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Projectors that use reflective light valves
must employ beam splitters or analogous
components to separate bright-state light
from dark-state light, since both states must
propagate in the space above the light valve.
Polarization ray tracing shows that such beam
splitters will not usually achieve high rejection
of dark-state light when the beam has the
typical angular divergence of about +10°. At such
propagation angles, different rays in the beam
will have appreciably different planes of incidence
at tilted optical coatings in the system (because
of the compound angles involved). If the light
valve is mirrorlike in dark state, we show that
to correct the depolarization resulting from
compound incidence angles, it is necessary
that the optics introduce no rotation in the
illuminating polarization. To a reasonable
approximation, such a rotation in polarization
will double in the return pass through the
optics. To the same approximation, induced

ellipticity in the illuminating polarization will
cancel in double pass, and pure rotation

can be converted to pure ellipticity with

a quarterwave retarder. An important
qualification, however, is that a light valve can
only be exactly mirrorlike in restricted cases
[i.e., if linearly polarized input light remains
exactly linearly polarized (though possibly
rotated) at all wavelengths when it reaches
the mirror backplane of the light valve,
independent of small manufacturing errors].
We calculate contrast loss in the more realistic
case of a reflective twisted nematic liquid
crystal (TNLC) light valve interacting with tilted
coatings in the projection optics over finite
numerical aperture (NA), and discuss the
impact on LC thickness tolerances and
spectral bandwidth AN. We extend our results
to apply to more general light valves and more
general projection optics configurations. Dark-
state background is found to scale as NA? (or
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Measured S transmittance of commercially procured beam-splitter
coating. R, G, and B refer to integrations over the red, green, and
blue regions of the spectrum. A typical requirement of 100:1
system contrast can be met without a supplementary polarizer in
the transmission path.

in some cases as ~NA%A\?). Because of
this interaction, the complete system almost
always shows a lower contrast than the light
valve alone.

Introduction

Light valves that are reflective provide important
advantages in projection displays. Controlling circuitry
placed below the mirror surface does not obstruct the
clear aperture [1, 2], more advanced IC technology is
available for substrate materials that are opaque, and a
more compact system may be achieved when the reflected
output beam is folded back on the input. However,
complexities arise in the optical system when the space
above the light valve must be used for both illumination
and collection. The reversibility of a nominally loss-free
optical system implies that the light valve must be
illuminated with dark-state light, because light that
remains in the input state after reflecting from the light
valve necessarily follows the reverse path back to the
illuminator, and so does not contribute to image

“brightness. In different technologies the term dark-state

might refer either to the polarization or to the
directionality of the incident light, depending on the
method of modulation used. In either case, it is a basic
physical requirement that any light which the light valve
might reflect without modification (in polarization or
direction) will necessarily retrace its path back to the
source.
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Conversely light that is switched to the bright state by
the light valve must be shunted into the projection optics.
When light valves use polarization modulation, this is
generally accomplished with a polarizing beam splitter
(PBS), but the required angular range can be difficult to
achieve. For one thing, it can be difficult to achieve
acceptable performance from the polarizing hypotenuse
coating over an adequate angular range (e.g., over a range
of angles of incidence ~45° + 5° in glass).

There is, however, a more subtle problem, relating to
the difficulty in maintaining a consistent polarization in a
three-dimensional cone of light as it propagates through
an optical system. The angular subtense required in the
beam [essentially, the numerical aperture (NA) or f/#] is
dictated by the need for high lumen output, often the
paramount requirement in today’s projection displays.
Typical output requirements and efficiency constraints
imply optical fluxes at the light valve of ~1 W. Integrated-
circuit processing techniques typically constrain the
aperture of reflective light valves to dimensions of a few
centimeters or less. Brightness limits in today’s short-arc
lamps then imply that the beam illuminating the light
valve must subtend at least several degrees in order to
provide the necessary flux density [3]. Polarization control
with twisted nematic liquid crystal (TNLC) light valves
and PBS optics over such angular ranges are the main
emphasis of this paper. However, it is worth noting that
the problem of preventing “crosstalk” between bright-state
and dark-state beams is fairly general with reflective light
valves, affecting, for example, those based on directional
modulation.

Broadband polarizing beam splitters have been procured
commercially' that provide dark-state rejection >250:1
throughout the visible spectrum if used single-pass at any
angle within a =10° range. (A supplementary sheet
polarizer must be included when the PBS is used in
reflection.) Figures 1 and 2 illustrate the coating
performance achicved. Imperfect coating response was
distinguished from substrate birefringence in the
measurements in Figures 1 and 2 by crossing the PBS pass
direction against parallel input and output sheet polarizers.
Measurements with a solid cube were used to subtract out
losscs in the prism substrates and front-surface antireflection
coatings. Some PBS substrate glasses introduce appreciable
attenuation in the blue region of the spectrum, but blue
losses in the substrates of Figures 1 and 2 were small
compared to those arising in other parts of the system, e.g.
from illuminator components and aluminum fold mirrors [3].
The plotted results are integrated over a uniform cone of
rays at each NA. It should be noted that while this coating
provides reasonably high efficiency out to NA ~ 0.2, the
design range was only +6°.

! For example, Balzers Thin Films Products Division, Fremont, CA; Spectra-
Physics Components and Accessories Division, Mountain View, CA.
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In a projector the PBS must be used in both
transmission and reflection. One mode (e.g., transmission)
is used for the illumination pass to the light valve, and the
other (e.g., reflection) for collection from the light valve
by the projection lens. MacNeille-type PBS coatings are
designed to be dielectric mirrors in S polarization; a far
more difficult requirement in their design is that they
achieve Brewster suppression of P reflectivity throughout
the ~*10° angular range. In practice, achieved P
transmittance always departs much further from the goal
of 100% than does S reflectance, so P transmittance gates
double-pass PBS efficiency. Total background light in
projection displays must typically be =1 part in 100 of
bright state; the departure of P transmittance from
unity is inevitably larger than this, which means that a
supplementary polarizer (e.g., a sheet polarizer) must be
included in the reflection pass to block reflected P light
(i.e., if the light valve is illuminated with light reflected
from the PBS hypotenuse, the illumination must be passed
through a sheet polarizer before entering the PBS; if
instead the image light is collected in reflection, the image
light must be passed through a sheet polarizer after
reflecting from the PBS). Sheet polarizers are at best
~90% efficient in the pass polarization, and it is desirable
that the S transmittance be low enough that one does not
have to add a second lossy sheet polarizer for the
transmission arm. (Note that such a sheet polarizer in
the illuminator might be replaced by more expensive
polarizing elements that partially recycle the unused
polarization [3-5].) Figures 1 and 2 show that coatings
available today can achieve these performance goals;
single-pass reflectance of P polarization and single-pass
transmission of S polarization are both acceptably low by
the above criteria.

However, basic trigonometric constraints limit the
rejection ratio that can be achieved by the PBS element
in double-pass, if it is used to illuminate a reflective
substrate with a noncollimated beam. If the light valve
returns dark-state light in mirrorlike fashion, the geometry
of compound angles implies that skew rays will not see the
same plane of incidence at the return pass to the PBS
hypotenuse that they see on the input pass.

For skew rays these planes of incidence are tilted
relative to the external faces of the PBS cube. For
example, Figure 3 shows a skew ray AB incident at the
front face of a PBS cube; the ray illuminates the light
valve at point C after being reflected downward from
point B by the hypotenuse coating. If the light valve is
switched dark, the ray remains (nominally) dark-state
polarized, and returns to the front face along CB'A’.
During the input pass the PBS will polarize the
illumination either perpendicular to the tilted plane of
incidence ABC (for illumination in reflection through the
PBS, as shown in Figure 3), or within this tilted incidence

IBM J. RES. DEVELOP. VOL. 42 NO. 3/4 MAY/IULY 1998

096 F T

P transmittance
=
O
[\
L

0.88

0 0.05 0.10 0.15 0.20

Measured P transmittance of the Figure | polarizing coating. At
practical NAs, several percent of the light is lost in reflection. A
supplementary polarizer in the reflection arm is required to meet
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throughput if an absorbing sheet polarizer is used.
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plane (for illumination in transmission, not shown in
Figure 3). If the illumination polarization is maintained in
the dark-state light that reflects from the light valve, the
E-field will show a different tilt relative to the new plane
of incidence for the return pass at the PBS hypotenuse
(plane A'B’C). The top-view diagram of Figure 3
illustrates the incident and returned E-field for the case of
a light valve with mirrorlike dark state. The returned skew
ray is reflected to the opposite side of the lens NA,
causing the return plane of incidence A’B'C to have an
opposite tilt from the input incidence plane ABC. The
newly tilted orientation of the E-field relative to A'B’'C
means that the dark-state light has both S and P
components during the return pass, and so is not entirely
returned to the illuminator.

By this mechanism, the compounded incidence angle
of the ray at the PBS coating (the ray incidence angle
having components along both the skew and coating-tilt
meridians) gives rise to polarization crosstalk, causing a
loss in contrast. The amplitude projection onto the tilted
incidence plane is approximately linear with NA, and
contrast decreases as NA . Since compound-angle
depolarization converts dark-state light to the bright state
of the image, this NA-dependent background cannot be
filtered out with a supplementary polarizer.

This depolarization mechanism does not ordinarily arise
with transmissive light valves, where a simple sheet post-
polarizer can be used to trim dark-state light from the
bright-state image beam. When the light valve is reflective,
both states must propagate in the space above the

A. E. ROSENBLUTH ET AL.

361



362

Top view

Dark-state light valve

Side view

Rays are incident at beam splitter with appreciable skew angle when optical system aperture provides acceptable brightness (VA = 0.1). The
compound incidence angles cause polarization crosstalk that is proportional to the varying tilt in the ray planes of incidence (e.g., ABC, A'B'C).
The resulting loss in contrast cannot be corrected with a supplementary polarizer. Note: For the sake of clarity, refraction at the front surface is
not shown.

substrate, and the beam-splitter element must actually
separate the two beams. Beam-dividing interference
coatings are prone to the depolarization mechanism
described above. A transmission light valve will not suffer
compound-angle depolarization even when PBS pre- and
post-polarizers are used instead of sheet polarizers, as
long as the hypotenuse coatings of the two PBS cubes are
parallel and there are no other tilted coatings between the
PBSs and the light valve. However, single-pass compound-
angle effects are reported [6] in rear-projection monitors
that reduce box depth by using a reflective polarizer [7, 8]
on the inside surface of the projection screen in order to
make an extra fold in the imaging beam [6, 9].

As discussed above, the ideal reflective light valve must,
when switched to dark-state, reflect the central ray without
changing its polarization. However, such an ideal light
valve need not be mirrorlike; it might, for example, be
instead equivalent to a quarter-wave retarder placed above
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a mirror. As long as the fast and slow axes of such a
retarder take the orientation shown by the dashed lines in
Figure 3 (one axis lying within the plane BB'C, the other
axis parallel to the central ray before it enters the cube),
the dark-state polarization of the input central ray

will remain unchanged in the output. However,

such a quarter-wave retarder will change the polarization
of skew rays, in a beneficial way. The retarder will act as a
half-wave rotator in double pass, and the E-field of a skew
ray that is incident perpendicular to (or within) the
rotated plane ABC will be returned in a direction
perpendicular to (or within) the mirror-rotated plane
A'B’C, thereby eliminating depolarization [10]. If the
dark-state light valve resembles a mirror rather than a
quarter-wave plate, the same correction can of course be
obtained by placing an actual quarter-wave retarder above
the light valve. This technique appears to be fairly well
known among manufacturers of light-valve projectors
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(perhaps having been invented independently a number of
times), but to our knowledge it has only been described in
the patent literature [10].

