
Data by S. H. Burroughs 
T. R. Lattrell 

compression 
technology 
in ASIC cores 

IBM has made its data compression 
technology  available  to the industry  through 
the ASIC  (application-specific integrated 
circuit)  Blue  Logic  core  program.  The  papers 
in  this  journal  describe  four of IBM's data 
compression  cores  which are in that core 
library:  ALDC  (adaptive  lossless data 
compression), JBIG-ABIC  (Joint  Bi-level Image 
Group-Adaptive  Bi-level Image Compression), 
MPEG-2 (Moving  Picture Experts Group-P), 
and  401DEC  (decompression  for the IBM 
PowerPC 401'" embedded  processor). This 
paper is organized  into three main  sections: 
a description of the data types  covered by 
the technology; a presentation of data 
compression  availability  through the core 
library  elements;  and a brief  overview of the 
papers which  follow. 

Introduction 
An  ASIC  core is defined as  a  function which has  been 
designed  and verified as a standalone  entity  and placed in 
the  ASIC  function library. The library contains  the set 
of predesigned,  pre-optimized,  and  pretested  functions 
available  in  an ASIC  (for  example,  0.25-pm) technology. 
As such,  the  data compression cores in the  ASIC  function 
library represent design elements whose performance  and 
function  are  guaranteed.  They have been  designed  to  core 
guidelines which support  integration  into  an  ASIC chip 
design. This  has  been accomplished by partitioning  the 
functions  into  reusable  elements  or building  blocks. 

Since customers  require  the ability to  tailor  functions  to 
particular  applications,  different types of cores were  used 
to provide the right level of flexibility, consistent with the 
core-plus-ASIC design methodology.  The  IBM  core library 
contains  three types of cores [l, 21, which are  described as 
hard, firm, and soft. A  hard  core is one which has a fixed 
physical layout and is incorporated  into  the design  as 
though it were  a  standard cell library element.  A firm core 
is similarly  provided to  the  user as a library element,  but 
the layout of the  core is performed by the  ASIC  vendor 
to  meet  the  customer layout requirements.  A soft core is 
one in which the  function is provided in the  form of a 
technology-dependent  gate-level  netlist. 

The  importance of data  compression technology  in 
current  and  future systems has  led  IBM  to identify  this 
technology  as one of the key library  building  blocks. Data 
compression  methods  are complex; therefore, having 
proven  data  compression  algorithms  implemented  and 
available  in the  core library  provides  leverage to designers. 
It removes the  need  to  be  a  data  compression specialist or 
expert in order to benefit  from  the use of the technology. 
The technology was first available from IBM in standard 
product  form, Le., discrete devices. Therefore, to support 
ease of use for  designers migrating from  standard  product 
offerings to  ASIC  chip designs,  similar logic interfaces 
were maintained.  Additional  support to the ASIC designer 
is provided in the  form of on-chip  standard  bus  interface 
core library  units, which minimize the chip-level core 
integration  effort  required by the  designer.  In  terms 
of design migration  from  one  ASIC technology to a 
successor, the  designer is provided with library functions 

reproductmn is done  without  alteration  and ( 2 )  the Journal rcference and IBM  copyright  notice  are  included on the tirst  page.  Thc  title  and  abstract,  hut no other  portions, 
"Copyright 1YY8 b y  Intcrnational  Busmess  Machine?  Corporation.  Copying in printcd  form  for  prlvate  use is permitted  without  payment  of royalty provldcd  that ( I )  each 

of this  paper may he  copied or distributed royalty free  without  further  permissmn by computer-hayed  and  other  intormation-service  systems.  Pcrmisslon  to republish any other 
portion of thi\  paper  must  he  obtained  from  the Ed~ to r .  

0018-8646/98/$5.00 0 1998 IBM 

IBM J. RES.  DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 S. H. BURROUGHS  AND T. R. LATTRELL 

725 



+”--- History  buffer -“-+ 

Step 0 at- “theboy-the-dog” 

t I t t ( “-” represents a space) 

0 1 51 1 
Displacement 

Step 8 I u u _ b o ) <  +” “the-dog” 

t t ;  t 
0 7 1  511 

I 

Step 15 1 Ithe_lboy-lthe_ldog 2 a+-“ ”(empty) 

t h n r = 4 t  t 
0 14  511 

Displacement - Final  history  buffer  state “+ 

1 ALDC history  buffer  structure. 
B 

I l l 1  I l l  I /  I I I I I I I I I I I I I I I l l I l l l l  

Scanned  characters  from a facsimile  document. 

which are  also  migrated,  thereby providing  a path  to 
improved system-level performance. 

