The IBM
JBIG-ABIC
Verification
Suite

by P.S. Colyer
J. L. Mitchell

The IBM JBIG-ABIC Verification Suite is a
newly designed verification suite that contains

more than 5000 correctly encoded test images.

Previously existing verification images in total
and consolidated in an ad hoc suite tested
only a small fraction of the algorithm and were
inadequate. The IBM JBIG-ABIC Verification
Suite provides compatibility testing reference
data for the ITU-T/ISO JBIG sequential mode
and IBM ABIC image compression standards.
In this paper, the test images are described
and related to the JBIG and ABIC compression
standards and options. The verification

suite was used to debug and verify the
algorithms in the IBM JBIG-ABIC core that is
integrated into the Xionics XipChip imaging
microcontrollers.

Introduction
JBIG is the Joint Bi-level Image Experts Group [1] image
compression standard, and ABIC is the IBM Adaptive
Bilevel Image Compression [2] standard. The JBIG and
the ABIC image compression standards are reversible and
lossless. Therefore, each correctly decoded image is
identical to the corresponding original source image. Also,
each correctly encoded test image will be identical to the
reference encoded image in the verification suite.

Correct implementation of the JBIG and ABIC
algorithms is critical. Garbled, unrecognizable, and

possibly uncorrectable reconstructed images result from
incorrect encoding or incorrect decoding. If the algorithm
implementation has an error, and the original source
image is unchanged, attempts to re-encode the source
image would also fail. Also, if the original source image is
not available, an encoding error could result in lost data,
since the decoding algorithm requires correctly encoded
data.

In combination, the IBM JBIG-ABIC Verification Suite
is a collection of new reference data containing about
5000 encoded images and the corresponding source
images. The verification suite is useful for testing
implementations of the JBIG and ABIC compression
algorithms.

Before the development of the verification suite, the
readily available standard images consisted of six JBIG
sequential-mode images, seven JBIG progressive-mode
images [3], and no ABIC images.

The new IBM image verification suite contains source
images, JBIG sequential-mode encoded images, and ABIC
encoded images. To provide a range of tests for the
various coding options and algorithm features, the
source images were encoded with various compression
parameters, and the resulting encoded images are included
as part of the verification suite. The encoded images and
source images are grouped in five general categories:

 Publicly available images.
» Custom-targeted images.
s Parameter and marker variations.

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems, Permission to republish any other
portion of this paper must be obtained from the Editor.

785

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO, 6 NOVEMBER 1998

P. S. COLYER AND J. L. MITCHELL

786

—————— (Encoded Encoded — — — — — — | Recon-
Source : jimage bit image bit : | structed
image | |JBIG-ABIC i Stream stream | | JBIG-ABIC || image
| core ! | core |
[

: ‘ | : ‘ :
Algorithm IHeader Algorithm | |
selection Y __IJBIG) selection | Y I
_ Image, Core dri f I @i I
smeris | O prs M| O |
! | UBIG) ;
Options | | Markers | l
(JBIG) | I (JBIG) | !
| ! Image | ’
(JBIG-ABIC ! dimensions ! JBIG-ABIC !
| encoding ' (ABIC)! decoding i

2

¢ Randomly generated images.
 Implementation-specific images.

The verification suite will spare the user many hours of
devising test strategies and creating test cases, as well as
the need to learn and understand how to use finite-
precision mathematics to represent infinite-precision
fractions as very large numbers, as is required for effective
test cases. Nevertheless, a thorough verification process
will require understanding the specifications, learning the
algorithm details, learning arithmetic coding, and devising
additional testing strategies. The verification suite provides
tests for a significant portion of the more difficult to test
encoding and decoding considerations such as model
template states, renormalization, probability-estimation
table traversal, image boundaries, AT moves, and register
flushing.

For maximum test coverage and minimum test time, 586
of the source images were systematically designed; each of
them contains only a small number of lines or less of
image data, and is a fraction of the size of a typical, real-
world image. The small source images are also referred to
as “bit sequences” to emphasize the significance of the
sequence of the bits.

The verification suite was used to verify that the JBIG
and ABIC algorithms were correctly implemented in the
IBM IBIG-ABIC core [4] that is integrated into the
Xionics XipChip imaging microcontrollers. It is important
to note that the IBM JBIG-ABIC core design includes the
Qx-coder [5], which is the merger of the QM-coder
(JBIG) [1, 6, 7] and the Q-coder (ABIC) [1, 8, 9]. The
verification suite was encoded and decoded by a
simulation model of the IBM JBIG-ABIC core. The

P. S. COLYER AND J. L. MITCHELL

% Implementation of JBIG-ABIC core: (a) encoding; (b) decoding.

simulation results were identical to the correct reference
results included in the verification suite.

