Bamba—Audio
and video
streaming over
the Internet

by M. H. Willebeek-LeMair
K. G. Kumar
E. C. Snible

The World Wide Web has become a primary
means of disseminating information, which is
being presented increasingly through multiple
media. The ability to broadcast audio and
video information is becoming a reality with
the advent of new media-streaming
technologies. Most of the emerging streaming
systems require high-bandwidth connections
in order to deliver audio and video of suitable
quality. In this paper we present a media-
streaming system, called Bamba, that delivers
audio and video over low-bandwidth modem
connections with the use of standard
compression technologies. Bamba offers high-
quality audio and video over low-bit-rate
connections and can operate using a standard
HTTP server. The Bamba video is enhanced
with special provisions for reducing the effect
of errors in a lossy-network environment.
Bamba adheres to existing standards wherever
possible. Finally, Bamba has been fully
implemented and deployed both internally at
IBM and externally.

1. Introduction

The World Wide Web (WWW) has become a primary
means of disseminating information. Initially, the type of
information distributed was primarily in the form of text
and graphics. Later, images and stored audio and video

files emerged. These audio and video files are downloaded
from a server and stored at the client before they are
played. Most recently, streamed audio and video have
become available from both stored and live sources on the
Web. Audio and video streaming enables clients to select
and receive audio and video content from servers across
the network and to begin hearing and seeing the content
as soon as the first few bytes of the stream arrive at the
client. Streaming technology involves audio and video
compression, schemes for stream formatting and
transmission packetization, networking protocols and
routing, client designs for displaying and synchronizing
different media streams, and server designs for content
storage and delivery. In this paper we present a system
for audio and video streaming (with code name Bamba)
developed at the IBM Thomas J. Watson Research
Center. Bamba has been deployed within IBM and was
demonstrated externally on the official Web site of the
1996 Olympics. It has since been made available for free
download from the IBM AlphaWorks* Web site.'

Today’s computer-network infrastructures, including the
Internet, were not designed with streaming in mind.
Streaming media requires that data be transmitted from
a server to a client at a sustained bit rate that is high
enough to maintain continuous and smooth playback at
the receiving client station. A primary objective in
developing Bamba is to stream audio and video across the
Web through very-low-bit-rate connections. Audio is

1 hitp:fjwww.AlphaWorks.ibm.com

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) cach

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

269

270

sufficiently compressed to stream over modem connections
at 14.4 Kb/s, and video at 28.8 Kb/s. The system that has
been developed not only achieves the low-bit-rate goal,
but can also be extended to support higher-bit-rate
streams to provide higher-quality streaming over intranets
or higher-bandwidth Internet connections. Furthermore,
when streaming is not possible because of congestion or
insufficient bandwidth availability, the Bamba player
(client software) at the receiving client automatically
calculates how much data to preload in order to maintain
continuous playback. This allows clients connected via
low-bit-rate connections to fall back to a download-and-
play mode and still receive the higher-bit-rate content.

Existing audio and video streaming
technologies

In recent years, there has been much research and
development in the areas of audio and video streaming
as well as videoconferencing. Videoconferencing

differs from audio and video streaming in that the
communication is bidirectional, and end-to-end

delays must be very low (<200 ms) for interactive
communication. In fact, videoconferencing standards are
quite mature and have emerged from the International
Telecommunication Union (ITU) in the form of the
H.3xx standards [1, 2], and from the Internet Engineering
Task Force (IETF) in conjunction with the multicast
backbone (MBone) [1, 3, 4]. In general, the two camps
use the same audio and video compression standards
(defined by the ITU) but differ in their networking
protocol specifications.

Audio and video streaming differs technically from its
videoconferencing counterpart in that it can afford
greater flexibility in end-to-end delays when the data is
transmitted across a network and in the fact that stored
content may be manipulated off-line with additional
processing. These begin to merge when one considers live
audio and video streaming applications (e.g., Internet,
radio, and TV). The most relevant of the ITU standards is
H.323, which defines audio/visual services over LANs for
which quality of service cannot be guaranteed [5]. This
standard specifies a variety of audio and video coders and
decoders (CODECs) as well as signaling protocols to
negotiate capabilities and set up and manage connections
[6]. The underlying transport specified is the Real-time
Transport Protocol (RTP) [7]. This protocol, defined by
the IETF, is intended to provide a means of transporting
real-time streams over Internet Protocol (IP) networks. A
new protocol, the Real Time Streaming Protocol (RTSP),
just proposed to the IETF, more directly addresses the
issues of delivering and managing multimedia streams [8].
Clearly, this area is still evolving as new protocols are
being defined and refined to satisfy a wide range of
emerging networked multimedia applications.

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

There are a large number of audio and video streaming
systems available in the market today [9]. These include
VDOLive**? StreamWorks**,” Vosaic**,* VivoActive**,’
InterVU** * and RealAudio**.” VDOLive, Streamworks,
Vosaic, and RealAudio are based on proprietary
client—server systems that transport their audio and video
streams by means of User Datagram Protocol (UDP/IP)
connections. This unreliable transport does not retransmit
lost packets and is blocked by most firewalls unless they
are specially reconfigured. The others use HTTP (based
on TCP/IP) [10]. VDOLive employs a proprietary
hierarchical compression technique that allows the server
to adapt the video-stream bandwidth to the available
network connection bandwidth. StreamWorks, Vosaic, and
InterVu are based on MPEG** [11], while Vivo uses H.263
[12]. In general, these systems are designed to work over
higher-bandwidth LAN connections and not at modem
speeds. At modem speeds, the MPEG-based systems
revert to slide-show-type video.

