE cycle time for the CAM of less than
10 ns, so sustained input data rates of 100 MB/s arc
readily achieved. At compression ratios of 2X to 3X,

average output data rates thus rangc from 33 to 50 MB/s
and are well matched to the raw data speeds of high-
performance DASD and archival tape storage devices.

A more detailed operational description can be found in

IBM J . RES. DEVELOP. VOL. 42 N O . 6 NOVEMBER 1998 D. J. CRAFT

<Compressed-Data> : = [0 <LITERAL> I 1 <COPYPTR>] 1 <CONTROL>
<LITERAL> := @bit byte data)

 := 0 I 1 (the I symbol denotes OR)

<COPY-F'TR> : = <length-code> <displacement>
<length-code> := (the length coding can be 2, 4, 6, X, or 12 bits)

(length-code) (field value) (COPY-PTR length)
00 (0) (2 bytes) I
01 (1) (3 bytes) I
10 00 (2) (4 bytes) I

10 11 (5) (7 bytes) I
110 000 (6) (X bytes) I

110 111 (13)
11 10 0000 (14)

1110 1111 (29) (31 bytes) I
1111 0000 0000 (30) (32 bytes) I

1111 1110 1110 (268)
1111 1110 1111 (269)

.

.
(15 bytes) I
(16 bytes) I

.

.
(270 bytes) I
(271 bytes)

<displacement> := (9-bit)

<CONTROL> : =

(ctl-code) (field value) (control specified)

1111
.
1111

1111

1 111 0000
.
111 1110

111 1111

(270)

(2x4)

(the 12-bit field
. . . values of 270 to

284 are reserved

be used)
codes and cannot

. . .

(identical to ALDC-1 definition except for 10-bit displacement field)
<displacemeno := <bz (10-bit)

(b)

(identical to ALDC-I definition except for 1 l-bit displacement field)
<displacement> := (ll-bit)

(C)

LZ1 decompression is relatively simple, requiring only
a byte-wide SRAM of the same size as the history. An
address counter is used, in much the same way as the
WS pointer in the CAM, to store each output data byte
sequentially into this SRAM. This satisfies the history
update requirement. Decoding of COPY-POINTERS
simply requires that the specified string be copied out of
the SRAM once its start address and the byte count have
been decoded. Output of each decompressed data byte

738 thus requires one READ-WRITE cycle of the SRAM,

analogous to the CAM's SEARCH-WRITE cycle during
compression. In the READ phase, the data byte is fetched
from its location in the history. It is then both output and
copied to the current update location in this same history
SRAM during the WRITE phase. Control is relatively
trivial, and one small counter with two SRAM address
registericounters (one for READ, one for WRITE), is all
that is required. Decompression speeds can be made faster
than compression speeds in the same technology, if
required, but there has been no demand for this as yet.

The initial IBM ALDC chips used entirely separate
decompression and compression engines [5] and were
in fact configured so that both could be operated
simultaneously. However, in our later designs, we chose to
add a conventional address decoder to the CAM so that it
can also function as an SRAM during an LZ1 decode
function. This results in a very compact hardware
encoderidecoder, which we call a CRAM design,
as it combines a compression engine CAM and a
decompression engine RAM into one silicon array. The
CRAM designs are as fast as their predecessors, but
cannot offer simultaneous compressionidecompression
on separate data streams.

hardware compression designs are available either as
separate chips, or preferably as ASIC cores, for
integration on a single chip with other functions. These
are the smallest and fastest solutions in the industry,
offering speeds up to 100 MBis and requiring a chip area
of less than 5 mm2 using IBM's current production CMOS
process. For the few customers requiring simultaneous
compressionidecompression capability, we can therefore
put two such CRAM engines on the same chip, and the
silicon area needed is still modest.