In this paper we describe the above depolarization
mechanism in more general terms; we consider more
general optical systems than the simple PBS of Figure 3,
and we consider light valves that are not necessarily ideal.
We do, however, make the following approximation: In
cases where the central ray strikes a surface at (or near)
normal incidence, we apply the normal-incidence Jones
matrix for the surface to all rays in the beam. (In fact,
it is only in this approximation that one can describe the
E-field reflected from a mirror as not rotated.) Terms
that scale as NA® (in amplitude) are thereby neglected.
However, we show that tilted optical coatings in the
system give rise to amplitude effects that scale as NA'

(as in the example of Figure 3); these linear terms are
dominant. Comparison with exact-polarization ray tracing
shows that a first-order calculation predicts background
levels to well below one part in 100 at NAs of interest to
us, i.e., at apertures below ~f/3.5 (NA < 0.14). (When
we use the term first-order in this work without further
qualification, we mean first-order in an expansion in beam
NA.) More accurate calculations require modeling of the
angular dependence of near-normal incidence components
such as linear sheet polarizers and the light valve; these
are beyond the scope of the present paper. However, we
note that the mechanics of exact-polarization ray tracing
are well known in the literature, and are implemented in
commercial optical design programs. Most commonly,
polarization along a ray is determined from a multiplied
string of Jones matrices, alternating between matrices

for the surfaces and matrices that carry out rotation
transforms to map the S and P polarization directions of
one surface to the S and P directions for the next. To our
knowledge, the first such treatment to use a modern
ray-tracing formulation is that of Waluschka [11]; full
implementation details are given in his paper. Waluschka’s
method is useful for calculating the polarization properties
of projection optics at a system level. The polarization
properties of LC light valves are described in two recent
reviews [12, 13].

A first-order calculation is sufficiently accurate for our
purposes, and the simplification it provides yields two
advantages. First, such a calculation allows contrast to be
defined in terms of simple relationships involving surface
parameters (usually, the surface orientations and the S/P
relative phase shifts from interference coatings on
the surfaces). Simple relationships are particularly
advantageous in an optimization program, where rapid
evaluation of a merit function is important.

Second, a first-order analysis provides considerable
insight into the nature of contrast loss from interaction
between the optics and the light valve. This is the main

IBM J. RES. DEVELOP. VOL. 42 NO. 3/4 MAY/IULY 1998

\

PBS

/\

Light
valve

Compound-angle depolarization can arise as a cumulative effect
from multiple tilted coatings in the optical system.

%
|

emphasis of the present paper. Contrast with a general
optical system and light valve is found to scale as NA
under the compound-angle depolarization mechanism. The
analysis below shows that a succession of optical surfaces
that are parallel to the PBS hypotenuse (in media having
roughly similar refractive indices) do not give rise to
further depolarization. Only surfaces where bright-state
and dark-state light propagate together give rise to
relevant depolarization; as illustrated in Figure 4, these
might include color-splitting dichroics between the PBS
and the light valves. Only bright-state light propagates
between the PBS and the projection lens, but dark-state
and bright-state light must both propagate through
surfaces that lie between the PBS and the light valve, and
dark-state light traverses these surfaces in double pass.
This double-pass traversal implies a degree of symmetry in
the depolarization properties; we show that when the
dark-state light valve can be approximated as mirrorlike,
rotation imposed on the illuminating polarization by the
optics during the input pass is essentially doubled during
the output pass, and ellipticity is canceled. This is opposite
to the usual symmetry in double-pass traversal of a
polarizing element, where (for small depolarization)
ellipticity doubles and rotation is canceled (as with a
waveplate or optically active film above a mirror); the
difference is that a skew ray propagates through the optics
on opposite sides of the pupil during the input and output
passes.

A. E. ROSENBLUTH ET AL.

363




364

Note that what is meant here by “doubling of rotational
depolarization in round trip” is that when the single-pass
depolarization of skew rays is purely rotational (i.e., £ /E_
is pure real at the completion of a single pass through
the optics when the input ray cone is linearly polarized
along 2, with optical axis along y), the double-pass
depolarization will be twice as large in magnitude. The
double-pass intensity between crossed polarizers is then
four times that measured in single pass if the single-pass
depolarization is purely rotational. However, while the
depolarization doubles in magnitude after two passes, the
direction of polarization in the beam that exits the system
is always aligned with the PBS pass axis for the bright-
state image, which is oriented at approximately 90° to the
polarization that illuminates the light valve.

It is not necessary that the light valve be mirrorlike in
dark state to provide high contrast. We later show
[Equation (64)] that when any continuous polarization-
modulating layer is placed above a mirror backplane and
rotated between crossed polarizers, the reflectance (in
double-pass traversal of the layer) will be proportional to
sin’(20'), with @' the orientation (measured relative to
the orientation of minimum reflectivity), as long as the
layer is not lossy from scattering or absorption. One must
imagine that the beam is incident on the reflecting
structure at an angle slightly off normal, so that the input
and output polarizers can be crossed to each other. The
amplitude of the sin’(2@') variation is only zero (for all
0') if the polarization-modulating layer (in single pass)
is either null, equivalent to a half-wave retarder, or
equivalent to a pure rotation (optically active layer). On
the other hand, a PBS in a projector functions “in zeroth
order” (i.e., NA — 0) as crossed polarizers, so to zeroth
order essentially any polarization-modulating film above a
mirror can be said to provide a valid dark state if rotated
to a particular orientation where the sin’(20") modulation
has a zero. (Of course, in practice a light-valve active
layer must in dark state be reasonably insensitive to
depolarization from scatter and small inhomogeneities,
it must satisfy spectral bandwidth requirements, and it
must provide adequate performance when NA # 0.)

If the light valve is not mirrorlike, we still find that
when NA # 0, one portion of the single-pass
depolarization from the optical system will be canceled in
the return pass, and the remaining portion will double
(in amplitude). As noted above, depolarization refers to
the complex electric field amplitude that is output with
polarization in the orthogonal state to a linear polarized
input, divided by the output in the parallel polarization.
We show that the relationship between single-pass and
double-pass contrast loss can be expressed very simply
in terms of the phases of the light valve and optics
depolarizations. For this reason it is convenient to analyze
the projection properties of the system by propagating a
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single complex scalar (namely the depolarization) from
surface to surface, rather than by propagating a Jones

vector. However, we follow the Jones-matrix approach

of Lu and Saleh [14] in analyzing the light valve.”

If a reflective light valve comprises an active polarizing
layer [polarizing in the general sense of altering the
polarization, e.g., a twisted nematic liquid crystal (TNLC)
layer] above a bottom reflecting surface, we would expect
that the conventional reversal symmetry would apply to
the active layer itself. In that case, if control of the
thickness of the polarizing layer is imperfect, and/or the
light valve is to be used over an appreciable spectral
bandwidth, we can only expect ideal contrast from the
light valve in a simple crossed-polarizer measurement if
the E-field within the active layer is linear at all depths
close to the bottom mirror (since the exact depth of the
mirror may vary), and is so linear at all wavelengths
of interest. The light-valve active layer might cause the
E-field at the bottom mirror to be rotated, but with the
conventional reversal symmetry such rotation is canceled
in the return pass through the layer. However, when the
active layer produces ellipticity in the light illuminating
the mirror backplane, this single-pass depolarization is
not canceled in the return pass. When the single-pass
depolarization is small (small rotation and small
ellipticity), the elliptical component of the depolarization
doubles in the return pass (in the sense that the intensity
between crossed polarizers is approximately quadruple
that of a transmission cell with an active layer producing
the same single-pass ellipticity), causing the dark-state
illumination to be partially converted to bright-state.
[These results are derived below in Equation (49).] Thus,
the optimum behavior for the light valve in the “zeroth-
order” case where the optics is ignored is that it produce
no ellipticity at any wavelength in the light illuminating
the mirror backplane, despite the presence of possible
variations in layer thickness. (Note that skew-angle
depolarization in the optics thus obeys a symmetry
opposite to that of the light valve.) Unfortunately, the
absence of ellipticity at all depths and wavelengths is
difficult to achieve in a medium that shows both
birefringence and a twist, as with TNLC. [An exception
is a TNLC operating in the Maugin limit ([16]; see also
[17, 18]); this case, however, is usually not practical for
reflection light valves.] Thus, it is not surprising that,
as shown below, a dark-state TN light valve of given
thickness typically exhibits truly mirrorlike behavior at
only a single wavelength in the operating spectral range.
Even at this unique wavelength, we show that polarization
rotation by the optics (but not imposed ellipticity)

%References pointed out by an anonymous reviewer brought to our attention

the work of Ong [15], who analyzed LC light valves in terms of the depolarization
(denoted x by Ong), rather than Jones matrices. It might have been casier to
integrate our optics model with Ong’s light-valve formalism instead of the matrix-
based approach of Reference [14].
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gives rise to dark-state background =NA*. At other
wavelengths, the light valve interacts with both ellipticity
and rotation imposed by the optics, again with scaling
«NA* or «NA*AA®, where A\ is the shift away from the
optimal wavelength. If the TN light valve is used between
simple crossed polarizers (NA — 0), background is found
to scale «AA*; such quartic contributions are also present
when the light valve is used in an optical system (NA # 0).

Analysis

o Light valve

The Jones matrix of a dark-state TN light valve has been
derived by Lu and Saleh [14]. We use their formulation
and notation, except we correct for what we believe is a
sign error in their result. (This is above and beyond the
difference between their sign convention and the sign
convention used here.) The sign error appears to have
propagated into their expression from a result of Yariv
and Yeh [19]; since this result is widely cited in the
literature, we sketch out the derivation here. Matrix
element signs would not usually matter in a simple
crossed-polarizer measurement of light-valve contrast,
but can be important in analyzing the interaction with
an optical system.

Figure 5 shows schematically the n_ axis twisting from
top to bottom of an LC layer, with « the total twist angle.
(In Figure 5 « is +45°) We use (£, E)) as the Jones
vector, and use the sign convention where waves oscillate
as exp [+iky — iwt]. Following Yariv and Yeh [19], we
introduce a rotating coordinate system that tracks the
twisting LC molecules; we then write the single-pass Jones
matrix M, . for the LC layer in dark state as the result of
propagation through a large number N of birefringent
slabs with progressively twisting orientation:

. N-1 a\ 1"
MLC=11mR(a v ){AMR(——” AM, (1)

N

N—ox

where AM and R(6) are respectively defined as

3 e _{cos 6 —sin6
AM=1  oem] and ROOI=1 g (o5 |-

2

Here B is one half the integrated birefringence across the
thickness d of the LC layer; 8 = m(n, — n )d/X [n, and
n_ are the indices of refraction for the extraordinary and
ordinary rays, respectively; they apply for the particular
y-tilt of the LC molecule (assumed not to vary with depth
y when the light valve is in dark state)].

One way to evaluate the matrix exponential in
Equation (1) is to use a generalized DeMoivre identity [20]:
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(I cos(w) + iA - & sin (w))" = (e™")" = ™7
=1cos (mw) + iR+ & sin (mw),
)
where I is the identity matrix and & is a length-3 operator
whose x, y, z components are the 2 X 2 Pauli matrices o,

ay,andaz:
0 —i 1 0
poo ) %o —1) @

01
O-XE 1 0 » O}E

and where 7 is an arbitrary unit vector.