Bamba is a streaming system that was designed to
run over existing computer network infrastructures. In
particular, it is versatile in dealing with the heterogeneous
nature of this environment and the unpredictable
congestion behavior of today’s network traffic. In the
Bamba system, audio and video are compressed into a
Bamba file. This file is specially formatted to interleave
the audio and video content and may even be extended to
include other data types. The Bamba file is placed on a
server. A client equipped with the appropriate Bamba
software is able to communicate with the server and
receive the Bamba audiofvideo file. If the network
conditions are suitable (sufficient sustained bandwidth is
available), this file, streaming across the network, is played
at the client immediately. Otherwise, the file is played
once uninterrupted playback can be ensured.

The Bamba streaming system has several key features.
The first of these is the quality of the audio and video,
where the audio is set at a constant 6.3 Kb/s and the video
ranges from very low bit rates of tens of kilobits per
second to hundreds of kilobits per second. The second is
the fact that both the audio and video compression are
based on standard algorithms and can be performed by
standards-compliant decoders. Third, the Bamba streaming
system uses either a standard HTTP server or an
enhanced video server running RTP over UDP/IP. In the
HTTP case, no special server software is required to store
and send Bamba clips, and the transmitted streams can
traverse firewalls with no special firewall configuration
requirements. In the case of the video server running RTP

2 hitp:/iwww.vdo.net

3 http:/jwww.xingtech.com
4 http:/jwww.vosaic.com

S http:/iwww.vivo.com

6 hitp://www.interviu.com

7 http:}iwww.realaudio.com

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

HTTP server r

Netscape

4
Y

meeen Plug-in interface

4 a3
Fil ! Video Video |}
tle H decoder renderer { !
server Network Network 1 | Splitter H
interface interface | 1 H
H Audio Audio |
) X decoder renderer | 1
1 Plug-in !
4 HTTP k) e T T :

Server Client

Bamba system block diagram.

over UDP/IP, additional functionality is provided by
means of a control protocol between the client and server.
This functionality includes pacing of the transmission
stream at a target bit rate as well as specific start and end
times of transmission within an audio or video file. Finally,
the Bamba player has been implemented either as a
helper application, which runs outside a Web browser, or
as a browser plug-in, which enables application developers
to embed audio and video clips easily within an HTML
document or as a Java** applet, which can be downloaded
directly from a Web server containing Bamba clips without
requiring special software installation at the client.

The rest of this paper is organized as follows. In Section
2, we describe the underlying Bamba technology. This
includes a description of the video-compression algorithm
as well as details related to the overall system design. In
Section 3, we describe several enhancements made to the
basic Bamba streaming system, such as increased
robustness in lossy-network environments. A description of
the Live Bamba architecture is given in Section 4. The
paper is summarized in Section 5.

2. Bamba technology

A base requirement of the Bamba streaming system is to
function within the WWW standard HTTP-based
client-server architecture. In this section, we provide a
description of the overall client-server architecture and
present details concerning the compression algorithms. We
also describe the Bamba file format and synchronization
technique.

® Bamba streaming architecture

A block diagram of the Bamba streaming system is
presented in Figure 1. The system consists of a client and
a server component. The server is a standard HTTP Web

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

server, which contains the stored Bamba audio and video
files. The client consists of a Web browser and the Bamba
audio and video plug-in software.

The Bamba plug-ins are implemented as a set of
dynamic link libraries that interface with the Web browser
through the Netscape-defined plug-in API. Netscape
has defined a set of plug-in routines that are used to
communicate between the plug-in and the browser. Each
plug-in library contains an initialization routine within
which is declared what Netscape plug-in routines are used
by the plug-in. These routines include mechanisms to
create and delete instances of a plug-in, manage the plug-
in display window, control the flow of data streams to the
plug-in, etc. In general, the plug-in is tightly integrated
with the browser. Note that while Netscape was used in
this example, the approach is similar for other browsers.

Bamba files may be embedded in HTML pages by
means of a URL pointing to a file on an HTTP or video
server. When the URL is requested, the server passes
the metadata identifying the Bamba file and containing
information about the file type to the client. The file type
is used by the browser to launch the appropriate plug-in
to play back the Bamba file.

Bamba was designed to stream clips from standard
HTTP Web servers without special streaming software
on the server. As such, Bamba is limited to the
communication mechanisms provided by the HTTP
protocol. This approach has certain advantages, the
greatest of which is that it is simple and maps gracefully
into the existing Web browsing architecture. As a result,
content creators can easily produce Bamba audio and
video clips and embed them in standard HTML [13]
pages, which are then loaded onto and accessed from a
standard HTTP server. Since the underlying transport
protocol used by HTTP is TCP/IP, which provides reliable

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

271

272

Motion vectors

Macro block
n—1 n n+1
I1|P|P PIP]|I PlP]|P
1 B B PIPJI P{P}LP I1|PIP
plep|ep 1| PTe plep |1
n~1 n n-+1 n+2
Motion vectors
(@)

end-to-end network connections, no special provisions are
required for handling packet loss within the network. In
essence, a Bamba audio or video clip is treated like any
other HTTP object, such as an HTML or JPEG [14] file.
If selected, the Bamba clip is transferred to the client
(browser station) as fast as TCP/IP can move it, and the
client begins decoding and displaying the Bamba file as
soon as the first few bytes arrive.

Since Bamba uses TCP/IP as the underlying
communication protocol, the streams can traverse firewalls
with no special configuration requirements. In general,
systems based on UDP/IP cannot traverse firewalls without
explicit permission changes in the firewall to allow passage
to the UDP/IP packets. This is because UDP/IP packets
are easier to imitate than TCP/IP packets, since the
UDP/IP protocol involves no end-to-end handshakes or
sequence numbers [15].

