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Higher-resolution, larger-diagonal active-
matrix liquid crystal displays (AMLCDs) will
require the use of low-resistivity gate metal
such as aluminum transition-metal alloys.
Al(Nd = 3 wt.%) alloy films are adequate for
AMLCD fabrication because of their low
resistivity and their tendency not to form
hillocks during thermal processing. The

use of both optical light scattering and
nanoindentation for the rapid evaluation of
hillock formation has been demonstrated,
along with the use of ramped resistance
measurements for observing the process of
discontinuous precipitation (the combination
of Al grain growth and Al-Nd compound
precipitation). Al(Nd) films were further
characterized by TEM and AFM to confirm
the effect of their finely dispersed Al-Nd
compound precipitates on decreased grain
size and decreased hillock formation.

Introduction

Since the early 1980s, the size and complexity of AMLCDs
have increased dramatically, with a projected market value
of 7-15 billion dollars in the year 2000 [1]. These trends
are expected to continue, with increased penetration into
the desktop display market [2]. Scaling analysis [1] has
shown that lower-resistivity gate metals, such as Al alloys,
will be required for larger, higher-resolution displays.
Unlike the refractory metals or alloys currently used, the
thermal expansion mismatch between Al films and the
glass substrate of an AMLCD can result in the formation of
hillocks [3, 4] and/or whiskers [5] during display fabrication.
Whisker formation occurs when grain growth is suppressed
during heat treatment of Al films, causing localization of the
stress relief [5]. Alloying Al films with transition metals
can minimize hillock or whisker formation [6-9].

Key requirements for gate-line materials for TFT/LCD
arrays are low resistivity (=5 u{)-cm), resistance to stress
migration (no formation of hillocks or whiskers), good
adhesion to glass, and the ability to be patterned with a
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Resistivity vs. isothermal annealing temperature for pure Al films
and Al(1-9 wt.% Nd)-alloy films. The AI(Nd) films were
215-235 nm thick and the Al films were 220 nm thick. Annealing

i
was carried out for 20 min.

tapered edge by wet or dry etching. A comparison of gate-
line materials is shown in Table 1. The formation of a
tapered edge is important to ensure adequate coverage by
the gate insulator and subsequent metal layers. Thermal
processing causes Al grain growth and precipitation of an
Al-transition-metal compound at grain boundaries; this
reduces the resistivity of the Al-alloy films. The initial
resistivity of Al-alloy films is higher than that of pure Al
films because sputter deposition can form nonequilibrium
solid solutions with an amorphous or very fine grain
structure. When the Al grains grow, the recrystallization
front sweeps the alloy additions out of the grains to form
precipitates at the grain boundaries, in a process referred
to as “discontinuous precipitation” [10]. If the alloy
addition has a very limited solubility (0.008 at.% Nd in Al
at 640°C [11]), the annealed resistivity is much lower than
the as-deposited resistivity because of decreased solute

Table 1 Gate-line materials for TFT/LCD arrays.

scattering. The final resistivity after annealing is higher
than that of pure Al films, primarily because of the
reduction in Al grain size and the presence of precipitate
particles at the grain boundaries. The formation of
hillocks or whiskers usually occurs when the room-
temperature glass plate with patterned gate metal is
transferred onto a heated chuck (>300°C) before
chemical vapor deposition of the gate insulator film.

The relationships among resistivity, microstructure,
and hillock or whisker formation in Al films containing
between 0 and 10 wt.% Nd on glass have been studied.
The film properties were characterized using resistance
measurements, tapping-mode atomic force microscopy
(AFM), transmission electron microscopy (TEM), optical
scattering, and nanoindentation. Optical scattering and
nanoindentation provide rapid means of evaluating hillock
formation without tedious microscopic examination.