Applying Equation (4) to Equation (1) and then
applying Equation (3), we obtain almost by inspection the
following very compact expression for the single-pass
Jones matrix of a TNLC layer with zero applied voltage:

M =e¢ —iacryei(auﬁl}tr:)' (5)

LC

(Note that the exponents cannot simply be added because
the matrices do not commute.) Using Equation (3) to cast
Equation (5) into more familiar notation, we obtain the
well-known result, appearing here with consistent signs:

sin y sin y
cosy+if a
v
M, .=R
e = R(@) sin y siny |’ (6)
- cosy—if
Y Y

where y = Va? + B2 We believe that Equation (6) shares
its consistency in signs with results in, e.g., Reference [21],
but not with, e.g., References [14, 19]. Note that a
common phase factor is neglected in Equation (6).
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To determine the double-pass matrix of the light valve,
denoted M, ,,, we must specify further details of our
sign convention. In most of this paper we use the sign
convention recently reviewed by Pistoni [22], in which, for
Jones vector (E , E ), the x-axis unit vector is assumed to
reverse direction in space after a normal-incidence
reflection from a surface, while Z remains unchanged; y is
taken to point in the direction of travel of the ray, and so
of course reverses direction also. In this convention,

%, ¥, Z remains a right-handed triad after reflection.
Unfortunately, this conflicts with the most common sign
convention in thin-film coating design, where it is most
often considered preferable that the S and P reflectivities
converge to the same value at normal incidence.

In the right-hand-preserving convention, the matrix for
the reversed path through a (lossless) element can be
obtained very quickly from the matrix for the initial
direction of propagation. Specifically, if M"™ denotes the
reverse-path matrix, we have [22]

M) = my, My (72)
My, My
where the forward matrix is
m, m
M=( R (7b)
my My

Note that for our purposes only differential phases
between S- and P-polarized components are important;
absolute phase factors can be dropped. Similarly,
Equation (7) will usually apply to a lossy element if the
losses are equal in S and P polarizations. For such
elements there are other symmetries we can exploit; for
example, it is well known that their Jones matrices can
always be expressed in such forms as

i

it . —id
m m COs ne S pe
M= 11* 1*2 orM= . i —iZ (8a)
-m m, —Ssin pe COS e

1 e —iQ ﬂ:eiﬂ
MEW<_F*e—iQ o ) , (8b)
where in the second expression u, £, and & are simply real
parameters that enforce the required symmetries between
the matrix elements. Complex parameter F in the last
expression represents the output depolarization for a pure
(0, 1) input; real F implies rotational depolarization and
imaginary F elliptical depolarization. The depolarization is
defined as (E,/E,),,,, When Einpm = Z. [The phase factor
Q is canceled in calculating the depolarization.] Note that
the polarization matrices of Equation (8) neglect common
attenuation factors and common phase factors.
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In our convention, the matrix for the light-valve bottom-
surface mirror is —io, [since we ignore common phase
factors, —i is introduced to preserve the symmetry of
Equation (8)], and, neglecting common phase factors, we
can use Equations (6) and (7) to obtain the matrix for the
dark-state TNLC light valve in reflection:

— _anglrev)
M, = —-iM oM.

2B%sin’ y 2ap sin’ y
_l' 1 e ————
Y Y
+ B (sin 2v/y)
2aBsin’ y 28° sin? y
Y Y

+ B (sin 2vy/y)
%)

which is equivalent to the result of Lu and Saleh [14],
except for sign corrections and conventions.

Projection optics that are designed to avoid deliberate
depolarization of the beam will tilt surfaces only about
rotation axes that are aligned either with, or perpendicular
to, the illumination polarization of the central ray.
Otherwise, any surface that is tilted by more than ~20°
(depending on the coating) is likely to produce a strong
“zero-order” depolarization even in the central (i.e.,
principal) ray of the beam, because of differences in
the phase or amplitude of S and P reflectance or
transmittance. Even when surface tilts are restricted to the
S or P axes of the central ray, compound-angle effects can
cause first-order depolarization in off-center rays; this
depolarization scales linearly with the difference in skew
propagation angle between the off-center ray and the
principal ray (linear in amplitude, quadratic in intensity).

For the central ray, however, the curves of Figures 1
and 2 suggest that the PBS-based optical system (with
supplemental sheet polarizer) is almost equivalent to ideal
crossed polarizers. The light valve then contributes a
residual dark-state intensity equal to the square of the off-
diagonal elements in Equation (9). In practice, the TN
light valve should have non-negligible LC birefringence, so
parameter $ is unlikely to be small. The off-diagonal
elements are zero at y = @, i.e,, at B = Vo? — 2. (For
simplicity, the case in which vy equals a larger multiple of
o is not considered here.) One consideration in choosing
the twist angle « is that a high polarization conversion
efficiency be obtained when the light valve is driven to
maximum brightness; a = 45° is a possible choice [23].
Usually B = a(n, — n_)d/A will only reduce to Vm?w? — o’
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at a single wavelength within the spectral band illuminating

the light valve (i.e., where m = 1). The light valve
background scales with approximately the fourth power of 2 08F
small wavelength shifts away from the center wavelength, z
as illustrated in Figure 6. It should be noted that § 06}
liquid crystal materials are often highly dispersive in 5
birefringence; An = n_ — n_ might change by —-0.5% for % oak
every 1% increase in A. A more detailed treatment of %
TNLC reflective light values is given by Yang and Lu [24]. %
I o2f
o Optical system e /\
The compound-angle properties of a PBS are generic in 0 L - . - . s
the sense that the desired S, P performance of such a B
coating is in itself sufficient to approximately determine @
the depolarization the coating imposes on skew rays; to z !
wit, the PBS rotates skew-ray polarization by an angle ‘2)
equal to the rotation between the incident and return 2
planes of incidence (as shown in Figure 3). Color- i’é a1l
separating coatings like that in Figure 4 also have a simple %
performance target, namely that within a particular color E
band either their reflectance or their transmittance should g
approach unity. This efficiency goal is usually satisfied Es 0.01
fairly well by practical coatings, meaning that at most 4
wavelengths within the color band the coatings will not be '§
amplitude polarizers. Tilted dichroic coatings will be j:foo,om . - . . . .
strong amplitude polarizers at the edges of the band, = 0 2 g T 3ni2
which means that they will tend to be strong phase (®)

polarizers throughout the band. (Compactness
considerations generally require that the beam be folded
at fairly steep angles of incidence.) From an efficiency
point of view one would require that the S and P
reflectance (or transmittance) be close to unity over most
of the band, and that the split between the S and P band
edges be as narrow as possible. This represents a
qualitative description of the coating’s intensity response,
and in principle coating phase shifts can be significantly
determined by a complete description of the intensity
response at all wavelengths [25]. However, in practice the
knowledge that available coatings are likely to show high
efficiency over most of the band is not sufficient to draw
conclusions about phase properties of the coatings. For
one thing, designs for tilted color splitters that show low
intensity polarization generally achieve this at only one
edge of the band [26], whereas the dispersion integrals
that link coating intensity and coating phase shift extend
over the full spectrum, with a kernel that changes fairly

Reflectivity between crossed polarizers of reflective TNLC light
valve in dark state (0 voltage) when o = 45°: (a) Linear scale; (b)
log scale. Dark-state reflectivity is zero at 8 = 0.9687. Curves
apply when optics NA is negligible.

at the band edge when evaluated on a dB scale.) The S-P
phase shifts cause depolarization through the optical
system, but, in contrast to the case with the PBS, their
effect cannot be calculated or even well estimated without
detailed coating prescriptions. The phase shift from
dichroic coatings is often appreciable, however. In the
center of the reflection band, the first few layers of the
coating are sufficient to almost extinguish the transmitted

slowly. Second, these dispersion integrals involve the beam, while wavelengths near the band edge penetrate

logarithm of the intensity response; a tilted coating would ~ almost to the exit medium. Color-splitting coatings tend to

usually be regarded as adequately nonpolarizing in be fairly thick, and for angles of incidence =20° there is

intensity if, for example, the theoretical S transmittance generally some difference in effective penetration depth

were 107" and the theoretical P transmittance 10™°, but m  between the S and P components, making the coating a

such cases the log transmittances still differ appreciably, phase polarizer.

giving rise to significant S-P relative phase shifts. (The Specific coating calculations are outside the scope of the

usual “nonpolarizing” edge filter is in fact still polarizing present paper. However, we show in this paper that in a 367
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first-order calculation we can define a specific
depolarization contribution that is introduced by an
individual coated surface; we can then propagate the
depolarization as a single quantity from surface to surface.
This formulation proves convenient for analyzing the
interaction of the optics with the light valve. In the
present section of this paper we apply the most common
sign convention in thin-film design (see for example
Figures 2.1 and 2.2 of Thelen [26]), in which amplitude-
reflection coefficients are positive when the _projections
onto the reflecting interface of E Incidene A0 Ereﬂem 4 are
parallel and negative when antiparallel. (The same
convention is used for the transmission coefficients.) We
use (0) as a superscript to denote quantities referring to
the principal ray (i.e., the central ray of the beam). If w “”
represents the dlrectlon of the central ray incident on the
ith surface, and § is a unit vector that defines the
direction of S polarization, it is customary in thin-film
calculations to choose the sign of §* according to

§O =50 = x wyw® x w0, where v

is the reﬁected ray; thus, the same 50 is used for the
incident, reflected, and transmitted rays. The E-field
direction in P polarization is then most commonly set

to p” = 5" x w!” for the incident ray, for the reflected
ray to p ‘(0) —§ffl X <, and for the transmitted ray
ﬁ(f)l = s(o) X w 0) . In this convention §, W, and p are

not preserved asa rlght hand triad, but the S and P
reflectances converge to the same value at normal incidence.
We have found proper interpretation of signs to be
one of the most time-consuming aspects of correctly
calculating depolarization through an optical system.
Standard thin-film formalisms serve as a convenient
standard for defining the change in electric field at a
coated surface. Given the amplitude reflectance p and
transmittance 7 of a coated surface, it is straightforward to
propagate the E-field from one surface to the next.
Applying the Fresnel equation for reflection,

E. = pg(E-8)8,+ pplE 8, X W)W, X §),

WX g,
§ =

!
Wiy =W, = 200,-4)4;, (10)
where g, is the surface normal; and for transmission,
- R W g, . o aa R
E . =1k 85— W d (E;- 8§, X W) 0, X 5),

14,
. W, X g,
S P TE
W, 2 g,
7,2 7

. 0.3 (1_(ni/ni+1)+ n; , o8 i) X g
W =Weglg\ — 7+t 7 —— W Xq)Xq,

+1 .

‘ e -4, g Ry ! 1 ’

(1
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where n, and n,_, are the refractive indices. As is usual in
thin- ﬁlm calculations, 7 in Equation (11) refers to the
tangential components of the E-field. The square root in
Equation (11) is always taken to be positive. Equations (10)
and (11) are expressed in a form that is independent

of whether g, is chosen to point “in” to or “out” from the
surface (making numerical ray-trace calculations more
straightforward), hence the somewhat complicated form
chosen for Snell’s law in the third line of Equation (11).

Equations (10) and (11) define the electric field
throughout the optical system when standard thin-film
algorithms are used to calculate the transfer coefficients
p, T at the surfaces. The x, y, z components of the E-field
are defined in the same global coordinate system as the
ray vectors w, and surface normals §,. The equations thus
serve as a convenient basis for developing simpler, closed-
form solutions [e.g., Equations (19) and (22) below] that
maintain a consistent and easily visualized sign convention
throughout the system. These first-order solutions can also
be derived in a heuristic way, as outlined in the caption of
Figure 7.

Equations (10) and (11) can also be used in numerical
calculations as an alternative to the matrix-based
approaches described in the literature (e.g., Waluschka
[11]). We pursue them here in order to derive a closed-
form first-order equation that propagates the beam
depolarization from surface to surface. We have found
this first-order analysis to be quite accurate for NAs of
interest (NA =< 0.14); in addition, examination of the
depolarization contributed by a surface provides useful
insight into the nature of the compound-angle contrast
loss. The depolarization contributed by a surface to a ray
is for our purposes the quantity of direct interest.