Data compression  technology 
Data  compression  has grown from a  little-known 
technology requiring specialized training  and skills to 
become a process  that is used daily by literally  millions of 
people. All of us who browse the  World  Wide  Web  or  use 

726 the  Web  to  download images experience  this technology. 

S. H.  BURROUGHS  AND  T. R. LATTRELI 

Simply stated,  data Compression can  be defined  as the 
process of removing redundancy within text or  graphic 
data.  Eliminating such redundancy within data  thus 
conserves the  amount of space  or memory required to 
store  that  information.  When  there is less data  to 
transmit,  the  required  bandwidth is minimized for such 
data transmissions, and  thus  the  time  required  to  transmit 
data within or across  a system is minimized  as well. The 
result is improved system efficiency. 

To  realize this efficiency, the  compression  method  or 
technique  to  be  applied  to specific data  should  be  based 
on two factors:  the  data type, for  the  most efficient 
compression,  and  the  need  for  total recovery of the 
original data. A way  of determining  the  need  for  total 
data recovery  would be  to  compress  the  data  and  then 
uncompress  the  compressed  result  to  determine  the 
acceptability of that  operation. To understand  and know 
how acceptable it is if the  resultant  uncompressed  output 
does  not  match  the original data exactly is critical to 
selecting  the right algorithm. A fully reversible  (lossless) 
operation  can  be  quite  different  from a good  approximation 
(lossy) of the original input  data. 

Only lossless coding is appropriate  for symbolic data, 
since  even slight  modifications to  alphanumeric  data would 
provide  a result which was incorrect  or unintelligible. 
A common lossless technique  for coding symbolic data is 
based  on work by Lempel  and Ziv [3, 41 and is commonly 
referred  to  as  LZ1.  The  LZ1  method saves  a fixed amount 
of the most  recently codedidecoded  data in  a  history 
buffer. Each byte to  be  processed is either flagged as a 
“copy byte”  or  encoded by pointing  into  the history buffer 
and finding identical  strings of bytes  in the history buffer 
which match  the  input  data. A length field indicates  the 
number of characters in the  past  and  current  strings  that 
match.  This  method works well for  information  stored in 
bytes  with  significant repetition, such as  alphanumeric text 
or  palettized  graphics  data. Figure 1 shows  a string of 
characters with pointers  to string matches.  This is being 
illustrated with an  IBM  ALDC  (LZ1) history buffer. 
Because of the  operational  nature of this algorithm,  LZ1 
is described as  a one-dimensional  technique  for byte- 
oriented  or symbolic character  data. 

Facsimile  images  have traditionally  been losslessly 
coded.  For  these blackiwhite  images,  a bit  stores which of 
two tones  best  represents a picture  element  (pel). Figure 2 
illustrates a few characters  from a scanned  document.  The 
pels which make  up  the  rectangular grid are  represented 
in the  computer as 0 (white)  and 1 (black) bits. The  bits 
are commonly  packed into bytes for  storage.  LZ1 coding 
can efficiently compress  large white spaces  that  appear 
as  long strings of zero (0x00) bytes.  However, the  runs 
of individual white  and black pels  that  make  up  the 
characters  are  not  particularly  on byte boundaries. Bilevel 
image compression  techniques  that  consider  surrounding 

IBM J. RES. DEVELOP. VOL. 42 NO. 6 NOVEMBER 1998 



pels in both  the  horizontal  and vertical directions usually 
achieve significantly better  compression.  Such  techniques 
are  considered two-dimensional compression  techniques. 

Two related bilevel image compression  standards  are 
the  ABIC  (adaptive bilevel image compression)  algorithm, 
standardized  for  storing  check images for  the finance 
industry [ 5 ] ,  and  JBIG  (Joint Bi-level Image  Group) [6, 71. 
These  both look at nearby neighboring pels on the  current 
and previous line(s)  to  predict  the  tone of the  current pel. 
They both  use  adaptive  probability-estimation  techniques 
to efficiently code  the  prediction.  These  compression 
techniques  can  both be extended  to  graphics images with 
more  than  one bit per pel.  However, the image  must be 
decomposed  into bit planes  before  compression. 