The CRAM-based family of ALDC lossless high-speed

ALDC encoding structure
LZ1 algorithms encode their compressed output
as a mixture of what are called LITERALS and
COPY-POINTERS. COPY-POINTERS include two
components, a byte count and a displacement. The latter
indicates to a decompressor the start location within its
history from which it must begin copying the matching
data string. LITERALS usually encode a single byte of
data which did not form part of a matching string. The
COPY-POINTERS provide compression if the length and
displacement components can be encoded in fewer bits
of information than the specified data byte string.

history copy, which it updates in the same manner as the
encoder, as each LITERAL or COPY-POINTER is
processed. Both histories are initially set empty at the
start of an operation. The encoder history becomes
different while a pointer is being generated, but once

An LZ1 decompressor builds and maintains an identical

D. I. CRAFT IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

the decoder has processed this pointer, the histories are
identical once more.

The CAM-based designs can be used with any LZ1
encoding scheme, but always process all possible matching
data strings to find the longest, and this has implications
for optimal COPY-POINTER encoding. Extensive tests
showed that the displacement components had a tendency
to be distributed uniformly over the history address space,
so a flat binary field, base-2 log of the history size in
length, is used in ALDC to give optimal encoding for the
displacement. The length component values were found
to be very similar to classical LZ1 distributions, highly
skewed toward the low end of the range, but with some
incidence of higher values on much of our internal
IBM data.

There are two reasons for this: Many commercial
applications tend to fill unused fields with blanks or
leading-zero values; also, assemblers and compilers often
load all arrays, variables, and other storage areas with
zeros for consistency in case the areas are referenced
before being properly initialized.

length component encoding, as published by Brent [6] and
others. A variety of encoding schemes were tried on our
data, and a logarithmic code (suggested by E. Karnin of
IBM Haifa in a private communication) was finally used
in modified form. This was limited to a maximum-length-
count component of 271 bytes, with some spare codes
reserved for future architectural use.

Therefore, we elected to use a variable code for the

The scheme originally proposed by Storer and
Szymanski [7], then implemented as LZSS and published
by Bell [8], provides an effective way to differentiate
between LITERAL and COPY-POINTERS, and is also
used in the ALDC coding scheme.

Figure 2 details the ALDC encoding format for the
three defined history sizes of 512, 1024, and 2048 bytes,
which we refer to as ALDC-1, ALDC-2, and ALDC-4,
respectively. This is because the CAM-based designs all
use a 512-byte CAM history array macro, and one, two,
or four of these are laid down on the chip as needed.

ALDC-1 was the initial preferred history size, since the
CAM occupies most of the design area and we found that
doubling history size roughly doubles cost and power, but
provides a much smaller increase in data compression
ratio. As the density of our CMOS processes has
increased, it is now likely that ALDC-2 will replacc
ALDC-1 as a preferred history size.

The ALDC algorithm is now the QIC-154 tape
compression standard for the quarter-inch cartridge
tape drive industry. Also, it has been accepted as the
ECMA-222, ISO/IEC 15200, and ANSI x3.280-1996 data
compression standards. References [9] and [lo] contain
additional descriptive material on ALDC.

IBM I RES. DEVELOP. VOL. 42 N O . h NOVEMBER 1998

Table 2 Overall compression results on file
CALGARY-CORPUS, various algorithms.

Algorithm Compressed results
(bytes)

SXTERSE

COMPRESS

ALDC-4

ALDC-2

ALDC-1

STAC-F

STAC-H

I IT-F

IIT-H

DCLZ

IS1

IDRC

1,256,864
(2.59)

1,361,713
(2.39)

1,442,563
(2.25)

1,538,420
(2.11)

1,648,880
(1.97)

1,798,568
(1.81)

1,500,746
(2.17)

1,744,897
(1.86)

1,507,689
(2.16)

1,638,296
(1.99)

1,562,716
(2.08)

2,005,340
(1.62)

Comparative results on the CALGARY corpus
Table 2 compares results obtained using some twelve
algorithm variants to compress the entire CALGARY
corpus of test data. The CALGARY corpus is a standard
set of mostly textual data of various kinds, but it also
contains some source code, executable code, an image
data example, and some geodesic data [1 I]. The original
size of the CALGARY-CORPUS file is 3251493 bytes;
it is simply the corpus files concatenated in the following
order: BIB, BOOK1, BOOK2, GEO, NEWS, OBJ1, OBJ2,
PAPERl, PAPER2, PAPER3, PAPER4, PAPERS,
PAPER6, PIC, PROGC, PROGL, PROGP, and TRANS.

