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Projectors that use reflective light valves 
must employ beam splitters or analogous 
components to separate bright-state light 
from dark-state light, since both states must 
propagate in  the space  above the light valve. 
Polarization ray tracing shows that such beam 
splitters  will  not usually  achieve high rejection 
of dark-state light when the beam  has the 
typical angular  divergence  of  about &IO". At  such 
propagation angles,  different  rays in the  beam 
will have  appreciably  different  planes  of  incidence 
at tilted optical coatings in the system  (because 
of the compound  angles  involved). If the light 
valve is mirrorlike in dark  state,  we  show that 
to correct the depolarization resulting from 
compound incidence angles, it is necessary 
that  the  optics introduce no rotation in the 
illuminating polarization. To a  reasonable 
approximation, such a rotation  in polarization 
will double in  the return pass through the 
optics. To the same  approximation, induced 

ellipticity  in  the illuminating polarization will 
cancel in double pass, and pure rotation 
can be converted to pure ellipticity  with 
a quarterwave retarder.  An important 
qualification, however, is that a light valve can 
only be exactly mirrorlike  in  restricted cases 
[i.e., if linearly polarized input light remains 
exactly linearly polarized (though possibly 
rotated) at  all wavelengths  when it reaches 
the mirror backplane of the light valve, 
independent of small manufacturing errors]. 
We calculate contrast loss in the more realistic 
case  of  a reflective twisted nematic liquid 
crystal (TNLC) light valve interacting with  tilted 
coatings in the projection  optics over finite 
numerical aperture (NA), and discuss the 
impact on LC thickness tolerances and 
spectral bandwidth AA. We extend our results 
to apply to more general light valves  and more 
general projection  optics configurations. Dark- 
state background is found to scale as PIA2 (or 
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Measured S transmittance of commercially procured beam-splitter 
coating. R, G, and B refer to integrations over the red, green, and 
blue regions of the  spectrum. A typical requirement of 1OO:l 
system contrast can be met without a supplementary polarizer in 
the transmission path. 

in  some  cases as -NA2Ah2). Because of 
this interaction, the complete system  almost 
always  shows a lower  contrast than the light 
valve  alone. 

Introduction 
Light valves that  are reflective provide  important 
advantages in projection displays. Controlling circuitry 
placed below the  mirror  surface  does not obstruct  the 
clear  aperture [l, 21, more  advanced IC technology is 
available for  substrate  materials  that  are  opaque,  and  a 
more  compact system may be achieved  when the reflected 
output  beam is folded back on the  input. However, 
complexities arise in the  optical system when the  space 
above the light valve must be used for  both illumination 
and  collection.  The reversibility of a nominally loss-free 
optical system  implies that  the light valve must be 
illuminated with dark-state light, because light that 
remains in the  input  state  after reflecting from  the light 
valve necessarily follows the  reverse  path back to  the 
illuminator,  and so does  not  contribute  to image 
brightness. In  different  technologies  the  term dark-state 
might refer  either  to  the  polarization  or to the 
directionality of the  incident light, depending on the 
method of modulation used. In either  case, it is a basic 
physical requirement  that any light which the light valve 
might reflect without modification (in polarization  or 
direction) will necessarily retrace its path back to the 
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Conversely light that is switched to  the bright state by 
the light valve must be  shunted  into  the  projection  optics. 
When light valves use polarization  modulation, this is 
generally  accomplished with a polarizing  beam splitter 
(PBS), but the  required  angular  range can be difficult to 
achieve. For  one thing, it can be difficult to achieve 
acceptable  performance  from  the polarizing hypotenuse 
coating over  an adequate  angular  range (e.g.,  over a  range 
of angles of incidence -45" f 5" in glass). 

There is, however, a more  subtle  problem,  relating  to 
the difficulty in maintaining  a  consistent  polarization in a 
three-dimensional  cone of light as  it propagates  through 
an optical  system. The  angular  subtense  required in the 
beam  [essentially, the  numerical  aperture  (NA)  or f/#] is 
dictated by the  need  for high lumen  output,  often  the 
paramount  requirement in today's projection displays. 
Typical output  requirements  and efficiency constraints 
imply optical fluxes at the light valve of -1 W. Integrated- 
circuit  processing techniques typically constrain  the 
aperture of reflective  light valves to  dimensions of a few 
centimeters  or less. Brightness  limits in today's short-arc 
lamps then imply that  the  beam illuminating the light 
valve must subtend  at least  several degrees in order  to 
provide the necessary flux density [3]. Polarization control 
with twisted nematic liquid crystal (TNLC) light valves 
and PBS optics over  such angular  ranges  are  the main 
emphasis of this  paper. However,  it is worth noting  that 
the  problem of preventing "crosstalk"  between bright-state 
and  dark-state  beams is fairly general with reflective light 
valves, affecting, for example, those  based on directional 
modulation. 

commercially'  that provide dark-state  rejection >250: 1 
throughout  the visible spectrum if used  single-pass at any 
angle  within a 2 10" range.  (A  supplementary  sheet 
polarizer must be included when the PBS  is used in 
reflection.) Figures 1 and 2 illustrate  the  coating 
performance  achicvcd.  Imperfect  coating  response was 
distinguished from  substrate  birefringence in the 
measurements in Figures 1 and 2 by crossing the PBS pass 
direction against parallel input  and output sheet  polarizers. 
Measurements with a solid cube were used to subtract out 
losscs in the prism substrates  and  front-surface antireflection 
coatings. Some PBS substrate glasses introduce  appreciable 
attenuation in the blue region of the spectrum, but blue 
losscs in the substrates of Figures 1 and 2 were small 
compared to those arising in other parts of the system, e.g. 
from illuminator components  and aluminum fold mirrors [3]. 
The plotted results are integrated over a uniform cone of 
rays at each NA. It should be noted that while this coating 
provides reasonably high efficiency out to NA - 0.2, the 
design range was only +e. 

Broadband polarizing beam  splitters have  been procured 

' For  example,  Bakers Thln Filmr  Products Divis~on, Frcmont, CA. Spectre 
Physics Components and Accessories  Divialon. Moun ta ln  VICW, CA. 
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In  a  projector  the PBS  must be used in both 
transmission and reflection. One  mode (e.g., transmission) 
is used for  the  illumination  pass  to  the light valve, and  the 
other (e.g., reflection)  for collection from  the light valve 
by the  projection lens. MacNeille-type PBS coatings  are 
designed  to  be  dielectric  mirrors in S polarization;  a  far 
more difficult requirement in their design is that  they 
achieve  Brewster suppression of P reflectivity throughout 
the -210" angular  range.  In  practice, achieved P 
transmittance always departs much further  from  the goal 
of 100% than  does S reflectance, so P  transmittance  gates 
double-pass PBS efficiency. Total  background light in 
projection displays must typically be 51 part in 100 of 
bright state;  the  departure of P transmittance  from 
unity is inevitably larger  than this, which means  that  a 
supplementary  polarizer (e.g., a  sheet  polarizer) must be 
included in the reflection pass  to block  reflected P light 
(i.e., if the light valve is illuminated with light  reflected 
from  the PBS hypotenuse,  the  illumination must be passed 
through  a  sheet  polarizer  before  entering  the PBS; if 
instead  the  image light is collected in reflection, the image 
light must be passed through  a  sheet  polarizer  after 
reflecting from  the PBS). Sheet  polarizers  are  at best 
-90% efficient in the pass polarization,  and it is desirable 
that  the S transmittance be low enough  that  one  does  not 
have to  add  a  second lossy sheet  polarizer  for  the 
transmission arm.  (Note  that such a  sheet  polarizer in 
the  illuminator might be replaced by more expensive 
polarizing elements  that partially recycle the  unused 
polarization [3-51.) Figures 1 and 2 show that  coatings 
available  today can achieve these  performance goals; 
single-pass reflectance of P  polarization  and single-pass 
transmission of S polarization  are  both acceptably low by 
the above criteria. 

However, basic trigonometric  constraints limit the 
rejection  ratio  that  can  be achieved by the PBS element 
in double-pass, if it is used to  illuminate  a reflective 
substrate with a  noncollimated  beam. If the light valve 
returns  dark-state light  in mirrorlike  fashion,  the  geometry 
of compound angles  implies that skew rays will not  see  the 
same  plane of incidence at the  return pass to  the PBS 
hypotenuse  that  they  see on the  input pass. 

For skew rays these  planes of incidence  are  tilted 
relative  to  the  external  faces of the PBS cube.  For 
example, Figure 3 shows a skew ray AB  incident  at  the 
front  face of a PBS cube;  the ray illuminates  the light 
valve at  point  C  after being  reflected  downward from 
point  B by the  hypotenuse  coating. If the light valve is 
switched dark,  the ray remains (nominally) dark-state 
polarized,  and  returns  to  the  front  face along CB'A'. 
During  the  input pass the PBS will polarize the 
illumination  either  perpendicular  to  the tilted plane of 
incidence  ABC  (for illumination in reflection through  the 
PBS, as shown in Figure 3), or within  this tilted  incidence 

c R I 
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I Measured P transmittance of the Figure I polarizing coating. At 
practical NAs, several percent of the light is lost in reflection. A 
supplementary polarizer in the reflection arm is required to meet 
typical contrast requirements; this entails 210% additional loss in 1 throughput if an absorbing sheet polarizer is used. 

plane  (for illumination in transmission, not shown in 
Figure 3). If the illumination polarization is maintained in 
the  dark-state light that reflects from  the light valve, the 
E-field will show a  different tilt  relative to  the new plane 
of incidence for  the  return pass at  the PBS hypotenuse 
(plane  A'B'C).  The top-view diagram of Figure 3 
illustrates  the  incident  and  returned E-field for  the  case of 
a light valve with mirrorlike  dark  state.  The  returned skew 
ray is reflected to  the  opposite  side of the  lens NA, 
causing the  return  plane of incidence  A'B'C  to have an 
opposite tilt from  the  input  incidence  plane  ABC.  The 
newly tilted  orientation of the E-field relative  to  A'B'C 
means  that  the  dark-state light has  both S and  P 
components  during  the  return pass, and so is not  entirely 
returned  to  the  illuminator. 

By this mechanism,  the  compounded  incidence  angle 
of the ray at  the PBS coating  (the ray incidence angle 
having components along both  the skew and  coating-tilt 
meridians) gives rise to  polarization  crosstalk, causing a 
loss in contrast.  The  amplitude  projection  onto  the tilted 
incidence plane is approximately linear with NA, and 
contrast  decreases as NA - 2 .  Since compound-angle 
depolarization  converts  dark-state light to  the  bright  state 
of the image,  this NA-dependent  background  cannot  be 
filtered out with a  supplementary  polarizer. 

with transmissive light valves, where  a simple sheet  post- 
polarizer  can  be used to  trim  dark-state light from  the 
bright-state image beam.  When  the light valve is reflective, 
both  states must propagate in the  space above the 

This  depolarization mechanism does  not  ordinarily  arise 
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Top view 

/ 
Dark-state light valve 

Side view 

Rays are incident at beam splitter with appreciable skew angle when optical system aperture provides acceptable brightness (NA 2 0.1). The 
compound incidence angles cause polarization crosstalk that is proportional to the varying tilt in the ray planes of incidence (e.g., ABC, A’B’C). 
The resulting loss in contrast cannot be corrected with a supplementary polarizer. Note: For the sake of clarity, refraction at the front surface is 
not shown. 

substrate,  and  the  beam-splitter  element  must actually 
separate  the two beams. Beam-dividing interference 
coatings  are  prone  to  the  depolarization  mechanism 
described  above. A  transmission light valve will not  suffer 
compound-angle  depolarization even  when  PBS pre-  and 
post-polarizers  are  used  instead of sheet  polarizers, as 
long as the  hypotenuse  coatings of the two PBS cubes  are 
parallel  and  there  are  no  other tilted coatings  between  the 
PBSs and  the light valve. However, single-pass compound- 
angle  effects  are  reported [6] in rear-projection  monitors 
that  reduce box depth by using  a  reflective polarizer [7, 81 
on  the inside surface of the  projection  screen in order  to 
make  an  extra  fold in the imaging beam [6, 91. 

As  discussed  above, the  ideal reflective  light valve must, 
when  switched to  dark-state, reflect the  central ray without 
changing its  polarization. However,  such an  ideal light 
valve need  not  be  mirrorlike; it  might, for  example,  be 

362 instead  equivalent  to a quarter-wave  retarder  placed  above 

a mirror. As  long  as the  fast  and slow axes of such  a 
retarder  take  the  orientation shown by the  dashed  lines in 
Figure 3 (one axis lying within the  plane BB’C, the  other 
axis parallel  to  the  central ray before it enters  the  cube), 
the  dark-state  polarization of the  input  central ray 
will remain  unchanged in the  output. However, 
such  a quarter-wave  retarder will change  the  polarization 
of skew rays, in a  beneficial way. The  retarder will act as  a 
half-wave rotator in double pass, and  the E-field of a  skew 
ray that is incident  perpendicular  to  (or within) the 
rotated  plane  ABC will be  returned in a direction 
perpendicular  to  (or within) the  mirror-rotated  plane 
A’B’C, thereby  eliminating  depolarization [lo]. If the 
dark-state light valve resembles a mirror  rather  than a 
quarter-wave  plate,  the  same  correction  can of course  be 
obtained by placing an  actual  quarter-wave  retarder above 
the light valve. This  technique  appears  to  be fairly well 
known among  manufacturers of light-valve projectors 
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(perhaps having been  invented  independently a number of 
times),  but  to  our knowledge it has only been  described in 
the  patent  literature  [lo]. 