Continuous-tone images  have  sufficient  bits per  sample 
to  appear like pictures.  JPEG  (Joint  Photographic  Experts 
Group) [8, 91 compression is often used to  code still 
images for  the  Internet.  Although  JPEG  product  hardware 
was available soon  after  the  JPEG  standard was created 
and it was utilized in the  capture of video  images and in 
digital cameras, most applications  found  JPEG software 
compression  and  decompression  adequate. 

For video  images, the  pictures  are  often closely related 
images. Significant additional  compression  can  be 
achieved with MPEG** (Moving Picture  Experts  Group) 
international  standards  that  take  advantage of frame- 
to-frame  correlations. A sequence of video frames is 
shown in Figure 3. Frames labeled I  are  independently 
decodable;  frames  labeled  P  are  predicted  from  an  earlier- 
in-time  frame (I- or  P-frame).  The arrow at  the  top of the 
figure illustrates  the  time  order of the  frames.  Frames 
labeled  B  are  predicted  from  frames existing both  earlier 
and  later in time. 

The first MPEG  compression  standard, commonly 
known as MPEG-1 [4], was targeted  at  interactive 
CD-ROMs.  The follow-on standard,  MPEG-2 [4], was 
intended  for  broadcast  TV, high-definition TV  (HDTV), 
and movies on  CD-ROMs.  High-speed  hardware was 
necessary to  the  adoption of this technique. 

Having  discussed data  compression  for symbolic 
characters, fax images, continuous-tone  pictures,  and video 
images, we move on  to  one  more special application of 
compression of PowerPC" instructions.  Compression of 
the  PowerPC object code  reduces  the cache storage 
requirements  for such embedded  processor  applications. 
The  compression can be  done in software,  but  the 
decompression must be able to  keep  up with the  processor 
requirements.  This  performance  requirement makes it a 
necessary function  for  the  ASIC  core library. 

IBM's investment in data  compression technology to 
support its  business interests in storage,  processor, 
image, and  communications  markets has enabled  data 
compression technology to evolve into  one of our  base 

IBM J. RES.  DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 

Time * 

I B B B P B B B P  
Group of pictures 

technologies in the  ASIC  core  program.  The  need 
to exchange compressed  data  has driven efforts  to 
standardize  formats  for  compressed  data.  Within 
the company we have  long been  a  proponent of 
standardization  efforts  and have encouraged  development 
in this important technology. 

IBM ASIC cores 
As pointed  out  earlier,  to  make  something  smaller  than 
its  original  size is natural; it is a concept which has  been 
prevalent  throughout history. The use of symbols, pictures, 
and  other  schemes  to  reduce  the  amount of information 
we process is familiar in our daily lives. In  the  computer 
industry, data  compression is critical to the  improvement 
of system throughput  storage  and  bandwidth  utilization. 
This technology has  become  an  enabler  for several data 
processing applications.  For example, data  compression 
was applied  to  the  storage industry, where it was used to 
compress files and  databases.  After early  success  in the 
storage  area, advances were  made in telecommunications, 
facsimile, and image processing. In the  telecommunications 
industry, performance  problems  drove  compression  to 
solve bandwidth  problems  at  reasonable costs. In  the 
1980s, fax data  compression  standards  and digital 
technology made digital fax possible  over analog  telephone 
lines. The  emerging  application  for  multifunction 
peripheral devices having the ability to  process complex 
images formerly  handled by large  host-based systems 
has been  enabled  through this  technology. By utilizing 
standardized  data  compression  algorithms, such as JBIG 
or  ABIC, image-intensive  high-quality desktop publishing 
tasks  can be  performed  on relatively low-cost hardware. 
The  hardware  implementation of these  algorithms  can be 
a cost-effective solution  to system throughput,  bandwidth, 
and  storage  utilization.  The  rest of this  section discusses 

S. H.  BURROUGHS  AND T. R. LATTRELL 



Read Write 

I I 

data interface 
Microprocessor 

Compressed 
data interface 

I t  t I 

Bus interface unit 

briefly the high-level architectural block diagrams  for  the 
four  IBM  ASIC  data  compression  cores. 