Software LZ1 algorithms from Integrated Information
Technology (IIT) and STAC Electronics (STAC), used
in some of their PC disk-doubler products, are available
in FAST and HI compression versions. These are
distinguished by use of the -F and -H suffixes,
respectively. Each of these algorithm variants uses a
2048-byte history size.

The LZ2 algorithms are represented by SXTERSE, a
complex IBM internal software implementation; DCLZ,
a hardware algorithm implementation from Advanced 739

D. J . CRAFT

This page printed using Microsoft Truelrnage

................. "

.......... _ ".

.......... .. "

Full-page bitmap (FPBM) image of a U.S. Internal Revenue
! Service form - file 1040FPBM.

~~~~~~~~~~ 

8 ~~~~~~~~ 

Hardware  Architectures  (AHA);  a very similar algorithm 
from  Infochip Systems Incorporated (ISI); and 
COMPRESS, a  standard utility  available  within UNIX.** 

IDRC,  an  IBM  arithmetic  coder  hardware  algorithm 
used on  the 3480 and 3490 mainframe  tape drives, is also 
included.  The overall compression  ratios  are shown  in 
brackets  under  the  output file sizes  in  bytes. 

Notice  that ALDC-4, at  the  same history size of 2048 
bytes, compresses  better  than  either STAC-H or IIT-H, 
but  more significantly, compression  for  ALDC  does  not 
fall off very much at  the  smaller history  sizes. The  faster 
software  implementations, STAC-F and IIT-F, however, 
pay greater  penalties in compression  ratio  for  their 
increased  speed,  and ALDC-1 still shows better 
compression on only a 512-byte  history  size. This is 
primarily because  the  faster  software  implementations  do 
not  pursue  an exhaustive search  strategy over all possible 
matching  strings within their history structures, so as to 
reduce  the processing requirements  and  hence improve 
compression  speed. 

BLDC extension of ALDC for bitmap  image data 
Small laser  printers  are a common  output device for 
business and  other  personal  computer system applications, 
and  are  thus  manufactured in  large  volumes. It is 
necessary that  an image to  be  printed be available  in 
bitmap  form within the  printer  before  starting  to move a 
sheet of paper  through  the  print  path, as the process 
requires  constant  speed  to achieve acceptable  print 
quality. At high resolution, a significant amount of DRAM 
is required within  such printers  for page  image storage, 
and  microcoded  compression  algorithms  are  used  to 
reduce  the cost. The  performance of these  becomes  a 
serious  limitation as image resolutions  and  print  speeds 
increase. 

Conventional LZ1 algorithms  do  not  perform especially 
well on  data of this  type, but by adding a small hardware 
preprocessor  to  recode  the  bitmap  data  stream  before 
feeding  to  an  ALDC  compressor,  a much better overall 
result is achieved. 

The  method  adopted is simply to  encode consecutive 
runs of identical  data bits  as a single-byte-count field, 

D. J .  CRAFT IBM J. RES. DEVELOP. VOL. 42 N O .  6 NOVEMBER 1qYR 



assuming that  the  data begin  with at  least  a single 0 bit. 
Provided  this is so, and  runs less than  a  length of 254 
occur,  the  encoded bytes are simply the  run-length values 
for 0s and 1s alternately.  The value 255  is an  extended 
count  code,  indicating  that  the  additional  length of this 
run over 254 bits is continued on the next byte, encoded 