In  this  paper we describe  the above depolarization 
mechanism in more  general  terms; we consider  more 
general  optical systems than  the simple  PBS of Figure 3, 
and we consider light valves that  are  not necessarily  ideal. 
We  do, however, make  the following approximation:  In 
cases  where  the  central ray strikes a surface  at (or near) 
normal  incidence, we apply the  normal-incidence  Jones 
matrix for  the  surface  to all rays in the  beam.  (In  fact, 
it is only in this  approximation  that  one  can  describe  the 
E-field  reflected from a mirror  as  not  rotated.)  Terms 
that  scale as NA2 (in amplitude)  are  thereby  neglected. 
However, we show that  tilted  optical  coatings in the 
system give rise to  amplitude effects that scale as NA’ 
(as in the example of Figure 3); these  linear  terms  are 
dominant.  Comparison with exact-polarization ray tracing 
shows that a first-order  calculation  predicts  background 
levels to well below one  part in 100 at NAs of interest  to 
us, i.e., at  apertures below -f/3.5 (NA 5 0.14).  (When 
we use  the  term first-order in this work without  further 
qualification, we mean  first-order in an  expansion in beam 
NA.)  More  accurate  calculations  require  modeling of the 
angular  dependence of near-normal  incidence  components 
such  as linear  sheet  polarizers  and  the light valve; these 
are beyond the  scope of the  present  paper. However, we 
note  that  the mechanics of exact-polarization ray tracing 
are well known  in the  literature,  and  are  implemented in 
commercial  optical design programs. Most  commonly, 
polarization  along a ray is determined  from a  multiplied 
string of Jones  matrices,  alternating  between  matrices 
for  the  surfaces  and  matrices  that  carry  out  rotation 
transforms  to  map  the S and P polarization  directions of 
one  surface  to  the S and P directions  for  the next. To  our 
knowledge, the first such treatment  to  use a modern 
ray-tracing formulation is that of Waluschka [11]; full 
implementation  details  are given in  his paper. Waluschka’s 
method is useful for calculating the  polarization  properties 
of projection  optics  at a system level. The  polarization 
properties of LC light valves are  described in two recent 
reviews [12, 131. 

A first-order  calculation is sufficiently accurate  for  our 
purposes,  and  the simplification it provides  yields two 
advantages.  First, such  a calculation allows contrast  to  be 
defined  in terms of simple relationships involving surface 
parameters (usually, the  surface  orientations  and  the S/P 
relative  phase shifts from  interference  coatings  on 
the  surfaces).  Simple  relationships  are  particularly 
advantageous in an  optimization  program,  where  rapid 
evaluation of a merit  function is important. 

Second, a first-order analysis provides considerable 
insight into  the  nature of contrast loss from  interaction 
between  the  optics  and  the light valve. This is the main 

Light 
valve 

I Compound-angle depolarization can arise as a cumulative  effect 1 from multiple tilted coatings in the optical system. 

emphasis of the  present  paper.  Contrast with  a general 
optical system and light valve is found  to  scale as NA-’ 
under  the  compound-angle  depolarization  mechanism.  The 
analysis below  shows that a  succession of optical  surfaces 
that  are  parallel  to  the PBS hypotenuse (in media having 
roughly  similar refractive  indices)  do  not give rise to 
further  depolarization. Only surfaces  where  bright-state 
and  dark-state light propagate  together give rise to 
relevant  depolarization;  as  illustrated in Figure 4, these 
might include  color-splitting dichroics between  the PBS 
and  the light valves. Only bright-state light propagates 
between  the  PBS  and  the  projection  lens,  but  dark-state 
and  bright-state light must both  propagate  through 
surfaces  that  lie  between  the PBS and  the light valve, and 
dark-state light traverses  these  surfaces in double pass. 
This  double-pass  traversal implies  a degree of symmetry  in 
the  depolarization  properties; we show that when the 
dark-state light valve can  be  approximated  as  mirrorlike, 
rotation  imposed  on  the illuminating polarization by the 
optics  during  the  input  pass is essentially doubled  during 
the  output pass, and ellipticity is canceled.  This is opposite 
to  the usual  symmetry  in double-pass  traversal of a 
polarizing element,  where  (for small depolarization) 
ellipticity doubles  and  rotation is canceled  (as with  a 
waveplate  or optically  active film above a mirror);  the 
difference is that a skew ray propagates  through  the  optics 
on  opposite  sides of the  pupil  during  the  input  and  output 
passes. 363 
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Note  that what is meant  here by “doubling of rotational 
depolarization in round  trip” is that when the single-pass 
depolarization of skew rays is purely  rotational (i.e., E,/E. 
is pure  real  at  the  completion of a single pass  through 
the  optics when the  input ray cone is linearly polarized 
along 2, with optical axis along j ) ,  the  double-pass 
depolarization will be twice as large in magnitude.  The 
double-pass intensity between  crossed  polarizers is then 
four  times  that  measured in single  pass if the single-pass 
depolarization is purely  rotational. However, while the 
depolarization  doubles in magnitude  after two passes, the 
direction of polarization in the  beam  that exits the system 
is always aligned with the PBS pass axis for  the  bright- 
state image, which is oriented  at  approximately 90” to  the 
polarization  that  illuminates  the light valve. 

It is not necessary that  the light valve be  mirrorlike in 
dark  state  to provide high contrast.  We  later show 
[Equation (64)] that when  any continuous  polarization- 
modulating layer is placed  above  a  mirror  backplane  and 
rotated  between  crossed  polarizers,  the  reflectance (in 
double-pass  traversal of the  layer) will be  proportional  to 
sin2(20’), with 0’ the  orientation  (measured relative to 
the  orientation of minimum reflectivity),  as long as the 
layer is not lossy from  scattering  or  absorption.  One must 
imagine that  the  beam is incident  on  the reflecting 
structure  at  an angle slightly off normal, so that  the  input 
and  output  polarizers  can  be  crossed  to  each  other.  The 
amplitude of the  sin’(20’)  variation is only zero  (for all 
0’) if the  polarization-modulating layer (in single  pass) 
is either null, equivalent  to  a half-wave retarder,  or 
equivalent  to  a  pure  rotation (optically  active layer).  On 
the  other  hand,  a PBS in a  projector  functions  “in  zeroth 
order” (Le., N A  + 0) as crossed  polarizers, so to  zeroth 
order essentially  any polarization-modulating film above a 
mirror can be said to provide a valid dark  state if rotated 
to  a  particular  orientation  where  the  sin’(20’)  modulation 
has  a  zero. (Of course, in practice  a light-valve active 
layer  must in dark  state  be reasonably  insensitive to 
depolarization  from  scatter  and small inhomogeneities, 
it must satisfy spectral  bandwidth  requirements,  and it 
must provide  adequate  performance  when N A  # 0.) 

If the light valve is not  mirrorlike, we still find that 
when N A  # 0, one  portion of the single-pass 
depolarization  from  the  optical system will be  canceled in 
the  return pass, and  the  remaining  portion will double 
(in amplitude). As noted above, depolarization  refers  to 
the complex electric field amplitude  that is output with 
polarization in the  orthogonal  state  to  a  linear  polarized 
input, divided by the  output in the  parallel  polarization. 
We show that  the  relationship  between single-pass and 
double-pass  contrast loss can  be expressed very simply 
in terms of the  phases of the light valve and  optics 
depolarizations.  For  this  reason it is convenient  to analyze 
the  projection  properties of the system by propagating  a 

single  complex scalar  (namely  the  depolarization)  from 
surface  to  surface,  rather  than by propagating  a  Jones 
vector. However, we follow the  Jones-matrix  approach 
of Lu and  Saleh [14] in  analyzing the light valve.’ 

If a reflective light valve comprises  an active  polarizing 
layer  [polarizing in the  general  sense of altering  the 
polarization, e.g., a twisted nematic liquid crystal (TNLC) 
layer]  above a  bottom reflecting surface, we would expect 
that  the  conventional  reversal symmetry  would  apply to 
the active  layer itself. In  that case, if control of the 
thickness of the polarizing  layer is imperfect,  and/or  the 
light valve is to  be used  over an  appreciable  spectral 
bandwidth, we can only  expect ideal  contrast  from  the 
light valve in a simple crossed-polarizer  measurement if 
the  E-field within the active  layer is linear  at all depths 
close to the  bottom  mirror (since the exact depth of the 
mirror may vary), and is so linear  at all  wavelengths 
of interest.  The light-valve active  layer  might cause  the 
E-field at  the  bottom  mirror  to  be  rotated,  but with the 
conventional reversal  symmetry  such rotation is canceled 
in the  return pass through  the layer.  However,  when the 
active  layer produces ellipticity in the light  illuminating 
the  mirror  backplane,  this single-pass depolarization is 
not  canceled in the  return pass. When  the single-pass 
depolarization is small  (small rotation  and small 
ellipticity), the elliptical component of the  depolarization 
doubles in the  return  pass  (in  the  sense  that  the intensity 
between  crossed  polarizers is approximately  quadruple 
that of a transmission  cell  with an active  layer producing 
the  same single-pass  ellipticity),  causing the  dark-state 
illumination  to  be partially converted  to  bright-state. 
[These  results  are derived below in Equation (49).] Thus, 
the  optimum  behavior  for  the light valve in the  “zeroth- 
order”  case  where  the  optics is ignored is that it produce 
no ellipticity at any wavelength in the light  illuminating 
the  mirror  backplane,  despite  the  presence of possible 
variations in layer  thickness. (Note  that skew-angle 
depolarization in the  optics  thus obeys a symmetry 
opposite  to  that of the light valve.) Unfortunately,  the 
absence of ellipticity at all depths  and wavelengths is 
difficult to achieve  in a  medium  that shows both 
birefringence  and  a twist, as with TNLC.  [An  exception 
is a  TNLC  operating in the Maugin  limit ([16]; see also 
[17, 181); this  case,  however, is usually not  practical  for 
reflection light valves.] Thus, it is not  surprising  that, 
as  shown  below, a  dark-state  TN light valve of given 
thickness typically exhibits  truly mirrorlike  behavior  at 
only a single  wavelength in the  operating  spectral  range. 
Even  at  this  unique wavelength, we show that  polarization 
rotation by the  optics  (but  not  imposed ellipticity) 

’References  pointed  out by an  anonymous  reviewer  brought to our  attention 
the work of Ong [15], who  analyzed LC light  valves in terms of the  depolarization 
(denoted ,y by Ong),  rather  than Jones matrices.  It  might  have been casier  to 
integrate  our  optics  model with Ong’s  light-valve  formalism  Instead of the matrlx- 
based  approach of Reference [14]. 
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gives rise to  dark-state  background xNA' .  At  other 
wavelengths, the light valve interacts with both ellipticity 
and  rotation  imposed by the optics,  again  with  scaling 
xNA* or x N A Z A h 2 ,  where Ah is the shift away from  the 
optimal wavelength. If the TN light valve is used between 
simple crossed  polarizers ( N A  + O),  background is found 
to scale mAA4; such quartic  contributions are also present 
when the light valve  is used in an optical system (NA # 0). 

Analysis 

Light valve 
The  Jones matrix of a  dark-state  TN light valve has  been 
derived by Lu and  Saleh [14]. We  use  their  formulation 
and  notation, except we correct  for what we believe is a 
sign error in their  result.  (This is above and beyond the 
difference  between  their sign convention  and  the sign 
convention used here.)  The sign error  appears  to have 
propagated  into  their expression from  a  result of Yariv 
and  Yeh [19]; since this  result is widely cited in the 
literature, we sketch  out  the  derivation  here.  Matrix 
element signs would not usually matter in a simple 
crossed-polarizer  measurement of light-valve contrast, 
but  can be  important in analyzing the  interaction with 
an optical system. 

Figure 5 shows  schematically the nc axis twisting from 
top  to  bottom of an LC layer, with a the  total twist angle. 
(In  Figure 5 a is +45".) We  use ( E r ,   E z )  as  the  Jones 
vector,  and  use  the sign convention  where waves oscillate 
as  exp [+iky - iwt].  Following  Yariv and  Yeh [19], we 
introduce  a  rotating  coordinate system that  tracks  the 
twisting LC molecules; we then write the single-pass Jones 
matrix M,, for  the LC layer in dark  state as the  result of 
propagation  through  a  large  number N of birefringent 
slabs with progressively twisting orientation: 

where AM and R(0) are respectively  defined  as 

Here /3 is one half the  integrated  birefringence across the 
thickness d of the LC layer; p = r ( n c  - n#/h [nc and 
no are  the indices of refraction  for  the  extraordinary  and 
ordinary rays, respectively; they apply for  the  particular 
y-tilt of the LC molecule (assumed  not  to vary with depth 
y when the light valve is in dark  state)]. 