& Bamba audio and video technology
The audio and video technology used in Bamba is based
on standard algorithms originally defined within the ITU
H.324 standard for video telephony over regular phone
lines [16]. The audio standard, G.723, specifies two bit
rates: 5.3 Kb/s and 6.3 Kb/s [17]. Bamba uses the higher-
bit-rate CODEC, which compresses an 8-kHz input of
16-bit samples to a fixed 6.3Kb/s stream. This audio
algorithm is optimized to represent speech at high quality
over low-bit-rate connections. It encodes speech into
30-ms frames by means of linear predictive analysis-by-
synthesis coding [17]. The input signal for the higher-bit-
rate coder is Multipulse Maximum Likelihood
Quantization (MP-MLQ) [17].

The Bamba video CODEC complies with the H.263
video compression standard [12], which uses an approach
based on the discrete cosine transform (DCT). This is

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

Video-compression algorithms: (a) MPEG I-, P-, and B-frame compression dependencies; (b) H.263 I and P macro-block dependencies.

similar to the technology used for MPEG. Unlike MPEG,
which uses intrapicture frames (I-frames), predicted
frames (P-frames) and bidirectional predicted frames
(B-frames), H.263 does not define I- and P-frames, but
rather I- and P-blocks—8-pixel by 8-pixel subregions of a
frame. Figure 2(a) ilwustrates the MPEG dependencies
among I-, P-, and B-frames, while Figure 2(b) illustrates
the partitioning of H.263 frames into I- and P-blocks and
the dependencies between blocks. Representing frames as
collections of I- and P-blocks reduces the size variance
between frames and adds flexibility in selecting the refresh
distance between I-blocks for different regions of the
video image. To maximize compression based on temporal
redundancy, there may be long intervals between I-blocks
for regions in the image that are not changing.

The H.263 algorithm is designed to deliver video over
very low-bit-rate (<64 Kb/s) dedicated connections. In this
low-bit-rate range, H.263 has been demonstrated to
outperform its predecessor, H.261 [18], by a 2.5:1 ratio [2]
(i.e., at the same bandwidth, the signal-to-noise ratio of
H.263 is 2.5 times higher than that of H.261. H.263 can
also be easily extended to higher bit rates, in the
100-200-Kb/s range. These rates are suitable for streaming
over ISDN or intranet LAN-type connections. The H.263
video compression algorithm uses a planar YVU12 format,
which contains three components: luminance (Y) and two
chrominance planes (' and U). The sizes of these planes
vary as a function of the video resolution. Two of the
resolutions supported by Bamba are the Common
Intermediate Format (CIF) and the Quarter Common
Intermediate Format (QCIF) [2]; the formats are
presented in Table 1. Smaller and intermediate-size
resolutions are also supported. The resolution and
target bit rate are selected at compression time. The
compression target bit rate may be set anywhere between
10 and 356 Kb/s.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

As with many compression standards, the H.263
standard specifies the format of the video so that any
standards-compliant decoder can successfully decode the
video stream. Typically, this leaves much flexibility in the
actual encoding technique and implementation. The H.263
encoding used for Bamba uses an innovative algorithm to
trade frame rate for frame quality [19]. The art in video
compression lies in the decision of how best to apportion
a few bits to different components in the compression
process so that the compressed stream, once decoded and
displayed, produces the highest quality as perceived by the
end user. Quality is highly ambiguous and is perceived
differently by different users. A typical tradeoff is between
frame rate and frame quality (pixel quantization). For the
same number of bits, it is possible to create two very
different standards-compliant streams. One stream may
have a higher frame rate, while the other may have a finer
quantization of the frame pixels, obtaining a sharper
image.

The Bamba video implementation incorporates a
dynamic frame-rate-control algorithm, which trades frame
rate for frame quality (bits per frame) while maintaining a
constant average bit rate. This approach allows the video
to balance between the two extremes and deliver smoother
motion or sharper images as appropriate, depending on
the content and scene changes in the video. The algorithm
behavior is illustrated in Figure 3. A video sequence with
dynamically changing content is used to illustrate the
algorithm’s adaptable frame rate. The original clip is
approximately 30 seconds long, captured at 15 frames per
second for a total of 445 frames. It was compressed at a
target bit rate of 20 Kb/s and resulted in a total of 332
frames. Typically, larger frames are followed by a drop in
frame rate in order to maintain the constant bit rate. The
spikes in the figure correspond to larger frames, generated
when the scene changes or the amount of motion in a
scene is significant. These spikes are typically followed by
several frame periods in which no data is transmitted at
all.

The Bamba H.263 implementation includes special
motion-estimation techniques [20] and fast DCT
algorithms [21, 22}, which result in very efficient
implementations.

® Framing structure

A simple framing technique for smooth playback was
implemented. Audio and video are interleaved into a
single file to simplify the server function. Essentially, the
server treats a Bamba file as any other data file. Audio
and video data are interleaved proportionately to maintain
a synchronous playback of both streams at the client.
Bamba frames consist of a 240-byte segment of audio and
a 240B/a-byte segment of video, where « is the audio rate
and B is the video rate.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

30

20}F

Kb/frame

0 100 200 300 400

Illustration of Bamba video compression with dynamic-frame-rate-
control algorithm. The number of bits transmitted is shown for
each frame of a sample video sequence.