in the  same  fashion. Byte value  00 denotes  a  run  length of 
zero;  it is used if the  data  do  not begin with a 0 bit, with the 
next byte value describing the length of the first run of 1s. 

The  code  byte-stream  output  from this preprocessor 
is then  fed  into  a  standard ALDC-1 encoder.  For 
decompression,  an  ALDC  decoder  generates  code byte 
values which are  then  fed  into  a  hardware  postprocessor 
to  reconstruct  the original data bit stream. 

The  hardware circuitry for this additional processing 
function  requires  an  increase in silicon area  that is quite 
small compared  to  that  for  ALDC,  and it is able  to 
operate  at  comparable  speed.  This  combined  algorithm 
[I21 is termed  bitmapped lossless data  compression,  or 
BLDC. Other types of preprocessor could be devised for 

nat distento spiritus ore? 
Quid tam g r a d  so- 

Quid parit haec rables, 
quid sacer late iuror? 
Veri-, io1 rediere viceq 
celebremu. honores 
Veris,ethocsubeatMusa 
perennis OPUS. 

L 

other image data  applications,  for example gray scale or 
color,  and lossless or lossy compression. 

Figures 3-7 show some example  laser  printer full-page 
bitmap  (FPBM)  test images. The 1040FPBM form is 
very typical, since many software  applications for tax 
preparation,  mortgage  loan processing, insurance loss or 
medical  claims, and so on use such printers to output 
similar  forms, with the individual data  included. 

One example each  for most of the  other image  types is 
shown, with the  names of similar  image files (not shown) 
following in parentheses. ABILFPBM (FONTFPBM and 
SPRLFPBM  are  similar) is a  printer capability  page. 
BWPlFPBM  (BWP2FPBM,  BWP3FPBM,  and 
BWP4FPBM  are  similar) shows a  personal publishing 

741 

IBM J. RES, DEVELOP.  VOL 42 NO 6 NOVEMBER 1998 D. J. CRAFT 



Ventura Scoop 
SPECIAL EDmON 

1 

Shuttle 

lesktop Publishinn-Again 
" 

I 1 line drawings - file SCOPF'PBM. 
FPBM  image of a different laser-printed page combining text with 

Table 3 shows results  for  both ALDC-1 and BLDC-1 
algorithms (512-byte  history  size), on  both 600-dpi and 
1200-dpi-resolution  versions of all the  bitmap  test  image 
data files. Original sizes for  these  were  about 4 MB  at 
600-dpi resolution  and  about 16 MB  for  the 1200-dpi 
versions. BLDC-1 shows an  improvement over 
ALDC-1, ranging from  about 1.32 to 2.76 times 
better  on 600-dpi data.  On 1200-dpi data, 
improvement  ranges  from  about 1.32 to 3.34 times 
better. 

The  theoretical maximum compressions  attainable  from 
ALDC  and  BLDC  are  about 90:l and  2700:l respectively, 
but  for most laser  printers  used in commercial business 
applications like these, typical data  compression  ratios 
achieved with BLDC-1 are likely to  range  from  7:l  to  20:l 
at 600 dpi, and  from  about 10:l to 40:l at 1200 dpi. The 
improved  compression  at  the  higher  resolutions is largely 
due  to  the  preprocessor, which is itself more effective on 

742 longer  run  lengths. 

Input (original) data stream r- cLm algorithm PI q"l p z - l  
preprocessor - preprocessor - compress 

Output (compressed) data stream 4 
(a) 

Input (compressed) data stream r-. CLDCalgorithm .- 

decompress 

output (original) data stream -J 
(b) 

1 Compressioddecompression block diagrams-cLDC-2 algorithm 
(ALDC-2 denotes 1024-byte history): (a) Compression; (b) de- 1 compression. 

cLDC  general-purpose  extension of ALDC 