Equation (1) is to use a generalized DeMoivre identity [20]: 
One way to  evaluate  the matrix exponential in 

4 Reflected Incident 

1 Sign convention for Jones matrices. A positive liquid crystal twist 
1 angle is illustrated (a = +45"). 

(1 cos(w) + ik. a sin (a))" = (e'u"'")mz = errnu'" 

= I cos (mw) + iri (T sin (mu), 
(3) 

where I is the  identity matrix and (T is a  length-3  operator 
whose x, y, z components  are  the 2 X 2  Pauli  matrices gX, 

uy, and 9 :  

and  where ri is an  arbitrary unit vector. 
Applying Equation (4) to  Equation (1) and  then 

applying Equation (3), we obtain almost by inspection  the 
following very compact expression for  the single-pass 
Jones matrix of a TNLC layer  with zero  applied voltage: 

M = e -laUver("u;+pc:) 
LC (5 1 

(Note  that  the  exponents  cannot simply be added  because 
the  matrices  do  not  commute.) Using Equation (3) to cast 
Equation (5) into  more  familiar  notation, we obtain  the 
well-known result,  appearing  here with consistent signs: 

I sin y sin y 

i cos y + ip ~ ff- 

MLC = R(a)  Y . I ,I\ 

sin y 
-CY ___ 

Y cos - ip  -I Y 
where y = Va2 + p2. We believe that  Equation (6) shares 
its  consistency in signs with results in,  e.g., Reference [21], 
but  not with, e.g., References [14, 191. Note  that  a 
common  phase  factor is neglected in Equation (6). 
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To determine  the  double-pass matrix of the light  valve, 
denoted M,,, we must  specify further  details of our 
sign convention.  In most of this  paper we use  the sign 
convention  recently reviewed by Pistoni [22], in  which, for 
Jones  vector (Ex,  EZ) ,  the x-axis unit  vector is assumed  to 
reverse  direction in space  after a normal-incidence 
reflection from a surface, while i remains  unchanged; j is 
taken  to  point in the  direction of travel of the ray, and so 
of course  reverses  direction also. In this convention, 
R, j ,  i remains a right-handed  triad  after  reflection. 
Unfortunately, this  conflicts  with the most common sign 
convention in  thin-film coating design, where it is most 
often  considered  preferable  that  the S and P  reflectivities 
converge to  the  same value at  normal  incidence. 

In  the  right-hand-preserving  convention,  the matrix for 
the  reversed  path  through a  (lossless) element  can  be 
obtained very quickly from  the matrix for  the  initial 
direction of propagation. Specifically, if  M""" denotes  the 
reverse-path matrix, we have [22] 

where  the  forward matrix  is 

Note  that  for our purposes only differential  phases 
between S- and  P-polarized  components  are  important; 
absolute  phase  factors  can  be  dropped. Similarly, 
Equation  (7) will usually  apply to a lossy element if the 
losses are  equal in S and P polarizations.  For  such 
elements  there  are  other  symmetries we can exploit; for 
example,  it  is well known that  their  Jones  matrices  can 
always be  expressed in  such forms  as 

or 

where in the  second expression p, [, and 6 are simply real 
parameters  that  enforce  the  required  symmetries  between 
the matrix elements. Complex parameter F in the last 
expression represents  the  output  depolarization  for a pure 
(0, 1) input;  real [F implies rotational  depolarization  and 
imaginary F elliptical depolarization.  The  depolarization is 
defined as (Ex/E,)output when Elnpu, = 2. [The  phase  factor 
R is canceled in  calculating the  depolarization.]  Note  that 
the  polarization  matrices of Equation (8) neglect  common 

+ 

366 attenuation  factors  and  common  phase  factors. 

In our convention,  the matrix for  the light-valve bottom- 
surface  mirror is - i f f z  [since we ignore  common  phase 
factors,  -i is introduced  to  preserve  the symmetry of 
Equation (S)], and,  neglecting  common  phase  factors, we 
can  use  Equations (6) and  (7)  to  obtain  the matrix for  the 
dark-state  TNLC light valve in  reflection: 

M  -iM(IeV) 
LV LC 9MLC 

2 p 2  sin2 y 2ap sin2 y 

Y 2  1 
+ p (sin 2 y l y )  

+ p (sin 2717) 

which is equivalent  to  the  result of Lu and  Saleh [14], 
except for sign corrections  and  conventions. 

Projection  optics  that  are  designed  to avoid deliberate 
depolarization of the  beam will tilt surfaces only about 
rotation axes that  are  aligned  either with, or perpendicular 
to,  the  illumination  polarization of the  central ray. 
Otherwise, any surface  that is tilted by more  than -20" 
(depending  on  the  coating) is likely to  produce a strong 
"zero-order'' depolarization  even in the  central (i.e., 
principal) ray of the  beam,  because of differences in 
the  phase or amplitude of S and P reflectance  or 
transmittance.  Even  when  surface  tilts  are  restricted  to  the 
S or P axes of the  central ray, compound-angle  effects  can 
cause  first-order  depolarization in off-center rays; this 
depolarization scales linearly with the  difference in skew 
propagation angle between  the  off-center ray and  the 
principal ray (linear in amplitude,  quadratic in  intensity). 

For  the  central ray,  however, the curves of Figures 1 
and 2 suggest that  the PBS-based optical system  (with 
supplemental  sheet  polarizer) is almost  equivalent  to  ideal 
crossed  polarizers.  The light valve then  contributes a 
residual  dark-state intensity equal  to  the  square of the off- 
diagonal  elements in Equation (9). In  practice,  the  TN 
light valve should have  non-negligible LC  birefringence, so 
parameter p is unlikely to  be small. The  off-diagonal 
elements  are  zero  at y = T ,  i.e., at /3 = w. (For 
simplicity, the  case in which y equals a larger  multiple of 
7~ is not  considered  here.)  One  consideration in choosing 
the twist angle a is that a  high polarization conversion 
efficiency be  obtained when the light valve is driven to 
maximum brightness; (Y = 45" is a  possible  choice [23]. 
Usually p = v(ne - no)d/h will only reduce to .\/m2.rr2 - a' 
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at a single wavelength within the  spectral  band illuminating 
the light valve (i.e., where rn = 1). The light valve 
background  scales with  approximately the  fourth power of 
small  wavelength  shifts away from  the  center wavelength, 
as illustrated in Figure 6.  It should  be  noted  that 
liquid  crystal materials  are  often highly dispersive  in 
birefringence; An = ne - no might change by -0.5% for 
every 1% increase in A. A more  detailed  treatment of 
TNLC reflective light values is given by Yang  and Lu [24]. 

Optical system 
The  compound-angle  properties of a PBS are  generic in 
the  sense  that  the  desired S, P performance of such  a 
coating is in itself sufficient to  approximately  determine 
the  depolarization  the  coating  imposes  on skew rays; to 
wit, the PBS rotates skew-ray polarization by an angle 
equal  to  the  rotation  between  the  incident  and  return 
planes of incidence  (as shown in Figure 3). Color- 
separating  coatings like that in Figure 4  also  have  a  simple 
performance  target, namely that within  a particular  color 
band either  their  reflectance or their  transmittance  should 
approach unity. This efficiency goal is usually satisfied 
fairly well by practical coatings, meaning  that  at  most 
wavelengths  within the  color  band  the  coatings will not  be 
amplitude  polarizers.  Tilted  dichroic  coatings will be 
strong  amplitude  polarizers  at  the  edges of the  band, 
which means  that  they will tend  to  be  strong  phase 
polarizers  throughout  the  band.  (Compactness 
considerations generally require  that  the  beam  be  folded 
at fairly steep angles of incidence.)  From  an efficiency 
point of view one would require  that  the S and P 
reflectance  (or  transmittance)  be close to unity over most 
of the  band,  and  that  the split between  the S and P band 
edges  be as narrow as  possible. This  represents a 
qualitative  description of the coating's  intensity response, 
and in principle  coating  phase shifts can  be significantly 
determined by a complete  description of the intensity 
response  at all wavelengths [25]. However,  in practice  the 
knowledge that available coatings  are likely to show high 
efficiency over  most of the  band is not sufficient to draw 
conclusions about  phase  properties of the  coatings.  For 
one  thing, designs for tilted color  splitters  that show low 
intensity polarization generally  achieve this  at only one 
edge of the  band (261, whereas  the  dispersion  integrals 
that link coating intensity and  coating  phase shift extend 
over  the full spectrum, with  a kernel  that  changes fairly 
slowly. Second,  these  dispersion  integrals involve the 
logarithm of the intensity response; a  tilted coating would 
usually be  regarded as adequately  nonpolarizing in 
intensity if, for  example,  the  theoretical S transmittance 
were  and  the  theoretical P transmittance lo-*, but m 
such cases  the log transmittances still differ  appreciably, 
giving rise to significant S-P relative  phase shifts. (The 
usual "nonpolarizing" edge filter is in fact still polarizing 

Reflectivity between crossed polarizers of reflective TNLC light 
valve in dark state (0 voltage) when a = 45": (a) Linear scale; (b) 
log scale. Dark-state reflectivity is zero at p = 0.96%. Curves 
apply when optics NA is negligible. 

at  the  band  edge when evaluated  on a dB scale.) The S-P 
phase shifts cause  depolarization  through  the  optical 
system, but, in contrast  to  the  case with the PBS, their 
effect  cannot  be  calculated  or even well estimated  without 
detailed  coating  prescriptions.  The  phase shift from 
dichroic  coatings is often  appreciable, however. In  the 
center of the reflection band,  the first few layers of the 
coating  are sufficient to  almost extinguish the  transmitted 
beam, while  wavelengths near  the  band  edge  penetrate 
almost  to  the exit medium. Color-splitting coatings  tend  to 
be fairly  thick, and  for angles of incidence  220"  there is 
generally some  difference in  effective penetration  depth 
between the S and P components, making the  coating a 
phase  polarizer. 

present  paper. However, we show in this paper  that in  a 
Specific coating  calculations  are  outside  the  scope of the 

367 
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first-order  calculation we can  define  a specific 
depolarization  contribution  that is introduced by an 
individual coated  surface; we can  then  propagate  the 
depolarization as  a  single quantity  from  surface  to surface. 
This  formulation proves convenient  for analyzing the 
interaction of the  optics with the light valve. In  the 
present  section of this  paper we apply the  most  common 
sign convention in  thin-film  design (see  for example 
Figures 2.1 and 2.2 of Thelen [26]),  in which amplitude- 
reflection  coefficients are positive  when the  projections 
onto  the reflecting interface of Elncident and kreRected are 
parallel  and negative  when antiparallel.  (The  same 
convention is used  for  the transmission  coefficients.) We 
use (0) as  a superscript  to  denote  quantities  referring  to 
the  principal ray (i.e., the  central ray of the  beam). If f,'"' 
represents  the  direction of the  central ray incident on the 
ith  surface,  and i(") is a unit  vector  that defines the 
direction of S polarization, it is customary in thin-film 
calculations  to  choose  the sign of S.'") according  to 

S t + ]  3, - 
is the reflected ray; thus,  the  same S.'") is used for  the 
incident,  reflected,  and  transmitted rays. The E-field 
direction in P polarization is then most  commonly  set 

ray to a,',), = -i::: X f::),, and  for  the  transmitted ray 
to e::), = S,'t; X f,(!:. In this  convention S., f, and @ are 
not  preserved  as a right-hand  triad,  but  the S and P 
reflectances converge to  the same value at  normal incidence. 

one of the most time-consuming  aspects of correctly 
calculating depolarization  through  an  optical system. 
Standard thin-film formalisms  serve as  a convenient 
standard  for defining the  change in electric field at a 
coated  surface. Given the  amplitude  reflectance p and 
transmittance T of a coated  surface, it is straightforward  to 
propagate  the  E-field  from  one  surface  to  the next. 
Applying the  Fresnel  equation  for reflection, 

" (0 )  E A ( 0 )  = (f?) x f([l))/ I f y  
r t 1  X @:!;I, where f,(:: 

to p j (0 '  I X f!") for  the  incident ray, for  the reflected 

We have found  proper  interpretation of signs to  be 

where 4, is the  surface  normal;  and  for  transmission, 

where n1 and nttl are  the refractive  indices. As is usual in 
thin-film calculations, 7 in Equation (11) refers  to  the 
tangential  components of the E-field. The  square  root in 
Equation (11) is  always taken to  be positive. Equations (10) 
and (11) are  expressed in  a form  that is independent 
of whether 4, is chosen  to  point "in" to or "out" from  the 
surface  (making  numerical  ray-trace  calculations  more 
straightforward),  hence  the  somewhat  complicated  form 
chosen  for Snell's law in the  third  line of Equation (11). 

throughout  the  optical system when  standard thin-film 
algorithms  are used to  calculate  the  transfer coefficients 
p, T at  the  surfaces.  The x, y ,  z components of the E-field 
are defined in the  same  global  coordinate system as the 
ray vectors f t  and  surface  normals 4,. The  equations  thus 
serve as  a convenient basis for developing simpler, closed- 
form solutions [e.g., Equations (19) and (22) below] that 
maintain a consistent  and easily  visualized sign convention 
throughout  the system. These  first-order  solutions  can also 
be derived in a heuristic way, as outlined in the  caption of 
Figure 7. 