Table 1 CIF and QCIF planar YVU12 formats.
Pixels/line Lines/frame
CIF luminance (Y) 352 288
CIF chrominance plane (V) 176 144
CIF chrominance plane (U) 176 144
QCIF luminance (Y) 176 144
QCIF chrominance plane (V) 88 72
QCIF chrominance plane (U) 88 72

& Streaming-control algorithm

When the Web is accessed, the actual connection speed
between a client and a server in the network varies
depending on the access method (e.g., modem or LAN),
the network load, the server load, and even the client
load. Hence, it is rarely possible to guarantee performance
in this “best-effort” environment, where processing and
bandwidth resources are typically evenly distributed among
all competing applications. Consequently, when an audio
and/or video clip is accessed over the network, there is no
guarantee that the resources (bandwidth and processing)
are available to play the clip smoothly. To handle this
situation, Bamba has a built-in rate monitor that
dynamically evaluates the effective data-transfer rate (o)
of a selected audio or video clip and compares this to the
specified bit rate (a + B) for the clip, which is contained
in the clip header. If the specified rate is less than the
measured rate, the clip can be played immediately. If, on
the other hand, the specified rate exceeds the measured

rate (« + B > o), a fraction of the clip is buffered 273

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

274

Available

Bandwidth bandwidth

\

TCP bandwidth

Average
TCP
bandwidth

Time

Tllustration of TCP/IP bandwidth variation with time.

sufficient for the clip to play to completion smoothly

once playback is started. The amount of prebuffering is

6 = L{1 — o/(a + B)], where L is the clip length.

This calculation is performed on the basis of the initial

download rate and again any time the buffer underflows.
In future networks, where quality-of-service mechanisms

will be able to guarantee a desired bandwidth, this

approach will allow the clips to stream uninterrupted.

It will also provide a simple means of characterizing the

clips and making the appropriate bandwidth requests.

® Synchronization technique

To maintain synchronization between the audio and the
video, a video interframe time is calculated as a function
of the total number of video frames and the total length
(in time) of the audio portion of the uncompressed clip.
During compression, not all frames may be compressed,
since some may be skipped in order to achieve the target
bit rate. As a result, the compressed frames may not have
contiguous frame numbers, so the spacing between frames
is calculated as the difference in sequence numbers times
the interframe time calculated earlier. Video frames are
displayed on the basis of the video-frame sequence
number, the interframe time, and the actual number

of audio samples played. This approach is particularly
powerful, since the actual video interframe time tends to
vary depending on the capture hardware subsystem used
to create the clip. Synchronization points may also be
placed in the Bamba file in order to achieve playback at
arbitrary points within a clip or to recover from errors
during transmission when UDP/IP is used.

3. Bamba enhancements and error handling
in a lossy environment

The HTTP client-server system has some limitations.
First, the HTTP protocol has no explicit mechanisms to
perform such sophisticated stream-control functions as
seeking to a particular position in the stream. There are
ways of carrying customized function calls within the

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

HTTP stream, but this requires special server software to
execute those functions. Second, TCP/IP is an inefficient
protocol for streaming delay-sensitive data across the
network. It was originally designed to transport data files,
with a built-in mechanism to alleviate congestion in the
network [23]. TCP/IP is based on a “sliding-window”
protocol that waits for acknowledgments from the receiver
for every packet it sends. Each packet in the sliding
window has a timer associated with it. A packet-receipt
acknowledgment must be received by the transmitter
before the timer expires, or the packet will be
retransmitted. The size of the sliding window (number of
outstanding packets) is based on the speed with which
acknowledgments are received. TCP/IP continues to
increase the size of the window (effectively, the bandwidth
at which it is sending) until packets start to time out.
Once they time out, TCP/IP exponentially backs off
(reducing the size of the sliding window) and retransmits
these (presumably lost) packets. A typical TCP/IP
bandwidth “profile” resembles a sawtooth, as shown in
Figure 4, resulting in inefficient usage of the bandwidth.

The UDP-based solution is advantageous if sufficient
bandwidth is available, since it does not use
acknowledgments and allows the server to explicitly
control the rate at which the streams are transmitted into
the network. The continuous transmission at the server
and the elimination of retransmissions make the resource
requirements on the server much more predictable and
manageable. On the other hand, this approach adds
complexity to the server, since it must now pace the
transmission of a clip into the network, and it adds
complexity to the client side, since the client must be
made able to handle packet loss within the network.
However, for long clips, this approach reduces the storage
requirements at the client and can provide a higher degree
of functionality, such as the ability to seek and transmit
only specified segments of the clip, or to adapt the
transmitted bit rate to the available bit rate (e.g., send
audio with no video or send selective portions of the
video). Another important merit of UDP/IP is that, given
the appropriate routing capability in the network, it can be
used to efficiently multicast a stream to multiple clients
simultaneously.

In the UDP-based Bamba system, the server store clips
and has data pumps that pace the transmission of the
video clips into the network. The system block diagram
is similar to that of Figure 1, except that the network
interface module, which receives the RTP/UDP packets
from the network, makes sure they are presented to the
splitter module in the correct order and, upon detection
of a lost packet, resynchronizes the stream by searching
for a new synchronization point.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

® Compression technology

The H.263 video compression scheme was enhanced for
Bamba, in order to provide added robustness to reduce
the effect of lost packets in the UDP/IP environment [24].
Since a large percentage of each video frame within an
H.263 compressed stream is encoded by means of P-blocks
with interframe dependencies, corrupted data may create
errors that propagate for extended periods until an I-block
refreshes the region. In general, this makes the video
more susceptible to errors. To reduce the error effects, a
novel scheme was devised for selecting when and where to
place I-blocks within the compressed stream. The scheme
is based on a two-phase compression strategy. The first
phase of the compression strategy is needed to construct a
dependence graph based on motion vectors between pixels
in successive frames. [A motion vector is a pointer from a
P-block in the current frame to an I- or P-block in the
previous frame. These motion vectors are then used to
determine the dependence count (the number of future
blocks that may depend on a given block) of each block

in a sequence of compressed frames.] The second phase
selects which blocks to compress as I-blocks on the basis
of the dependence count of each block in a sequence of
compressed frames. This demonstrably improves the
ability of the compressed stream to recover from errors
and greatly reduces the time required to reconstruct the
video image when an error occurs. The approach is
standards-compliant, maintains a smooth bandwidth profile
of the compressed stream (small variance in size between
compressed frames), and causes only a slight increase in
the overall bandwidth requirements.