A surface-specific beam depolarization should probably
only be considered a well-defined quantity in a first-order
analysis, because it is only to first order that one can
speak of a generic linear polarized beam of finite NA that
can serve as a reference. One might arbitrarily choose, for
example, a linear dipole pattern as a reference for the
general case, but this is a somewhat arbitrary choice, and
it would give rise to higher-order terms in the calculated
depolarization that would be specific to that choice.
However, when the surface is tilted, a unique first-order
contribution can be identified.

Consider, for example, reflection of a nominally S-
polarized beam whose central ray is pure S-polarized.
Figures 7(a) and 7(b) show the reflecting surface as
horizontal, with surface normal c) pointing upward. We
can always find quantities £, 1> and oE;;, (8E, and
8E,, are small) that will express the E- ﬁeld of a partlcular

ray in the beam according to
E, = Eg + 8E, W, + 8E, (b, X §), (12)

because §,, w, and (W, X § ) form an orthonormal set. Of
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(b)

Geometry of compound-angle depolarization at coated surface: (a) vectors; (b) angles. The surface normal is g. Skew ray w is offset by &w
from principal ray w(©. Incremental depolarization is approximately proportional to x, the angle between the planes of P polarization for the
two rays. Incremental depolarization is also proportional to (£,/8, — 1) or (7,/7 — 1) (for a beam with nominal S polarization), and is
therefore zero for a nonpolarizing surface.

§
|
!
%
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course 8E; | must equal zero in order that Equation (12)
preserve the transversality of the E-field (so that

E,' - w, = 0); however, BEi,L becomes nonzero in a first-order
expansion (sce below). Also, to first order the magnitude
squared of Equation (12) is Ej, so that £, = E. (In
assuming that the depolarization is small compared to
that of the overall E-field, we are assuming for the time
being that p is large enough that the beam remains
predominantly S-polarized after reflection from the
surface.) When the skew angle is small, we then have

E=E[s" — (8, s"W"] + 8E, (0 x 51, (13)

where, as noted above, a superscript (0) is used to denote
quantities referring to the central ray (usually these are
“zeroth-order” quantities), so that

- (14)

Swi = Wi i

represents the propagation angle of the ray within the NA
[see Figure 7(a)]. In deriving Equation (13) from Equation
(12) we have set 8E, equal to E (8%, - §"), in order that
E, W (w(o) + w;) = 0 to first order

Expandmg the second equation in Equation (10), we
find, after some algebra,

- (0)

[ (0}
*«oq Oy X815

»Q

n Al +(0) £~ (0)
s=s - 8W)|: W, 7 %

(15)

where we have deliberately mixed quantities involving w,
and w,, . Similarly,

(O RPN () B
S 0w, =5 oW,

E-5$=E

i Vi i?

2
R

IIZ

E -§ XWw,
i i i

If EM is expressed in the form taken by E,- in Equation (13),
and then substituted with Equations (13), (15), and (16)
into the first line of Equation (10), we obtain in first
order

A A(0
Fose 0o (p"— 1) mq ik &7 8w).  (17)
E, P |q X W |
The left side of Equation (17) is the cumulative
depolarization introduced in the nominally S-polarized
beam by the ith reflection (and by previous tilted
coatings). The factor p,/p; will be a phase factor if the ith
surface is lossless (or has equal intensity loss in the two
polarizations); this would be the case for a dichroic
coating away from the band edge. The p,/p, factor
multiplies any depolarization that may be present in the
ray from previous surfaces. The last term on the right
can be thought of as the incremental depolarization
contributed by skew angle incidence at the ith surface. If
the angle of incidence of the central ray is ¢, then the

A 'W(O)

E. . P

i+t1
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skew angle 0, = s - 8w, of the ray is the component of
the ray tilt that lles in the direction perpendicular to ¢,
[see Figure 7(b)]. Within the skew meridian, the angle of
incidence remains unchanged to first order. Note that
while Figure 7 shows 6w, for the case of a pure skew ray,
fi(”) - &%, = 6, in Equation (17) can represent the skew
component of any ray; also, a purely meridional ray at one
tilted surface may be a pure skew ray at another surface.
The last term in Equation (17) shows that a tilted
surface introduces a depolarization that is linear (in
amplitude) with skew angle 6,. This term contains a factor

Qi W(O) (()) >
g xw OO
which is the angle of rotation between the directions of
pure P polarization for the ray and for the central ray [see
Figure 7(b)]. The remaining factor in the depolarization
term, (p,/p;) — 1, implies that even when the E-field
has projections in both the S and P planes, first-order
compound-angle depolarization will not take place unless
the coating is actually polarizing. This coating factor has a
maximum magnitude of 2 (for a coating with 180° S/P
phase shift); this is twice as large in amplitude (four times
larger in intensity) as the value from a PBS intensity polarizer.

The (tan <p0)71 dependence of y in Equation (18) leads
to the surprising result that shallow angles of incidence
can produce more severe depolarization than steep
incidence. Of course, as ¢, — 0 (where our expansion
breaks down), a surface becomes nonpolarizing, but for
angles of incidence as small as, e.g., 30° (depending on
n,), the S-P phase shift from a dichroic coating can take
on essentially any value between 0 and 2. Since intensity
depolarization scales as amplitude squared, a 30° tilted
surface can introduce appreciably more depolarization
than, say, a 45° surface.

Equation (17) is readily generalized. For example,
if many tilted surfaces are traversed, all in a two-
dimensional layout, and we consider the tilt of the ith
surface to arise from rotation of the surface about an axis
parallel to s , then because the layout is two-dimensional,
these tilt axes w1ll all be parallel to the tilt axis § ‘l(,[gs of the
PBS. In this case we find that for each surface,

i

X, = (18)

tan ¢,

8E,,, oF, 8,
— - e 19
i+1 g K(n Y n; tan LW ’ ( )
where ¢ = +1 if the ray follows the transmitted path

through the surface, and —1 if it follows the reflected
path. v, is defined as (p,/p) for a reflected ray and as
(7,/7g) for a transmitted ray. n, is the refractive index in
the incident space at the ith surface, and 6, is the skew
angle of the ray as measured in air. 6, is invariant through
the system. The beam angle of incidence ¢, is always
taken as positive. The sign of the surface depolarization
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is governed by parameter «, which essentially specifies
whether the surface tilt is oriented so as to deviate the
reflected ray clockwise or counterclockwise; « is defined as

K=
i

PBS (20)
_ . £ (0) ~(0) , A(0)
Taf W, X, - 8pp < 0.

{+1 it W xw?-50>0,
[Note that the Wi(f)l appearing in Equation (20) always
refers to the reflected ray, even when the depolarization
is being calculated for the transmitted beam.]

In the general case where the layout is not two-
dimensional, i.e., at lcast one surface { is tilted about the
axis perpendicular to the tilt axis of the PBS hypotenuse,
Equation (19) still applies if 1) the angle 6, is replaced by
¥, again defined as §l.(0) + 8w, (which for an orthogonally
tilted surface will be in the meridian perpendicular to 6,),
2) parameter 7, is defined as py/p, or 7/7,, and 3) the
definition of x, in Equation (20) is multiplied by —1.

Equation (19) can be rewritten in a number of ways; for
example, we can propagate the depolarization in the ray

relative to the tilted ray-specific P direction according to
oE 6, oF B,
—Ewﬁntan<p zén"f_ntanq;
0741 0/

8 |: i+l thz ]
|ntan @, ntan g, ‘
(21)
If the ith and i+ 1th surfaces are parallel and in the same
medium, the term in square brackets is zero (because
.1 = %,& when the surfaces are parallel); in such a case
Equation (21) shows that the surface contributes no
relative depolarization.

As a linear difference equation, Equation (19) is easy to
solve for an arbitrary succession of j = 0, - - -, J tilted
interfaces (starting from j = 0 at the PBS). The closed-
form solution is

K

SE 6,

J+1__( I fT))K Y
E,., JIJ )0 g

! J (Y
- 2 {ngj(T'j - 1)( l—l §mk> IﬁaI(l)—(p-':| . (22)
j=1 k=j¥1 i 0.j

We should note that Equations (19) and (22) have one
limitation that is not easily generalized out. If the beam
path includes tilted interfaces at which the rays are
transmitted, these interfaces must arise in pairs analogous
to the front and back surface of a tilted parallel plate; i.e.,
a tilted transmission interface must be followed by a
parallel transmission interface, and the exit refractive
index must equal the incident index at the first interface.
The intervening space can then be treated as a thick
incoherent layer. Thus, the first-order formalism applies to
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a tilted air space, or to front-side and back-side coatings
on a tilted dichroic mirror, but not to a refractive prism.
Elements with wedge give rise to strong aberrations and
so would not ordinarily be used in a projection display;
Equations (10) and (11) are available for numerical
solution in such a case. [Equations (19) and (22) have no
restriction on traversal of interfaces at angles near normal
incidence, i.e., interfaces that are only slightly tilted.]

& Contrast loss from interaction between light valve and
optical system

The methods of the previous section can be used to
propagate the E-field to and from the light valve. An
carlier section presented analysis to account for the
polarization properties of the light valve itself. Together
these constitute a solution for the contrast loss through
the optical system. However, with one further restriction
we can establish solutions that are easily written in a
simpler and more compact form, but which still represent
fairly general descriptions of the interaction. So long as
the only lossy element in the path is the PBS (the PBS is
lossy in the sense that it directs some light into a different
path), we show that we can describe the interaction with
the light valve purely in terms of the rotation and
ellipticity that the optics induce on the illumination.
Under this restriction we treat coatings in the system
other than the PBS as phase polarizers; p, = e and

ps = e¢'s. As noted above, the optical coatings in a given
color channel are designed to be as efficient as possible,
and losses are usually small except at the edges of the
band. We have found in numerical calculations that phase
effects often dominate over amplitude effects even near
the band edges, and the accuracy of the phase-only
approximation becomes quite good when dark-state
intensity contributions are integrated over the entire color
band.

The assumption of lossless elements (or, more precisely,
the assumption that elements have equal loss in S and P
polarization) is not necessary in using the equations of the
previous sections. The advantage of such an assumption is
that it allows us to employ the symmetries in Equations
(7) and (8). Unfortunately, while Equation (19) is based
on the most common sign convention in thin-film design
(see, for example, Thelen [26]), the most common Jones-
matrix sign convention [22] is incompatible because it
preserves as a right-handed triad the two polarization
basis directions and the ray direction. To express
Equation (19) in the matrix sign convention, we briefly
adopt a somewhat awkward notation in order to introduce
absolute phase factors that maintain the symmetry of
Equation (8) independent of whether £ equals +1 or —1.
Specifically, we write i in the form i = V¢ for the case
¢ = —1; when £ = +1, this V& factor is unity. The
Jones-matrix form of Equation (19) can then be written:

A. E. ROSENBLUTH ET AL.
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\/E e[(AP—AS)/z
i

8Ei+1 — g ,idptag2

E. |~ V&e

i+1

A, - A 0
—2+—&k, sin i 5 .
b 2 ni tan (P()Ar

Note that Equation (23) is in a form in which an
additional matrix for rotation of the S, P axes to
propagate to the next surface is unnecessary. Equation (23)
is most naturally associated with a different sign
convention from that of Equation (19); the difference is
essentially that in Equation (23) the projections onto the
surface of the reflected and incident unit vectors p, ;, p. .
for P polarization are antiparallel. The V¢ factor outside
the matrix is included in Equation (23) for consistency
with Equation (19); however, since its value is either i

or 1, it represents a common phase factor and can be
dropped; e'** "9 is likewise a common phase factor. In
this part of the paper we assume equal efficiency in S and
P polarizations; any common attenuation factor is also
dropped if system contrast is the quantity of interest.