Equations (10) and (11) can also be  used in numerical 
calculations as an  alternative  to  the matrix-based 
approaches  described in the  literature (e.g.,  Waluschka 
[ll]). We  pursue  them  here in order  to  derive a  closed- 
form  first-order  equation  that  propagates  the  beam 
depolarization  from  surface  to  surface.  We have found 
this first-order analysis to  be  quite  accurate  for NAs of 
interest (NA d 0.14); in addition,  examination of the 
depolarization  contributed by a surface provides  useful 
insight into  the  nature of the  compound-angle  contrast 
loss. The  depolarization  contributed by a surface  to a ray 
is for our purposes  the  quantity of direct  interest. 

A surface-specific beam  depolarization  should  probably 
only be  considered a  well-defined quantity in a first-order 
analysis, because it is only to first order  that  one can 
speak of a generic  linear  polarized  beam of finite NA  that 
can serve as  a reference.  One might arbitrarily  choose,  for 
example,  a linear  dipole  pattern as  a reference  for  the 
general case, but  this is a somewhat  arbitrary  choice,  and 
it would give rise  to  higher-order  terms in the  calculated 
depolarization  that would be specific to that choice. 
However,  when the  surface is tilted, a unique  first-order 
contribution  can  be  identified. 

Consider,  for example,  reflection of a  nominally S- 
polarized  beam whose central ray is pure  S-polarized. 
Figures  7(a)  and  7(b) show the reflecting surface  as 
horizontal,  with  surface  normal 4 pointing  upward.  We 
can always find quantities E,, SE,,,, and 6E,,, (SEl,, and 
6EI, ,  are small) that will express the  E-field of a particular 
ray in the  beam  according  to 

Equations (10) and (1 1) define the  electric field 

= EJl  + 6El,,ft + 6E,,,(ft X Si), (12) 

because S I ,  fl, and (ft X $ 0  form  an  orthonormal  set. Of 
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! Geometry of compound-angle depolarization at coated surface: (a) vectors; (b) angles.  The surface normal is t. Skew ray & is offset by & 
from principal ray &"), Incremental depolarization is approximately proportional to x, the angle between the planes of P polarization for the 
two rays. Incremental depolarization is also proportional to (Pp/Ps - I )  or ( T ~ / T ?  - 1)  (for a beam with nominal S polarization), and is 
therefore zero for a nonpolarizing surface. 
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course SEL,,  must equal  zero in order  that  Equation (12) 
preserve  the transversality of the  E-field (so that 
EL ci,t = 0); however, SE,,, becomes  nonzero in a  first-order 
expansion (see below).  Also, to first order  the  magnitude 
squared of Equation (12) is E:, so that E ,  = El .  (In 
assuming that  the  depolarization is  small compared to 
that of the  overall  E-field, we are assuming for  the  time 
being  that ps is large  enough  that  the  beam  remains 
predominantly  S-polarized  after reflection from  the 
surface.)  When  the skew angle is small, we then have 

k, Ei[S;F' - (S i t t  * S:')ci,:'] + 6Ei,p(ci,1(o) X S;:)), (13) 

where, as noted  above, a superscript (0) is used to  denote 
quantities  referring  to  the  central ray  (usually these  are 
"zeroth-order''  quantities), so that 

+ 

66, E ci, - $(") 
L I I  (14) 

represents  the  propagation  angle of the ray  within the  NA 
[see Figure  7(a)].  In deriving Equation (13) from  Equation 
(12) we have set SEI,, equal  to E,(6it1 - S: ' ) ) ,  in order  that 
Ei ki = (ci,?) + SGi) = 0 to first order. 

Expanding  the  second  equation in Equation (lo), we 
find, after  some  algebra, 

where we have deliberately mixed quantities involving ci,, 
and ci , i+ l .  Similarly, 

If is expressed in the form taken by EL in Equation (13), 
and  then  substituted with Equations  (13), ( E ) ,  and (16) 
into  the first line of Equation  (lo), we obtain in first 
order 

The left side of Equation (17) is the  cumulative 
depolarization  introduced in the nominally  S-polarized 
beam by the  ith reflection (and by previous tilted 
coatings).  The  factor pp/ps will be a phase  factor if the  ith 
surface is lossless (or has  equal intensity loss in the two 
polarizations);  this would be  the  case  for a dichroic 
coating away from  the  band  edge.  The pp/ps factor 
multiplies  any depolarization  that may be  present in the 
ray from  previous surfaces. The last term  on  the right 
can  be  thought of as  the  incremental  depolarization 
contributed by skew angle incidence  at  the  ith  surface. If 

370 the  angle of incidence of the  central ray is 'po, then  the 

skew angle f I 1  = $:) S i t l  of the ray is the  component of 
the ray tilt that  lies in the  direction  perpendicular  to ' p o  
[see Figure  7(b)].  Within  the skew meridian,  the  angle of 
incidence  remains  unchanged  to first order.  Note  that 
while Figure 7 shows S i t ,  for  the  case of a pure skew ray, 
S,(") . 83, = Ol in Equation (17) can  represent  the skew 
component of any ray; also,  a purely  meridional ray at  one 
tilted surface may be a pure skew ray at  another  surface. 

The  last  term in Equation (17)  shows that a tilted 
surface  introduces a depolarization  that is linear (in 
amplitude) with skew angle Oi .  This  term  contains a factor 

which is the  angle of rotation  between  the  directions of 
pure P polarization  for  the ray and  for  the  central ray  [see 
Figure 7(b)]. The  remaining  factor in the  depolarization 
term, (pp/ps) - 1, implies that even  when the E-field 
has  projections in both  the S and P planes,  first-order 
compound-angle  depolarization will not  take place  unless 
the  coating is actually  polarizing. This  coating  factor  has a 
maximum magnitude of 2 (for a coating with 180" SIP 
phase  shift);  this is twice as large in amplitude  (four  times 
larger in intensity) as the value from  a PBS intensity polarizer. 

The  (tan 'p,)" dependence of x in Equation (18) leads 
to  the  surprising  result  that shallow angles of incidence 
can  produce  more  severe  depolarization  than  steep 
incidence. Of course, as 'po - 0 (where our expansion 
breaks  down), a surface  becomes  nonpolarizing,  but  for 
angles of incidence  as small  as, e.g., 30" (depending  on 
a,), the S-P phase shift from a dichroic  coating can take 
on essentially  any  value between 0 and 27r. Since  intensity 
depolarization scales as  amplitude  squared, a 30" tilted 
surface  can  introduce  appreciably  more  depolarization 
than, say, a 45" surface. 

Equation (17) is readily generalized. For example, 
if many tilted  surfaces  are  traversed, all in a  two- 
dimensional  layout,  and we consider  the tilt of the  ith 
surface  to  arise  from  rotation of the  surface  about  an axis 
parallel  to S;:"), then  because  the layout is two-dimensional, 
these tilt axes will all be  parallel  to  the tilt axis $Es of the 
PBS. In  this  case we find that  for  each  surface, 

where tl = +1 if the ray follows the  transmitted  path 
through  the  surface,  and -1 if it follows the reflected 
path. - q i  is defined  as (p, /p,)  for a  reflected ray and as 
( T ~ / T ~ )  for a transmitted ray. nI is the  refractive index  in 
the  incident  space  at  the  ith  surface,  and O,, is the skew 
angle of the ray as  measured in air. 0" is invariant  through 
the system. The  beam  angle of incidence vu,, is always 
taken  as positive. The sign of the  surface  depolarization 
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is governed by parameter K ,  which essentially  specifies 
whether  the  surface tilt is oriented so as to  deviate  the 
reflected ray clockwise or counterclockwise; K is defined as 

[Note  that  the @::{ appearing in Equation (20) always 
refers  to  the reflected ray, even when the  depolarization 
is being  calculated  for  the  transmitted  beam.] 

dimensional, Le., at  least  one  surface i is tilted  about  the 
axis perpendicular  to  the tilt axis of the PBS hypotenuse, 
Equation (19)  still applies if 1)  the  angle 0, is replaced by 
I&, again  defined as il(0) * S3[ (which for  an  orthogonally 
tilted  surface will be in the  meridian  perpendicular  to Oo), 
2) parameter 7, is defined as ps/pp or T ~ / T ~ ,  and 3) the 
definition of K~ in Equation (20) is multiplied by -1. 

example, we can  propagate  the  depolarization in the ray 
relative  to  the  tilted ray-specific P direction  according  to 

In  the  general  case  where  the  layout is not two- 

Equation (19) can  be  rewritten in  a number of ways; for 

- 

(21) 
If the  ith  and  i+lth  surfaces  are  parallel  and in the  same 
medium,  the  term in square  brackets is zero  (because 
K ~ + ~  = K ; [ ~  when  the  surfaces  are  parallel); in such a case 
Equation (21)  shows that  the  surface  contributes  no 
relative  depolarization. 

solve for  an  arbitrary succession of j = 0, . . . , J tilted 
interfaces  (starting  from j = 0 at  the PBS). The closed- 
form  solution is 

As a linear  difference  equation,  Equation (19) is easy to 

We  should  note  that  Equations (19) and (22)  have one 
limitation  that is not easily generalized  out. If the  beam 
path  includes  tilted  interfaces  at which the rays are 
transmitted,  these  interfaces must arise in pairs  analogous 
to  the  front  and  back  surface of a tilted  parallel  plate; Le., 
a tilted transmission interface must be followed by a 
parallel  transmission  interface,  and  the exit refractive 
index  must equal  the  incident index at  the first interface. 
The  intervening  space  can  then  be  treated  as a  thick 
incoherent  layer.  Thus,  the  first-order  formalism  applies  to 
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a tilted  air  space, or to  front-side  and back-side coatings 
on a tilted  dichroic  mirror,  but  not  to a  refractive  prism. 
Elements with  wedge give rise to  strong  aberrations  and 
so would not  ordinarily  be  used in  a projection display; 
Equations (10) and (1 1) are available for  numerical 
solution in  such  a  case. [Equations (19) and (22)  have no 
restriction  on  traversal of interfaces  at  angles  near  normal 
incidence, i.e., interfaces  that  are only slightly tilted.] 

Contrast loss from interaction  between  light  valve and 
optical  system 
The  methods of the  previous  section  can  be  used to 
propagate  the  E-field  to  and  from  the light valve. An 
earlier  section  presented analysis to  account  for  the 
polarization  properties of the light valve itself. Together 
these  constitute a solution  for  the  contrast loss through 
the  optical system.  However,  with one  further  restriction 
we can  establish  solutions  that  are easily written in  a 
simpler  and  more  compact  form,  but which still represent 
fairly general  descriptions of the  interaction. So long as 
the only lossy element in the  path is the PBS (the PBS is 
lossy in the  sense  that it directs  some light into a different 
path), we show that we can  describe  the  interaction with 
the light valve purely in terms of the  rotation  and 
ellipticity that  the  optics  induce  on  the  illumination. 
Under  this  restriction we treat  coatings in the system 
other  than  the PBS as  phase  polarizers; pp = elAp and 
ps = elAs. As noted above, the  optical  coatings in  a given 
color  channel  are designed to  be as  efficient as possible, 
and losses are usually small  except at  the  edges of the 
band.  We have found in numerical  calculations  that  phase 
effects  often  dominate over amplitude effects  even near 
the  band  edges,  and  the accuracy of the phase-only 
approximation  becomes  quite  good when dark-state 
intensity contributions  are  integrated over the  entire  color 
band. 