A conventional H.263 encoder first partitions a video
image into a set of blocks of 16 pixels by 16 pixels. The
coding control function searches for the best match
between each block in the current frame and blocks in the
previous frame. If a sufficiently close match is found, the
block is encoded as a P-block based on the difference
between the block and the closest matching block in the
previous frame. The closeness of the match is evaluated
in terms of the number of bits needed to encode the
difference between the block and the closest matching
block in the previous frame. If the difference is too
great, it is deemed more efficient to encode the block
independently, without reference to previous data. Such
a block is referred to as an intracoded I-block.

The resulting H.263 compressed stream consists
primarily of P-blocks, with I-block insertions caused by
scene changes or severe motion. To prevent error
accumulation, the standard also requires that each block
be encoded as an I-block at least once every 132 frames.
Although the H.263 standard defines how I-blocks and
P-blocks are encoded, it allows considerable flexibility
in selecting when to encode a block as either an I- or
P-block. We exploit this flexibility to improve the

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

robustness of a standards-compliant stream by carefully
choosing when and where to insert I-blocks during the
encoding process.

I-block encoding exploits only the spatial redundancy
within the block in the compression process, while
P-block encoding exploits both the temporal and spatial
redundancies of the video. Although interblock encoding
generally achieves more compression gain, the encoding
dependencies of P-blocks reduce their resilience to errors.
If the region referenced by a P-block has been corrupted,
the decoding of the P-block will generate incorrect pixel
values. If all or a part of this corrupted P-block is again
referenced by other P-blocks, the erroneous pixel values
will cause errors to propagate from one frame to another.
This is known as the error-propagation problem of
motion-compensated video compression. The propagation
stops when all corrupted regions are updated by I-blocks.

On the Internet, where loss is primarily attributed to
network congestion, the loss of a UDP/IP packet that
contains video data can result in the loss of several frames
in a low-bit-rate video system. For example, with a target
bit rate of 20 Kb/s, a typical QCIF compressed video
frame may contain 165 bytes. Hence, a 500-byte IP packet
contains roughly three frames of compressed video data.
If the packet is lost, these frames cannot be recovered,
and errors begin to propagate.

For non-real-time applications, knowledge about the
interdependence among blocks in a sequence can be
obtained from the dependencies reflected by the motion
vectors. It is thus possible to assign a measure of
importance to a pixel or block by counting the number
of pixels or blocks that depend on it. This operation is
anticausal, i.e., traversing backward in time. The higher
the dependence on a block, the more critical it is that this
block be correct and that it be encoded as an I-block.
Furthermore, dependence chains may be broken by
encoding intermediate blocks in the chain as I-blocks.

We illustrate how to construct a dependence graph and
calculate dependence counts with the example of three
frames in Figure 5. By starting with the last frame in a
sequence, N, and tracing the motion vectors between
frames, one can determine the dependence on pixels in
the previous frame. In Figure 5, pixels F and G in frame
N refer to pixel D in frame N — 1, since the motion
vectors from F and G point to D. Similarly, pixels H and 1
refer to pixel C. We define the dependence count of pixel
D to be 2; i.e., two pixels in subsequent frames refer to D.
Pixel A in frame N — 2 has a dependence count of 6
because pixels C, D, F, G, H, and [depend on it.
Similarly, B has a dependence count of 3. If A4 is
corrupted, the error spreads from one pixel to four pixels
in just two frames. The graph formed by the pixels and
motion vectors is a directed tree, which we call a
dependence tree.

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

275

276

Frame N — 2 Frame N — 1 Frame N
A(6)
B(3) \

Motion
vectors

i

I Video-compression motion-vector dependence graph.
£

Our I-block selection procedure sets a target I-block
count, M, for the number of I-blocks to be inserted in a
sequence of N frames. This target value depends on the
desired level of robustness to packet loss and/or speed
with which a client can produce an error-free decoding of
a video stream when connecting to an ongoing session in
midstream (referred to as join latency). The number of
I-blocks also affects the frame rate in a fixed-bit-rate
environment. In general, the more I-blocks inserted, the
more robust the video, but the lower the number of
frames that can be generated. To begin, an arbitrary
dependence threshold is selected, representing the
maximum number of pixels that may depend on the pixels
in a block. Should a block’s dependence count exceed the
threshold, it is converted to an I-block. When a block
is converted to an I-block, the dependence graph is
segmented. After a complete iteration through the video
sequence, the total number of I-blocks may be above or
below the target. The algorithm then adjusts the threshold
accordingly and reiterates until the target, M, is reached

or the maximum number of iterations allowed is exceeded.

The H.263 standard specifies a forced update period
(FUP) of 132 frames within which each block must be
updated (i.e., coded as an I-block) at least once. In our
scheme, the FUP can be made a function of the network
packet-loss characteristics and the speed with which the
video must recover from a corrupted state. In the case of
packet losses, it is desirable that the decoded stream
recover fully from a packet loss before the next loss
occurs. Assume that each packet contains K frames of
compressed video. For a packet loss frequency of one in
every P packets, the recovery has to be completed within
K(P - 1) frames. On the basis of our experimental
results, it takes approximately eight times the FUP to
fully restore a video to an error-free state. One can thus

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

calculate the maximum FUP to be approximately

K(P - 1)/8 frames. For a 1% packet loss rate (P = 100)
and K = 3, the maximum FUP is 37 frames. The other
factor affecting the choice of the FUP is the join latency
of video multicast. Let us assume a join latency of ten
seconds. This is similar to the situation in which the
decoded sequence must recover from a packet loss in ten
seconds. If the video is streamed at approximately 15
frames per second, the maximum FUP is 18 frames

[(10 * 15)/8]. The target I-block count, H, can be calculated
as H = (N = S)/FUP, where S is the number of blocks in a
frame. In this example, the FUP would be set at 18 frames
in order to meet both the packet-loss recovery interval
and join-latency requirements. The sensitivity of this
parameter requires further study, but in practice we have
chosen a set value of 20 that appears to produce
reasonable results.

