
Bam ba-Aud io K. G. K~~~~
by M. H. Willebeek-LeMair

I E. C. Snible

I streaming over
the Internet

The World Wide Web has become a primary
means of disseminating information, which is
being presented increasingly through multiple
media. The ability to broadcast audio and
video information is becoming a reality with
the advent of new media-streaming
technologies. Most of the emerging streaming
systems require high-bandwidth connections
in order to deliver audio and video of suitable
quality. In this paper we present a media-
streaming system, called Bamba, that delivers
audio and video over low-bandwidth modem
connections with the use of standard
compression technologies. Bamba offers high-
quality audio and video over low-bit-rate
connections and can operate using a standard
HTTP server. The Bamba video is enhanced
with special provisions for reducing the effect
of errors in a lossy-network environment.
Bamba adheres to existing standards wherever
possible. Finally, Bamba has been fully
implemented and deployed both internally at
IBM and externally.

1. Introduction
The World Wide Web (WWW) has become a primary
means of disseminating information. Initially, the type of
information distributed was primarily in the form of text
and graphics. Later, images and stored audio and video

files emerged. These audio and video files are downloaded
from a server and stored at the client before they are
played. Most recently, streamed audio and video have
become available from both stored and live sources on the
Web. Audio and video streaming enables clients to select
and receive audio and video content from servers across
the network and to begin hearing and seeing the content
as soon as the first few bytes of the stream arrive at the
client. Streaming technology involves audio and video
compression, schemes for stream formatting and
transmission packetization, networking protocols and
routing, client designs for displaying and synchronizing
different media streams, and server designs for content
storage and delivery. In this paper we present a system
for audio and video streaming (with code name Bamba)
developed at the IBM Thomas J . Watson Research
Center. Bamba has been deployed within IBM and was
demonstrated externally on the official Web site of the
1996 Olympics. It has since been made available for free
download from the IBM Alphaworks* Web site.’

Internet, were not designed with streaming in mind.
Streaming media requires that data be transmitted from
a server to a client at a sustained bit rate that is high
enough to maintain continuous and smooth playback at
the receiving client station. A primary objective in
developing Bamba is to stream audio and video across the
Web through very-low-bit-rate connections. Audio is

Today’s computer-network infrastructures, including the

“Copyright 1998 by International Business Machines Corporation. Copylng in printed form for prlvate use is permitted without payment of royalty provided that (1) each

of thls paper may be copied or distrihuted royalty free without further permission by computer-based and other information-servlce Fystems. Permission to repuhhh any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the tint page. The title and abstract, but no other portions,

portion of this paper must he obtained from the Editor.

0018-8646/98/$5.00 0 1998 IBM

IBM J . RES. DEVELOP, VOL. 42 NO. 2 MARCH 1998 M. H. WILLEBEEK-LEMAIK, K. G KUMAR, AND E. C. SNIBLE

269

sufficiently compressed to stream over modem connections
at 14.4 Kb/s, and video at 28.8 Kbis. The system that has
been developed not only achieves the low-bit-rate goal,
but can also be extended to support higher-bit-rate
streams to provide higher-quality streaming over intranets
or higher-bandwidth Internet connections. Furthermore,
when streaming is not possible because of congestion or
insufficient bandwidth availability, the Bamba player
(client software) at the receiving client automatically
calculates how much data to preload in order to maintain
continuous playback. This allows clients connected via
low-bit-rate connections to fall back to a download-and-
play mode and still receive the higher-bit-rate content.

Existing audio and video streaming
technologies
In recent years, there has been much research and
development in the areas of audio and video streaming
as well as videoconferencing. Videoconferencing
differs from audio and video streaming in that the
communication is bidirectional, and end-to-end
delays must be very low (<200 ms) for interactive
communication. In fact, videoconferencing standards are
quite mature and have emerged from the International
Telecommunication Union (ITU) in the form of the
H.3xx standards [l , 21, and from the Internet Engineering
Task Force (IETF) in conjunction with the multicast
backbone (MBone) [l, 3, 41. In general, the two camps
use the same audio and video compression standards
(defined by the ITU) but differ in their networking
protocol specifications.