ALDC-adaptive lossless  data compression 
The  ALDC  function  has  been  partitioned  into two 
elements: a soft core,  containing  peripheral  interface logic, 
and  a  hard  core,  containing  the  encodeidecode  function, 
as shown in Figure 4. The  hard  core  has  the timing-critical 
elements of the design: the history buffer  and  the 
encodeidecode  engine.  The soft core provides a  user- 
friendly interface  to  the  engine,  data flow control,  and 
some buffering. It  resembles  the  interface of IBM’s ALDC 
standard  products.  The  throughput of the  ALDC  core is 
100 MB/s, processing one byte per cycle. This  core 
supports design migration to ASICs  for  the system-level 
designer  and also provides a substantial  performance 

728 improvement over the  standard  product offerings. 

The  data history function  has  been  designed using a 
proprietary [lo, 111 high-speed  CAM (content-addressable 
memory)  technology referred  to as a  CRAM  (content- 
addressable  random-access  memory). Since the history  size 
is application-dependent,  hardware  instantiations with 512, 
lK ,  and 2K bytes have been  implemented as separate 
individual cores.  This  permits  customer  selection of the 
configuration which best meets the application  requirements. 

JBIG-ABIC-lossless bilevel image compression 
The  JBIG-ABIC  core provides a  hardware assist to  the 
system designer which reduces  CPU  (processor)  overhead 
during  data  compression  for bilevel  images. The 
throughput objective is to process  one  bit  per cycle; 
therefore, with a clock rate of 80 MHz,  the  throughput 
would approach 80 Mb  (pels)  per  second.  The 
JBIG-ABIC  function  has  been  implemented as a firm 
core. It contains  three subblocks  in the  design, as shown 
in Figure 5: the  model  and  adapter  unit (with embedded 
SRAM),  the  coder  unit,  and  the  bus  interface  unit.  The 
core was designed  to  provide configurability through a 
programming  interface.  This  implementation  supports 
three  modes of operation: two standard  modes  and a 
hybrid combination of the two. The two standards which 
are  supported  are  ABIC, as  used in the  banking industry, 
and  ITU-T  Rec. T.82 I ISOiIEC 11544 (JBIG) [7],  as used 
in the fax industry. Various  parameters  can  be set to 
further  control  the  operation  and  tailor  the  function  to 
application  requirements. 

MPEG-2“lossy video image data compression 
The  MPEG-2  function  has  been  partitioned  into  a  set of 
three  cores which combine  to  form  the subsystem  shown 
in Figure 6. The  transport  demultiplexor  unit, a soft core, 
parses  the  input  data  into  audio, video, and system data. 
The video decoder is a firm core which decompresses  the 
MPEG-2 video data  stream  and passes  it to a digital 
video  device. The  audio  decoder is a soft core which 
decompresses  the  audio  data  and provides the 
uncompressed digital audio  data  to  an  external digital- 
to-analog  converter.  Each of these  cores  can  be used 
independently,  but  additional  advanced  features  are 
enabled when  they are used together.  For example, 
complex multicore  audioivideo  operations such as channel 
changes, time changes, synchronization,  and  error 
concealment  are all done in hardware, minimizing the 
impact on software  and  further simplifying product 
development  and  enhancing  the  end-user  product. 

401DEC”PowerPC 401 * instruction code decompression 
Code size efficiency is an  important  consideration in 
embedded system design. The  401DEC  core was designed 
to provide the ability to  decompress  PowerPC  instructions 
“on  the fly” at full processor  speeds  from  a  code  space in 

S. H. BURROUGHS AND 7. R LATTRELL IBM .I. RES. DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 



which compressed  instructions have been  located. This  soft 
core is a single functional entity which has all the  rgquired 
bus interfaces  to  support its use with the  PowerPC 401 
embedded  processor  core (Figure 7). 

Papers in this  special  issue 
All of the  algorithms described in the collection of papers 
in this  special  issue  on the  IBM  ASIC  data  compression 
cores have been  implemented in silicon. The  ALDC  paper 
discusses our lossless character  compression  core, which 
was first offered in standard  product  form.  This  algorithm 
was adopted as a  QIC  standard  and has been  shipped 
in 5/20/40MB/s ALDC  standard  products  for several 
years. The  core  implementation has a  performance of 
80-100 MB/s. More recently, the  JBIG-ABIC  core, at a 
performance  rate of 80 MHz, was added  to  the library 
and  has  been  shipped since  early 1997. The  MPEG-2 
subsystem is a  set of three  cores which were  added  to  the 
library in the  fourth  quarter of 1997. MPEG-2 was first 
offered in standard  product  form  before  being  added  to 
the  core library. Finally, a  paper describing  an instruction 
decompression  core  for  the  PowerPC is presented.  This 
function has been available  since  mid-1997. More  details 
on the  papers  are given next. 