The diagonal elements of the matrix of Equation (23)
have magnitude unity; the off-diagonal elements are first-
order quantities proportional to the skew angle 6,. When
two such matrices are multiplied together, the product
matrix preserves this structure to first order. An
equivalent statement is that the multisurface solution in
Equation (22) exhibits this form when written as a matrix.

Since the optical system should not depolarize the
central ray, we can assume that all surfaces are tilted
about axes that are either parallel to the 31(’(1]3)5 tilt axis of
the PBS hypotenuse, or are perpendicular to it. A ray can
be parametrized by the skew angle 6, it makes to the PBS
hypotenuse (scaled for air, n = 1), and by an orthogonal
angle . 6, and ¢, thus represent an orthogonal pair of
pupil coordinates which range between —NA and +NA
(with V07 + ¢2 = NA). Excluding the PBS, the Jones
matrix for the optical system then takes the form

ixf2
e v,0, + de/0>
,

* * —i2f2
v,0, vw% e

MNon-PBS optics = ( (24)
where v,, v, and 3, are determined by the methods of the
previous section. In first order the illumination matrix for

the PBS is

0 -6
M, = , 25
PBS 9(/) 1 ( )

where 8 = 6 /n,, is the skew angle of incidence inside
the PBS. (For the time being we assume a 45° cube PBS.)
Assuming as an input, for example, unpolarized light, the
Jones vector for the E-field illuminating the light valve

A. E. ROSENBLUTH ET AL.

SE,
£ (23)

will then take the form

SE\ — 0™ gy + v,8, + v,
E = 6—52/2 s (26)

where second-order terms are dropped. The
depolarization of the illumination then takes the form

o8E i% ix/2 i%f2
i —0le"/np — ve T ]+ wo[vwe ]. (27)
For small depolarization, the real part of 8E/E represents
a rotation in the illuminating polarization and the
imaginary part an ellipticity. According to Equation (27),
a ray in the skew meridian to the PBS (¢, = 0) will have
rotation and ellipticity that are proportional to 6, while
for a ray in the orthogonal meridian, rotation and
ellipticity will be proportional (with different constants of
proportionality) to t;,. Let us denote these constants of
proportionality as i, I, .‘Rw, “TSW. R represents rotation in
the sense that the optical coatings introduce N radians
of polarization rotation per radian of skew angle in a
ray illuminating the light valve; similarly, the induced
ellipticity is 3 in the sense that the aspect ratio of a
rectangle which circumscribes the polarization ellipse will
be J6 when the ray skew angle is § (0 assumed small).
Note that while rotation and ellipticity are considered
small (proportional to 6, ), the constants of
proportionality R, 3 may have appreciable magnitude.
We now can write Equation (24) as

1 P06, + P,
(28)
where
P, = (R, +i3) + e fny = ve ™7
P,=(R,+i3) =ve ™, (29)
and
i%/2 0
Mopphase = ( 0 e~i2/2) : (30)

Equation (29) obtains because, when substituted [together
with Equation (30)] into Equation (28) and compared with
Equation (24), the expressions obtained for v, v, give the
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correct result when substituted into Equation (27), namely
SEIE = (R, +i3,)6, + (N, + iJ))y,; we have defined
the parameters N, I, N, I, by the requirement that
the depolarization 8E/E take this form. In other words,
Equations (28)-(30) represent the optical system in terms
of the rotation M and ellipticity J it imposes on skew rays
incident at the light valve.

We now represent M. [Equation (25)] as

PBS

0 = O/ R
MPBS = 0 ? MRotMPreP()l 4 (31)
O/nPBS 1
where
M. = 1 - 90/ Plpgs
Ro 0/7 pps 1
and
0 0
MPrcPuI = O 1 " (32)
Note that M,_,, is taken to represent part of the PBS

operation. The projector might also include a sheet
polarizer (at least in the reflection pass) to ensure
adequate rejection, but with or without such a
supplementary polarizer the system must perform an
operation equivalent to M, . .

Using Equation (31), we can now write the first-order
matrix for the optics (illuminating in single pass) as
M =M

Optics Non-PBS opticsMPBS

(33)

= MOpticsAl]MPrePul 2

where M. .., combines the M,  rotation from the PBS
pticsAll Rot

[Equation (32)] with the non-PBS optical elements

[My, pBs opiics &iVeD in Equations (24) and (28)], and can
be written as
MOpticsAl] = MPcrlurbMOplPhasc ’ (34)
where
1 [N, +i3,16,
+ R, + i3],
Perturb = )
—[R, - 3,16, 1
-0, — 03,14,
(35)

and where M, . is defined in Equation (30). For
compactness we now introduce a vector notation for the
pupil coordinates in which we denote the ray-propagation

angle as 6 = (6,, ¥,). Defining
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P=R+il=(%,+i3] [N, +i3,], (36)

we have

1 P8
MPcrlurh = <_P* . é 1 ) . (37)

P - 6 is the depolarization 8E/E in the light incident on
the light valve. The single (illumination)-pass matrix for
the optical system is now

M =M M M

Optics Perturb™ “OptPhasc™ " PrcPol *

(38)

To propagate through the system in double pass
(illumination and collection), we must determine the
matrix for reverse propagation along the sequence of
Equation (38). All component matrices in Equation (38)
except for M, _,, are assumed to exhibit equi-S-P
efficiency. We first note, therefore, that given our sign
convention the matrices other than M, _,  are reversible in
a strict sense according to the rule of Equation (7) above.
For example, if we were to apply Equation (7) directly to
Equation (37) we would obtain

o 1 P+
MPenurb = _i) . é 1 . (39)

However, Equation (7) applies to a true “time reversal,”
in which the rays are made to exactly retrace their
incoming paths. In a projector, the rays that reflect from
the light valve return to the optical system through the
opposite side of the lens pupil. As noted in the
introduction, this means that the optics obey a reversal
symmetry opposite to that of the light-valve active layer. If
we denote the reversal that applies to the optics using a

superscript ™™ we have, in analogy with Equation (7),
o m[-8] —m,[-6]
M(erRev)[O] _ ( 1 ‘ 21 3 , (40a)
_mlz[_e] m22[-6]
when
- (my (8] m 6]
M[d] = - - . (40b)
my[6] mo,[6]

In Equation (9) we derived the dark-state matrix for a
TNLC light valve, but for the moment we consider the
general case in which the light valve has matrix elements
91> 912 9a15 9p5 We can alternatively define the general
light valve by parameters a,, a,, a,, a,, where

gll ng
M,, = =al+ao + a,0,+a,0,. (41)
ng gZZ

with the ¢ matrices defined in Equation (4). Using
Equations (33) and (34), we have
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M = L 0y/e™ 0 fu fo e 0
Projector 0 0 0 e —~i%/2 f2[ f22 0 e —i%/2

fu £ .
where ( ) = MG L+ ay0, + a0, + a,0)M

Perturb
21 22

In obtaining Equation (42) we have made use of the fact
that while the M component in M, . [see Equations
(31)—(34) above] reverses according to Equation (40), on
the collection pass the M, , factor in M, will take the
form of the leftmost matrix on the right of Equation (40);
in this form the polarizer matrix passes bright-state light
to the projection lens.
From Equation (42a) we obtain

0 f
Mijector = (0 (1)2) N (43)

The birefringencelike phase term 3 in the optics [from
matrix M, ., . in Equation (30)] thus cancels out in the
expression for double-pass propagation through the optics,
though it appears implicitly in the elements of M, ..

We now define B as the residual dark-state intensity
transmitted by the projector. If the efficiencies in the dark
state and bright state are equal, B will be the reciprocal of
the contrast ratio. We have, from Equations (37) and

(40)~(43),

0 0

Perturb ©

1) , (42a)

(42b)

The light-valve matrix M, ,, in Equation (9) assumes the
specific TNLC form [Equation (6)] for the matrix M, . of
the active layer above the mirror backplane. If we instead
allow a more general form for the dark-state matrix of
the active layer, which we denote as M, . in this more
general case, requiring only that M, . satisfy the equi-
S-P efficient condition of Equation (8), then using
M,, = —iM™ o M, . and applying Equation (41),
we find

a =2 sin® w sin 29 + 2 cos®  sin 2¢,
ia,= -2 sin® i cos 29 — 2 cos® u cos 2¢, 47)

where ¢, 9, and p are the parameters appearing in the
second representation given in Equation (8) (as applied to
the active layer), obtaining finally

B =g+ 4(6-Im[g, P])*
= gfz + 16(5- [(sin® w sin 28 + cos” u sin 2§)f

+ (sin® p cos 29 + cos’ p cos 20)R])’.

(48)
e T = 2

1 —P*-0\ /g, 9, 1 P-o

B=lf,| = {( R )( ! . , (44)
P-0 1 9 9p/ \—P*-0 1 2

where { }, denotes the 1, 2 matrix element. Substituting
from Equations (4), (36), and (41),
B={( +illo, -~ Ra}- 0)(a] + a,0, + a,0, + a,0)(1 + illo, + Ra]- )} | (45)

Note that the vector quantities in Equation (45) refer to
the two-dimensional space of pupil coordinates 0, .
The x, y, z subscripts on the Pauli matrices are standard
notation but do not refer to physical coordinates in our
application.

Applying the multiplication rules for the Pauli matrices
[20] and keeping only first-order terms in 6, we find

B=lg,+ 2i0- (aj - ia41*2)|2 =g, + 2i6+Im [gni’]|2.

(46)
According to Equation (46), the off-diagonal element g,
of the light-valve matrix contributes to system background
B via direct depolarization, while the diagonal elements
(which determine a, and a,, and which represent effects
such as birefringence) interact with the optics via the
rotation and ellipticity parameters Rand I to produce
contrast loss.
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Equation (48) takes g,, to be pure real; this follows
from the assumption that M, = —iMX;Vi‘),eUZM nctiver With
M, .. satisfying Equation (8).

We can also use the third form of Equation (8) to
describe the active-layer matrix; expressed in this form,
we find

B= gz g @I+ F7 = Fsin 20

+ [2F'F"] cos 2Q)]
+([1+F*~ F"*] cos 20

— [2F'F"sin 20)R])},  (49)
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where ' and F” represent the real and imaginary parts
of the depolarization [ of the central ray at the mirror
backplane of the light valve. Equation (49) shows that
without the optical system (i.e., § — 0), contrast loss
arises only when the light reaching the mirror backplane
has elliptical depolarization (so that the first term F"* in
the curly brackets is nonzero); however, when 6 # 0, the
optical system interacts with both rotational and elliptical
depolarization in the active layer of the light valve to
produce contrast loss in the image. A hypothetical ideal
light-valve active layer which (in dark state) produced
linear polarization at all depths above the mirror
backplane (and at all wavelengths) would satisfy "' = 0
but would nonetheless show contrast loss in most optical
systems of finite NA.

Equations (48) and (49) represent fairly general
expressions for the contrast loss along a ray, subject
only to the first-order approximation that the total
depolarization in the optics is small, and to the
approximation that optical elements other than the
PBS polarize in phase and not amplitude. Note that
Equation (48) involves no complex parameters [and
Equation (49) uses real and imaginary parts explicitly].
The g,, direct depolarization from the light valve makes a
contribution to the intensity that is independent of the
second term in Equation (48); i.e., the two terms add
incoherently. The second term does, however, represent a
coherent interaction between the optics and the diagonal
matrix elements of the light valve.