videoconferencing counterpart in that it can afford
greater flexibility in end-to-end delays when the data is
transmitted across a network and in the fact that stored
content may be manipulated off-line with additional
processing. These begin to merge when one considers live
audio and video streaming applications (e.g., Internet,
radio, and TV). The most relevant of the ITU standards is
H.323, which defines audioivisual services over LANs for
which quality of service cannot be guaranteed [5] . This
standard specifies a variety of audio and video coders and
decoders (CODECs) as well as signaling protocols to
negotiate capabilities and set up and manage connections
[6]. The underlying transport specified is the Real-time
Transport Protocol (RTP) [7]. This protocol, defined by
the IETF, is intended to provide a means of transporting
real-time streams over Internet Protocol (IP) networks. A
new protocol, the Real Time Streaming Protocol (RTSP),
just proposed to the IETF, more directly addresses the
issues of delivering and managing multimedia streams [8].
Clearly, this area is still evolving as new protocols are
being defined and refined to satisfy a wide range of

Audio and video streaming differs technically from its

270 emerging networked multimedia applications.

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

There are a large number of audio and video streaming
systems available in the market today [9]. These include
VDOLive**,2 S t r eamWork~** ,~ Vo~a ic** ,~ VivoActive**,’
InterVU**,6 and RealAudio**.’ VDOLive, Streamworks,
Vosaic, and RealAudio are based on proprietary
client-server systems that transport their audio and video
streams by means of User Datagram Protocol (UDPIIP)
connections. This unreliable transport does not retransmit
lost packets and is blocked by most firewalls unless they
are specially reconfigured. The others use HTTP (based
on TCPIIP) [lo]. VDOLive employs a proprietary
hierarchical compression technique that allows the server
to adapt the video-stream bandwidth to the available
network connection bandwidth. Streamworks, Vosaic, and
InterVu are based on MPEG** [ll], while Vivo uses H.263
[12]. In general, these systems are designed to work over
higher-bandwidth LAN connections and not at modem
speeds. At modem speeds, the MPEG-based systems
revert to slide-show-type video.

Bamba is a streaming system that was designed to
run over existing computer network infrastructures. In
particular, it is versatile in dealing with the heterogeneous
nature of this environment and the unpredictable
congestion behavior of today’s network traffic. In the
Bamba system, audio and video are compressed into a
Bamba file. This file is specially formatted to interleave
the audio and video content and may even be extended to
include other data types. The Bamba file is placed on a
server. A client equipped with the appropriate Bamba
software is able to communicate with the server and
receive the Bamba audioivideo file. If the network
conditions are suitable (sufficient sustained bandwidth is
available), this file, streaming across the network, is played
at the client immediately. Otherwise, the file is played
once uninterrupted playback can be ensured.

The Bamba streaming system has several key features.
The first of these is the quality of the audio and video,
where the audio is set at a constant 6.3 Kb/s and the video
ranges from very low bit rates of tens of kilobits per
second to hundreds of kilobits per second. The second is
the fact that both the audio and video compression are
based on standard algorithms and can be performed by
standards-compliant decoders. Third, the Bamba streaming
system uses either a standard HTTP server or an
enhanced video server running RTP over UDPIIP. In the
HTTP case, no special server software is required to store
and send Bamba clips, and the transmitted streams can
traverse firewalls with no special firewall configuration
requirements. In the case of the video server running RTP

http://www.vdo.net
http:i/www.xingtrch.com

4 http://www.vosarc.aom
5 http://www.vwo.com

h t t p : i / w w w . m t ~ ~ u . c o m ’ htrp:l/www.reuluudio corn

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

I HTTP server

HTTP

I 1 Netscape

Serve! Client

over UDP/IP, additional functionality is provided by
means of a control protocol between the client and server.
This functionality includes pacing of the transmission
stream at a target bit rate as well as specific start and end
times of transmission within an audio or video file. Finally,
the Bamba player has been implemented either as a
helper application, which runs outside a Web browser, or
as a browser plug-in, which enables application developers
to embed audio and video clips easily within an HTML
document or as a Java** applet, which can be downloaded
directly from a Web server containing Bamba clips without
requiring special software installation at the client.