The Al(Nd) samples were deposited by sputtering from
alloy targets on BaO-BO-SiO glass (Corning 7059)
substrates (thermal coefficient of expansion of 5 ppm/°C
vs. 24 ppm/°C for Al). Films with a range of compositions
(0, 1, 3, 5,7, and 9 nominal wt.% Nd) were deposited on
5-in.-square substrates at a rate of about 180 nm/min,

at an argon pressure of 0.4 Pa and a substrate temperature
of 120°C by means of a dc fixed-magnetron sputtering
apparatus. Films with a nominal composition of 10 wt.%
Nd were deposited on 300 X 400-mm substrates by a
scanning magnet dc magnetron sputtering apparatus

at a rate of about 300 nm/min, at an argon pressure of
0.4 Pa and a substrate temperature of 120°C. The film
thicknesses, as measured by Rutherford backscattering
spectrometry, ranged from 215 to 235 nm for the films
prepared on small substrates and were 295 nm for the
films prepared on the large substrates. The optical
scattering measurements were performed simultancously
with resistance measurements in situ during heating at
180°C/min in nitrogen [12]. For the geometry used, the
optical scattering was sensitive to lateral length scales of
0.5 um. The amount of optical scattering increases when
the film surface roughness increases and hillocks form.
Since the film resistivity depends on the microstructure,

Material Resistivity Stress Adhesion to Taper etching

(uQ-cm) migration resistance glass substrate ability
MoTa 40 Good Fair Good
MoWw 15 Good Fair Fair
Al alloy after annealing, Good Good Good

(transition metal) 4-6

Al~-Cu 3-35 Fair Good Good
Pure Al 2.7 Poor Good Good
Cu 2.0 Good Poor Fair

H. TAKATSUJI ET AL.

IBM J. RES. DEVELOP. VOL. 42 NO. 3/4 MAY/JULY 1998




ramped resistance measurements were used to determine
the apparent activation energy for discontinuous
precipitation {13]. For nanoindentation measurements,
indentation marks were made at regular intervals on the
films using a Vickers hardness tester. The samples were
then rapidly heated to 300°C in vacuum, held at that
temperature for 80 minutes, and slowly cooled. The
indentation marks were then inspected for the formation
of hillocks and/or whiskers [14].

Results and discussion

With isothermal annealing, the resistivity of AI{(Nd) films
decreases sharply between 250°C and 300°C, as shown in
Figure 1. The as-deposited resistivity increased with the
Nd content. After annealing at 350°C for 20 min, the
resistivity ranged from 3.6 to 5.4 u€)-cm. This decrease in
resistance on annealing corresponds to discontinuous
precipitation, during which the Al grains grow and Al-Nd
precipitate particles form at the grain boundaries, as
shown in Figure 2. The faint layered structure in the as-
deposited film [Figure 2(a)] resulted from the multiple
scans during deposition. Annealing [Figure 2(b)] resulted
in the formation of fine vertically oriented Al grains with
Al-Nd precipitates at the grain boundaries. The evolution
of surface roughness (area mean, Ra) with annealing

and Nd content was measured by AFM (Figure 3).
Representative AFM images of the as-deposited and
annealed pure Al and Al(5 wt.% Nd) films are aiso shown
in Figure 3. The largest change in surface roughness
during annealing occurs for the pure Al film, and there

is no significant change in roughness with annealing

at up to 350°C for the Al(=3 wt.% Nd) alloy films. The
Al(1 wt.% Nd) films were significantly rougher than the
more Nd-rich films and were almost as rough as the pure
Al films after annealing.

Resistivity and optical scattering were measured during
heating at 180°C/min to 600°C for pure Al films and
various Al(Nd) film compositions, as indicated in Figure 4.
Note that the Al(10 wt.% Nd) film was deposited on a
large substrate in a scanning system using different
deposition conditions. The resistivity of the AI(Nd) alloys
decreased markedly at about 330°C [Figure 4(a)]. This is a
higher temperature for discontinuous precipitation than
with isothermal annealing (Figure 1), as expected for
ramped annealing. The optical scattering [Figure 4(b)]
increased for the pure Al films starting at 200°C compared
to no increase in scattering for the AI(Nd) films until
above 400°C. Although the temperatures are well beyond
those of interest, the optical scattering increased less at
temperatures between 400°C and 600°C for the AI(Nd)
films having the highest Nd content. The results for
the Al{10 wt.% Nd) films were consistent with results
for the other films, suggesting that the evolution of the
microstructure with annealing was unaffected by the initial
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TEM cross sections of an Al(10 wt.% Nd) film on glass coated
with an SiO layer (a), and after annealing in vacuum at 300°C for
one hour (b).