The IBM JBIG-ABIC Verification Suite was not
designed to be a universal test to verify all possible cases;
the suite is not intended, and is not sufficient, to test
implementation-specific particulars such as pipelines, state
machines, and timings. Also, the particulars of algorithm
implementation may introduce additional verification
considerations that are not tested by the verification suite.
Implementation-specific particulars often include design
decisions, optimization choices, and system-level
considerations that are not defined in the JBIG and
ABIC specifications.

Verification of the IBM JBIG-ABIC core

The IBM JBIG-ABIC Verification Suite has application in
the verification of coding algorithms used in compression
subsystems. What follows is a brief description of JBIG
and ABIC image encoding and decoding by an example
compression subsystem based on the IBM JBIG-ABIC
core. The core design provides compression-services
hardware assistance to the system processor.

Figure 1 shows the example JBIG-ABIC implementation.
Dashed boxes represent the compression subsystem. The
two subblocks represent the core driver software and the
IBM JBIG-ABIC core.

The core driver software uses image dimensions, header
parameters, and markers to program and monitor the core.
The core driver software also generates the headers
and inserts markers in the encoded image bit stream. The
IBM JBIG-ABIC core encodes and decodes the input
data according to the selected algorithm and coding
options.

® Encoding

In the example subsystem configured for encoding shown
in Figure 1(a), the inputs for encoding are the source
image, algorithm selection, options (JBIG), and image
dimensions. The algorithm selection input is used to
choose the coding algorithm (JBIG or ABIC).

Encoding by the JBIG algorithm requires the input bit-
stream representation of the source image, the image
horizontal dimension, the image vertical dimension, and
the coding options. The JBIG algorithm encoded output is
a JBIG header and an encoded image bit stream. The
header specifies the parameter settings, image dimensions,
and coding options. The encoded data output is the
encoded image bit stream with JBIG markers inserted at
each stripe boundary.

Encoding by the ABIC algorithm requires only the input
bit-stream representation of the source image and two
parameters: 1) the image horizontal dimension and 2) the
image vertical dimension. The ABIC algorithm encoded

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 1 JBIG parameters.

Parameter Name

Size (bits) JBIG range Core range

DL Number for initial resolution layer 8 0-255 0
D Number for final resolution layer 8 0-255 0
P Number of bit planes 8 1-255 1-255 (SW*)
Reserved Reserved 8 0 0
Xd Horizontal dimension (number of pixels per line) 32 1-4,294,967,295 1-65,530
Yd Vertical dimension (number of scan lines) 32 1-4,294,967,295 1-65,530 X Nstripes”
LO Lines per stripe at layer 0 32 1-4,294,967,295 1-65,530
Mx Maximum horizontal adaptive template pixel 8 0-127 0, 3-127
move
My Maximum vertical adaptive template pixel move 8 0-255 0
Reserved Reserved 4 0 0
HITOLO High to low (plane ordering) 1 0-1 0-1 (SW')
SEQ Sequential order 1 0-1 0-1 (SW
ILEAVE Interleave multiple bit planes 1 0-1 0-1 (SW1
SMID Index over stripe is in middle 1 0-1 0-1 (SW1
Reserved Reserved 1 0 0
LRLTWO Lowest resolution layer two-line template 1 0-1 0-1
VLENGTH Variable-length marker allowed 1 0-1 0-1 (SW1
TPDON Differential layer typical prediction enabled 1 0-1 0
TPBON Lowest resolution layer typical prediction enabled 1 0-1 0-1
DPON Deterministic prediction enabled 1 0-1 0
DPPRIV Deterministic prediction private table 1 0-1 0
DPLAST Deterministic prediction last table reused 1 0-1 0
DPTABLE Deterministic prediction table 0 or 1728 - -

*SW denotes that functional support requires driver software interaction with the core.

"The maximum Yd for the core is 65530 X the number of stripes in the image.
*In sequential mode, the DPTABLE size is 0.

data output is the compressed-image bit stream. Note that
in complete system implementations, the ABIC algorithm
compressed images are usually embedded within an IOCA
(Image Object Content Architecture) [10] header that
contains the image dimension parameters. The ABIC
algorithm itself specifies no header; the IOCA standard
defines a header for use with ABIC.

The coding algorithms can be verified by encoding
source images having various image data characteristics
with various coding parameters. Significantly, correctly
encoded data generated by the core exactly match the
encoded data included in the verification suite.

® Decoding

The example subsystem configured for decoding is shown
in Figure 1(b). The inputs for decoding are encoded image
bit stream, algorithm selection, header (JBIG), markers
(JBIG), and image dimensions (ABIC). The algorithm
selection input is used to choose the coding algorithm
(JBIG or ABIC). The decoding output is the
reconstructed source image.