BLDC  demonstrated  the effectiveness of the  preprocessor 
concept,  but  the  scope of the  algorithm was restricted  to 
data  for which the  preprocessor was designed.  The 
ALDC  algorithm is still available from a BLDC  chip 
implementation, by disabling the  preprocessor. However, 
this  requires  some knowledge of the type of data  being 
processed,  and this may not always be available. 

Recent work has  thus  been  directed  to  automatic 
preipostprocessors, which monitor a data  stream 
and  recode  data only if it is advantageous  to do so. 
A preprocessor  monitors  the  input  data,  and its 
corresponding  postprocessor  monitors  the  output. 
Each  uses  the  same  heuristic  to  determine  whether 
or  not it operates.  When inactive,  they simply pass 
the  data  unchanged, in transparent  fashion.  Multiple 
preipostprocessors  can  then  be  cascaded,  to  extend  the 
range of data types  over which an  improvement  can  be 
obtained  without  requiring any action  or knowledge about 
the  data  type  from  the using  system. 

An initial implementation of such an  algorithm, called 
cLDC, is shown  in Figure 8. This  algorithm employs two 
cascaded  preipostprocessors,  one  designed  to  recode a run 
of identical byte  values, the  other  to  detect  and  recode 
Unicode-like  data  sequences.  Unicode [13] is used by the 
Java language  and  other  Web-based  applications.  It is 
likely to  become a universal  text-coding standard as the 

D. J.  CRAFT IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



Table 3 Image bitmap data compression ratios (ALDC-I/BLDC-1, 600/1200 dpi). Because these files are all full-page 
laser printer bitmap data, compressed as a single object, the compression ratio is an average for the  entire page image. 

File name ALDC-IIBLDC-I (at 600 dpi) ALDC-IIBLDC-1 (at 1200 dpi) 

1040FPBM 
ABILFPBM 
BWPlFPBM 
BWP2FPBM 
BWP3FPBM 
BWP4FPBM 
FONTFPBM 
GOLFFPBM 
MEOWFPBM 
MOREFPBM 
SCOPFPBM 
SPRLFPBM 
STARFPBM 

(9.24:1)/(22.18:1 
(10.48:1)1(28.94:1 
(4.56:1)/(6.55:1) 
(4.37:1)/(6.28:1) 
(4.73:1)/(6.22:1) 
(5.25:1)/(7.55:1) 

(12.08:1)/(28.78:1 
(12.18:1)/(20.11:1 

1 
1 

(15.08:1)/(24.22:1) 
(7.80:1)/(15.65:1) 
(5.59:1)/(9.33:1) 
(8.27:1)/(12.79:1) 
(5.35:1)/(8.12:1) 

(13.81:1)/(41.69:1) 
(16.68:1)/(55.69:1) 
(6.23:1)/(8.86:1) 

(6.68:1)/(8.82:1) 
(7.78:1)/(12.35:1) 

(18.07:1)/(52.68:1) 
(21.68:1)/(37.71:1) 
(20.36:1)/(43.77:1) 
(13.87:1)/(22.24:1) 
(8.04:1)/(17.15:1) 

(12.87:1)/(23.88:1) 
(8.46:1)/(16.47:1) 

(5.97:1)1(8.19:1) 

Table 4 ALDC-2 vs. cLDC-2 compression results on CALGARY vs. U-CALGARY files. Files PAPER1 through 
PAPER6 are  concatenated to form one, and the  entire corpus is concatenated in sequence to form the file ALL. 

BIB 
BOOK1 
BOOK2 
GEO 
NEWS 
OBJ 1 
OBJ2 
P1-P6 
PIC 
PROGC 
PROGL 
PROGP 
TRANS 
ALL 

111,261 
768,771 
610,856 
102,400 
377,100 

21,504 
246,814 
245,231 
513,216 
39,611 
71,646 
49,379 
93,695 

3,251,493 

59,524 
452,776 
315,114 

78,308 
218,653 

1 1,265 
106,574 
128,481 
63,531 
18,816 
26,136 
17,942 
41,963 

1,538,420 

59,525 
452,816 
315,227 

78,440 
217,513 

1 1,248 
106,534 
128,530 
59,518 
18,929 
26,045 
17,701 
41,798 

1,533,133 

222,524 
1,537,544 
1,221,714 

102,400 
754,220 

21,504 
246,814 
490,474 
513,216 

79,224 
143,294 
98,760 

187,392 
5,619,080 

83,344 
615,344 
436,006 

78,308 
310,198 

11,265 
106,574 
177,940 
63,531 
26,304 
37,868 
26,417 
60,555 

2,033,071 

59,533 