The rest of this paper is organized as follows. In Section
2, we describe the underlying Bamba technology. This
includes a description of the video-compression algorithm
as well as details related to the overall system design. In
Section 3, we describe several enhancements made to the
basic Bamba streaming system, such as increased
robustness in lossy-network environments. A description of
the Live Bamba architecture is given in Section 4. The
paper is summarized in Section 5 .

2. Bamba technology
A base requirement of the Bamba streaming system is to
function within the WWW standard HTTP-based
client-server architecture. In this section, we provide a
description of the overall client-server architecture and
present details concerning the compression algorithms. We
also describe the Bamba file format and synchronization
technique.

Bamba streaming architecture
A block diagram of the Bamba streaming system is
presented in Figure 1. The system consists of a client and
a server component. The server is a standard HTTP Web

server, which contains the stored Bamba audio and video
files. The client consists of a Web browser and the Bamba
audio and video plug-in software.

The Bamba plug-ins are implemented as a set of
dynamic link libraries that interface with the Web browser
through the Netscape-defined plug-in API. Netscape
has defined a set of plug-in routines that are used to
communicate between the plug-in and the browser. Each
plug-in library contains an initialization routine within
which is declared what Netscape plug-in routines are used
by the plug-in. These routines include mechanisms to
create and delete instances of a plug-in, manage the plug-
in display window, control the flow of data streams to the
plug-in, etc. In general, the plug-in is tightly integrated
with the browser. Note that while Netscape was used in
this example, the approach is similar for other browsers.

Bamba files may be embedded in HTML pages by
means of a URL pointing to a file on an HTTP or video
server. When the URL is requested, the server passes
the metadata identifying the Bamba file and containing
information about the file type to the client. The file type
is used by the browser to launch the appropriate plug-in
to play back the Bamba file.

Bamba was designed to stream clips from standard
HTTP Web servers without special streaming software
on the server. As such, Bamba is limited to the
communication mechanisms provided by the HTTP
protocol. This approach has certain advantages, the
greatest of which is that it is simple and maps gracefully
into the existing Web browsing architecture. As a result,
content creators can easily produce Bamba audio and
video clips and embed them in standard HTML [13]
pages, which are then loaded onto and accessed from a
standard HTTP server. Since the underlying transport
protocol used by HTTP is TCPIIP, which provides reliable

3 Network
interface

t : Plug-in
L",..".......".""""""""~

271

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE

Macro block

Motion vectors
(b)

n - 1 n it+ 1 n + 2

(a)

~1
P P

end-to-end network connections, no special provisions are
required for handling packet loss within the network. In
essence, a Bamba audio or video clip is treated like any
other HTTP object, such as an HTML or JPEG [14] file.
If selected, the Bamba clip is transferred to the client
(browser station) as fast as TCPiIP can move it, and the
client begins decoding and displaying the Bamba file as
soon as the first few bytes arrive.

communication protocol, the streams can traverse firewalls
with no special configuration requirements. In general,
systems based on UDPiIP cannot traverse firewalls without
explicit permission changes in the firewall to allow passage
to the UDPiIP packets. This is because UDPiIP packets
are easier to imitate than TCPiIP packets, since the
UDPiIP protocol involves no end-to-end handshakes or
sequence numbers [15].

Since Bamba uses TCPiIP as the underlying

Bamba audio and video technology
The audio and video technology used in Bamba is based
on standard algorithms originally defined within the ITU
H.324 standard for video telephony over regular phone
lines [16]. The audio standard, G.723, specifies two bit
rates: 5.3 Kbis and 6.3 Kbis [17]. Bamba uses the higher-
bit-rate CODEC, which compresses an 8-kHz input of
16-bit samples to a fixed 6.3Kbis stream. This audio
algorithm is optimized to represent speech at high quality
over low-bit-rate connections. It encodes speech into
30-ms frames by means of linear predictive analysis-by-
synthesis coding [17]. The input signal for the higher-bit-
rate coder is Multipulse Maximum Likelihood
Quantization (MP-MLQ) [17].