Decoding JBIG encoded images requires the JBIG
header and the encoded image bit stream with the JBIG
markers included. Decoding ABIC encoded images
requires the image dimensions and the encoded image
bit stream.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

The decoding algorithms can be verified by decoding
encoded data having various data characteristics that have
been encoded with various coding parameters. Again,
correctly decoded data generated by the core exactly
match the source images included in the verification suite.

Algorithm parameters and control markers
The JBIG algorithm has optional features that are
selected and controlled by parameters and markers. The
ABIC algorithm has no options and requires only two
parameters. All of the parameters and markers are briefly
described below.

® JBIG parameters

The JBIG algorithm is controlled by 20 parameters. The

JBIG parameters are set before encoding begins, and the
parameters are stored in the JBIG header for use during
decoding. The JBIG header precedes the encoded data in
the finished JBIG encoded image file.

In JBIG sequential mode, one of the parameters is not
used, and five of the parameters are always set to 0.
(Options required only for progressive-mode coding are
not varied and are set to fixed values in the verification
suite.) The verification suite has no new images for JBIG
progressive mode. The few publicly available progressive-
mode images are included in the verification suite.

P. S. COLYER AND J. L. MITCHELL

787

788

Table 2 JBIG markers.

Marker Name Segment size JBIG value Core use
(bytes)
RESERVE Reserve 2,3, % 0xFF01 No
SDNORM Stripe end data normal 2 0xFF02 Yes
SDRST Stripe end data reset 2 0xFF03 Yes
ABORT Abort 2 0xFF04 Yes
NEWLEN New vertical dimension (Yd) 6 0xFF05 Yes (SW')
ATMOVE Adaptive template movement 8 0xFF06 YAT (SW),
(YAT, tx, ty)* tx, ty = 0
COMMENT Private comment 6 +n' 0xFF07 Yes (SW)
START-JBIG- T.85 fax image start 2 0xFFAS8 Yes (SW')
IMAGE
END-JBIG- T.85 fax image end 2 0xFFA9 Yes (SW')
IMAGE

*The number of bytes used by the RESERVE marker segment is not specified.

TSW denotes that functional support requires driver softwarc interaction with the core.

At the YAT scan line of the next stripe, move the adaptive template (AT) pixel to position (tx, ty).

*Where 1 is number of bytes used to represent the comment.

Table 1 shows each JBIG parameter mnemonic,
parameter description, and number of header bits used to
specify the parameter value, with the range of parameter
values allowable in the JBIG algorithm and the range of
values implemented in the IBM JBIG-ABIC core. The
parameters are listed in the table in the order in which
they appear in the JBIG header.

The initial resolution layer (DL) and the final resolution
layer (D) are always 0 in sequential mode. The precision
(P) is the number of bit planes. P is 1 for bilevel images
(i.e., black and white). Since each bit plane is
independently encoded, the core can be used for encoding
multiple-bit-per-pixel images under control of the driver
software. In the JBIG header, the precision (P) is followed
by eight reserved bits that must be set to 0.

The image horizontal dimension (Xd) and the image
vertical dimension (Yd) specify the number of pixels per
line and the number of lines in the image. The lines are
grouped into stripes composed of LO lines per stripe at
layer 0. In the IBM JBIG-ABIC core, Xd and LO are
limited to 65,530. The maximum vertical dimension
allowed by the JBIG specification is available with the
core by the use of multiple stripes to achieve the full
range of vertical dimension.

The maximum horizontal and vertical displacements
allowed for the adaptive template (AT) pixel are specified
in the parameters Mx and My. In the core, the AT pixel is
either at the default position on the first previous line, or
on the current line at up to 127 pixels to the left of the
pixel being encoded. The parameter My is followed by
four reserved bits that must be set to 0.

The next four parameters (HITOLO, SEQ, ILEAVE,
and SMID) specify the order of the stripes in the encoded
data. In the IBM JBIG-ABIC core, the stripe order is

P. 8. COLYER AND J. L. MITCHELL

handled by the core driver software. The stripe order has
no effect on the encoding and decoding algorithms. The
parameter SMID is followed by one reserved bit that must
be set to 0.

Template selection is indicated by the parameter
LRLTWO. LRLTWO is 1 for the two-line template and 0
for the three-line template. The VLENGTH bit enables
the optional use of the NEWLEN marker, which can be
used to indicate a new, smaller image vertical dimension
after decoding has begun. In the IBM JBIG-ABIC core,
the core driver software handles VLENGTH. Typical
prediction (TP) for the lowest resolution layer is enabled
with the TPBON parameter.

The TPDON, DPON, DPRIV, and DPLAST parameters
are used only in progressive-mode coding. In sequential-
mode coding, TPDON, DPON, DPRIV, and DPLAST are
alvays set to 0, and the DPTABLE parameter size is 0.