The  assumption of lossless elements (or, more precisely, 
the  assumption  that  elements have equal loss in S and P 
polarization) is not necessary  in  using the  equations of the 
previous sections. The  advantage of such an  assumption is 
that it allows us to  employ  the  symmetries in Equations 
(7) and (8). Unfortunately, while Equation (19) is based 
on  the most common sign convention in thin-film  design 
(see,  for example, Thelen [26]), the most common  Jones- 
matrix  sign convention [22] is incompatible  because it 
preserves  as a right-handed  triad  the two polarization 
basis directions  and  the ray direction.  To  express 
Equation (19)  in the matrix sign convention, we briefly 
adopt a somewhat awkward notation in order  to  introduce 
absolute  phase  factors  that  maintain  the symmetry of 
Equation (8) independent of whether 5 equals +1 or -1. 
Specifically, we write i in the  form i = for  the  case 
[ = -1; when 5 = +1, this <[ factor is unity. The 
Jones-matrix  form of Equation (19) can  then  be  written: 
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Note  that  Equation (23) is in a  form in which an 
additional matrix for  rotation of the S, P axes to 
propagate to  the next surface is unnecessary. Equation (23) 
is most naturally  associated with a  different sign 
convention  from  that of Equation (19); the  difference is 
essentially that in Equation (23) the  projections  onto  the 
surface of the reflected  and incident  unit  vectors prcH, O,,, 
for  P  polarization  are  antiparallel.  The dj factor  outside 
the matrix is included in Equation (23) for consistency 
with Equation (19); however,  since  its  value is either i 
or 1, it represents  a  common  phase  factor  and  can  be 

this  part of the  paper we assume  equal efficiency in S and 
P polarizations; any common  attenuation  factor is also 
dropped if system contrast is the  quantity of interest. 

The  diagonal  elements of the matrix of Equation (23) 
have magnitude unity; the  off-diagonal  elements  are first- 
order  quantities  proportional  to  the skew angle 0". When 
two such matrices  are  multiplied  together,  the  product 
matrix preserves  this  structure  to first order.  An 
equivalent  statement is that  the  multisurface  solution in 
Equation (22) exhibits  this form when written as a matrix. 

Since the  optical system should  not  depolarize  the 
central ray, we can assume  that all surfaces  are  tilted 
about axes that  are  either  parallel  to  the SZ, tilt axis of 
the PBS hypotenuse,  or  are  perpendicular  to it. A ray can 
be  parametrized by the skew angle O,, it makes  to  the PBS 
hypotenuse (scaled for  air, II = l) ,  and by an  orthogonal 
angle +". 0" and +,, thus  represent an orthogonal  pair of 
pupil coordinates which range between -NA  and  +NA 
(with d0: + +; 5 N A ) .  Excluding the PBS, the  Jones 
matrix for  the  optical system then  takes  the  form 

dropped; e f ( - \ P  IS  ' likewise a  common  phase  factor. In 

where v,, v#, and Z are  determined by the  methods of the 
previous section.  In first order  the  illumination matrix for 
the PBS is 

where 0; = Oo/np,, is the skew angle of incidence inside 
the PBS. (For  the  time being we assume  a 45" cube PBS.) 
Assuming  as an  input,  for  example,  unpolarized light, the 

372 Jones  vector  for  the  E-field illuminating the light valve 

\ 

I 

will then  take  the  form 

where  second-order  terms  are  dropped.  The 
depolarization of the  illumination  then  takes  the  form 

6E 

E 
" - - 

For small depolarization,  the  real  part of  GE/E represents 
a  rotation in the illuminating polarization  and  the 
imaginary part  an ellipticity.  According to  Equation (27), 
a ray in the skew meridian  to  the PBS (4" = 0) will have 
rotation  and ellipticity that  are  proportional  to Bo, while 
for  a ray in the  orthogonal  meridian,  rotation  and 
ellipticity will be  proportional (with different  constants of 
proportionality)  to $[,. Let us denote  these  constants of 
proportionality as 9t8, CC,, 91,, 2,.  3 represents  rotation in 
the  sense  that  the  optical  coatings  introduce 3 radians 
of polarization  rotation  per  radian of skew  angle in a 
ray illuminating the light valve; similarly, the  induced 
ellipticity is 3 in the  sense  that  the  aspect  ratio of a 
rectangle which circumscribes the  polarization ellipse will 
be 30 when the ray skew angle is O ( 0  assumed  small). 
Note  that while rotation  and ellipticity are  considered 
small (proportional  to 0, +), the  constants of 
proportionality T(i, 3 may have appreciable  magnitude. 

We now can  write Equation (24) as 

where 

and 

Equation (29) obtains  because, when substituted  [together 
with Equation (30)] into  Equation (28) and  compared with 
Equation (24), the expressions obtained  for vfl ,  v, give the 
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correct result  when substituted  into  Equation (27),  namely 
8EiE = (91, + i3,)On + (9id, + i2J$,,; we have  defined 
the  parameters Ti,, hSH, 9 i d f ,  2, by the  requirement  that 
the  depolarization 8EiE take this form.  In  other words, 
Equations (28)-(30) represent  the  optical system in terms 
of the  rotation 8 and ellipticity 3 it  imposes on skew rays 
incident  at  the light  valve. 

We now represent MpBs [Equation  (25)] as 

where 

and 

Note  that MPrePol is taken  to  represent  part of the PBS 
operation.  The  projector might  also include  a  sheet 
polarizer  (at  least in the reflection pass)  to  ensure 
adequate  rejection,  but with or  without such a 
supplementary  polarizer  the system must perform  an 
operation  equivalent  to MPrePol. 

matrix for  the  optics (illuminating in single pass) as 
Using Equation (31), we can now write the  first-order 

M o p t i c s  = MNon-PBS  optLcsMPBS 

- - 
- MOpt~caAllMPrePol ' (33) 

where MOpllcsAll combines  the MRo, rotation  from  the PBS 
[Equation (32)]  with the non-PBS optical  elements 
[ M N o n - P B S  vDi,cs given in Equations (24) and (28)], and  can 
be written as 

MOoticrAll E MPerturbMOotPhase ' 

where 

"urb = 
- 

1 [!Ito + i3H]0" 

+ [9i, + i3,]$ 

- [T io  - iJ,]O, 1 

- [ ' H a  - iJ,]$" 

(34) 

(35) 
and  where MOptPhaie is defined in Equation (30). For 
compactness we now introduce  a  vector  notation  for  the 
pupil coordinates in which we denote  the  ray-propagation 
angle  as 'e E (0", $,,). Defining 

we have 

(37) 

P . 'e is the  depolarization 8EiE in the light incident  on 
the light valve. The single (illumination)-pass matrix for 
the  optical system is now 

To  propagate  through  the system in double pass 
(illumination  and  collection), we must determine  the 
matrix for  reverse  propagation  along  the  sequence of 
Equation (38). All component  matrices in Equation (38) 
except for MPrePDl are assumed to exhibit equi-S-P 
efficiency. We first note,  therefore,  that given our sign 
convention  the  matrices  other  than MPrrPv, are reversible  in 
a  strict  sense  according  to  the  rule of Equation ( 7 )  above. 
For example, if we were  to apply Equation  (7) directly to 
Equation (37) we would obtain 

(39) 

However, Equation  (7)  applies  to  a  true  "time reversal," 
in which the rays are  made  to exactly retrace  their 
incoming paths.  In  a  projector,  the rays that reflect from 
the light valve return  to  the  optical system through  the 
opposite  side of the  lens pupil. As noted in the 
introduction, this means  that  the optics  obey a reversal 
symmetry opposite  to  that of the light-valve active  layer. If 
we denote  the reversal that  applies  to  the  optics using a 
superscript (M'rRrv) , we have,  in  analogy with Equation  (7), 

when 

(40a 

(40b 

In  Equation (9) we derived the  dark-state matrix for  a 
TNLC light valve, but  for  the  moment we consider  the 
general  case in which the light valve has matrix elements 
g , , ,  g,,, g2,,  g2*; we can  alternatively define the  general 
light valve by parameters a, ,   a2 ,   a3 ,  u4 ,  where 

with the cr matrices defined  in Equation  (4). Using 
Equations (33) and (34), we have 373 
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In  obtaining  Equation (42) we have made use of the  fact 
that while the MRot component in MPerturh [see  Equations 
(31)-(34) above]  reverses  according  to  Equation  (40), on 
the collection pass  the MPrePo, factor in M,,, will take  the 
form of the  leftmost  matrix on the right of Equation (40); 
in this  form  the  polarizer matrix  passes bright-state light 
to  the  projection lens. 

From  Equation (42a) we obtain 

(43) 

The  birefringencelike  phase  term C in the  optics  [from 
matrix MOptPhaae in Equation  (30)]  thus cancels out in the 
expression for  double-pass  propagation  through  the  optics, 
though it appears implicitly in the  elements of MPerturh. 

We now define B as the  residual  dark-state intensity 
transmitted by the  projector. If the efficiencies  in the  dark 
state  and  bright  state  are  equal, B will be  the  reciprocal of 
the  contrast  ratio.  We have, from  Equations (37) and 

The light-valve  matrix MLV in Equation (9) assumes  the 
specific TNLC  form  [Equation  (6)]  for  the matrix M,, of 
the active  layer  above the  mirror  backplane. If we instead 
allow a more  general  form  for  the  dark-state  matrix of 
the active  layer, which we denote  as MActive in this  more 
general  case,  requiring only that MActiv, satisfy the  equi- 
S-P efficient condition of Equation (8), then using 

we find 

a, = 2 sin' p sin 2 6  + 2 cos2 p sin 25, 

ia,  = -2  sin2 p cos 2 6  - 2 cos2 p cos 25, (47) 

where 5, 6, and p are  the  parameters  appearing in the 
second  representation given in Equation (8) (as  applied  to 
the active layer),  obtaining finally 

B = g:, + 4( i .1m[g , ,F l )~  

M 3 -iM('"Y) 
LV ActlveqMActive and applying Equation (411, 

= g:, + 16(i.[(sin' p sin 2 6  + cos' p sin  25)i 

+ (sin' p cos 2 6  + cos' p cos 2 ~ k 1 ) ~ .  

(48) 

~ denotes  the  1, 2  matrix element.  Substituting 
from  Equations  (4), (36), and  (41), 

Note  that  the  vector  quantities in Equation (45) refer  to 
the two-dimensional space of pupil  coordinates Bo, Go. Equation (48) takes g,, to  be  pure  real;  this follows 
The x, y ,  z subscripts  on  the  Pauli  matrices  are  standard  from  the  assumption  that M,, = - i M ~ ~ ? e ~ z M A c t i v e ,  with 
notation  but  do  not  refer  to physical coordinates in our MACtlVC satisfying Equation (8). 
application.  We  can also  use the  third  form of Equation (8) to 

[20] and  keeping only first-order  terms in i, we find we find 
Applying the  multiplication  rules  for  the  Pauli  matrices  describe  the active-layer  matrix; expressed in this  form, 

(46) B = 
(1 + I F t 2 +  IF ) 

' ,,2 ( ~ " 2  + (6. [([I + ~ ' 2  - ~ r r 2 1  sin 2 a  
According to  Equation (46), the off-diagonal element g,, 
of the light-valve matrix contributes  to system background 
B via direct  depolarization, while the  diagonal  elements 
(which determine n ,  and ad,  and which represent  effects 
such as birefringence)  interact with the  optics via the 
rotation  and ellipticity parameters R and i to  produce 

374 contrast loss. 

+ [2F'F"]  cos 2n)i 
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where F‘ and F” represent  the  real  and imaginary parts 
of the  depolarization [F of the  central ray at  the  mirror 
backplane of the light valve. Equation (49)  shows that 
without  the  optical system (Le., 8 -+ 0), contrast loss 
arises only when the light reaching  the  mirror  backplane 
has elliptical depolarization (so that  the first term F”’ in 
the curly brackets is nonzero); however,  when 8 f 0, the 
optical system interacts with both  rotational  and elliptical 
depolarization in the active  layer of the light valve to 
produce  contrast loss in the image. A hypothetical  ideal 
light-valve  active  layer which (in  dark  state)  produced 
linear  polarization  at all depths above the  mirror 
backplane  (and  at all  wavelengths)  would satisfy E‘’ = 0 
but would nonetheless show contrast loss in most optical 
systems of finite NA. 

Equations (48) and (49) represent fairly general 
expressions for  the  contrast loss along a  ray,  subject 
only to  the  first-order  approximation  that  the  total 
depolarization in the optics is small, and  to  the 
approximation  that  optical  elements  other  than  the 
PBS polarize in phase  and  not  amplitude.  Note  that 
Equation (48) involves no complex parameters  [and 
Equation (49) uses  real  and imaginary parts explicitly]. 
The g,, direct  depolarization  from  the light valve makes a 
contribution  to  the intensity that is independent of the 
second  term in Equation (48); i.e., the two terms  add 
incoherently. The  second  term  does, however, represent a 
coherent  interaction  between  the  optics  and  the  diagonal 
matrix elements of the light valve. 

of rays in the pupil to  obtain  the  actual  dark-state 
background in the  projected image. We first introduce  the 
shorthand  notation 

We must average  Equation (48)  over the full cone 

= [F,, F J  = 2[(sin2 p sin 2 6  + cos’ p sin 2 l ) i  

+ (sin’ p cos 2 6  + cos’ p cos 2 l ) k j .  (50) 

The pupil radius is NA,  and we assume  the  illumination 
intensity to  be uniform  over this  circular  cone; however, to 
allow for  nontelecentricity  and misalignment we average 
Equation (48) over  the two-dimensional O,, $,, domain 
having boundary 

where ODCccnter and QDrDCCCntCI are  constants  representing  the 
nontelecentricity or misalignment at a particular field 
location. 