The Bamba video CODEC complies with the H.263
video compression standard [12], which uses an approach

272 based on the discrete cosine transform (DCT). This is

similar to the technology used for MPEG. Unlike MPEG,
which uses intrapicture frames (I-frames), predicted
frames (P-frames) and bidirectional predicted frames
(B-frames), H.263 does not define I- and P-frames, but
rather I- and P-blocks-8-pixel by 8-pixel subregions of a
frame. Figure 2(a) illustrates the MPEG dependencies
among I-, P-, and B-frames, while Figure 2(b) illustrates
the partitioning of H.263 frames into I- and P-blocks and
the dependencies between blocks. Representing frames as
collections of I- and P-blocks reduces the size variance
between frames and adds flexibility in selecting the refresh
distance between I-blocks for different regions of the
video image. To maximize compression based on temporal
redundancy, there may be long intervals between I-blocks
for regions in the image that are not changing.

The H.263 algorithm is designed to deliver video over
very low-bit-rate (<64 Kbis) dedicated connections. In this
low-bit-rate range, H.263 has been demonstrated to
outperform its predecessor, H.261 [18], by a 2.5:l ratio [2]
(i.e., at the same bandwidth, the signal-to-noise ratio of
H.263 is 2.5 times higher than that of H.261. H.263 can
also be easily extended to higher bit rates, in the
100-200-Kbis range. These rates are suitable for streaming
over ISDN or intranet LAN-type connections. The H.263
video compression algorithm uses a planar YVU12 format,
which contains three components: luminance (Y) and two
chrominance planes (V and U) . The sizes of these planes
vary as a function of the video resolution. Two of the
resolutions supported by Bamba are the Common
Intermediate Format (CIF) and the Quarter Common
Intermediate Format (QCIF) [2] ; the formats are
presented in Table 1. Smaller and intermediate-size
resolutions are also supported. The resolution and
target bit rate are selected at compression time. The
compression target bit rate may be set anywhere between
10 and 356 Kbis.

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE IBM .I. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

As with many compression standards, the H.263
standard specifies the format of the video so that any
standards-compliant decoder can successfully decode the
video stream. Typically, this leaves much flexibility in the
actual encoding technique and implementation. The H.263
encoding used for Bamba uses an innovative algorithm to
trade frame rate for frame quality [19]. The art in video
compression lies in the decision of how best to apportion
a few bits to different components in the compression
process so that the compressed stream, once decoded and
displayed, produces the highest quality as perceived by the
end user. Quality is highly ambiguous and is perceived
differently by different users. A typical tradeoff is between
frame rate and frame quality (pixel quantization). For the
same number of bits, it is possible to create two very
different standards-compliant streams. One stream may
have a higher frame rate, while the other may have a finer
quantization of the frame pixels, obtaining a sharper
image.

The Bamba video implementation incorporates a
dynamic frame-rate-control algorithm, which trades frame
rate for frame quality (bits per frame) while maintaining a
constant average bit rate. This approach allows the video
to balance between the two extremes and deliver smoother
motion or sharper images as appropriate, depending on
the content and scene changes in the video. The algorithm
behavior is illustrated in Figure 3. A video sequence with
dynamically changing content is used to illustrate the
algorithm’s adaptable frame rate. The original clip is
approximately 30 seconds long, captured at 15 frames per
second for a total of 445 frames. It was compressed at a
target bit rate of 20 Kb/s and resulted in a total of 332
frames. Typically, larger frames are followed by a drop in
frame rate in order to maintain the constant bit rate. The
spikes in the figure correspond to larger frames, generated
when the scene changes or the amount of motion in a
scene is significant. These spikes are typically followed by
several frame periods in which no data is transmitted at
all.

The Bamba H.263 implementation includes special
motion-estimation techniques [20] and fast DCT
algorithms [21, 221, which result in very efficient
implementations.

Framing structure
A simple framing technique for smooth playback was
implemented. Audio and video are interleaved into a
single file to simplify the server function. Essentially, the
server treats a Bamba file as any other data file. Audio
and video data are interleaved proportionately to maintain
a synchronous playback of both streams at the client.
Bamba frames consist of a 240-byte segment of audio and
a 240p/a-byte segment of video, where a is the audio rate
and /3 is the video rate.