A fast hardware data compression algorithm and some 
algorithmic extensions 
This  paper  presents exciting results  for  a family of 
efficient hardware  compression  engines with very high 
performance which are  developed  for  a  CAM  (content- 
addressable  memory)  hardware  base [ll]. An overview 
of the  hardware  and  encoding  structure  for  ALDC  and 
for  the  BLDC  extensions is presented with tabulated 
results. 

Design considerations for the ALDC cores 
Textual data may be organized as single  blocks of data, 
normally referred  to as files, or  as  multiple blocks of data, 
called segmented  data.  The  ALDC  core [lo] provides 
support  for  segmented  data.  The  core is capable of 
processing both blocked and unblocked data.  This  paper 
describes  the  architectural  features of the  core, which 
incorporate  automatic  segmentation  and history buffer 
controls  to work with a  segmented  data type. 

A JBIG-ABIC compression engine for digital document 
processing 
This  paper  describes  a  core which was completed  for  the 
multifunction peripheral  (MFP)  market  through  an 
alliance between  IBM Microelectronics  and Xionics 
Document Technology  Inc. The  problems faced in the 
MFP  arena  and  the  architectural  features  incorporated 
into  the JBIG-ABIC core [12], which provide a  hardware 
solution to this industry,  are  described in the  paper. 

Transport 
input - 
stream 

- I r r r l  Digital audio 1 
decoder Output 

MPEG-2 subsystem. 
sa 
$- 

++I processor core I PowerPC 

H 
I Decompression I I Memory 

unit f) 

Performance as a function of compression 
A  performance review of the  ABIC,  JBIG  ALDC,  and 
BLDC  data  compression  algorithms  contained in the 
core library is presented, with a focus on  the critical 
parameters [13] of throughput  and latency. This 
presentation of lossless compression  algorithms offers an 
exciting insight into  the compressibility of image  data  and 
the  throughput  performance. 

The Qx-coder 
An in-depth review [14] of the  hardware-optimized  Q-coder 
contained in the  ABIC  algorithm  and  the software- 
optimized  QM-coder as incorporated in JBIG is 
presented.  This study  explores the  differences  between 
the two coders,  and  a  proposed  solution  demonstrates 
the ability to  merge  Q-coder  and  QM-coder  functions 
in shared logic, called the  Qx-coder.  The  technique  to 
integrate  both  coders  to  produce  the  Qx-coder is novel 
and has resulted in a  major  contribution  to  the availability 
of a  merged  hardware  solution. 729 

IBM J. RES.  DEVELOP. VOL. 42 NO. h NOVEMBER 1998 S. H. BURROUGHS AND T. R. LATTRELL 



JBIG-ABIC macro algorithm verification 
A  description of the  JBIG-ABIC  Verification  Suite I151 is 
presented.  The  IBM  suite of images is shown  to go well 
beyond  the  set of standard  images  which  was  available  in 
the  industry.  The  contents of the  suite  are  described;  an 
example  is  then  presented  for  a  compression  subsystem 
based  on  the  JBIG-ABIC  core. 

Integrating the MPEG-2 subsystem for digital television 
This  paper  addresses  the  integrated  subsystem  consisting 
of the  transport  demultiplexor,  audio  decoder,  video 
decoder [16], and  supporting  host  processor  and  memory 
subsystem  elements.  The  dataflow  through  the  subsystem 
is presented from an  application  viewpoint. The 
advantages of the  core  implementation  are  clearly  shown, 
and  the  reduction in system  complexity  is  highlighted. The 
paper  describes  the  advantage of standardized  on-chip bus 
interface  units  to  support  processor  connectivity  and 
shared memory requirements;  corresponding  savings  at 
the system  level  translate  to  reduced  gate  count  and 
performance  improvements. 

A decompression core for PowerPC 
This  paper  presents  a  data  compression  method [17] which 
was  developed  to  improve  code  size  efficiency  through  the 
use of compression  techniques  applied  to  code  storage. 
The  resultant  decompression  core  enables  an  instruction 
decode “on the fly” for  the  PowerPC 401 embedded 
processor.  The  implementation  details  are  developed  and 
results  shown  for  various  compilers. 