We must average Equation (48) over the full cone
of rays in the pupil to obtain the actual dark-state
background in the projected image. We first introduce the
shorthand notation

F=[F,F,]=2[(sin” wsin 20 + cos® p sin 20)]
+ (sin” g cos 29 + cos’ p cos 2§)§]. (50)

The pupil radius is N4, and we assume the illumination
intensity to be uniform over this circular cone; however, to
allow for nontelecentricity and misalignment we average
Equation (48) over the two-dimensional 6, s, domain
having boundary

\/( 60 - GDcccmer)Z + ((,"O - l’[IDccenlcr)z = NA’ (51)

where 6, .. and ¢, - are constants representing the
nontelecentricity or misalignment at a particular field
location.

Carrying out the average over the circular pupil domain
of Equation (51), we find

<B>NA = gfz + (F; + Fi) NA ? + 4(F06Deccnler + F¢¢Decenlcr)2 °
(52)

Equation (52) indicates that contrast loss (essentially
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1/(B)) scales quadratically with the angular extents of the
beam. The factor of 4 in the third term indicates that
contrast loss is fairly sensitive to nontelecentricity in the
optics.

® Particular cases
We now apply our result from Equation (52) in a number
of specific cases.

1. Two-dimensional optical layout; polarizing surfaces tilted
about common axis

Considering for simplicity the telecentric case, if all
polarizing surfaces in the optics (including the PBS) are
tilted within a common plane (i.e., rotation axes for all
surface tilts are perpendicular to this plane), Equation
(52) becomes

= 42 20742
<B>NA - glz + FHNA
=g’ + 4([sin’ wsin 29 + cos’  sin 2¢]3,

+[sin®  cos 28 + cos’ u cos 2§]§R9)2NA °
(53)

By definition, the 6 meridian is always chosen to include
the tilt axis of the PBS hypotenuse [i.e., the §I(,[QS axis about
which the PBS hypotenuse is effectively rotated in order
to be tilted against the beam], so that 6 represents

the skew angle of the ray against the PBS. In a two-
dimensional layout where the tilt axes of all surfaces are
parallel, the ¢ coordinate does not affect depolarization.
Conversely, in a non-two-dimensional (but telecentric)
system where each meridian serves as the skew meridian for
at least one surface, Equation (52) indicates that each
meridian will make an independent contribution to the
dark-state background (assuming, as we have, a uniform
circular pupil). Background will often be less when all
surfaces are tilted about a common axis, because the
meridian then contributes zero background. However, in
the general case the contribution made by each meridian
takes the same form, so for brevity we exhibit most of the
following results for the case of parallel surface-tilt axes
and telecentric optics.

Note that even though the 6 and ¢ ray components
make independent contributions to the intensity
background of Equation (52), it should not be concluded
that optical surfaces tilted in one meridian have effects
independent of those of surfaces tilted in the other. In
general, an optical surface which is tilted in one meridian
will still make a contribution to the parameters ¥ and R
for the other meridian, except in the particular case where
all surfaces are tilted about parallel tilt axes; in this
special case we have seen that I and R, vanish, as in
Equation (53). In general, Equation (19) shows that once
a ray has become depolarized, succeeding surfaces usually
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Top view

Side view

Correction of compound-angle depolarization with mirrorlike light
valve. If single-pass depolarization of illuminating skew ray is
purely elliptical (as in figure), symmetry causes depolarization to
cancel in return pass through optical system. Depolarization that is
purely rotational will double. Different symmetries apply when the
dark state of the light valve is not mirrorlike [see Equation (57)].

introduce additional changes in polarization even when
the ray has no skew incidence component.

2. Light valve has mirrorlike dark state
In this case = 0 and { = 7/2 in Equation (8), and
Equation (53) becomes

(By)a = 95, + WINAT, (54)

where for simplicity we have assumed telecentric optics in
which the tilt axes for all polarizing coatings are parallel.
Parameter J does not appear in Equation (54), showing
that skew-ray ellipticity introduced by the optics will
cancel out in double pass if the light valve is mirrorlike;
i.e., elliptical depolarization in the optics will not cause
dark-state background. Recall that in our first-order
treatment we expand the depolarization against axes
corresponding to the central ray, denoted by a superscript
(0). [An exception was made to this approach in Equation
(21).] The rotation N of concern in Equation (54) is thus
a rotation relative to the plane of incidence (at tilted
coatings) of the central ray, evaluated when the ray
illuminates the light valve. This is illustrated in Figure 8,
which shows schematically the polarization ellipse of a
skew ray illuminating a light valve in an optical system
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with two tilted coatings. In the figure the ray reflects from
two tilted surfaces which are hypotenuse surfaces in the
two cube elements. Once the incident ray reflects from
the second hypotenuse coating, it is traveling out of the
perspective diagram toward the viewer; it then illuminates
a light valve on the front surface of the bottom cube.

The figure shows the case in which the optical system
introduces ellipticity but not rotation. The major axis of
the skew ray’s ellipse is therefore aligned with the plane
of the central ray. (The central ray is shown in green.)
Because of this alignment the folded path of the central
ray then forms a plane of symmetry for the electric field
as well as for the rays. Equation (54) shows that because
of this symmetry the depolarization is canceled out in the
return pass through the optics.

On the other hand, rotational depolarization doubles in
amplitude in the round trip [i.e., quadruples in intensity;
the resulting factor of 4 is canceled in Equation (54)
when 0 is averaged over the pupil]. Of course, the actual
polarization state of the round-trip light is determined
by the pass direction of the PBS at the exit face; the
implication of Equation (54) is that, when the single-pass
depolarization is purely rotational, the dark-state intensity
measured in double pass will be four times larger than
the intensity measured in single pass between crossed
polarizers.

3. Light valve is “ideal”

A dark-state light valve can be considered nominally ideal
if its reflectivity between crossed polarizers is zero. An
ideal light valve is not necessarily mirrorlike in the dark
state; the requirement that its off-diagonal elements be
zero means that when the matrix for the active layer of the
light valve is expressed in the third form of Equation (8),
parameter F must be pure real. A light valve that is ideal
in this sense will not necessarily have zero dark-state
intensity when used in an optical system. Considering for
simplicity the case of a telecentric system with a two-
dimensional layout, Equations (49) and (52) become

(B)y, = NA[J, sin 2Q + R, cos 20]°. (55)

An ideal light valve must have a dark state that is
essentially equivalent to a retarder placed over a mirror
(with the retarder axes aligned with the polarization of the
illuminating central ray). If the equivalent retarder for
such an ideal light valve is quarter-wave, 2Q) = 90°, and
the dark-state intensity will be zero in an optical system
that induces no ellipticity in the illumination. On the other
hand, if the light valve is equivalent to a mirror (case 2
above), the dark-state intensity will be zero if the optics
do not induce rotation. In general, the dark-state intensity
of the ideal light valve will be zero in an optical system if
Re[e “H0p . Z)] = (0. In this case the depolarization 8E/E
at the mirror backplane of the light valve can have a

IBM J. RES. DEVELOP. VOL. 42 NO. 3/4 MAY/JULY 1998




constant rotation Re[F] that is common to all rays; the
remaining ray-dependent portion of the polarization must
be purely elliptical. This represents a generalization of the
symmetry condition in Figure 8 to the case of any ideal
light valve (not necessarily mirrorlike).

4. Light valve is nearly ideal

The crossed-polarizer reflectivity of a dark-state light
valve must be small compared to 1 if the light valve is to
provide useful performance. For such a light valve we can
show that one portion of the single-pass depolarization
from the optics will cancel in double pass, while the
remaining portion (in quadrature with the first) will
double. For a mirrorlike dark state (case 2 above) these
portions are, respectively, the ellipticity and rotation, but
in general they are defined by a phase relationship
involving the light-valve depolarization. The light-valve
depolarization also contributes a direct term to the dark
state. To derive these results, we rewrite Equation (48) as

2
B=gf2{1+4<b-1m{j“ﬁb } (56)

where we have made use of the fact that g, is pure real if
the active layer of the light valve obeys Equation (8). The
quantity g,,/g,, appearing in Equation (56) can be
rewritten as 1/D*, where D is the depolarization
introduced by the light valve alone; i.e., D is the ratio

E /E, when reflected field ERcﬁmd = (E_, E ) is produced
by illuminating the light valve (at 6 = 0) with a unit
amplitude polarized along 2. If the light valve provides
high contrast, g,, will have magnitude close to 1, and to
first order we can set D = glzeiALV, where A, is the phase
of the light-valve depolarization and g, its magnitude.
(Since g, is real, it does not affect the phase of D; —A
is the phase of g,,.) In the general case where light-valve
contrast is not necessarily high, we can set |g,,|* = 1 —
9122- The single-pass transmission of the optics between
crossed polarizers (integrated over NA) is (B, ) =
|P|’NA®/4. Defining A, as the phase of the optics
depolarization P, we then have for the double-pass output
between crossed polarizers [integrating Equation (56) over
the pupil],

(B)=B,, + 4B
=B, + 4B

)(1—B,,)sin’ (A, + A
ysin® (A, + A

One-pass Op(ics)

One-pass Optics) ’ (57)

where we have denoted the dark-state reflectivity glz2 of
the light valve alone as B ,,, and where for simplicity we
have assumed telecentric optics, with surface tilts about
parallel axes. The upper form of Equation (57) applies in
general; the lower form, when the light-valve contrast is
large compared to 1. Equation (57) states that when a
light valve has reasonably high contrast, part of the single-
pass depolarization introduced by the optics will double

in the return pass, namely the depolarization that is in
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Light-valve amplitude factors

[ — 2apsin’yly? S o
—1.0p - - 1~(2B%inyly?) ~t
== Bsin(2y)y
...... ﬂ=(15/16)0'5 s
0 d L A L L )
0 /2 T 3n/2

Residual dark-state amplitude for TNLC light valve. [Dark-state is
not mirrorlike, except at 8 = 0.9687 (dotted line).] Amplitude
contributions A and B are proportional to NA (intensity o NAZ2),
and also respectively to the single-pass rotational and elliptical
depolarization induced by the optics. The amplitude component C
is independent of NA.

i
%
[
|

quadrature with the depolarization from the light valve.
The doubled amplitude causes a fourfold increase in
dark-state intensity, as indicated in Equation (57). The
remaining portion of the optics depolarization [of squared
magnitude By, . ) cos’ (A + Ag,)] is automatically
canceled in double pass. The quadrature relationship is a
consequence of the opposite reversal symmetries obeyed
by the optics and the active layer of the light valve.

5. Twisted nematic liquid crystal light valve

Using Equation (9) to calculate ¢, and e, in Equations
(41) and (49) {or, alternatively, solving for the parameters
in Equation (8)], we find

2 .2 2 2 2 .2
<B>=(—aB i 7) +(me[1—L o y}
Y Y

~

+ A5

0,0ptics ? (58)

[B sin (2)
! Y

2
D NA*+B, , +B

where again to shorten the result we have assumed
telecentricity and a common tilt axis.

Since Equation (58) represents a case of considerable
practical interest, we have added two phenomenological
parameters B, and B . = that account for any
background contributed by mechanisms outside the models
of Equations (9) and (19). (B, refers to such residual
background from the light val{fe, B, opiics 1O that from the
optics.) The first term in Equation (58) represents the

direct depolarization contribution from the light valve; the
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light valve also interacts with rotation N and ellipticity 3
in the optics via the two terms in square brackets, which
then contribute to background «NA’.

Figure 9 shows a plot of the three TNLC factors
appearing in Equation (58); the g, off-diagonal term, and
the two expressions in square brackets which multiply the
rotation and ellipticity contributed by the optics.