452,786 
315,122 

78,440 
218,662 

11,248 
106,534 
128,535 
59,518 
18,827 
26,146 
17,950 
45,131 

1,537,769 

internationalization  and  standardization of software  and 
Web-based  applications  and e-business proliferate. 

The  run  preprocessor simply retains  the  three 
predecessor  data byte  values from its input  stream. 
If these  are  ever  identical, it recodes by discarding 
subsequent  data bytes while the identicality  persists. 

An eight-bit counter is incremented  for  each byte 
discarded,  and  it is inserted  into  the  recoded  data  output 
when the  run  terminates. As for  BLDC, if the  run is long, 
a byte with the maximum count value is output,  and  a 
fresh count begins.  Long runs  are  thus  dramatically 
compressed,  but they are also  never seen by the  ALDC 
compressor.  The history remains filled with more diverse 
data,  and  the  string  matches upon which LZ1  compression 
depends  are likely to occur more  frequently  once  the run 
ends. 

The  Unicode  standard  uses two bytes to  encode  each 
character,  and  for many  text data files this results in a 
data  stream in which every other byte  value is identical. 
ALDC  does  compress  Unicode versions of such text files 
better  than  ASCII versions, but  because  the  source file 
is twice as large  to begin  with, the  end  result is still 
about 40% larger  than  for  ASCII.  The  cLDC  Unicode 
preprocessor  maintains  the  preceding  nine bytes of data 
from its input  data  stream,  and  operates if the five even- 
ordered  predecessor byte  values are  identical.  Recoding is 
then  accomplished by taking  input  data two bytes at  a 
time  instead of one,  discarding  the  even-ordered byte 
while  this  identicality  persists. A reserved  byte  value is 
inserted  into  the  recoded  output  to signal the  end of such 
a  Unicode-like  data  sequence. Originally,  identicality 
of three  even-ordered  predecessors was used  as the 743 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 D. J. CRAFT 



Table 5 Bitmap image compression ratios (ALDC-2IBLDC-l/cLDC-2 at 600/1200 dpi). Because these files are all full- 
page laser printer bitmap data, compressed as a single object, the compression ratio is  an average for the entire page image. 

File name 

~ 

1040FPBM 
ABILFPBM 
BWPlFPBM 
BWP2FPBM 
BWPSFPBM 
BWP4FPBM 
FONTFPBM 
GOLFFPBM 
MEOWFPBM 
MOREFPBM 
SCOPFPBM 
SPRLFPBM 
STARFPBM 

Image resolution 600 dpi Image resolution 1200 dpi 
(ALDC-2)/(BLDC-l)/(cLDC-2) (ALDC-2)/(BLDC-l)/(cLDC-2) 

(17.12:1)/(22.lS:l)/(19.S5:1) (14.S7:1)/(41.69:1)/(33.14:1) 
(20.46:1)/(28.94:1)/(24.89:1) (17.24:1)/(55.69:1)/(44.46:1) 
(5.90:1)/(6.55:1)/(6.08:1) (6.41:l)/(X.X6:1)/(8.28:1) 
(5.S3:1)/(6.28:1)/(S.75:1) (6.36:1)/(X.19:1)/(7.62:1) 
(6.06:1)/(6.22:1)/(6.25:1) (6.99:l)/(X.X2:l)/(X.72:1) 
(7.62:1)/(7.55:1)/(7.85:1) (8.04:l)/(12.3S:1)/(11.83:1) 
(20.77:1)/[28.7X:l)/(24.05:1) (19.01:1)/(S2.6X:l)/(43.72:1) 
(18.05:1)/(20.11:1)/(20.75:1) (22.46:1)/(37.71:1)/(39.07:1) 
(17.92:1)/[24.22:1)/(23.75:1) (27..56:1)/(43.77:1)/(36.22:1) 
(14.21:1)/(15.6S:1)/(15.44:1) (14.17:1)/(22.24:1)/(25.80:1) 
(7.7S:1)/(9.33:1)/(8.19:1) (8.69:1)/(17.l5:1)/(13.71:l) 
(9.63:1)/(12.79:1)/(10.92:1) (13.25:1)/(23.X8:1)/(18.60:1) 
(7.92:l)/(X.12:l)/(8.20:1) (8.73:1)/(16.47:l)/(16.78:1) 

condition,  but English ASCII text files, with words  such  as 
“inimitable,”  then invoked preprocessor  operation, so it 