350°C 20 min As-deposi

® As-deposited
® 250°C 20 min
2F 4 300°C 20 min
© 350°C 20 min

Area mean surface roughness (nm)

0 1 3 5 7 9
Nd content (wt.%)

Area mean surface roughness (Ra) vs. 0-9 wt.% Nd content for
various heat treatments measured by an atomic force microscope
(AFM). AFM images are shown for a pure Al film and for an
Al(5 wt.% Nd) film. The area of each image is 2 um X 2 um,
with a vertical scale of 100 nm.
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Resistivity (a) and scattering intensity (b) during heating at 180°C/min to 600°C for pure Al and the indicated AL(1-10 wt.% Nd) alloys.
Insert shows the experimental setup used for measuring the scattered light intensity during heating.
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layered structure (Figure 2). For a temperature of 350°C, wt.% Nd) films are plotted in Figures 5(a)—(c). With

the scattered intensity was greatest for the pure Al films increased ramp rates, the discontinuous precipitation
and next greatest for the Al(1 wt.% Nd) films, which is temperature shifted to higher temperatures, indicating that
consistent with the AFM surface roughness measurements it is a thermally activated process. The resistivity of the
in Figure 3 obtained after annealing. Measurements on Al(1 wt.% Nd) films decreased significantly during heating
Al(Cu) films (not shown) indicated increasing scattering before discontinuous precipitation occurred, especially
for temperatures above 300°C. for the lowest heating rates. The resistivity of the

Further ramped resistivity measurements at heating Al(5 or 9 wt.% Nd) films changed only slightly during
rates between 1°C and 180°C/min for the Al(1, 5, or 9 heating prior to discontinuous precipitation. Assuming a
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direct correlation between the film microstructure and
resistivity, this suggests that the grain growth and/or Al-Nd
precipitation is not delayed as effectively by the addition
of 1 wt.% Nd as by the addition of 5 or 9 wt.% Nd.

The abrupt change in resistivity for the Al(5 or 9 wt.% Nd)
suggests that the relatively large stored energy for Al
grain growth and the stored energy for Al-Nd precipitate
formation are released at the same time.

Several driving forces, or sources of stored energy,
are available to drive the microstructure evolution in
sputtered Al(Nd)-alloy films during annealing [15].

First, the supersaturated solution of Nd atoms in Al is
precipitated, releasing the heat of solution. Second, the
formation of Al-Nd compound precipitates releases the
heat of reaction. Third, grain growth releases energy by
the elimination of grain-boundary area. These three
mechanisms are coupled in such a way that they

occur abruptly in a narrow temperature range upon
heating.

The shift in discontinuous precipitation temperature
with ramp rate can be used to determine an apparent
activation energy for the overall process through a
Kissinger-like method [13, 16, 17]. In the Kissinger
analysis, the dependence of transformation temperature
on ramp rate is used to determine a single activation
energy. The measured apparent activation energies
were thus found to be nearly identical for the different
AI(Nd) films, with a value of 2.1 to 2.2 eV. While the
discontinuous precipitation process cannot be described
with a single mechanism, this value of apparent activation
energy is useful in predicting the temperature of
precipitation at other ramp rates. The temperature for
discontinuous precipitation, at a given ramp rate, was on
average 22°C higher for the Al(1 wt.% Nd) films than for
the Al(5 wt.% Nd) films. The shift to higher temperatures
for the Al(1 wt.% Nd) films is likely the result of some
initial grain growth and/or Al-Nd precipitation, as
evidenced by the reduced resistance, prior to the
abrupt discontinuous precipitation, which reduced the
thermodynamic driving force for discontinuous
precipitation.