Carrying  out  the  average over the  circular pupil domain 
of Equation  (51), we find 

Equation (52) indicates  that  contrast loss (essentially 

l/(B)) scales quadratically with the  angular  extents of the 
beam.  The  factor of 4 in the  third  term  indicates  that 
contrast loss is fairly  sensitive to  nontelecentricity in the 
optics. 

Particular cases 
We now apply our result  from  Equation (52) in  a number 
of specific cases. 

1. Two-dimensional optical layout; polarizing surfaces tilted 
about common axis 
Considering  for simplicity the  telecentric case, if all 
polarizing surfaces in the  optics (including the PBS) are 
tilted within  a common  plane (i.e., rotation axes for all 
surface tilts are  perpendicular  to this plane),  Equation 
(52) becomes 

By definition, the 8 meridian is always chosen  to  include 
the tilt axis of the PBS hypotenuse [i.e., the igs axis about 
which the PBS hypotenuse is effectively rotated in order 
to  be  tilted  against  the  beam], so that 0 represents 
the skew angle of the ray against  the PBS. In a two- 
dimensional layout where  the tilt axes of all surfaces  are 
parallel,  the $ coordinate  does  not affect depolarization. 
Conversely, in a non-two-dimensional  (but  telecentric) 
system where  each  meridian serves as the skew meridian for 
at  least  one  surface,  Equation (52) indicates  that  each 
meridian will make an independent  contribution  to  the 
dark-state  background (assuming,  as we have,  a uniform 
circular  pupil).  Background will often  be less when all 
surfaces  are  tilted  about a common axis, because  the $ 
meridian  then  contributes  zero  background. However, in 
the  general  case  the  contribution  made by each  meridian 
takes  the  same  form, so for brevity we exhibit  most of the 
following results  for  the  case of parallel  surface-tilt axes 
and  telecentric  optics. 

Note  that even though  the 8 and $ ray components 
make  independent  contributions  to  the intensity 
background of Equation (52),  it should  not  be  concluded 
that  optical  surfaces  tilted in one  meridian have  effects 
independent of those of surfaces  tilted in the  other.  In 
general,  an  optical  surface which is tilted in one  meridian 
will still make a contribution  to  the  parameters 3 and 8 
for  the  other  meridian, except  in the  particular  case  where 
all surfaces  are  tilted  about  parallel tilt axes; in  this 
special case we have seen  that ZJI and vanish,  as  in 
Equation (53). In general,  Equation (19)  shows that  once 
a ray has  become  depolarized,  succeeding  surfaces usually 
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I:n 
Top view 

Y I Side view 

Correction of compound-angle depolarization with mirrorlike light 
valve. If single-pass depolarization of illuminating skew ray is 
purely elliptical (as in figure), symmetry causes depolarization to 
cancel in return pass through optical system. Depolarization that is 
purely rotational will double. Different symmetries apply when the 
dark state of the light valve is not mirrorlike [see Equation (57)]. 

introduce  additional  changes in polarization  even when 
the ray has no skew incidence  component. 

2. Light valve has mirrorlike dark state 
In this case p = 0 and 5 = n-12 in Equation (S), and 
Equation (53) becomes 

where  for simplicity we have assumed  telecentric  optics in 
which the tilt axes for all  polarizing coatings  are  parallel. 
Parameter 5 does  not  appear in Equation (54), showing 
that skew-ray  ellipticity introduced by the  optics will 
cancel  out in double pass if the light valve is mirrorlike; 
i.e.,  elliptical depolarization in the optics will not  cause 
dark-state  background.  Recall  that in our  first-order 
treatment we expand  the  depolarization against axes 
corresponding to the  central ray, denoted by a  superscript 
(0). [An exception was made  to  this  approach in Equation 
(21).] The  rotation W of concern in Equation (54) is thus 
a  rotation  relative  to  the  plane of incidence  (at tilted 
coatings) of the  central ray, evaluated when the ray 
illuminates  the light valve. This is illustrated in Figure 8, 
which shows schematically the  polarization ellipse of a 

376 skew ray illuminating a light valve in an  optical system 

with two tilted  coatings. In  the figure the ray reflects from 
two tilted  surfaces which are  hypotenuse  surfaces in the 
two cube  elements.  Once  the  incident ray reflects from 
the  second  hypotenuse  coating, it is traveling out of the 
perspective  diagram  toward  the viewer;  it then  illuminates 
a light valve on  the  front  surface of the  bottom  cube. 
The figure  shows the  case in which the  optical system 
introduces ellipticity but not  rotation.  The  major axis of 
the skew ray’s ellipse is therefore  aligned with the  plane 
of the  central ray. (The  central ray is shown  in green.) 
Because of this  alignment  the  folded  path of the  central 
ray then  forms  a  plane of symmetry for  the  electric field 
as well as for  the rays. Equation (54) shows that  because 
of this symmetry the  depolarization is canceled  out in the 
return  pass  through  the  optics. 

On  the  other  hand,  rotational  depolarization  doubles in 
amplitude in the  round  trip [Le., quadruples in intensity; 
the  resulting  factor of 4 is canceled in Equation (54) 
when 0 is averaged  over  the pupil]. Of course,  the  actual 
polarization  state of the  round-trip light is determined 
by the pass direction of the PBS at  the exit face;  the 
implication of Equation (54) is that, when the single-pass 
depolarization is purely rotational,  the  dark-state intensity 
measured in double  pass will be  four  times  larger  than 
the intensity measured in  single pass  between  crossed 
polarizers. 

3. Light valve is “ideal” 
A  dark-state light valve can  be  considered nominally ideal 
if its  reflectivity between  crossed  polarizers is zero.  An 
ideal light valve is not necessarily mirrorlike in the  dark 
state;  the  requirement  that its off-diagonal  elements  be 
zero  means that when the matrix for the active layer of the 
light valve is expressed in the  third  form of Equation (S), 
parameter IF must be  pure  real. A light valve that is ideal 
in this  sense will not necessarily  have zero  dark-state 
intensity  when  used  in an  optical system. Considering  for 
simplicity the  case of a  telecentric system with a two- 
dimensional  layout,  Equations (49) and (52) become 

(B)NA = N A 2 [ 5 ,  sin 2 0  + ! X o  cos 2 a ] *  

An  ideal light valve must have a  dark  state  that is 
essentially equivalent  to  a  retarder  placed over a  mirror 
(with the  retarder axes aligned with the  polarization of the 
illuminating central ray). If the  equivalent  retarder  for 
such an  ideal light valve is quarter-wave, 2n = 90”, and 
the  dark-state intensity will be  zero in an  optical system 
that  induces  no ellipticity in the  illumination.  On  the  other 
hand, if the light valve is equivalent to a  mirror  (case 2 
above),  the  dark-state intensity will be  zero if the  optics 
do  not  induce  rotation.  In  general,  the  dark-state intensity 
of the ideal light valve will be  zero in an  optical system if 
Re[e.-2’np * 61 = 0. In  this  case  the  depolarization GEIE 
at  the  mirror  backplane of the light valve can  have a 
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constant  rotation  Re[5]  that is common  to all rays; the 
remaining  ray-dependent  portion of the  polarization must 
be  purely elliptical. This  represents  a  generalization of the 
symmetry condition in Figure 8 to  the  case of any ideal 
light valve (not necessarily mirrorlike). 

4. Light  valve  is  nearly  ideal 
The  crossed-polarizer reflectivity of a  dark-state light 
valve must  be small compared  to 1 if the light valve is to 
provide  useful performance.  For such a light valve we can 
show that  one  portion of the single-pass depolarization 
from  the optics will cancel in double pass,  while the 
remaining  portion (in quadrature with the first) will 
double.  For  a  mirrorlike  dark  state  (case 2 above)  these 
portions  are, respectively, the ellipticity and  rotation,  but 
in general they are defined by a  phase  relationship 
involving the light-valve depolarization.  The light-valve 
depolarization also contributes  a  direct  term  to  the  dark 
state.  To  derive  these  results, we rewrite  Equation (48) as 

where we have made  use of the  fact  that g,, is pure  real if 
the active  layer of the light valve obeys Equation (8). The 
quantity g,,/g,, appearing in Equation (56) can  be 
rewritten as l / D * ,  where D is the  depolarization 
introduced by the light valve alone; i.e., D is the  ratio 
Ex/Ei  when  reflected field iRenectcd = ( E x ,  E Z )  is produced 
by illuminating the light valve (at i = 0) with a  unit 
amplitude  polarized  along 2. If the light valve provides 
high contrast, g,, will have magnitude close to 1, and  to 
first order we can  set D = gl2e lALV,  where A,, is the  phase 
of the light-valve depolarization  and g,, its magnitude. 
(Since g,, is real, it does  not affect the  phase of D ;  -ALv 
is the  phase of g,l.) In  the  general  case  where light-valve 
contrast is not necessarily  high, we can  set jg,,I2 = 1 - 
g:,. The single-pass  transmission of the  optics  between 
crossed  polarizers  (integrated over NA) is (BOnc-pa5s) = 

IP12NA2/4. Defining Aoptlcs as  the  phase of the  optics 
depolarization P,  we then have for  the  double-pass  output 
between crossed polarizers  [integrating  Equation (56) over 
the  pupil], 

(B) = B,, + 4(Bo"e.pass)(1 - BJ sin2 (AL" + AOPtlCS) 
- 
= B,, + 4(Bo,,.pa,,) sin2 (ALv + AOpt,J ,  (57) 

where we have denoted  the  dark-state reflectivity g:, of 
the light valve alone as B,,, and  where  for simplicity we 
have assumed  telecentric  optics, with surface tilts about 
parallel axes. The  upper  form of Equation (57) applies in 
general;  the lower form, when the light-valve contrast is 
large  compared  to 1. Equation (57) states  that when a 
light valve has reasonably high contrast,  part of the single- 
pass  depolarization  introduced by the  optics will double 
in the  return pass,  namely the  depolarization  that is in 

Residual dark-state amplitude  for  TNLC light valve. [Dark-state is 
not mirrorlike, except at p = 0.968s (dotted line).] Amplitude 
contributions A and B are proportional to NA (intensity a NA2), 
and also respectively to the single-pass rotational and elliptical 
depolarization induced by the optics. The amplitude component C 
is independent of NA. 

quadrature with the  depolarization  from  the light valve. 
The  doubled  amplitude  causes  a  fourfold  increase in 
dark-state intensity,  as indicated in Equation (57). The 
remaining  portion of the  optics  depolarization [of squared 
magnitude (Bone-pnsa) cos' (ALv + Aop,,,,)] is automatically 
canceled in double pass. The  quadrature  relationship is a 
consequence of the  opposite reversal symmetries  obeyed 
by the optics and  the active  layer of the light valve. 

5. Twisted  nematic  liquid  crystal  light  valve 
Using  Equation (9) to  calculate a ,  and u4  in Equations 
(41) and (49) [or, alternatively, solving for  the  parameters 
in Equation (8)], we find 

where again to  shorten  the  result we have assumed 
telecentricity  and  a  common tilt axis. 

Since Equation (58) represents  a  case of considerable 
practical interest, we have added two phenomenological 
parameters B,,,, and BO,Optics that  account  for any 
background  contributed by mechanisms outside  the  models 
of Equations (9) and (19). (Bo,,, refers  to such residual 
background  from  the light valve, to  that  from  the 
optics.) The first term in Equation (58) represents  the 
direct  depolarization  contribution  from  the light valve; the 377 
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light valve also  interacts with rotation 8 and ellipticity 3 
in the  optics via the two terms in square  brackets, which 
then  contribute  to  background mNA2. 

appearing in Equation (58); the g,, off-diagonal term,  and 
the two expressions in square  brackets which multiply the 
rotation  and ellipticity contributed by the  optics. 

Figure 9 shows  a plot of the  three TNLC factors 

6. Twisted nematic liquid crystal light valve operating in 
near-mirror condition 
The  Jones matrix for  the single-pass TN active  layer 
[Equation (6)] reduces  to  the  identity  matrix when 
parameter /3 (defined by p = r d ( n ,  - no)/h) takes  on 
the  value g m 2 r 2  - a’, with a the twist angle and m 
a  positive integer.  The light-valve  matrix [Equation (9)] 
then  becomes  equivalent to a mirror,  and  dark-state 
background is given by (82,’ + 8 i ) N A 2 .  We would 
typically expect this  condition  to  be  met  at only one 
wavelength in the  spectral  illumination  band.  Taking as an 
example a = 45”, m = 1, we can  expand  Equation (58)  in 
a  small departure Sp from  the  point of mirrorlike  behavior 
(so that Sp = p - V%7r/4), to  obtain 

128 

If N A  and Sp are  regarded as first-order  quantities,  then 
in lowest order  the light valve interacts with the  optics in 
mirrorlike  fashion, via the  quadratic 8’NA’ term. If 
rotation 8 and ellipticity CC are  both  nonzero,  the next- 
order  term is cubic, proportional  to NA26p and  to % X 3. 
When  rotation is zero,  the two lowest-order  terms  are 
both  quartic,  proportional  to NA2Sp2 and  to Sp4. Note 
that unless 8 = 0, the  quadratic  and cubic terms involving 
the  optics  tend  to  dominate  the g,, term  that  arises  from 
the light valve alone.  Unless N A  can  be  regarded as 
negligible, or the  optical system introduces  no  rotation, 
there  can  be a  fairly substantial  range of wavelengths 
about Sp = 0 in which depolarization involving the  optics 
dominates  over  the  contrast  measured  from  the light valve 
alone. 