® JBIG markers

The nine JBIG markers are inserted in the encoded image
bit stream at stripe boundaries during encoding. The
markers are inserted only as needed to direct the decoding
process. Table 2 is a complete list of the JBIG markers,
indicating the names, segment sizes, JBIG values, and
marker usage by the IBM JBIG-ABIC core. A brief
description of each JBIG marker follows.

The RESERVE marker is for private use and is not
uniquely defined in the JBIG specification. The
RESERVE marker is not implemented in the IBM
JBIG-ABIC core.

The SDNORM marker immediately follows the encoded
image bit stream for stripes for which the coder algorithm
internal state is to be preserved and used to encode the
next stripe. The SDRST marker immediately follows the

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 3 ABIC parameters.

Core
range

Name

Parameter ABIC range

Xd Horizontal dimension (number of pixels per line) 1-4,294,967,295 1-65,530
Yd Vertical dimension (number of scan lines) 1-4,294,967,295 1-65,530

Table 4 Publicly available images.

Name Image Algorithm Description Purpose
count

table26 1 IBIG ISO/IEC 11544: 1993 (E) Table 26 QM-coder
img2, img3, 6 JBIG U.S. JBIG Committee X31.3.2 Juried Validation Marker codes
img4n Set—Sequential Mode
imgl, img2, 7 JBIG U.S. JBIG Committee X3L.3.2 Juried Validation Marker codes
img3, img4n Set—Progressive Mode
ptt_n 8 JBIG CCITT Group 3 two-dimensional standardization Normal image dimensions
images
jm88a2 1 ABIC IBM].g Res. Develop. 32, 753-774 (1988) Q-coder
encoded image bit stream for stripes for which the next The T.85 fax application standard [11] specifies a start
stripe is to be encoded with initial conditions such that the of JBIG image marker (START-JBIG-IMAGE) and an
next stripe can be decoded independently. end of JBIG image marker (END-JBIG-IMAGE). The
The ABORT marker, which signals the end of the fax standard adds the start and stop markers to provide
available encoded data, is used to terminate the decoding confirmation that the decoder received complete data.
of an image prematurely. Because the JBIG decode ITU-T/ISO JBIG images do not start and stop with unique

algorithm requires all of the encoded data to be decoded two-byte codes. The T.85 FAX standard added the start
to the full image dimensions, the ABORT marker is useful and stop markers to the ITU-T/ISO JBIG standard.

when the encoded data become unavailable (i.e., a In the IBM JBIG-ABIC core, the ABORT, SDNORM,

dropped transmission line, a failed retrieval system, and SDRST markers are handled by the core, and the

corrupted encoded data, or other system failure). other markers are handled by the core driver software.
The NEWLEN marker allows a new, smaller image

vertical dimension (or length) to be set (e.g., during ® ABIC parameters

a fax transmission) that is less than the image vertical The ABIC algorithm is controlled by two parameters: the

dimension set in the JBIG header, provided VLENGTH is image horizontal dimension (Xd) in pixels and the image

set to 1. The NEWLEN marker is particularly handy for vertical dimension (Yd) in lines. Table 3 shows the range

facsimile environments in which the scanned paper may be of ABIC algorithm compatible image dimensions, and the

shorter than expected. When the NEWLEN marker implemented range of ABIC image dimensions for the

results in early termination of the last stripe of the image, = IBM JBIG-ABIC core. The ABIC standard allows image

a null (dummy) stripe must follow the NEWLEN marker. horizontal and vertical dimensions of 4,294,967,295. In the
The ATMOVE marker is followed by the number of core, the image horizontal dimension (Xd) and image

the scan line of the next stripe (YAT) before which the vertical dimension (Yd) are limited to 65,530.

adaptive template (AT) pixel is to be moved to the new

position specified by the AT pixel horizontal displacement Contents of the IBM JBIG-ABIC Verification Suite

(tx) and AT pixel vertical displacement (ty) parameters. The IBM JBIG-ABIC Verification Suite is composed
Note that the JBIG specification limits tx and ty such that of images and data that are grouped in five general
tx = Mx and ty = My. categories: publicly available images, custom-targeted
The COMMENT marker indicates a “private comment” images, parameter and marker variations, randomly
that is to be ignored by the JBIG algorithm. The generated images, and implementation-specific images.
COMMENT marker is followed by four bytes that For all source images and encoded data in the verification
specify the comment length (n) in bytes. suite, the source image data is in raster form, with eight 789

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 P. S. COLYER AND J. L. MITCHELL

Table 5 Custom-targeted images.