8 3
10

0
0 100 300 400

Frame number

i Illustration of Bamha video compression with dynamic-frame-rate-
control algorithm. The number of hits transmitted is shown for

i each frame of a sample video sequence.

Table 1 CIF and QCIF planar YVU12 formats.

Pixelslline Lineslfrarne
~~~ 

CIF luminance (Y) 352 288 
CIF chrominance plane (V) 176  144 
CIF chrominance plane ( U )  176 144 
QCIF luminance (Y) 176 144 
QCIF chrominance plane (V) 88  72 
QCIF chrominance plane ( U )  88 72 

Streaming-control  algorithm 
When  the  Web is accessed, the  actual  connection  speed 
between  a client and  a server in the network  varies 
depending  on  the access method (e.g., modem  or LAN), 
the  network  load,  the  server  load,  and even the client 
load.  Hence, it is rarely  possible to  guarantee  performance 
in this  “best-effort’’ environment,  where processing and 
bandwidth  resources  are typically evenly distributed  among 
all competing  applications.  Consequently, when an  audio 
and/or video clip is accessed  over the  network,  there is no 
guarantee  that  the  resources  (bandwidth  and processing) 
are available to play the clip smoothly. To  handle  this 
situation,  Bamba  has  a  built-in  rate  monitor  that 
dynamically evaluates  the effective data-transfer  rate (a)  
of a  selected  audio  or  video clip and  compares this to  the 
specified  bit rate  (a + p )  for  the clip, which is contained 
in the clip header. If the specified rate is less than  the 
measured  rate,  the clip can be played immediately. If, on 
the  other  hand,  the specified rate exceeds the  measured 
rate ( a  + p > a), a fraction of the clip is buffered 273 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH lYY8 M. H.  WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE 



Available 
Bandwidth 

. . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . , . . . . . . . . . . . . . . . , . . . . . . . 

c 

bandwidth 
Time 

Average "L/' TCP bandwidth 
TCP 
bandwidth 

c 
Time 

Illustration of TCP/IP bandwidth variation with time. 

sufficient for  the clip to play to  completion smoothly 
once playback is started.  The  amount of prebuffering is 
8 = L[1 - a / ( a  + p ) ] ,  where L is the clip length. 
This  calculation is performed  on  the basis of the initial 
download  rate  and again  any time  the  buffer underflows. 

will be  able  to  guarantee a desired  bandwidth,  this 
approach will allow the clips to  stream  uninterrupted. 
It will also provide a  simple means of characterizing  the 
clips and making the  appropriate  bandwidth  requests. 

In  future networks, where quality-of-service  mechanisms 

Synchronization technique 
To  maintain  synchronization  between  the  audio  and  the 
video, a  video interframe  time is calculated as a function 
of the  total  number of video frames  and  the  total  length 
(in time) of the  audio  portion of the  uncompressed clip. 
During  compression,  not all frames may be  compressed, 
since some may be  skipped in order  to  achieve  the  target 
bit rate.  As a result,  the  compressed  frames may not have 
contiguous  frame  numbers, so the spacing between  frames 
is calculated as the  difference in sequence  numbers  times 
the  interframe  time  calculated  earlier.  Video  frames  are 
displayed on  the basis of the  video-frame  sequence 
number,  the  interframe  time,  and  the  actual  number 
of audio  samples played. This  approach is particularly 
powerful,  since the  actual video interframe  time  tends  to 
vary depending  on  the  capture  hardware subsystem  used 
to  create  the clip.  Synchronization points may also  be 
placed in the  Bamba file in order  to achieve  playback at 
arbitrary  points within  a  clip or to recover from  errors 
during transmission  when UDPiIP is used. 

3. Bamba  enhancements  and  error  handling 
in  a lossy environment 
The  HTTP client-server  system has  some  limitations. 
First,  the  HTTP  protocol  has  nu explicit mechanisms to 
perform such sophisticated  stream-control  functions as 
seeking  to a particular  position in the  stream.  There  are 
ways of carrying  customized function calls  within the 

HTTP  stream,  but  this  requires special server  software  to 
execute  those  functions.  Second,  TCPiIP is an inefficient 