In certain cases (e.g., limited amount of memory), it
might not be feasible to process an entire video before
starting to encode it. With a little modification, the same
algorithm can operate on a segment-by-segment basis. A
video can be partitioned into non-overlapping segments,
each segment being treated independently. The encoder
performs the two-phase compression on all frames in a
segment and then moves to the next, non-overlapping
segment and encodes it independently. This technique
cannot be applied to delay-critical applications when
frames cannot be prebuffered. A scheme to deal with
real-time applications is discussed in [20}].

& Bamba stream format and synchronization

The Bamba stream format was designed with the UDP/IP
environment in mind, where it is assumed that packets can
be lost at any time during the transmission and that new
clients may join a multicast transmission at any point
during an ongoing broadcast. This makes it necessary that
the packetized stream contain sufficient information for a
client to interpret a packet’s content at any point in the
stream. This can be done by either a) packetizing the
audio and video on distinct audio and video frame
boundaries, so that the splitter module can automatically
separate audio from video, or b) providing a means to
detect the frame boundaries within the stream. The first
approach adds overhead to the server, since the server
must be aware of the audio and video frame boundaries
and perform special packetization. The Bamba file format
is equivalent to the streaming format; i.e., the server does
not have to process the data in the file, but must simply
place contiguous chunks of data from the file into packets
and send them. For this reason, Bamba is implemented
using the second approach, in which every Bamba file is
separated into Bamba frames, each containing a header,
a portion of audio, and a portion of video. Each Bamba
frame header contains a unique synchronization symbol

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

(bit pattern) that does not reappear within the data (audio
and video) portions of the stream. This way, whenever a
packet is lost, the client begins searching the incoming bit
stream until it detects the unique synchronization symbol.
To ensure that the header synchronization symbol does
not occur within the stream, the audio and video data

are run through a byte-stuffing filter that alters the byte
sequence in the event that the special symbol is detected
in the input stream. The stream must be destuffed at the
receiver. Sufficient information is provided within each
Bamba frame header for the client to interpret how the
audio and video data are apportioned within the variable-
length Bamba frame and to initiate synchronization of the
two.

The unique synchronization symbol consists of 4 bytes:
00 00 FO FO. The byte-stuffing algorithm scans the stream
in search of the pattern 00 00 FO. If the pattern is found,
the algorithm inserts an FF. The destuffing routine
searches for 00 00 FO0. If it finds an FF following the
sequence, it removes it; if it finds an F0, it recognizes
the header-synchronization symbol (any other byte
would represent an error). This guarantees that the
synchronization symbol, 00 00 FO FO, can occur only
within the header.

The synchronization between audio and video is
severely complicated when the possibility of lost packets
exists. Basically, video is synchronized to audio. This is
done by including audio and video segments within a
Bamba frame so that the start of each audio segment
corresponds to the start of the corresponding video
segment. Hence, each Bamba frame contains an integral
number of video frames along with the corresponding
audio segment.

Bamba streaming technology has been used extensively
on a variety of Web sites both within and outside IBM.
For example, it was used on the official 1996 Olympics
Web site to distribute audio and video clips concerning
the games. For that event, approximately 100000 users
installed the Bamba plug-in and played clips from the
“Sights and Sounds” pages of the Web site. Clips were
offered at two target bit rates: 24 Kb/s for modem-
connected users and 100 Kb/s for ISDN- and LAN-
connected users. More recently, a variety of education and
training applications have been developed that incorporate
Bamba. These include Web-based courses that combine
graphics, course maps, discussion forums, and Bamba
audio and video files, as well as seminar applications that
deliver choreographed presentations of audio streams with
graphics and text in a Web browser.

A video jukebox service was created for IBM internal
use to distribute audio and video content over the Web.
Content providers can send their content to a multimedia
laboratory, where it is converted to Bamba files at several
target bit rates. The Bamba files are placed on a Web

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Capture station

o
video [

TCP Reflector

TCP or UDP

Packet [H Decoder HRenderer [Audio

lﬂ\cket H DecoderHRenderer |- Video

Playback station

Live Bamba system block diagram.

server, and the URL pointers to the files are sent back to
the content providers for their use. The service has seen a
steady increase in usage; it has been used by corporate
communications personnel to distribute important
messages to IBM employees. For example, recently one of
these clips, of 7.5 minutes duration, was placed on the server.
Over a three-day period there were 21000 viewings of the
clip, with a 6:1 preference for the higher-bit-rate version.
At the peak, there were 10000 hits in one day and 1000 in
one hour, with a peak bandwidth consumption of 7.6 Mb/s
and an average bandwidth consumption of 2.2 Mb/s. We
continue to monitor the streaming performance and
characterize the audience viewing trends to best understand
how the content is used and its impact on the networks
over which it is delivered.

4. Live Bamba architecture

A Live Bamba system was developed to stream audio and
video from a live source across the Web to multiple
recipients. This system uses the same audio and video
compression technologies. The Live Bamba system consists
of three primary components (as illustrated in Figure 6):
an audio/video capture station, an audio/video reflector,
and an audio/video playback station. In the capture
station, audio and video inputs are converted from analog
to digital form, compressed, and then packetized. The
Live Bamba packets are transmitted to the reflector via a

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

277

278

Firewalls

(© Root reflector
O Reflector
© Multicast router

O Playback station

e

Hierarchical Bamba reflector configuration.

TCP/IP connection that is established between the
reflector and the capture station. The reflector then
establishes and manages multiple connections to interested
recipients. These connections are initiated by the playback
stations, which can either establish a direct connection to
the reflector given the correct IP address, or establish a
connection indirectly via a Web server through an HTTP
URL, which returns a file to the playback station
containing the appropriate address information and file
type. The browser then launches the Live Bamba helper
application or browser plug-in.