Name Image

count

Algorithm

Description

Purpose

gqma. . .32 140
qc0. . .13 86
jamqgmd. . .35 149
jamqc0. . .18 120

JBIG
ABIC
JBIG
ABIC

JBIG
JBIG
JBIG
JBIG

JBIG
JBIG
JBIG
ABIC
ABIC

JBIG
JBIG

stack 3
carry

fax21_carry
fax31_stack

jbigl. . .jbigb
jbigl_jbigl_n
jbigd_jbigd n

abicl

abicl_abicl

jbig_31
trailing 00

Traverse QM-coder table (coder unit only)
Traverse Q-coder table (coder unit only)
Traverse QM-coder table

Traverse Q-coder table

Many OxFF bytes encoded

Many 0xFF bytes encoded with a carry
Page fax image with carry

Page fax image without carry

All possible JBIG template states

All possible JBIG two-line template edge states
All possible JBIG three-line template edge states
All possible ABIC template states

All possible ABIC template edge states

Data volume expands on compression
Encoded trailing 00 bytes truncated

Q-value table and adapter unit
Q-value table and adapter unit
Q-value table and adapter unit
Q-value table and adapter unit

Stack counter
Stack counter
Stack counter
Stack counter

Model unit
Model unit
Model unit
Model unit
Model unit

Throughput control
Decode trailing 00 termination

pixels per byte. The background is assumed to be white (0)
and the foreground is assumed to be black (1). The first bit
of every line is located at the leftmost bit of a byte.

® Publicly available images

The publicly available images are listed in Table 4, which
shows the image name, the number of test cases, the
algorithm that applies, a brief description, and the main
purpose of the test.

The publicly available images test only a small subset of
all possible coding algorithm situations. Because of the
nature of the images, some incorrect implementations of
the JBIG and ABIC algorithms would correctly encode
and decode the publicly available images.

The JBIG standard specification [1] includes a bit
sequence listed as table26 that is encoded with an artificial
context. The bit sequence table26 is useful for the QM-
coder (JBIG) because the specification includes both the
encoded data and the intermediate internal register
results. The bit sequence is not useful for the complete
JBIG algorithm because the required artificial contexts
cannot be generated by a correct model unit.

The verification suite contains images from the U.S.
JBIG Committee (X3L3.2) peer-reviewed JBIG validation
images that are listed as imgl, img2, img3, and img4n. The
X3L3.2 images provide examples of encoding by both
sequential mode and by progressive mode, and the X3L3.2
images make heavy use of the marker codes.

In addition, the eight images used to standardize ITU-T
Rec. T.6 (MR and MMR) [12, 13] are included as PTT_n
(nis 1 to 8). These images were too large for the
simulation environment that was used to verify the IBM
JBIG-ABIC core, but they are useful for verifying actual

P. S. COLYER AND J. L. MITCHELL

hardware and software implementations. The PTT images
are typical full-page facsimile images.

The publicly available bit-sequence image listed in
Table 4 as jm88a2 is particularly useful because the
internal register results for both hardware and software
conventions are listed in [8§].

® Custom-targeted images

The custom-targeted images are listed in Table 5. Most of
the custom-targeted images are designed to test the coder
unit; the rest are designed to test the stack counter, the
model unit, output latency, and encode/decode termination.

The custom-targeted images are the result of much
studying of algorithm register values while encoding,
modifying the bit sequence, and re-encoding until effective
bit sequences were found. Also, for many cases, manual
encoding and re-encoding of specific bit sequences was
required to develop bit sequences that achieve the needed
test effect. It is important to note that the custom-targeted
images alone are not sufficient to fully test any given
compression subsystem implementation.

The image names beginning with the letter q are single-
line bit sequences for testing the coder unit only. The gm
bit sequences are for the QM-coder (JBIG), and the qc bit
sequences are used for the Q-coder (ABIC). The q bit
sequences must be used with only one context for the
entire pattern to achieve the desired test coverage of the
Q-value table, coder unit, adapter unit, bit/byte stuffing,
and the flush process. Some q patterns have a and b
versions; the a versions contain predominantly 0 bits, and
the b versions contain predominantly 1 bits. Using the a
and b versions provides a more complete traverse of the
probability-estimation tables.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 6 Images for parameter and marker variations.

Name Image count Algorithm Description Purpose
allo/alll 31 Both* Uniform Os data and uniform 1s data Simplest input
AT 707 IJBIG Move AT to each tx [3:127] AT unit
decode_only 5 JBIG Truncated compressed data ABORT marker code
superc 1 Both Clustered dither halftone image Example of halftone
dit 1 Both Ordered dither halftone image Example of halftone
erd 1 Both Error diffusion halftone image Example of halftone
panda 1 Both Line-based halftone image Example of halftone
pandaq 1 ABIC Quantized line-based halftone image Example of halftone
img4.bwimg 1 JBIG G3/G4 focused test image Vertical and horizontal patterns
height 1061 JBIG Various vertical dimensions and stripes Image vertical dimension
height 111 ABIC Various vertical dimensions Image vertical dimension

*“Both” indicates that the compressed data are available for JBIG and ABIC algorithms.