protocol  for  streaming delay-sensitive data across the 
network.  It was originally designed  to  transport  data files, 
with a built-in  mechanism  to alleviate congestion in the 
network [23]. TCPiIP is based  on a "sliding-window" 
protocol  that waits for  acknowledgments  from  the receiver 
for every packet it sends.  Each  packet in the sliding 
window has a timer  associated with it. A packet-receipt 
acknowledgment must be received by the  transmitter 
before  the  timer expires, or the  packet will be 
retransmitted.  The size of the sliding window (number of 
outstanding  packets) is based  on  the  speed with which 
acknowledgments are received.  TCP/IP  continues  to 
increase  the size of the window (effectively, the  bandwidth 
at which it is sending)  until  packets  start  to  time  out. 
Once they time  out,  TCPiIP exponentially  backs off 
(reducing  the size of the sliding  window) and  retransmits 
these  (presumably  lost)  packets. A  typical TCPiIP 
bandwidth "profile" resembles a sawtooth, as shown  in 
Figure 4, resulting in  inefficient  usage of the  bandwidth. 

The  UDP-based  solution is advantageous if sufficient 
bandwidth is available, since it does  not  use 
acknowledgments  and allows the server to explicitly 
control  the  rate  at which the  streams are transmitted  into 
the  network.  The  continuous transmission at  the  server 
and  the  elimination of retransmissions  make  the  resource 
requirements  on  the  server much more  predictable  and 
manageable.  On  the  other  hand,  this  approach  adds 
complexity to  the  server, since it must now pace  the 
transmission of a  clip into  the  network,  and it adds 
complexity to  the client  side,  since the client  must be 
made  able  to  handle  packet loss within the  network. 
However, for long  clips,  this approach  reduces  the  storage 
requirements  at  the client and  can  provide a higher  degree 
of functionality,  such  as the ability to  seek  and  transmit 
only specified segments of the clip, or to  adapt  the 
transmitted bit rate  to  the available bit  rate (e.g., send 
audio with no video or send selective portions of the 
video). Another  important  merit of UDP/IP is that, given 
the  appropriate  routing capability in the  network, it can  be 
used to efficiently multicast  a stream  to  multiple  clients 
simultaneously. 

and  has  data  pumps  that  pace  the transmission of the 
video  clips into  the  network.  The system  block diagram 
is similar to  that of Figure 1, except that  the  network 
interface  module, which receives the  RTP/UDP  packets 
from  the  network,  makes  sure they are  presented  to  the 
splitter  module in the  correct  order  and,  upon  detection 
of a  lost packet, resynchronizes the  stream by searching 
for a  new synchronization  point. 

In  the  UDP-based  Bamba system, the  server  store clips 

M. H. WILLEBEEK-LEMAIR, K. G .  KUMAR,  AND  E. C. SNIBLE IBM J .  RES.  DEVELOP.  VOL.  42 NO. 2 MARCH 1998 



Compression technology 
The H.263 video compression  scheme was enhanced  for 
Bamba, in order  to provide added  robustness  to  reduce 
the  effect of lost packets in the  UDP/IP  environment [24]. 
Since  a large  percentage of each video frame within an 
H.263 compressed  stream is encoded by means of P-blocks 
with interframe  dependencies,  corrupted  data may create 
errors  that  propagate  for  extended  periods  until  an I-block 
refreshes  the  region.  In  general,  this  makes  the video 
more  susceptible  to  errors. To reduce  the  error effects,  a 
novel scheme was devised for  selecting when and  where  to 
place I-blocks  within the  compressed  stream.  The  scheme 
is based  on a two-phase  compression  strategy.  The first 
phase of the  compression  strategy is needed  to  construct a 
dependence  graph  based  on  motion vectors between pixels 
in successive frames.  [A  motion  vector is a pointer  from a 
P-block  in the  current  frame  to  an I- or  P-block in the 
previous frame.  These  motion  vectors  are  then used to 
determine  the  dependence  count  (the  number of future 
blocks that may depend  on a given block) of each block 
in  a sequence of compressed  frames.]  The  second  phase 
selects which blocks to  compress as  I-blocks on  the basis 
of the  dependence  count of each block  in  a sequence of 