The reflector distributes the audio and video streams to
the various playback stations in the network. Playback
stations may join an ongoing session (live broadcast in
progress) at any point in the transmission. The reflector
maintains a circular buffer queue containing the most
recent several seconds of a live transmission for each
playback station to which it is connected. When a new
station connects, the reflector produces a new copy of the
circular buffer queue for that connection. Each of the
circular buffers is written to by the incoming capture
station input and read from by the TCP/IP connection to
the corresponding playback station. The TCP/IP approach
allows the connections to traverse firewalls easily and
maintain high quality.

The same physical reflector node can be used for
multiple sessions. The reflector node resource is limited,
but upper bounds can be set for the number of
connections per session as well as for the total number of
connections per reflector. Furthermore, reflectors may be
cascaded to scale and handle increased demand. A
reflector may also be configured to provide multicast
services when it is connected to networks with multicast

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

capability. For example, point-to-point TCP/IP
connections may be established between reflectors through
firewall boundaries that separate intranets from the global
Internet. Within the intranets, the reflector may establish
multicast UDP/IP connections to local playback stations.

The reflector concept also provides a platform upon
which customized features are easily built. For example,
format conversions from high to low compressed bit rates
to satisty different network and playback-station
capabilities are possible. It may also be preferable to
maintain different audio tracks (e.g., different languages)
for the same video feed and to route these audio tracks to
different reflectors, depending on the reflectors’ local
audience preferences. A hierarchical Bamba reflector
configuration is illustrated in Figure 7. In this example, a
capture station in one intranet is transmitting to a “root”
reflector in the Internet, which in turn is forwarding the
signal to reflectors within different intranets. Within each
intranet, the signal is multicast to local playback stations.
Modifications to the streams could be made locally at each
reflector.

5. Summary
The Bamba system for low-bit-rate audio and video
streaming over the World Wide Web has been described,
and a detailed description of the Bamba system design
and significant issues related to its implementation have
been discussed. Several key features distinguish Bamba
from existing streaming technologies. The first of these is
the quality of the audio and video, in particular the video,
which ranges from very low bit rates of tens of kilobits per
second to hundreds of kilobits per second. The second is
the fact that both the audio and the video are based on
standard algorithms. Third, the Bamba system can operate
using standard HTTP servers. No special server software
is required to store and send Bamba clips. Fourth, since
Bamba uses TCP/IP as the underlying communication
protocol, the streams can traverse firewalls with no special
configuration requirements. Finally, the Bamba player
was implemented as a Netscape plug-in, which enables
application developers to easily embed audio and video
clips within an HTML document. A UDP/IP-based system
for Bamba has also been described, which requires a
special server and supports multicast. For this system, a
novel approach to enhancing the video robustness in lossy
network environments has been presented.

The Live Bamba architecture was presented, which uses
a reflector as the key building block to deliver the Bamba
stream to multiple recipients. This approach is scalable
and lends itself well to handling conversions of the stream
at local access points, depending on local network and
playback-station requirements and/or capabilities.
Reflectors can provide secure communications and make
use of network multicast capabilities when available.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Future systems will incorporate additional media types
(e.g., graphics and Java applets) within the Bamba
stream to produce synchronized streamed multimedia
applications. Additional audio and video CODECs can
easily be incorporated into the Bamba framework. As
network technologies evolve, Bamba will make use of
more advanced network-resource-reservation mechanisms,
which will provide more control over the connections’
quality of service.

Acknowledgments

We acknowledge the contributions of Yuan-Chi Chang,
Zon-Yin Shae, Xiping Wang, and Steve Wood for their
work on Bamba, and Marcel Kinard for the Bamba
statistics regarding the video jukebox service. We also
acknowledge the Science and Technology Group of IBM
Research in Haifa for their work on the audio CODEC
implementation, and the Multimedia Applications Group
of IBM Research in Yorktown Heights for their work on
the video CODEC implementation.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of VDONet
Corporation Ltd., Xing Technology Corporation, Vosaic
Corporation, Vivo Software Inc., InterVU, Inc., Progressive
Networks, Inc., Moving Picture Expert Group, or Sun
Microsystems, Inc.

References

1. M. Willebeek-LeMair and Z.-Y. Shae, “Videoconferencing
Over Packet-Based Networks,” Research Report RC-20480,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1966.

2. Richard Schaphorst, Videoconferencing and Videotelephony,
Artech House, Norwood, MA, 1996.

3. T. Turletti and C. Huitema, “Videoconferencing on the
Internet,” IEEE Trans. Networking 4, No. 3, 340-351
(June 1996).

4. S. McCanne and V. Jacobson, “vic: A Flexible Framework
for Packet Video,” Proceedings of Multimedia 95, San
Francisco, 1995, pp. 511-522.

5. “Visual Telephone Systems and Equipment for Local
Area Networks Which Provide a Non-Guaranteed Quality
of Service,” Draft ITU-T Recommendation H.323,
International Telecommunication Union, Place des
Nations, CH12-11 Geneva 20, Switzerland, May 1996.

6. “Control of Communications Between Visual Telephone
Systems and Terminal Equipment,” ITU-T
Recommendation H.245, International Telecommunication
Union, Place des Nations, CH12-11 Geneva 20,
Switzerland, 1995.

7. “RTP: A Transport Protocol for Real-Time Application,”
Internet Draft, draft-ietf-avt-rip-05, IETF Secretariat, ¢/o
Corporation for National Research Initiatives, 1895
Preston White Drive, Suite 100, Reston, VA 20191, July
1994.