The image names that begin with the letters jamq are
bit sequences that test the same algorithm features that
the q patterns test; in addition, the context is generated
by the model unit.

The patterns listed as stack, carry, fax21_carry, and
fax31_stack are tests of the JBIG stack counter. The
patterns called jbign and abicl are special multiline
patterns that test all possible template states in the middle
of a line and on the left and right edges of the image.

The patterns called jbig_31 are examples of images for
which the data expand on encoding (the compressed data
byte count is greater than the source image data byte
count). The patterns called trailing00 terminate with one
or more bytes of 0x00. The trailing00 patterns are tests of
the JBIG option that removes trailing 0x00 bytes from the
compressed data during encoding and inserts any required
trailing 0x00 bytes during decoding.

® Parameter and marker variations

The images used for variation of parameters and markers
are listed in Table 6. JBIG has an order of magnitude
more patterns than ABIC to provide more thorough
testing of the additional JBIG template and various AT
pixel positions. (JBIG has a two-line template and a three-
line template; ABIC has only a two-line template.)

The all-0 and all-1 bit sequences listed as all0/alll are
useful for testing the ability to simply process bits during
encoding and decoding. The patterns listed as atmove
systematically move the adaptive template (AT) pixel
position along the current line to test the template
implementation. The patterns listed as decode_only have
the ABORT marker inserted into compressed data to
confirm that the decoder will abort properly.

To test a variety of halftone types, a group of halftoned
images are included from [14]. The halftone images are
listed as superc, dit, erd, panda, and pandaq. The
imag4.bwimg image was used to test the G3/G4 facsimile

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 7 IJBIG vertical dimensions.

Image count Xd Yd Description
528 1...8 1...33 Two-line and three-line
106 8 34...437 Two-line and three-line
413 1...8 1...437 Two-line und three-line with
various lines per stripe
14 1,9 3...6 ATMOVE

Table 8 ABIC vertical dimensions.

Image count Xd Yd Description

50 8 1...50 Systematic change in vertical
dimension
61 8 60...437 Random vertical dimension

algorithms [12, 13]. The patterns listed as “height” provide
bit sequences of various image vertical dimensions for
both ABIC and JBIG.

Table 7 shows the distribution of the Xd and Yd
parameters used for the JBIG “height” images listed
in Table 6. For vertical dimension tests, bit sequences
of convenient size were selected from the Q-value
table/adapter unit, stack counter, and AT unit sets (shown
in Table 5) and encoded with different parameter settings.

Systematic horizontal variation from one to eight bits
and vertical variation from one to 33 lines provided 528
patterns. At the eight-bit horizontal dimension, 106 images
were generated randomly with vertical dimension in the
range 34 to 437 for both two-line and three-line templates
with a single stripe per image (vertical dimensions tend to
cluster around integer multiples of 32 for more complete
testing of the implementation specifics of the IBM
JBIG-ABIC core). Additional variation in image

dimension, bit sequence, and coding options is available 791

P. S. COLYER AND J. L. MITCHELL

792

Table 9 Randomly generated images.

Name Image count Algorithm Description Purpose
rnd_jbig 123 JBIG Random image content, dimension, and options ~ Added test function coverage
rnd_abic 1120 ABIC Random image content and dimensions Added test function coverage

Table 10 JBIG randomly generated image dimensions.

Image count Xd Yd Description

2 65,530 1 Extreme horizontal dimension
4 65,530 Extreme horizontal dimension
5 4096. . .65,530 5...12 Random data and dimensions

101 100. . .300 100. . .300 Random data and dimensions
5 5...12 4096. . .65,530 Random data and dimensions
4 5 65,530 Extreme vertical dimension
2 1 65,530 Extreme vertical dimension

Table 11 JBIG randomly generated image parameters and markers.

Option Probability or range Description
Stripes {1...10} Number of stripes varied randomly between 1 and 10
LRLTWO 50% Two-line (50%) vs. three-line (50%)
ATMOVE 75% Adaptive pixel moved (75%) vs. default position (25%)
TPBON 25% Typical prediction on (25%) vs. off (75%)
SDNORM/SDRST 50% Stripe end save statistics (50%) vs. reset statistics (50%)

with the 413 images having horizontal dimension in the
range 1-8 and vertical dimension in the range 1-437.
Multiple stripes are encoded in four of the patterns.
The ATMOVE marker is used for 14 images.

Table 8 shows the distribution of the Xd and Yd
parameters used for the ABIC height images listed in
Table 6. The ABIC height images are a subset of those for
JBIG. The horizontal dimension is fixed at eight bits. The
vertical dimension is varied systematically from one to 50
and selectively from 60 to 437 (again clustered near
integer multiples of 32 for more complete testing of the
core implementation).