7. PBSITNLC module 
The most common  optical  arrangement  for reflective  light 

378 valves is the simple PBS. Light of a particular  color is 

A. E.  ROSENBLUTH ET AL 

introduced  into  one  port of the  beam  splitter  where it 
illuminates the light valve (e.g., in reflection, as in Figure 3); 
light switched to  the  bright  state exits the PBS through a 
different  port. Bleha [27] has  published a typical layout. 
Multiple  modules  can  be used to  project  different  colors, 
or the  colors  can  be  projected  sequentially  from a  single 
module  at a high enough switching speed  to  appear 
continuous.  Alternatively, a mosaic of (normal-incidence) 
color filters can  be  placed  on  the pixel grid. The  common 
feature in all such approaches is that  no  tilted  coatings 
other  than  the PBS hypotenuse  see  both  bright-state  and 
dark-state light. 

In such  a system So = 0 (along with 3,, %,), and 
SO = l/(npBs  tan @), where @ is the  angle of incidence 
at  the PBS (@ = 45” for a cube  beam  splitter)  and 
npBs is the  refractive index of the PBS substrates.  The 
illumination  polarization is rotated  but  not elliptical. 
For a TNLC light  valve, Equation (58) becomes 

(%A= ( y 2  ) 
+ ( l -  

Y 2  1 ,  npBS tan’ @ 

ap sinZ y 

2p2  s in2 y NA’ 

+ Bo,,, + BO,OPtKS . (60) 

If the PBS coating is of the  usual MacNeille  type, the 
parameters nPBS and @ are  not fully independent,  because 
light must  be  incident  at  the  interfaces  between  the low- 
and high-index  layers at  the  Brewster  angle. If we make 
such Brewster  incidence  an explicit condition,  Equation 
(60) can  be  rewritten in various  forms: 

2 a p  sin’ y ’ 
(%A = ( y 2  ) 

+ ( l -  Y 2  y )  ’[ ‘L 1 IZH 1 ‘PBS 1 1 2pZ  sin2 
T + T - T  N A  

or 

+ (1 - y2  )?[;+$I cos2@NA2 

2p2  s in2 y 

where nL  and  nH  are  the indices of the low- and high- 
index materials in the  PBS  coating. 
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8. PBSITNLC  module with quarter-wave retarder 
We have seen in item 2  above that when the light valve is 
mirrorlike, ellipticity  in the  illumination will be  canceled 
out in double  pass  through  the optics;  two-pass 
depolarization  arises only from  rotation in the illuminating 
polarization.  When  the  illumination  depolarization is pure 
rotation, as  with the  PBSiTNLC  module in item 7 above, 
it can  be  converted  to purely  elliptical depolarization by 
placing  a quarter-wave  retarder  on  top of the light valve. 
The  waveplate  must in the  ideal  case  be  oriented so that 
its retardation axes are  rectilinear with the illuminating 
dark-state  polarization of the  central ray. The  TNLC is 
likely to  be  mirrorlike  at only a  single  wavelength  in the 
band;  when we apply Equation (58)  in the  case of pure 
ellipticity from a  PBS and 90" retarder, we find that  for 
other wavelengths, 

The  difference  between  Equation (60) and  Equation (63) 
is in the two LC  factors  that multiply the  optics  factor 
NA2/(n;,, tan' @). These  are two of the curves plotted 
in Figure 9; without  the waveplate, the  interaction 
depolarization is largest in the  center of the  band,  whereas 
with the  waveplate,  contrast loss is eliminated  at  the 
center of the  band  (where  the light valve is mirrorlike). 
At  other wavelengths the  dark-state  background with the 
quarter-wave  retarder  remains  larger  than  the g:, term 
contributed by the light valve alone.  Even with the 
waveplate in place,  the  quadratic  interaction  term is still 
the  dominant  source of contrast loss near  the  center of 
the  band,  where  the light-valve term is quartic in AA. 
(Of course, all contrast losses are small in this  regime.) 
It  should also be  noted  that  Equation (63) assumes  an 
achromatic  quarter-wave  plate;  the  dispersion  that would 
be  present in a simple single-layer retarder is neglected 
for simplicity. 

9. Light valve rotated under polarizing  microscope 
The field of view in  a microscope is small enough  that in a 
reflection-mode  instrument designed for  polarization work, 
the  beam  can  be  expanded  through  the  beam  splitter in 
an  almost  collimated  condition;  then N A  is -0 and 
compound-angle  effects  are  avoided.  The intensity 
measured  between  crossed  polarizers in such an 
instrument is simply 9:'. In a sense,  Equation (52) is a 
generalization of this simple result  to  include  compound- 

angle effects at finite N A ,  but we can generalize it  in 
another way, by calculating residual  dark-state intensity  as 
a function of light-valve orientation. [Of course,  Equation 
(52) also  applies  to a rotated light valve if the active  layer 
is modified by a rotation matrix.] 

As  in the  case of Equation (52), we impose only one 
constraint  on  the light-valve matrix [( g,, ,  g,,), (g,,, g2J], 
namely that it arise  from a nonabsorbing active  layer (or a 
layer with equal  absorption in the two polarizations) 
placed above  a mirror  backplane. Such an active  layer 
must satisfy Equation (8) above; if in  its nominal 
orientation (0 = 0) the active  layer  matrix is parametrized 
according to the  second  form in Equation (8), then we 
find using rotation  matrices  and  some  algebra  that  the 
reflectance  measured  between  crossed  polarizers when the 
active  layer is rotated  to a new orientation 0 is given by 

R(O)  = R, COS' [2 (0  - O,)] + B,,,, 

= R, sin2  [20 ' ]  + B,,,, , (64) 

where B,,,, is the  same  parameter  that  appears in 
Equation (58), and  where 

R, = 1 - (sin2 F cos 2 6  + cos2 p cos 25)', (65 1 
and 

cos(6 + [) sin(6 + 5 )  
tan  20, = - 

tan 2p t an(6  - 5 )  sin 2 p  ' (66) 

and  where 0' = 0 - [O, - (2m + l).rr/4], with m an 
integer. 

harmonic intensity variation (having 90" period) when  a 
reflective light valve is rotated  between  crossed  polarizers 
is generic,  and  in itself conveys little  information  about 
the  properties of the light valve; however, quantitative 
measurements of the angle of maximum reflectivity 0, 
and  the maximum reflectivity value R, suffice to  constrain 
the active  layer in two of the  three  degrees of freedom 
permitted by Equation (8). The cos2 (20)  modulation will 
be  zero in all orientations only if R, = 0 (in which case it 
follows form  Equations (8) and (65) that  the active  layer 
must  be  either null, equivalent  to a half-wave retarder,  or 
equivalent  to a pure  rotation (optically  active layer),  but 
in the  ideal  case  where B,,,, = 0, the  reflectance  between 
crossed polarizers will  always have a  zero  at 0 = 0, + .rr/4. 
Because 0 = 0 corresponds  to  the  normal  orientation 
of the light valve, it may be  convenient  to shift the  angular 
coordinate system according  to  the lower form of 
Equation (64), since contrast is likely be high at small 
values of 0. 

According to  Equation (64), the  observation of a 

10. TNLC light valve rotated under polarizing  microscope 
In the  particular  case of a TNLC light valve [as in 
Equation (9), single-pass  active  layer as in Equation  (6)], 379 
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ture, in low-NA optical system. Incoherent background is  0.002. LC 1 dispersion is for a commercially available liquid crystal material. 
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TN light-valve  dark  state as projected  through PBS. Optics 
contribute 0.002 incoherent background. NA is 0.143 (f/3.5) and f n is 1.85. 

Equation (64) becomes 

R ( O )  = R, sin2 [ 2 ( 0  - o;)] + B,,,, , (67 )  

with 

R, = ( ~ 2p sin y )*(1-[P":"yl2) 

and 

CY tan y 

7 380 
tan 20;, = ~. 
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Discussion 
We now discuss some implications of the  results of the 
previous section. Figure 10 plots  Equation (64) (at 0 = 0) 
as  a  function of h, for  a TNLC active  layer [Equations 
(67) and (68)], using An[h] values for  a commercially 
available  liquid  crystal material.  The  parameter CY is set  to 
~ / 4 .  The curve of Figure 10 is the  spectral  response of the 
light valve if measured  between  crossed  polarizers using a 
polarizing microscope  (see also  below). Figure 10 can also 
be  regarded as an  application of the curve of Figure 6 to 
a  particular LC layer. The LC thickness is chosen such 
that when temperature T = 30"C, parameter y becomes 
equal  to 7~ at h = 545 nm; 545 nm is then  the  nominal 
wavelength of maximum contrast. An = ne - n,, is about 
0.2 at  this wavelength, and  the  required LC thickness is 
2.64 pm. h = 545 nm might, for  example,  be  the  center of 
a  green  channel  extending  from 515 nm to 575 nm.  For 
the  sake of illustration we have set B,,,, = 0.002. The 
change in nc - no with temperature is roughly -0.35% 
per "C. (A slightly more  detailed T dependence is used in 
the plots.) The  spectral  dispersion in nc - no is roughly 
-0.5% per 1% increase in A. 

All curves in Figure 10 are essentially equivalent  to  the 
curve  in Figure 6, with a  different  mapping of parameter 
/3 onto h for  each  temperature. Since p = r ( n e  - no)d/h,  
a  pair of balancing shifts AT and Ah that hold /3 at  some 
constant value  (e.g., the value (d\/1514)7r associated with 
the  minimum of the curve)  must be  related by 

1 Ah 1 dp/dT d(ln [An])/dT 

h, AT A, dpidh d(ln  [An/h])/d(ln A ) .  

If An changes by 0.35% per "C, and An/h by 1.5% per 1% 
change in A, then  Equation (69) predicts  a 0.23% shift in 
minimum  wavelength per "C. The curves of Figure 10 
shift  with temperature  at  about this rate.  At  a fixed 30°C 
temperature,  the  range of wavelengths where  background 
is below 0.01 is 115 nm; however,  it is only over a  smaller 
85-nm-wavelength range  that  background is below 0.01 at 
all temperatures  between 20°C and 40°C. A 30-nm 
contraction of the  tolerance window over 20°C at 
h = 545 nm is approximately what  would be  expected 
from  the  linear  approximation in Equation (69). 

We next consider  the effect of the  optical system. 
Figure 11 plots the system background when the light 
valve of Figure 10 is used with a basic PBSiTNLC  module 
[Equation (60)]. The  calculation uses nPBS = 1.85 and 
NA = 0.143 (fi3.5 optics). Figure 12 plots  the example of 
Figure 10 with a  quarter-wave  retarder  placed over the 
TNLC light valve [Equation (63)], also for  the  case 
npss = 1.85 and NA = 0.143. In  both  cases  a  constant 
scatter  background  from  the  optics = 0.002 is 
assumed  for  purposes of illustration.  Over small changes 
in temperature  and wavelength, the  dark-state intensity 

- - - - - (69) 
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8 Same conditions as Figure 11, but A/4 retarder is placed above 
r' 
i light valve to improve contrast. 
I 

in Figure 11 is dominated by the  constant !N2NA2 
background that  the PBS  would produce if the light valve 
were  perfectly mirrorlike.  When  a  quarter-wave  retarder is 
added, as in Figure 12, the  background level at fixed NA 
has a quadratic  variation with wavelength  over  much of 
the  plotted region. 