Summary 
The  IBM  Microelectronics  Division is committed  to 
maintaining  a  leadership  position  in  the  industry  as a 
solutions  provider  through  the  functions  in  the  ASIC  core 
program. The data  compression  cores  presented  in  this 
journal  in  the  accompanying  papers  are  key  components. 

Acknowledgments 
The  authors  wish  to  express  their  appreciation  to  Dr.  Joan 
Mitchell  for  her  dedicated  assistance  in  the  JBIG-ABIC 
core  development  and  verification  project  and  for  her 
continued  consulting  on  all  aspects of data  compression. 
Without  her  assistance  and  dedication  this  issue of the 
Journal would  not have been  possible. The authors  would 
also like  to  recognize  and  thank  Dr. Ron Arps of the 
Almaden  Research  facility  for  his  contributions  to  data 
compression  technology;  his  leadership  and  excellent 
record of research  in  image  data  compression  have 
contributed  greatly  to  the  business,  especially in the 
development of the  ABIC  standard.  The  authors also 
acknowledge Lili Udell  for  her  assistance  with  the  figures 

730 used  in  this  paper. 

S .  H. BURROUGHS  AND T. R.  LATTRELL 

*Trademark  or registered trademark of International Business 
Machines Corporation. 

**Trademark  or  registered  trademark of Moving Picture 
Experts Group. 

References 
1.  Ann Marie  Rincon, Cory Cherichetti, David R.  Stauffer, 

and Michael  Trick, “Core+ASIC Methodology: The 
Pursuit of System-on-a-Chip,”  presented  at Wescon IC 
Expo ’97, Santa Clara-San Jose,  CA, November  4-6, 
1997. 

2. Ann  Marie  Rincon, Michael Trick,  and  Thomas Guzowski, 
“A Proven  Methodology for Designing One-Million  Gate 
ASICs,” Proceedings of the IEEE Custom Integrated 
Circuits Conference, May 1997, pp. 45-52. 

3. J. Ziv and A. Lempel, “A Universal  Algorithm for 
Sequential  Data  Compression,” IEEE Trans. Info.  Theory 
IT-23, NO.  3, 337-343 (1977). 

4. Roy Hoffman,  Data Compression in Digital Systems, 
Chapman & Hall, New York, 1997. 

5. R. B. Arps,  T. K. Truong,  D.  J. Lu, R. C.  Pasco, and 
T.  D.  Friedman,  “A  Multi-Purpose  VLSI  Chip  for 
Adaptive  Data Compression of Bilevel Images,” ZBM J. 
Res. Develop. 32, 775-795 (1988). 

6. W. B. Pennebaker,  J. L. Mitchell, G. G. Langdon,  Jr.,  and 
R. B. Arps,  “An Overview of the Basic Principles of the 
Q-Coder  Adaptive Binary Arithmetic  Coder,” IBM J. Res. 
Develop. 32, 717-726 (1988). 

Technology-Coded Representation of Picture  and  Audio 
Information-Progressive Bi-Level Image Compression 
(JBIG  standard). 

8. ITU-T Rec. T.81 1 ISOIIEC 10918-1:1993 Information 
Technology-Coded Representation of Picture  and  Audio 
Information-Digital Compression  and Coding of 
Continuous-Tone Still Images (JPEG  standard). 

Data Compression Standard,  Van  Nostrand  Reinhold, New 
York, 1993  (ISBN  0-442-01272-1). 

10. M. J.  Slattery  and  F. A.  Kampf, “Design  Considerations 
for the  ALDC  Cores,” IBM J. Res. Develop. 42, 747-752 
(1998, this  issue). 

Algorithm  and  Some  Algorithmic  Extensions,” IBM J. Res. 
Develop. 42, 733-745 (1998, this  issue). 

12. K. M. Marks,  “A  JBIG-ABIC  Compression  Engine  for 
Digital Document Processing,” IBM J. Res. Develop. 42, 
753-758 (1998, this  issue). 

Compression,” IBM J. Res. Develop. 42, 759-766 (1998, 
this  issue). 