compressed  frames.  This  demonstrably improves the 
ability of the  compressed  stream  to recover from  errors 
and greatly reduces  the  time  required  to  reconstruct  the 
video  image  when  an  error occurs. The  approach is 
standards-compliant,  maintains a smooth  bandwidth profile 
of the  compressed  stream (small variance in  size between 
compressed  frames),  and  causes only a  slight increase in 
the  overall  bandwidth  requirements. 

A conventional H.263 encoder first partitions a  video 
image  into a set of blocks of 16 pixels by 16 pixels. The 
coding  control  function  searches  for  the  best  match 
between  each block in the  current  frame  and blocks  in the 
previous  frame. If a sufficiently close match is found,  the 
block is encoded as  a  P-block based  on  the  difference 
between  the block and  the closest matching block  in the 
previous frame.  The closeness of the  match is evaluated 
in terms of the  number of bits needed  to  encode  the 
difference  between  the block and  the closest matching 
block  in the previous frame. If the  difference is too 
great, it is deemed  more efficient to  encode  the block 
independently,  without  reference  to previous data.  Such 
a  block is referred  to as an  intracoded I-block. 

The  resulting H.263 compressed  stream consists 
primarily of P-blocks, with I-block insertions  caused by 
scene  changes  or  severe  motion.  To  prevent  error 
accumulation,  the  standard also requires  that  each block 
be  encoded as an I-block at  least  once every 132 frames. 
Although  the H.263 standard  defines how I-blocks and 
P-blocks are  encoded, it allows considerable flexibility 
in selecting when to  encode a  block  as either  an I- or 
P-block. We exploit  this flexibility to improve the 

IBM I. RES.  DEVELOP.  VOL. 42 NO. 2 MARCH 1998 

robustness of a standards-compliant  stream by carefully 
choosing when  and  where  to  insert I-blocks during  the 
encoding process. 

I-block encoding exploits only the  spatial  redundancy 
within the block  in the  compression process,  while 
P-block encoding exploits both  the  temporal  and  spatial 
redundancies of the video. Although  interblock  encoding 
generally  achieves more  compression  gain,  the  encoding 
dependencies of P-blocks  reduce  their  resilience  to  errors. 
If the region referenced by a  P-block has  been  corrupted, 
the  decoding of the P-block will generate  incorrect pixel 
values. If all or a part of this  corrupted P-block  is  again 
referenced by other P-blocks, the  erroneous pixel values 
will cause  errors  to  propagate  from  one  frame  to  another. 
This is known  as the  error-propagation  problem of 
motion-compensated  video  compression.  The  propagation 
stops when  all corrupted  regions  are  updated by I-blocks. 

On  the  Internet,  where loss is primarily attributed  to 
network  congestion,  the loss of a UDP/IP  packet  that 
contains video data  can  result in the loss of several frames 
in  a low-bit-rate video  system. For example,  with  a target 
bit  rate of 20 Kbis, a  typical QCIF  compressed video 
frame may contain 165 bytes. Hence, a  500-byte IP  packet 
contains roughly three  frames of compressed video data. 
If the  packet is lost, these  frames  cannot  be  recovered, 
and  errors begin to  propagate. 

For  non-real-time  applications, knowledge about  the 
interdependence  among blocks  in  a sequence  can  be 
obtained  from  the  dependencies reflected by the  motion 
vectors. It is thus possible to assign  a measure of 
importance  to a pixel or block by counting  the  number 
of pixels or blocks that  depend  on it. This  operation is 
anticausal, Le., traversing backward  in time.  The  higher 
the  dependence  on a  block, the  more critical  it is that  this 
block be  correct  and  that it be  encoded as an I-block. 
Furthermore,  dependence  chains may be  broken by 
encoding  intermediate blocks in the  chain as I-blocks. 

calculate  dependence  counts with the  example of three 
frames in Figure 5. By starting with the  last  frame in  a 
sequence, N ,  and  tracing  the  motion  vectors  between 
frames,  one  can  determine  the  dependence  on pixels in 
the previous frame.  In  Figure 5,  pixels F and G in frame 