These apparent activation energies can be compared to
results from similar measurements on Al(Cu) films [13] in
which, for Al(2 or 4 wt.% Cu) films between 0.5 and 2 pum
thick, the apparent activation energy for discontinuous
precipitation (Al,Cu precipitation) ranged from
1.2 to 1.4 eV for blanket films and from 1.9 to 3.1 eV for
patterned lines 1 wm thick and about 0.65 um wide. The
discontinuous precipitation in the patterned lines took
place at temperatures approximately 200°C higher than
in corresponding blanket films, in which discontinuous
precipitation occurred between 90°C and 155°C. The
differences in the behavior of blanket and patterned lines
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Resistivity vs. temperature for an Al(1 wt.% Nd) film (a); for an
Al(5 wt.% Nd) film (b); and for an Al(9 wt.% Nd) film (c) for

z ramp rates from 1°C to 180°C/min.

were attributed to the constraints on grain growth and
nucleation in the patterned lines. The addition of a
refractory metal alloying element by sputtering retards the
Al grain growth in a somewhat analogous manner. The
recrystallization front is hindered not by geometry, but by
the need to displace the refractory metal atoms. The
presence of Nd greatly increases the temperature at
which grain growth occurs, reducing the grain size. The
temperature at which discontinuous precipitation occurs 1s
important, because it has been found that for Al alloyed
with transition metals, the compressive stress caused by
the thermal expansion mismatch between the Al-alloy film
and its glass substrate is abruptly reduced to a near-zero
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Schematics of (a) nanoindentation technique and (b) heat treatment
used; (¢c) SEM micrograph of a pure Al film showing a whisker
and hillock formed by nanoindentation and annealing.
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value by Al grain growth and precipitation [9]. The
reduction in grain size, especially avoiding columnar grains
through the thickness of the film, allows any further stress
relief to be accommodated by intergranular sliding or
localized grain deformation rather than by large-scale
deformation, which can lead to the formation of hillocks
and/or whiskers.

The nanoindentation technique, which was previously
applied to pure Al and Al(0.2 wt.% Cu) films [14], has
been found to be a rapid and accurate means for
characterization of stress migration. Additionally, it has
been found that whisker generation correlates strongly
with the crystallographic texture of the films. The
conventional methods required patterned metal layers and
exhaustive microscopic examination to detect hillocks or
whiskers after annealing. The nanoindentation technique
consists of making an array of indentations in the film by
means of a Vickers hardness tester [Figure 6(a)] rapidly
heating the sample, maintaining it at temperature in
vacuum [Figure 6(b)], and then inspecting the indentation
sites for hillock and/or whisker formation [Figure 6(c)].

A consistent indentation depth and heating rate are
important for comparisons between films. The results

of the nanoindentation measurements were as follows:
31 hillocks and four whiskers appeared on the pure

Al film; six hillocks and no whiskers appeared on the
Al(1 wt.% Nd) film; and no hillocks or whiskers appeared
on the remaining AI(Nd) films. These results confirm the
effectiveness of adding Nd to Al for suppressing the
growth of hillocks and whiskers, and are consistent with
results obtained by the rapid measurements of resistivity
and optical scattering.

Summary

The resistivity and stress migration properties of
Al(Nd = 3 wt.%)-alloy films are adequate for AMLCD
fabrication. The use of optical scattering and nanoindentation
for the rapid evaluation of hillock formation has been
demonstrated. The apparent activation energy for
discontinuous precipitation (the combination of Al

grain growth and Al-Nd compound precipitation) was
determined using ramped resistance measurements and
ranged from 2.1 to 2.2 eV for the Al(1, 5, or 9 wt.% Nd)
films.
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