14.  M. J.  Slattery  and  J. L. Mitchell, “The  Qx-Coder,” IBM J. 
Res. Develop. 42, 767-784 (1998, this  issue). 

15. P. S. Colyer and  J. L. Mitchell, “The IBM JBIG-ABIC 
Verification Suite,” IBM J. Res. Develop. 42, 785-794 
(1998, this  issue). 

16. R.  E.  Anderson, E. M. Foster,  D. E. Franklin,  and  R. S. 
Svec, “Integrating  the  MPEG-2 Subsystem for Digital 
Television,” IBM J. Res. Develop. 42, 795-805 (1998, this 
issue). 

17. T. M. Kemp,  R. K. Montoye, J. D.  Harper,  J.  D.  Palmer, 
and D. J. Auerbach, “A Decompression Core for PowerPC,” 
IBM J. Res. Develop. 42, 807-812 (1998, this  issue). 

7.  ITU-T Rec. T.82 I ISOllEC 11544:1993 Infornzution 

9. W. B. Pennebaker  and  J. L. Mitchell,  JPEG: Still Image 

11. D. J. Craft,  “A Fast Hardware  Data  Compression 

13. F. A.  Kampf, “Performance as a  Function of 

Received May 28,  1998;  accepted for  publication 
September 8, 1998 

IBM J. RES.  DEVELOP.  VOL. 42 NO. 6 NOVEMBER 1998 



Stuart H. Burroughs IBM Microelectronics Division, 
Burlington  facility, Essex Junction,  Vermont  05452 
(sburroug@us.ibm.com). Mr. Burroughs  joined IBM in 
1968. Since that  time  he has had  numerous technical and 
management assignments.  His current assignment is as a 
Program  Manager in the IBM Core Plus ASIC  development 
program. As program manager he  oversees  the  development 
and acquisition of reusable logic functions.  Recent  and 
current  projects include embedded microprocessor logic such 
as  picoJava. He  has  been heavily involved in the  development 
of strategic alliances with several companies  for  the  Core Plus 
ASIC  area.  Prior to his current position in the  development of 
ASIC  cores, Mr.  Burroughs’s recent assignments include 
design manager, technical applications,  and  product  marketing 
manager for the IBM Palette  DAC  products which were 
introduced  to  the  merchant  market.  In  the image  compression 
market, he was a principal in the business development of the 
JBIG-ABIC core.  During his career  at IBM, Mr. Burroughs 
has been  instrumental in the development of standard 
products using lossless data  compression,  palette  DAC 
graphics logic products, and compression cores. He has  also 
made  contributions in the application of finite-element- 
method modeling techniques for electronic packaging. He 
received both  bachelor’s  and master’s degrees in mechanical 
engineering  from  the University of Vermont.  Over his 
professional career, he has  published numerous  papers  and 
technical reports in technical journals  and  trade publications. 
He is a  Member of ASME  International. 

Ted R. Lattrell IBM Microelectronics Division, Burlington 
facility, Essex Junction,  Vermont  05452  (tlattrell@us.ibm.com). 
As  Program Manager of IBM’s Blue  Logic core  program, 
Mr.  Lattrell guides the  development of IBM’s portfolio of 
intellectual  property  for  the  program. I n  his 17 years at IBM, 
he has accumulated invaluable experience in technology, logic. 
and design  methodology development.  The success of IBM’s 
Blue  Logic core  program is  in part  due  to his experience  and 
effort in integrating  these  interdependent disciplines. Prior 
to his current assignment with IBM Microelectronics,  Mr. 
Lattrell was instrumental in IBM’s development of adaptive 
lossless data compression (ALDC).  A  part of his responsibility 
was to work as a liaison with international  standards 
committees for the  adoption of ALDC. Today, ALDC is 
recognized  as a  QIC  standard  and is under review for ANSI 
certification. In  addition, Mr. Lattrell’s work with the 
development of IBM’s first VHDL design  methodology, 
including  simulation,  synthesis, and timing  tools, helped  to 
reducc  the time required  to design integrated circuit logic. His 
foundation of work with IBM is grounded in the  development 
of metal-on-oxide  technologies. He assisted in the 
qualification of the n-MOS and original CMOS technologies 
and  later led the qualification of IBM’s 1.5-pm CMOS 
technology. 

IBM J .  RES. I IEVELOP.  VOL 42 NO. (> NOVEMBER 1998 

~~~~ ~ 

S. BURKOUGHS 

731 

AND T. K.  LATTRELL 



[[Page 732 is blank]] 