® Randomly generated images

The randomly generated images are listed in Table 9. The
randomly generated images were selected such that the
simulation time is acceptable with present-day systems by
keeping the total bit count per image relatively small.
Random images for JBIG vary the horizontal dimension
(Xd), vertical dimension (Yd), lines per stripe (L0),
template selection (LRLTWO), ATMOVE horizontal
displacement (tx), typical prediction enable (TPBON), and
the stripe termination marker (SDNORM/SDRST). The
data content of the source images is random. Table 10

P. S. COLYER AND J. L. MITCHELL

shows the distribution of Xd and Yd for the JBIG random
images.

Table 11 shows the marker and parameter distribution
statistics of the images in Table 10. The images are
composed of horizontal stripes. The number of stripes
per image is uniformly distributed between one and ten
stripes. The two-line template is used in 50% of the
images, an AT move is used in 75%, typical prediction is
enabled in 25%, and SDNORM stripe termination marker
is used in 50% of the images.

Random images for ABIC have two parameters, the
horizontal (Xd) and the vertical (Yd) dimensions. The
horizontal dimension is specified precisely to the single
pixel (bit), and internally the ABIC compression
process pads the source image at the right margin with
background (0) pixels such that the processed horizontal
dimension is an integer multiple of eight pixels. Table 12
shows the distribution of the Xd and Yd image dimension
parameters used for the ABIC random images. The data
content of the source images is random.

® [mplementation-specific images

Specific design implementation particulars were tested in
the IBM JBIG-ABIC core by encoding and decoding

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

Table 12 ABIC randomly generated image dimensions.
Image count Xd Yd Description
1000 1...1030 4 Random data and horizontal dimension
20 2200. . .2400 1...200 Random data and dimensions
10 1500. . .1600 200. . .300 Random data and dimensions
70 2300. . .2400 200. . .300 Random data and dimensions
5 33,000. . .34,000 1...100 Random data and dimensions
5 1...200 4800. . .6000 Random data and dimensions
3 524,240 1 Large horizontal dimension
2 524,240 3 Large horizontal dimension
3 8 65,530 Extreme vertical dimension
2 16 65,530 Extreme vertical dimension
Table 13 Implementation-specific images.

Name Image count Algorithm Description Purpose
counter 24 JBIG Random data and Xd = 255, 256, 257 DMA state machine
DMA 400 JBIG Random data and Xd = n8 DMA unit
counter 12 ABIC Random data and Xd = 255, 256, 257 DMA state machine
DMA 594 ABIC Random data and Xd = n8 DMA unit

management, Ted R. Lattrell and Frederick C. Mintzer,
for support and encouragement for the JBIG-ABIC
verification work. JLM especially appreciated the part-
time employment at IBM Burlington during her leave of

implementation-specific images. The implementation-
specific images are listed in Table 13.

Some of the specific states of the state machines in the
IBM JBIG-ABIC core were tested with 24 JBIG images

and 12 ABIC images listed as “counter.” To test the DMA absence.
unit of the IBM JBIG-ABIC core, 400 JBIG images and
594 ABIC images were designed. In the core, the DMA References
unit has four buffers of 32 bytes each that hold the 1. ITU-T Rec. T.82 | ISO/IEC 11544:1993 Information
compressed data, current line, previous line, and second Technology—Coded Representation of Picture and Audio
. . . Information—Progressive Bi-Level Image Compression
previous line (JBIG three-line template). The DMA (JBIG standard).
patterns may be of less use when testing implementations 2. R. B. Arps, T. K. Truong, D. J. Lu, R. C. Pasco, and
having different particulars. T. D. Friedman, “A Multi-Purpose VLSI Chip for
Adaptive Data Compression of Bilevel Images,” IBM J.
Res. Develop. 32, 775-795 (1988).
Acknowledgments 3. U.S. JBIG Committee (X3L3.2) peer-reviewed JBIG
Many individuals developed software and source image A ‘I/(ahlSIat;\(/)In l]inagZS'JBIG ABIC C on Eneine ¢
. _ . . . K. M. Marks, “ - ompression Engine for
da?a that contrlbut.ed to the IBM JBIG-ABIC Verification Digital Document Processing,” IBM J. Res. Develop. 42,
Suite. A key contributor was Michael J. Slattery of IBM 753-758 (1998, this issue).
5. M. J. Slattery and J. L. Mitchell, “The Qx-Coder,” IBM J.

Burlington, who wrote the original Qx “C” code
implementation that was used to generate many of the
coder-only tests and to debug IBM JBIG-ABIC core
design errors. Another key contributor was Frank A.
Kampf of IBM Burlington, who extended and enhanced
the original Qx “C” code, produced most of the random
images, and created useful images such as the image that
requires QM-coder latency exceeding 32 KB. Ronald B.
Arps of IBM Almaden provided the CCR image-
compression software that was used to generate the
reference encoded data. Corneliu M. Constantinescu, also
of IBM Almaden, provided enhancements to the CCR
software. The authors would also like to thank their

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

10.