Figures 11 and  12  are essentially plots of (contrast)" 
versus  wavelength for  a  TNLC light valve whose  dark  state 
is mirrorlike  at A = 545 nm. (Strictly speaking,  contrast 
can be identified  as the  reciprocal of (B)  only if dark-state 
and  bright-state efficiencies are  equal.) Figures 13 and 14 
show integrals over a  spectral  range Ah = 60 nm of the 
curves of Figures 11 and 12; the  horizontal axis in Figures 
13 and 14 is the  center wavelength A, of the  integration 
band.  In  a  sense,  Figures  13  and 14  could be  regarded as 
plots of integrated  contrast in a color channel having 60-nm 
bandwidth.  These  integrations  are  somewhat artificial, 
because  the  mean wavelength of the  color  channel is 
shifted  without  regard  for chromaticity requirements, but 
the curves of Figures  13  and 14 are roughly equivalent to 
plots of A-averaged background as a function of LC 
thickness d, if due allowance is made  for  the dispersion of 
An. The finite-wavelength band always degrades  contrast 
slightly in the  region of interest;  the  degradation can 
be  regarded as a  larger relative  effect in the  case of 
Figure 14 with quarter-wave  retarders,  because  the  total 
background is lower. 

be  calculated  for a particular  optical system of interest, 
but  there  are  general  trends  that  can  be  noted if further 
simplifications are  made.  First, if we regard  the NA, the 
relative  bandwidth ANA,, and  the  fractional cell-gap error 

The analysis of the  preceding  sections allows contrast  to 

! Same conditions as Figure 11,  but averaged over AA = 60 nm I bandwidth. 

q , , ,  
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4 Same conditions as Figure  12, but averaged over AA = 60 nm 
bandwidth. 

Adid (including the effective change in cell gap  due  to 
temperature excursion) as  first-order  quantities,  then 
Equation (59) above  shows that  the  lowest-order 
background  term  arises  from  rotation in the illuminating 
polarization (causing background B - !X2iVA2). For  the 
PBSiTNLC  module  without  quarter-wave  plates, we can 
therefore say as a rough  approximation  that,  for A N A ,  
and Ad/d small, background is approximately 
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typical requirement of contrast 2100:l limits NA  to -0.15 
for a PBS/TNLC module  operating  without  quarter-wave 
retarder. 

The  case in which a quarter-wave  retarder is added  to 
the  module  (item 8 above) is somewhat  more  complicated. 
An expansion  along  the  lines of Equation (59) contains a 
number of lowest-order  (quartic)  terms;  the  essential 
action of the  retarder is in  effect to  subtract  the lowest- 
order  (quadratic)  term  represented by Equation (70). The 
fully general expression  in Equation (63) is fairly simple, 
but  becomes  more  complicated  when  expressed in terms of 
the underlying physical parameters d ,   A n ( &   T ) ,  and A. To 
obtain a  simplified result, we expand P in terms of a  small 
shift SA away from  the  central wavelength A,, a  small 
temperature excursion AT, and a  small departure Ad of 
LC thickness  from  nominal: 

where 

A=b 

Parameter W is defined by W = alp, and  the  systematic 
fractional offset in P is  defined by 

Same  conditions  as Figure 10, but averaged over AA = 60 nm 
bandwidth.  Comparison  with  Figures 13 and 14 shows  the 
narrowing of light-valve LC thickness tolerances due to interaction 
with the optical system. 

"~ "0 Ad a In (An) = + A T -  
P, dT ' 

(74) 

400 
All = 639 nm 

800 

Multiple reflections within TNLC layer give rise to Fahry-Perot 
oscillations in the reflected spectrum.  Fits to the spectra based on a 
single-round-trip model can  be used to establish the LC thickness, 
allowing prediction of contrast  in  an optical system. The  figure 
shows crossed-polarizer spectra taken in two different orientations 
of  the  light  valve,  along  with  fitted  curves  [obtained  from 
Equations (67) and (68)]. 

If @ = 45" and nPBS = 1.7, we then have  as  a rough 
scaling rule 

Equation  (71) is  highly simplified,  but  it  suggests  that a 

We  approximate  Equation (63) under  the  assumption  that 
the  background  intensity of interest is the  average of B 
over  all  wavelengths present in  a particular  color  channel 
(as well as over  NA); the  spectral  extent AA of the  color 
channel is defined by A, - (AA/2) 5 A, + SA 5 A, + (AA/2). 
We would like to estimate the integrated  channel 
background  as  a  function of channel  bandwidth Ah, LC error 
SP,/P,, and NA. In general the channel  spectrum  has 
some  distribution P(A), which may include  a lumen-weighting 
factor  representing the eye's efficiency. For a flat spectrum 
[i.e., P(A) = I], the average  over the  mth power in a  spectral 
expansion is given by 

I (id IA=n:: I 
+ A U Z  

(ah) dA 
8h 1 - A h / 2  

+ A M 2  

dA 
-Ah12 

For m = 2, the  flat  spectrum  average of (SA/A)' from 
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Equation (75) is (1/12)(Ah/h)2, where Ah is the full  width 
of the  channel.  For  the  more  general  case  where P ( h )  is 
not  constant, we then define an effective channel  width 
(Ah/hJeff according  to 

J -Ah/’  

For simplicity we further  assume  that  the  average of 
(Sh/A)4 is equal  to (1/80)(Ah/h,)~ff, even though  according 
to  Equation (75) this is only strictly true  for a flat 
spectrum.  We similarly make  the  approximation  that  the 
average of any odd power of (6Aih) is negligible, even with 
a nonconstant  spectrum.  Dispersion in the  retarder is also 
neglected. 

Keeping only the  lowest-order  terms in Equation (63), 
we find 

Figure 15 shows the  result of integrating with respect  to A 
the curve of Figure 10 for  the  background  contribution of 
the light valve alone;  the  range of integration is the  same 
as in Figures 13 and 14. Comparison of Figures 13, 14, and 
15 illustrates  the  narrowing of light-valve LC  thickness 
tolerances  due  to  interaction with the  optical system. 

The  incoherent  contribution  from  the  optics, Bo,Optlcr, can 
be  measured by replacing  the light valve in the  PBSiTNLC 
module with  a mirror (leaving the  quarter-wave  retarder 
in place). Because of the interaction term in Equation (63), 
it is not accurate to calculate system contrast by simply 
adding to BO,Optics the contribution of the light valve as 
measured with  a  polarizing  microscope. Instead,  more 
extensive light-valve measurements must be  made in order 
to  determine  the  thickness d of the  LC active  layer  as 
fabricated  (including possible  thickness variation over the 
active area),  and  the  incoherent  background  term Bo,Lv. 
We have described our measurement  procedure  and 
apparatus  elsewhere [28, 291. Figure 16 illustrates  one 

The coefficients  in Equation (77) that multiply powers of 
the  systematic  error (Sp/p) tend  to  be  somewhat  larger 
than  those multiplying  powers of the  bandwidth (Ah/A)eff. 
Image  brightness  increases  as  spectral  bandwidth 
increases,  but chromaticity considerations  prevent 
bandwidth (AA/A)cff from exceeding -0.12 to 0.18 in  a 
single color  channel.  Image  brightness also increases 
with  increasing NA, however, besides lowering contrast, 
practical  considerations such as  lens cost and  component 
size also limit NA in  this type of projector. 

To simplify Equation (77) still further, we assume  that 
at  the  practical limit, NA - 0.25 and (Ah/h),ff - 0.15. For 
M - 1.5 and W = 0.25, we find from  Equation (77) that 
the quartic  terms in cell-gap error  are fairly small, and  that 

(B)A,.,A-B”,Lv + BO,Optics + 0.0035 + 1.1(?) ’ . (78)  

Equation (78) is of course very rough,  but it  suggests 
that when  a quarter-wave  retarder is combined with a 
PBS/TNLC module in  a projector with -1OO:l contrast 
target,  compound-angle  depolarization will not  be  the 
dominant  factor limiting the NA as  long as cell-gap errors 
(and  equivalent  temperature excursions) are held to -5%. 
When we consider  depolarization  from  the light valve 
alone, we obtain  tolerances  that  are -50% more relaxed. 

complication  that is seen in experimental  data.  The 
solid  curve  shows measured reflectivity as  a function of A 
for a TNLC light valve between  crossed  polarizers,  at 
NA = 0.2. The  ripple  structure is due  to  interference 
across  the  TNLC layer. Yang  and  Takano have  analyzed 
this phenomenon in detail  as a multiray Fabry-Perot 
interference  across a  dispersive TN  medium [30]. The 
dashed curves  in Figure 16 are fittings of Equations (67) 
and (68) to  the  spectrum, which we use to  determine  the 
LC  thickness d. We  obtain  reasonably  consistent  results 
with this method,  even  though  Equation (67) neglects 
multiple reflections  within the  LC layer. 

Summary 
Projectors  that use  reflective  light valves must employ 
beam  splitters  or  analogous  components  to  separate 
bright-state light from dark-state light.  With  transmissive 
light valves, this  function  can  be  carried  out by a  simple 
sheet  post-polarizer which trims  dark-state light from  the 
bright-state  image  beam. However, when  the light valve is 
reflective, both  states must be allowed to  propagate in the 
space  above  the  substrate,  and  the  beam-splitter  element 
(PBS) must  actually separate  the two beams. 
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as  illustrated in Figure 3 for a  PBS coating.  Other  tilted 
coatings in the  projection  optics may also  contribute  to 
this  depolarization, as illustrated in Figure 4. The 
depolarization gives rise to  undesired intensity in the 
dark-stage image,  causing contrast  to  degrade  proportional 
to NA-2.  The  unwanted  background  has  the  same 
polarization  as  the  bright-state  image  and  cannot  be 
filtered  out with a supplementary  polarizer. 

In  Equations (19)-(22) we have presented a solution 
for  the  depolarization  arising  in a general  optical 
system, retaining  terms in the  depolarization  amplitude 
proportional  to  NA (mNA2 in intensity). Good  agreement 
has been  found with exact numerical  polarization ray tracing 
[using Equations (10) and (11)]  when N A  5 0.14  (i.e., 
for  apertures below -f/3.5). Our  solution  applies  to any 
assembly of tilted  coatings, so long as 1) all surfaces  are 
tilted in such a way that  the  polarization of the  central 
ray is either  pure S or  pure P  (Le., the  optical system 
introduces no  deliberate  depolarization),  and 2 )  none of 
the  tilted  optical  coatings  through which the  beam  passes 
in  transmission are  deposited  on  tilted refractive  wedges 
(which if used would cause  severe  aberration of the 
beam).  The  solution  applies  to systems  employing tilted- 
plane  parallel  substrates  (such as plate  dichroic filters or 
plane  parallel  tilted air spaces), as well as  TIR  reflections 
or tilted  internal  coatings like that in a  PBS cube. 

We have  reviewed the  Jones-matrix  theory of reflective 
twisted nematic  liquid crystal (TNLC) light  valves, and 
have noted  that  the  dark  state in such  light valves is 
exactly mirrorlike only at  isolated wavelengths, typically at 
only a  single  wavelength in  the  operating  spectral  range. 
We have  shown that  to avoid contrast loss from  the 
compound-angle  depolarization  mechanism when the light 
valve is mirrorlike,  the  optical system must not  induce any 
rotation in the  polarization of skew rays illuminating  the 
light valve. On  the  other  hand, ellipticity induced in the 
illumination will automatically  be  canceled  out in the 
return  pass  through  the optics. Pure  rotation in the 
illuminating  light can  be  converted  to  pure ellipticity by 
placing  a quarter-wave  retarder  on  top of the light valve. 

This  rule  for  depolarization of skew rays by projection 
optics is opposite  to what is required of the light-valve 
active  layer itself  In  dark  state  the active  layer of a 
reflective  light valve should  not  introduce ellipticity  in the 
polarization of the  central ray (when the ray reaches  the 
mirror  backplane);  on  the  other  hand, any rotation of 
polarization  that  it might introduce will be  canceled  out 
in the  return  pass  through  the active  layer. 

At  most wavelengths, TNLC light valves in dark  state 
do  not  behave exactly as  mirrors.  We have  derived in 
Equation (58) an expression for  their  contrast loss in an 
optical system which induces  both ellipticity and  rotation 
in the  illuminating  polarization.  Equation (52) generalizes 

384 further,  presenting  the  solution  for a general  polarization- 

A. E. ROSENBLUTH ET AL. 

modulating light valve in a general  optical system. 
Equation (52) and  the first form of Equation (57)  apply to 
any reflective  light valve whose  active  layer is lossless (or 
has equal  attenuation in the two polarizations).  Dark-state 
intensity of such  a  light valve in  a projector  increases with 
the  square of the  angular  extents of the  beam, i.e. for  an 
aligned and  telecentric system,  as N A 2 .  

Finally, the  second  form in Equation (57) applies 
whenever  the light-valve contrast is large  compared  to 1 
(the  case of primary practical  importance).  Equation (57) 
shows that  one  part of the single-pass depolarization 
introduced by the  optics is canceled in the  second pass 
that follows  reflection from  the light  valve,  while the 
remaining  portion is doubled (in amplitude,  quadrupled in 
intensity). The  portion  that is doubled over the  round 
trip is the  portion in quadrature with the light-valve 
depolarization.  (This  portion is the  rotational 
depolarization  when  the light valve is mirrorlike.) 

The  case of a TNLC light valve interacting with a 
simple  PBS optical system has  been  explored in some 
detail,  both  with  and  without  an  added  quarter-wave 
retarder  to improve contrast.  With  no  quarter-wave 
retarder, a rule of thumb is that  the  dark-state 
background  can  be  estimated as  B F= NA’ln;,, - NA2/3 
[see Equations (70) and (71)]. 
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