was extended to five to reduce  occurrences of this condition. 

The  hardware  to  implement  both  preipostprocessors is 
trivial, requiring less than  10% of the  CMOS  chip  area of 
the  ALDC  CRAM  engine itself. Speeds of such processors 
are  faster  than  ALDC in the  same technology. 

Table 4 shows a  comparison  between ALDC-2 
and cLDC-2 (using  1024-byte  history) on  each of 
the individual files in the  CALGARY  suite  and  the 
U-CALGARY suite.  The  latter is the  same as CALGARY 
except that  ASCII text files are  replaced with their 
Unicode versions. 

Table 5 shows a  comparison of cLDC-2 with BLDC-1 
and ALDC-2 for  the  suite of FPBM binary image files at 
1200 dpi.  At  the  time  BLDC was designed,  the  preferred 
history  size was 512 bytes, but  subsequent density 
improvements in the  CMOS  process have made it possible 
to  use 1024 as the  preferred history  size, so cLDC-2 and 
ALDC-2 are  used. 

Conclusions 
ALDC  hardware  implementations  are easily the  fastest 
available and  are also easily the least  expensive in terms 
of silicon area.  The  current  CRAM designs  achieve 
100-MBis sustained  data  compression  or  decompression 
speeds  (measured as input  to a compressor  or  output of a 
decompressor),  for  a silicon area in IBM’s production 
CMOS 5 process of less than  10% of a small chip 
(7 mm X 7 mm).  The  newer  CMOS 6 and  CMOS 7 
processes will reduce  the  area even further  and provide 
additional  increases in speed. 

The  compression  approaches  the effectiveness of more 
744 complex,  two-pass software algorithms,  yet  when compared 

to  software  implementations using similar process 
technology, it is more  than 1000 times  more cost-effective, 
on a silicon areaispeed  product basis. The small size also 
allows it to  be readily integrated  on-chip with other 
functions  (a  microcontroller  for  example),  and as such 
it is well suited  for  incorporation  into many different 
kinds of computer  storage  peripheral devices. 

The  BLDC extension requires  little  additional silicon 
area,  extending  the applicability of these designs to binary 
bitmap  image  data  compression, in addition  to  the 
general-purpose lossless LZ1 capability. 

area  and is in many ways superior  to  BLDC, since  it 
automatically  extends  the capability of the  general-purpose 
ALDC  algorithm  into  the  bitmapped  image  domain by 
performing  almost as well as BLDC,  and also  considerably 
improves performance  on  Unicode  data  streams. 

The  CRAM  compression technology is clearly able  to 
cover an extremely  wide range of applicability. Its small 
size allows integration  into  the smallest portable,  hand- 
held, or wireless applications,  where it is much faster  and 
consumes  far less power than software. It is viable for 
integration even  within “smart”  credit-card devices 
themselves. At  the  other  end of the  spectrum, this same 
design and algorithm are  already  capable of providing 
more  than  enough  throughput  for  our most  powerful 
mainframes  and  network file servers. Using  the  more 
advanced IBM  CMOS 6 and  CMOS 7 technologies, we 
can easily fit multiple engines  onto  a single chip. In turn, 
this allows us to design ALDC  compression systems which 
have sustained  throughput in the  gigabyte-per-second 
range, if required,  and  should effectively meet system 
storage  and  networking  application  requirements  into  the 