8. H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time
Streaming Protocol (RTSP),” Internet Engineering Task
Force MMUSIC WG Internet Draft, IETF Secretariat, c/o
Corporation for National Research Initiatives, 1895
Preston White Drive, Suite 100, Reston, VA 20191,
February 2, 1998.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

9. G. Venditto, “Instant Video,” Internet World, pp. 84-101
(November 1996).

10. T. Berners-Lee, R. T. Fielding, and H. Frystyk Nielsen,
“Hypertext Transfer Protocol—HTTP/1.0,” HTTP Working
Group Internet-Draft, hitp:/jwww.w3.org/hypertext/ WWW/
Protocols/Overview.html, March 1995.

11. “Coding of Moving Pictures and Associated Audio—for
Digital Storage Media at Up to About 1.5 Mbit/s,” ISO
Standard IS 11172, 1SO Central Secretariat, 1, rue de
Varembé, Case postale 56, CH-1211 Genéve 20,
Switzerland, November 1992.

12. “Video Coding for Low Bit-Rate Communication,” ITU-T
Recommendation H.263, International Telecommunication
Union, Place des Nations, CH12-11 Geneva 20,
Switzerland, May 1996.

13. T. Berners-Lee and D. Connolly, “HyperText Markup
Language Specification-2.0,” Work in Progress (draft-ietf-
html-spec-01.txt), CERN, Hal Computer Systems, IETF
Secretariat, ¢/o Corporation for National Research
Initiatives, 1895 Preston White Drive, Suite 100, Reston,
VA 20191, February 1995.

14. W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image
Data Compression, Van Nostrand Reinhold, New York,
1992.

15. W. R. Cheswick and S. M. Bellovin, Firewalls and Internet
Security, Addison-Wesley Publishing Co., Inc., Reading,
MA, 1994.

16. “Terminal for Low Bitrate Multimedia Communications,”
ITU-T Recommendation H.324, International
Telecommunication Union, Place des Nations, CH12-11
Geneva 20, Switzerland, 1995.

17. “Dual Rate Speech Coder for Multimedia
Communications Transmitting at 5.3 and 6.3 Kbit/s,”
ITU-T Recommendation G.723, International
Telecommunication Union, Place des Nations, CH12-11
Geneva 20, Switzerland, 1996.

18. “Video CODEC for Audiovisual Services at p X 64
Kbit/s,” ITU-T Recommendation H.261, International
Telecommunication Union, Place des Nations, CH12-11
Geneva 20, Switzerland, July 1990.

19. S. S.-P. Chang, J. J.-C. Chen, E. Feig, M.-H. Lin, L. K.
Liu, and J. H. Morgan, “IBM’s H.263 VideoCodec,”
presented at the High Definition Media Technology and
Applications Workshop, Taipei, Taiwan, October 14-16,
1996.

20. L. K. Liu and E. Feig, “A Block-Based Gradient Descent
Search Algorithm for Block Motion Estimation in Video
Coding,” IEEE Trans. Circuits & Syst. for Video Technol. 6,
No. 4, 1-6 (August 1996).

21. E. Feig, “A Fast Scaled DCT Algorithm,” Image
Processing Algorithms and Techniques, Proc. SPIE 1244,
2-13 (June 1990).

22. E. Feig and S. Winograd, “Fast Algorithms for the
Discrete Cosine Transform,” IEEE Trans. Signal
Processing 40, No. 9, 2174-2193 (September 1992).

23. D. Bertsekas and R. Gallager, Data Networks, Prentice-
Hall, Inc., Englewood Cliffs, NJ, 1992.

24. M. Willebeek-LeMair, Z. Y. Shae, and Y. C. Chang,
“Robust H.263 Video Coding for Transmission Over the
Internet,” Research Report RC-20532, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 1996.

Received November 6, 1996; accepted for publication
June 5, 1997

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

279

280

Marc H. Willebeek-LeMair IBM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (mwlm@watson.ibm.com). Dr.
Willebeek-LeMair received the B.S. degree in computer and
electrical engineering from George Mason University, Fairfax,
Virginia, in 1985, and M.S. and Ph.D. degrees from the
School of Electrical Engineering at Cornell University, Ithaca,
New York, in 1988 and 1990, respectively. He is currently
managing the Multimedia Networking group at the IBM
Thomas J. Watson Research Center, specializing in the
development of networked multimedia systems. Dr.
Willebeek-LeMair joined IBM in 1990 as a Research Staff
Member in the Research Division High Bandwidth Systems
Laboratory. His research interests include real-time networked
applications such as desktop videoconferencing and
audio/video streaming, high-bandwidth communications,
computer architecture, parallel processing, and
interconnection networks. Dr. Willebeek-LeMair is a member
of the TEEE Computer Society, the IEEE Communications
Society, Alpha Xi, and Eta Kappa Nu.

Keeranoor G. Kumar IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights, New
York 10598 (kumar@watson.ibm.com). Dr. Kumar received the
B.Sc. degree in physics in 1978 from Kerala University, India.
He received the B.E. degree in electronics and communication
in 1981 from the Indian Institute of Science, Bangalore, and
the Ph.D. degree in computer science in 1989 from the Indian
Institute of Technology, Bombay. Dr. Kumar’s research
contributions have been in the areas of real-time distributed
computing, models of parallel programming, and compiling
for parallelism. His current research interests are in the area
of system and network architectures for multimedia.

Ed C. Snible IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (snible@us.ibm.com). Mr. Snible is a Software Engineer
in the Multimedia Networking group, Internet Department, at
the IBM Thomas J. Watson Research Center. He received his
B.S. in computer engineering from Arizona State University in
1990, joining the Research Division in 1997. At IBM, Mr.
Snible has implemented Bamba components in Plug-in,
ActiveX, and IBM MediaBeans (Java) frameworks. Current
research interests include multimedia authoring, design
patterns, and working with user interfaces.

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