Res. Develop. 42, 767-784 (1998, this issue).

. ITU-T Rec. T.81 | ISO/IEC 10918-1:1993 Information

Technology—Coded Representation of Picture and Audio
Information—Digital Compression and Coding of
Continuous-Tone Still Images (JPEG standard).

. W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image

Data Compression Standard, Van Nostrand Reinhold, New
York, 1993 (ISBN 0-442-01272-1).

. J. L. Mitchell and W. B. Pennebaker, “Software

Implementations of the Q-Coder,” IBM J. Res. Develop.
32, 753-774 (1988).

. W. B. Pennebaker. J. L. Mitchell, G. G. Langdon, Jr., and

R. B. Arps, “An Overview of the Basic Principles of the
Q-Coder Adaptive Binary Arithmetic Coder,” IBM J. Res.
Develop. 32, 717-726 (1988).

Data Stream and Object Architectures: Image Object

793

P. 8. COLYER AND J. L. MITCHELL

794

Content Architecture Reference Manual, Order No.
SC31-6805-01; available through IBM branch offices.

11. ITU-T Rec. T.85, Application Profile for Recommendation
T.82—Progressive Bi-Level Image Compression for
Facsimile Apparatus (JBIG fax application standard).

12. R. Hunter and A. H. Robinson, “International Digital
Facsimile Coding Standards,” Proc. IEEE 68, No. 7,
854-867 (1980).

13. ITU-T Rec. T.6 in Fascicle VIL3, “Terminal Equipment
and Protocols for Telematic Services,” recommendations
of the T Series, VIIIth Plenary Assembly, Malaga-
Torremolinos, October 8-19, 1984,

14. Y.-H. Chen, F. C. Mintzer, and K. S. Pennington,
“PANDA: Processing Algorithm for Noncoded Document
Acquisition,” IBM J. Res. Develop. 31, 32~43 (1987).

Received February 16, 1998; accepted for publication
October 2, 1998

P. S. COLYER AND J. L. MITCHELL

Peter S. Colyer IBM Microelectronics Division, Burlington
facility, Essex Junction, Vermont 05452 (pcolyer@us.ibm.com).
In 1982 Mr. Colyer graduated magna cum laude from Siena
College, Loudonville, New York, with a B.S. degree in
physics. He received a B.S. degree in electrical engineering
from Clarkson College of Technology in 1983, and an M.S.
degree in electrical engineering from Syracuse University in
1989. During the summer of 1982, Mr. Colyer worked at IBM
in Poughkeepsie, New York, as a preprofessional engineer;
the following year he joined IBM Poughkeepsie as a
permanent employee. From 1983 to 1987, he designed and
analyzed reliability tests for semiconductor memories. From
1987 through 1989, he redesigned and repackaged an in situ
memory test and burn-in system. In 1990, Mr. Colyer joined
the IBM BiCMOS ASIC development group in Burlington,
Vermont. From 1991 to 1993 he led the debugging effort for
an ASIC design system for the AS/400 CPU chip set. Since
1993, he has worked in the ASIC core macro development
group. Mr. Colyer received an IBM Excellence Award in 1994
and a First Patent Application Achievement Award in 1995.
He is a member of the Alpha Kappa Alpha, Sigma Pi Sigma,
and Tau Beta Pi honor societies and is also a member of
Mensa.

Joan L. Mitchell IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (joanm@us.ibm.com). Dr. Mitchell graduated from
Stanford University with a B.S. degree in physics in 1969. She
received her M.S. and Ph.D. degrees in physics from the
University of Illinois at Champaign-Urbana in 1971 and 1974,
respectively, joining the Exploratory Printing Technologies
group at the IBM Thomas J. Watson Research Center
immediately after completing her Ph.D. She was a manager at
the Research Center for nine years, worked for three years in
IBM Marketing, and returned to the IBM Research Division
in 1991 to work again in the Image Technologies group. In
1994, she left for a two-year leave of absence. During her
leave, Dr. Mitchell co-authored a book on MPEG, consulted
for IBM Burlington, and was a visiting professor at the
University of Illinois for six months. Back at the IBM Thomas
J. Watson Research Center, she is now a Research Staff
Member in the Image Applications Department. Since 1976
Dr. Mitchell has worked in the field of image processing and
data compression. She received IBM Outstanding Innovation
Awards for two-dimensional data compression in 1978, for
teleconferencing in 1982, for the image view facility in 1985,
for resistive ribbon thermal transfer printing technology in
1985, for speed-optimized software implementations of image
compression algorithms in 1991, and for the Q-coder in 1991.
She is a member of APS, IEEE, Sigma Xi, and IS&T and is a
co-inventor on 30 patents.

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998