next millennium. 

The  cLDC extension  also takes  little  additional silicon 

D. J. CRAFT IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



**Trademark  or registered trademark of Sun Microsystems, 
Inc.  or  The  Open  Group  or  XiOpen Company Ltd. 

References 
1. A.  Lempel and J. Ziv, “On  the Complexity of Finite 

Sequences,” IEEE Trans. Info. Theory IT-22, No.  1, 75-81 
(1976). 

Sequential  Data  Compression,” IEEE Trans. Info. Theory 
IT-23, No. 3, 337-343 (1977). 

Sequences via Variable-Rate  Coding,” IEEE Trans. Info. 
Theory IT-24, No. 5, 530-536 (1978). 

Data,” U.S. Patent 5,652,878, July 7, 1997. 

Highly Reliable  Data Compression  Chip and Algorithm 
for  Storage Systems,” IBM J. Res. Develop. 40, No. 6. 
603-613 (1996). 

6. R. P. Brent, “A Linear Algorithm  for Data  Compression,” 
Ausrr,  Computer J .  19, No. 2, 64-68  (1987). 

7. J.  A.  Storer  and T. G. Szymanski, “Data  Compression via 
Textual Substitution,” J.  ACM 29, No. 4, 928-951 (1982). 

8. T. C. Bell, “Better  OPMiL Text Compression,” IEEE 
Trans. Commun. COM-34, No. 12, 1176-1182 (1986). 

9. J. Cheng, D. J. Craft, L. J.  Garibay,  and E. D.  Karnin, 
“Efficient Ziv-Lempel LZ1  Data Compression System 
Using Variable  Code  Fields,” U.S. Patent 5,608,396, 
March 4, 1997. 

10. Standard  QIC-154,  “Adaptive Lossless Data  Compression 
(ALDC),” Revision A. at (http:/iwww.qic.org), March 10, 
1994.  (See  also standards ECMA-222, ISOiIEC 15200, 
and ANSI x3.280-1996.) 

11.  Calgary Corpus, available from  the University of Calgary, 
Canada, via anonymous  file-transfer protocol  from 
(ftp.cpsc.uca1gary.ca). 

12. D. J .  Craft,  “Dual  Stage  Compression of Bit Mapped 
Image  Data Using Refined Run Length and LZ 
Compression,”  U.S.  Patent 5,627,534, May 6, 1997. 

13. On-line information  about  the  Unicode  standard available 
from  the  Unicode  Consortium  at (hrtp://www.unicode.org). 

2. J.  Ziv and A. Lempel,  “A Universal  Algorithm for 

3. J. Ziv and A. Lempel,  “Compression of Individual 

4. D. J. Craft,  “Method  and  Apparatus  for  Compressing 

5. J.  Cheng, L. M. Duyanovich, and  D. J. Craft, “A Fast, 

Received February 3, 1998; accepted for   publ icat ion 
May  4, 1998 

David J. Craft IBM Microelectronics Division, 11400 Burnet 
Road,  Austin, Texas 78758 (dunstan~us.ihm.com). Mr. Craft 
received a B.Sc. in physics from  Imperial College,  London 
University (U.K.), in 1963, joining IBM in 1965. He worked 
on a  number of advanced development  projects  at  the IBM 
laboratory in Hursley (U.K.) until 1978, then i n  laboratories 
in Boulder,  Tucson,  and  Austin  (U.S.).  Mr.  Craft holds 23 
issued  patents; he has  seven recent  applications in process. 
One 1974 patent (U.S. 3,818,447), on a serial bus  arbitration 
mechanism, is  now the basis for  both  the  PC  “plug  and play” 
hardware  standard  and  the widely used 51850 and CAN  serial 
interface  protocols  for  automotive,  industrial,  and  consumer 
electronics applications.  A  recent  patent (US .  5,652,878) 
on a fast  CAM (content-addressable memory)-based LZI 
compressor design is the  basis for IBM’s ALDC range of 
chip products.  Mr.  Craft has  received two IBM Special 
Contribution Awards and  an IBM Outstanding Technical 
Achievement Award,  the  latter  for his work on fast data 
compression hardware designs. 

745 

IBM J .  RES,  DEVELOP VOL. 42 NO. 6 NOVEMBER 1998 D. J. CRAFT 



[[Page 746 is blank]] 