6. Twisted nematic liquid crystal light valve operating in
near-mirror condition

The Jones matrix for the single-pass TN active layer
[Equation (6)] reduces to the identity matrix when
parameter B (defined by B = wd(n_ — n_)/A) takes on

the value Vm2a? — o?, with « the twist angle and m

a positive integer. The light-valve matrix [Equation (9)]
then becomes equivalent to a mirror, and dark-state
background is given by (SRZ + Eﬁj)NAz. We would
typically expect this condition to be met at only one
wavelength in the spectral illumination band. Taking as an
example « = 45°, m = 1, we can expand Equation (58) in
a small departure 88 from the point of mirrorlike behavior
(so that 88 = B — V157/4), to obtain

1515882\ °
-2

128

15
R, + 9, 5 0B

3415 225 :
+ S~ o R, 887+

647 " 128

+ NA*

+B, +B (59)

0,0ptics 0,SLM *

If NA and 8 are regarded as first-order quantities, then
in lowest order the light valve interacts with the optics in
mirrorlike fashion, via the quadratic R°NA? term. If
rotation R and ellipticity I are both nonzero, the next-
order term is cubic, proportional to NA*88 and to i X 3.
When rotation is zero, the two lowest-order terms are
both quartic, proportional to NA°68° and to 68°. Note
that unless i = 0, the quadratic and cubic terms involving
the optics tend to dominate the g,, term that arises from
the light valve alone. Unless NA can be regarded as
negligible, or the optical system introduces no rotation,
there can be a fairly substantial range of wavelengths
about 88 = 0 in which depolarization involving the optics
dominates over the contrast measured from the light valve
alone.

7. PBS/TNLC module
The most common optical arrangement for reflective light
valves is the simple PBS. Light of a particular color is
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introduced into one port of the beam splitter where it
illuminates the light valve (e.g., in reflection, as in Figure 3);
light switched to the bright state exits the PBS through a
different port. Bleha [27] has published a typical layout.
Multiple modules can be used to project different colors,
or the colors can be projected sequentially from a single
module at a high enough switching speed to appear
continuous. Alternatively, a mosaic of (normal-incidence)
color filters can be placed on the pixel grid. The common
feature in all such approaches is that no tilted coatings
other than the PBS hypotenuse see both bright-state and
dark-state light.

In such a system J, = 0 (along with J, R ), and
R, = 1/(n,y tan @), where @ is the angle of incidence
at the PBS (® = 45° for a cube beam splitter) and
Npgs 18 the refractive index of the PBS substrates. The
illumination polarization is rotated but not elliptical.
For a TNLC light valve, Equation (58) becomes

208 sin’ v\’
(229

2p%sin® v\ > NA’
+1-
: nf,BS tan® &

+B, +B (60)

o,LV 0,0ptics *
If the PBS coating is of the usual MacNeille type, the
parameters n,,, and ® are not fully independent, because
light must be incident at the interfaces between the low-
and high-index layers at the Brewster angle. If we make
such Brewster incidence an explicit condition, Equation
(60) can be rewritten in various forms:

2aB sin’ ¥ g
By = (=
28%sin® Y\ 1 1 1 ,
tll-——— |zt 77 |N
Y ny Ry Poppgs
+ BO,LV + BU,Optics 2 (61)
or
2afB sin® y 2
(Bha = T
2B%sin’ y 1 1 s R
T B — + —| cos” ®NA
Y Ry Ry
+ BO,LV + BO,Optics ? (62)

where n; and n,, are the indices of the low- and high-
index materials in the PBS coating.
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8. PBS/TNLC module with quarter-wave retarder

We have seen in item 2 above that when the light valve is
mirrorlike, ellipticity in the illumination will be canceled
out in double pass through the optics; two-pass
depolarization arises only from rotation in the illuminating
polarization. When the illumination depolarization is pure
rotation, as with the PBS/TNLC module in item 7 above,
it can be converted to purely elliptical depolarization by
placing a quarter-wave retarder on top of the light valve.
The waveplate must in the ideal case be oriented so that
its retardation axes are rectilinear with the illuminating
dark-state polarization of the central ray. The TNLC is
likely to be mirrorlike at only a single wavelength in the
band; when we apply Equation (58) in the case of pure
ellipticity from a PBS and 90° retarder, we find that for
other wavelengths,

2aB sin’ ¥\’
o (227)

(/3 sin (2«,)) * NA®
_|._
y "12>Bs tan’ @

+B, ,+B (63)

0LV 0,0ptics *
The difference between Equation (60) and Equation (63)
is in the two LC factors that multiply the optics factor
NA’/(n,, tan® ®). These are two of the curves plotted
in Figure 9; without the waveplate, the interaction
depolarization is largest in the center of the band, whereas
with the waveplate, contrast loss is eliminated at the
center of the band (where the light valve is mirrorlike).
At other wavelengths the dark-state background with the
quarter-wave retarder remains larger than the gfz term
contributed by the light valve alone. Even with the
waveplate in place, the quadratic interaction term is still
the dominant source of contrast loss near the center of
the band, where the light-valve term is quartic in AA.
(Of course, all contrast losses are small in this regime.)
It should also be noted that Equation (63) assumes an
achromatic quarter-wave plate; the dispersion that would
be present in a simple single-layer retarder is neglected
for simplicity.

9. Light valve rotated under polarizing microscope

The field of view in a microscope is small enough that in a
reflection-mode instrument designed for polarization work,
the beam can be expanded through the beam splitter in

an almost collimated condition; then NA is ~0 and
compound-angle effects are avoided. The intensity
measured between crossed polarizers in such an
instrument is simply glzz. In a sense, Equation (52) is a
generalization of this simple result to include compound-
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angle effects at finite NA, but we can generalize it in
another way, by calculating residual dark-state intensity as
a function of light-valve orientation. [Of course, Equation
(52) also applies to a rotated light valve if the active layer
is modified by a rotation matrix.]

As in the case of Equation (52), we impose only one
constraint on the light-valve matrix [(g,,, 9,,)> (95> 95,)15
namely that it arise from a nonabsorbing active layer (or a
layer with equal absorption in the two polarizations)
placed above a mirror backplane. Such an active layer
must satisfy Equation (8) above; if in its nominal
orientation (® = () the active layer matrix is parametrized
according to the second form in Equation (8), then we
find using rotation matrices and some algebra that the
reflectance measured between crossed polarizers when the
active layer is rotated to a new orientation @ is given by

R(®) = RO cos’ (2(0 — ®0)] + BO,LV

=R,sin’[20'] + B, (64)
where B, is the same parameter that appears in
Equation (58), and where
R,=1- (sin® w cos 29 + cos® u cos 20)°, (65)
and

cos(9 + ) sin(9 + {)
tan 20, = (66)

0 tan 2y tan(d — ) sin 2p”

and where ®' = 0 — [0, — (2Zm + 1)w/4], with m an
integer.

According to Equation (64), the observation of a
harmonic intensity variation (having 90° period) when a
reflective light valve is rotated between crossed polarizers
is generic, and in itself conveys little information about
the properties of the light valve; however, quantitative
measurements of the angle of maximum reflectivity ®,
and the maximum reflectivity value R suffice to constrain
the active layer in two of the three degrees of freedom
permitted by Equation (8). The cos’ (20) modulation will
be zero in all orientations only if R = 0 (in which case it
follows form Equations (8) and (65) that the active layer
must be either null, equivalent to a half-wave retarder, or
equivalent to a pure rotation (optically active layer), but
in the ideal case where B, = 0, the reflectance between
crossed polarizers will alwails have a zero at ©® = O, + w/4.
Because ® = 0 corresponds to the normal orientation
of the light valve, it may be convenient to shift the angular
coordinate system according to the lower form of
Equation (64), since contrast is likely be high at small
values of 0.

10. TNLC light valve rotated under polarizing microscope

In the particular case of a TNLC light valve [as in
Equation (9), single-pass active layer as in Equation (6)], 379
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Light valve without projection optics
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% Variation of TN light-valve dark state with wavelength and tempera-
;g ture, in low-NA optical system. Incoherent background is 0.002. LC
g dispersion is for a commercially available liquid crystal material.
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TN light-valve dark state as projected through PBS. Optics
contribute 0.002 incoherent background. NA is 0.143 (f/3.5) and
Nppg 15 1.85.

Equation (64) becomes

R(®) =R, sin’[2(0 - ©)] + B, (67)
with
2B sin v\’ Bsin ]’

R={—) |1-

Y Y
and

o tan y
tan 20, = y (68)
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Discussion

We now discuss some implications of the results of the
previous section. Figure 10 plots Equation (64) (at ©® = 0)
as a function of A, for a TNLC active layer [Equations
(67) and (68)], using An[A] values for a commercially
available liquid crystal material. The parameter « is set to
a/4. The curve of Figure 10 is the spectral response of the
light valve if measured between crossed polarizers using a
polarizing microscope (see also below). Figure 10 can also
be regarded as an application of the curve of Figure 6 to
a particular LC layer. The LC thickness is chosen such
that when temperature T = 30°C, parameter y becomes
equal to  at A = 545 nm; 545 nm is then the nominal
wavelength of maximum contrast. An = n_ — n_ is about
0.2 at this wavelength, and the required LC thickness is
2.64 pm. A = 545 nm might, for example, be the center of
a green channel extending from 515 nm to 575 nm. For
the sake of illustration we have set By, = 0.002. The
change in n, — n_ with temperature is roughly —0.35%
per °C. (A slightly more detailed T dependence is used in
the plots.) The spectral dispersion in n, — n_ is roughly
—0.5% per 1% increase in A.

All curves in Figure 10 are essentially equivalent to the
curve in Figure 6, with a different mapping of parameter
B onto A for each temperature. Since 8 = w(n, — n_)d/A,
a pair of balancing shifts AT and AX that hold 8 at some
constant value (e.g., the value (V15/4)7 associated with
the minimum of the curve) must be related by

1 AA 1 8B/aT a(In [An])/aT
MNAT © N 9B/6x a(In [Ar/AD)/a(n X)

(69)

If An changes by 0.35% per °C, and An/\ by 1.5% per 1%
change in A, then Equation (69) predicts a 0.23% shift in
minimum wavelength per °C. The curves of Figure 10
shift with temperature at about this rate. At a fixed 30°C
temperature, the range of wavelengths where background
is below 0.01 is 115 nm; however, it is only over a smaller
85-nm-wavelength range that background is below 0.01 at
all temperatures between 20°C and 40°C. A 30-nm
contraction of the tolerance window over 20°C at

A = 545 nm is approximately what would be expected
from the linear approximation in Equation (69).

We next consider the effect of the optical system.
Figure 11 plots the system background when the light
valve of Figure 10 is used with a basic PBS/TNLC module
[Equation (60)]. The calculation uses n,,, = 1.85 and
NA = 0.143 (£/3.5 optics). Figure 12 plots the example of
Figure 10 with a quarter-wave retarder placed over the
TNLC light valve [Equation (63)], also for the case
Ny = 1.85 and NA = 0.143. In both cases a constant
scatter background from the optics B, = 0.002 is
assumed for purposes of illustration. Over small changes
in temperature and wavelength, the dark-state intensity
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Same conditions as Figure 11, but N4 retarder is placed above
light valve to improve contrast.

in Figure 11 is dominated by the constant H>NA”
background that the PBS would produce if the light valve
were perfectly mirrorlike. When a quarter-wave retarder is
added, as in Figure 12, the background level at fixed NA
has a quadratic variation with wavelength over much of
the plotted region.

Figures 11 and 12 are essentially plots of (contrast) ™’
versus wavelength for a TNLC light valve whose dark state
is mirrorlike at A = 545 nm. (Strictly speaking, contrast
can be identified as the reciprocal of (B) only if dark-state
and bright-state efficiencies are equal.) Figures 13 and 14
show integrals over a spectral range AA = 60 nm of the
curves of Figures 11 and 12; the horizontal axis in Figures
13 and 14 is the center wavelength A, of the integration
band. In a sense, Figures 13 and 14 could be regarded as
plots of integrated contrast in a color channel having 60-nm
bandwidth. These integrations are somewhat artificial,
because the mean wavelength of the color channel is
shifted without regard for chromaticity requirements, but
the curves of Figures 13 and 14 are roughly equivalent to
plots of A-averaged background as a function of LC
thickness 4, if due allowance is made for the dispersion of
An. The finite-wavelength band always degrades contrast
slightly in the region of interest; the degradation can
be regarded as a larger relative effect in the case of
Figure 14 with quarter-wave retarders, because the total
background is lower.

The analysis of the preceding sections allows contrast to
be calculated for a particular optical system of interest,
but there are general trends that can be noted if further
simplifications are made. First, if we regard the NA, the
relative bandwidth AM/A , and the fractional cell-gap error
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Ad/d (including the effective change in cell gap due to
temperature excursion) as first-order quantities, then
Equation (59) above shows that the lowest-order
background term arises from rotation in the illuminating
polarization (causing background B ~ h°NA?). For the
PBS/TNLC module without quarter-wave plates, we can
therefore say as a rough approximation that, for AA/A,

and Ad/d small, background is approximately

NAZ
B~B .+B 47—
0LV 0,0ptics 2 2 .
ptics Rops tan” @

(70)
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Multiple reflections within TNLC layer give rise to Fabry-Perot
oscillations in the reflected spectrum. Fits to the spectra based on a
single-round-trip model can be used to establish the LC thickness,
allowing prediction of contrast in an optical system. The figure
shows crossed-polarizer spectra taken in two different orientations
of the light valve, along with fitted curves [obtained from
Equations (67) and (68)].

If @ = 45° and n,, = 1.7, we then have as a rough
scaling rule

NA*?
B~B .+B +—. (71)

0,LV 0,0Optics 3

Equation (71) is highly simplified, but it suggests that a
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typical requirement of contrast =100:1 limits NA to ~0.15
for a PBS/TNLC module operating without quarter-wave
retarder.

The case in which a quarter-wave retarder is added to
the module (item 8 above) is somewhat more complicated.
An expansion along the lines of Equation (59) contains a
number of lowest-order (quartic) terms; the essential
action of the retarder is in effect to subtract the lowest-
order (quadratic) term represented by Equation (70). The
fully general expression in Equation (63) is fairly simple,
but becomes more complicated when expressed in terms of
the underlying physical parameters d, An(A, T), and A. To
obtain a simplified result, we expand B in terms of a small
shift 8A away from the central wavelength A, a small
temperature excursion A7, and a small departure Ad of
LC thickness from nominal:

LY
BD+6UEw#L—W11+K}'+ég, (72)
0 0
where
(An(A,T))
dln|———
A
ST (73)

A=y

Parameter W is defined by W = a/#, and the systematic
fractional offset in B is defined by
88, Ad

d In (An)
B():d AT T (74)
We approximate Equation (63) under the assumption that
the background intensity of interest is the average of B
over all wavelengths present in a particular color channel
(as well as over NA); the spectral extent AA of the color
channel is defined by A, — (AM2) = A, + 84 = A, + (AM2).
We would like to estimate the integrated channel
background as a function of channel bandwidth AA, LC error
8B,/B,> and NA. In general the channel spectrum has
some distribution P(A), which may include a lumen-weighting
factor representing the eye’s efficiency. For a flat spectrum
[i.e., P(A) = 1], the average over the mth power in a spectral
expansion is given by

+AA2
J (8A)" dA
SA\ " 1 J-mn2
<<)To> >,\ AT +ay2
f i
—an2

1 Ax\"
— | — m even,
=12"m+ 1)\ A,

0 m odd.

(75)

Form = 2, the flat spectrum average of (8A/A)* from
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Equation (75) is (1/12)(AMA)°, where AA is the full width
of the channel. For the more general case where P(}) is
not constant, we then define an effective channel width
(AMA,)  according to

+AA2
f P(x, + 8A)(8)1)* da
1

—AA/2

)TO 12 +AM2 ) (76)
f P(A, + 81) dA

—4AAN2

For simplicity we further assume that the average of
(8MA) is equal to (1/80)(A/\//\0):ff, even though according
to Equation (75) this is only strictly true for a flat
spectrum. We similarly make the approximation that the
average of any odd power of (8A/)A) is negligible, even with
a nonconstant spectrum. Dispersion in the retarder is also
neglected.

Keeping only the lowest-order terms in Equation (63),
we find

4 4 2
(B), ya = 47 (1 = W oW1 — WH? R + =
ANA 80 \ A 2

eff

nf,Bs tan’
The coefficients in Equation (77) that multiply powers of
the systematic error (88/8) tend to be somewhat larger
than those multiplying powers of the bandwidth (AA/A) .
Image brightness increases as spectral bandwidth
increases, but chromaticity considerations prevent
bandwidth (AA/A),,; from exceeding ~0.12 to 0.18 in a
single color channel. Image brightness also increases
with increasing NA; however, besides lowering contrast,
practical considerations such as lens cost and component
size also limit NA in this type of projector.

To simplify Equation (77) still further, we assume that
at the practical limit, NA ~ 0.25 and (AMA)  ~ 0.15. For
I ~ 1.5 and W = 0.25, we find from Equation (77) that
the quartic terms in cell-gap error are fairly small, and that

3B,\
+0.0035 + 1.1(3—) .

0

<B>A,NA~BU,LV +B (78)

0,0ptics
Equation (78) is of course very rough, but it suggests

that when a quarter-wave retarder is combined with a
PBS/TNLC module in a projector with ~100:1 contrast
target, compound-angle depolarization will not be the
dominant factor limiting the NA as long as cell-gap errors
(and equivalent temperature excursions) are held to ~5%.
When we consider depolarization from the light valve
alone, we obtain tolerances that are ~50% more relaxed.
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NA* K?
12

Figure 15 shows the result of integrating with respect to A
the curve of Figure 10 for the background contribution of
the light valve alone; the range of integration is the same
as in Figures 13 and 14. Comparison of Figures 13, 14, and
15 illustrates the narrowing of light-valve LC thickness
tolerances due to interaction with the optical system.

The incoherent contribution from the optics, BU,Op[ics’ can
be measured by replacing the light valve in the PBS/TNLC
module with a mirror (leaving the quarter-wave retarder
in place). Because of the interaction term in Equation (63),
it is not accurate to calculate system contrast by simply
adding to B, , . - the contribution of the light valve as
measured with a polarizing microscope. Instead, more
extensive light-valve measurements must be made in order
to determine the thickness d of the LC active layer as
fabricated (including possible thickness variation over the
active area), and the incoherent background term B ..
We have described our measurement procedure and
apparatus elsewhere [28, 29]. Figure 16 illustrates one

AN\ /88" [8B,\°
R - + -
/\ eff BU BO)

(77)

—] +|—= + B, + By -
A 0,LV 0,0ptics
eff BO

complication that is seen in experimental data. The

solid curve shows measured reflectivity as a function of A
for a TNLC light valve between crossed polarizers, at
NA = 0.2. The ripple structure is due to interference
across the TNLC layer. Yang and Takano have analyzed
this phenomenon in detail as a multiray Fabry-Perot
interference across a dispersive TN medium [30]. The
dashed curves in Figure 16 are fittings of Equations (67)
and (68) to the spectrum, which we use to determine the
LC thickness d. We obtain reasonably consistent results
with this method, even though Equation (67) neglects
multiple reflections within the LC layer.

Summary
Projectors that use reflective light valves must employ
beam splitters or analogous components to separate
bright-state light from dark-state light. With transmissive
light valves, this function can be carried out by a simple
sheet post-polarizer which trims dark-state light from the
bright-state image beam. However, when the light valve is
reflective, both states must be allowed to propagate in the
space above the substrate, and the beam-splitter element
(PBS) must actually separate the two beams.
Beam-dividing interference coatings give rise to
polarization crosstalk via compound-angle depolarization,
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as illustrated in Figure 3 for a PBS coating. Other tilted
coatings in the projection optics may also contribute to
this depolarization, as illustrated in Figure 4. The
depolarization gives rise to undesired intensity in the
dark-stage image, causing contrast to degrade proportional
to NA™*. The unwanted background has the same
polarization as the bright-state image and cannot be
filtered out with a supplementary polarizer.

In Equations (19)—(22) we have presented a solution
for the depolarization arising in a general optical
system, retaining terms in the depolarization amplitude
proportional to NA (xNA” in intensity). Good agreement
has been found with exact numerical polarization ray tracing
[using Equations (10) and (11)] when NA = 0.14 (i.e.,
for apertures below ~f/3.5). Our solution applies to any
assembly of tilted coatings, so long as 1) all surfaces are
tilted in such a way that the polarization of the central
ray is either pure S or pure P (i.e., the optical system
introduces no deliberate depolarization), and 2) none of
the tilted optical coatings through which the beam passes
in transmission are deposited on tilted refractive wedges
(which if used would cause severe aberration of the
beam). The solution applies to systems employing tilted-
plane parallel substrates (such as plate dichroic filters or
plane parallel tilted air spaces), as well as TIR reflections
or tilted internal coatings like that in a PBS cube.

We have reviewed the Jones-matrix theory of reflective
twisted nematic liquid crystal (TNLC) light valves, and
have noted that the dark state in such light valves is
exactly mirrorlike only at isolated wavelengths, typically at
only a single wavelength in the operating spectral range.
We have shown that to avoid contrast loss from the
compound-angle depolarization mechanism when the light
valve is mirrorlike, the optical system must not induce any

" rotation in the polarization of skew rays illuminating the

light valve. On the other hand, ellipticity induced in the
illumination will automatically be canceled out in the
return pass through the optics. Pure rotation in the
illuminating light can be converted to pure ellipticity by
placing a quarter-wave retarder on top of the light valve.

This rule for depolarization of skew rays by projection
optics is opposite to what is required of the light-valve
active layer itself: In dark state the active layer of a
reflective light valve should not introduce ellipticity in the
polarization of the central ray (when the ray reaches the
mirror backplane); on the other hand, any rotation of
polarization that it might introduce will be canceled out
in the return pass through the active layer.

At most wavelengths, TNLC light valves in dark state
do not behave exactly as mirrors. We have derived in
Equation (58) an expression for their contrast loss in an
optical system which induces both ellipticity and rotation
in the illuminating polarization. Equation (52) generalizes
further, presenting the solution for a general polarization-
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modulating light valve in a general optical system.
Equation (52) and the first form of Equation (57) apply to
any reflective light valve whose active layer is lossless (or
has equal attenuation in the two polarizations). Dark-state
intensity of such a light valve in a projector increases with
the square of the angular extents of the beam, i.e. for an
aligned and telecentric system, as NA*.

Finally, the second form in Equation (57) applies
whenever the light-valve contrast is large compared to 1
(the case of primary practical importance). Equation (57)
shows that one part of the single-pass depolarization
introduced by the optics is canceled in the second pass
that follows reflection from the light valve, while the
remaining portion is doubled (in amplitude, quadrupled in
intensity). The portion that is doubled over the round
trip is the portion in quadrature with the light-valve
depolarization. (This portion is the rotational
depolarization when the light valve is mirrorlike.)

The case of a TNLC light valve interacting with a
simple PBS optical system has been explored in some
detail, both with and without an added quarter-wave
retarder to improve contrast. With no quarter-wave
retarder, a rule of thumb is that the dark-state
background can be estimated as B ~ NAZ/nlz,BS ~ NA'J3
[see Equations (70) and (71)].
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