N refer  to pixel D in frame N - 1, since  the  motion 
vectors  from F and G point  to D .  Similarly, pixels H and I 
refer  to pixel C. We define the  dependence  count of pixel 
D to  be 2; i.e., two pixels in subsequent  frames  refer  to D. 
Pixel A in frame N - 2 has a dependence  count of 6 
because pixels C ,  D ,  F ,  G, H ,  and I depend  on it. 
Similarly, B has a dependence  count of 3. If A is 
corrupted,  the  error  spreads  from  one pixel to  four pixels 
in just two frames.  The  graph  formed by the pixels and 
motion  vectors is a directed  tree, which we call  a 
dependence  tree. 

We  illustrate how to  construct a dependence  graph  and 

M. H. WILLEBEEK-LEMAIR, K. G .  KUMAR,  AND E. C. SNIBLE 



Frame N - 2 Frame N - I Frame N 

\ \ Motion 
vectors 

1 Video-compression motion-vector dependence graph 

Our I-block selection  procedure  sets  a  target I-block 
count, M ,  for  the  number of I-blocks to be inserted in a 
sequence of N frames.  This  target  value  depends on the 
desired level of robustness  to  packet loss and/or  speed 
with which a client can  produce  an  error-free  decoding of 
a video stream when connecting  to  an ongoing  session in 
midstream  (referred  to as join  latency).  The  number of 
I-blocks  also  affects the  frame  rate in a fixed-bit-rate 
environment. In general,  the  more I-blocks inserted,  the 
more  robust  the video, but  the lower the  number of 
frames  that  can be generated.  To begin, an  arbitrary 
dependence  threshold is selected,  representing  the 
maximum number of pixels that may depend on the pixels 
in a block. Should  a block's dependence  count exceed the 
threshold, it is converted  to an  I-block. When  a block 
is converted  to  an I-block, the  dependence  graph is 
segmented.  After  a  complete  iteration  through  the video 
sequence,  the  total  number of I-blocks may be above or 
below the  target.  The  algorithm  then  adjusts  the  threshold 
accordingly and  reiterates until the  target, M ,  is reached 
or  the maximum number of iterations allowed is exceeded. 

The H.263 standard specifies a  forced  update  period 
(FUP) of 132 frames within which each block must be 
updated (i.e., coded as an  I-block)  at least once.  In  our 
scheme,  the  FUP  can  be  made  a  function of the  network 
packet-loss characteristics  and  the  speed with which the 
video  must  recover from  a  corrupted  state.  In  the  case of 
packet losses,  it is desirable  that  the  decoded  stream 
recover fully from  a  packet loss before  the next loss 
occurs. Assume  that  each  packet  contains K frames of 
compressed video. For  a  packet loss frequency of one in 
every P packets,  the recovery has  to  be  completed within 
K ( P  - 1)  frames.  On  the basis of our  experimental 
results, it takes approximately  eight times  the  FUP  to 
fully restore  a  video  to  an  error-free  state.  One  can  thus 

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE 

calculate  the maximum FUP  to be approximately 
K ( P  - 1)/8  frames.  For  a  1%  packet loss rate ( P  = 100) 
and K = 3, the maximum FUP is 37 frames.  The  other 
factor affecting the choice of the  FUP is the  join latency 
of video  multicast. Let us assume  a  join latency of ten 
seconds.  This is similar to  the  situation in which the 
decoded  sequence must  recover from  a  packet loss in ten 
seconds. If the video is streamed  at  approximately 15 
frames  per  second,  the maximum FUP is 18 frames 
[(lo * 15)/8]. The target I-block count, H ,  can be calculated 
as H = (N * S)/FUP, where S is the number of blocks in a 
frame.  In this  example, the  FUP would be  set  at 18 frames 
in order  to  meet  both  the packet-loss  recovery interval 
and  join-latency  requirements.  The sensitivity of this 
parameter  requires  further study, but in practice we have 
chosen  a  set value of 20 that  appears  to  produce 
reasonable results. 

In certain  cases (e.g.,  limited amount of memory), it 
might not  be  feasible  to  process  an  entire video before 
starting  to  encode  it.  With  a little  modification, the  same 
algorithm  can  operate on a  segment-by-segment basis. A 
video can be partitioned  into  non-overlapping  segments, 
each  segment being treated  independently.  The  encoder 
performs  the two-phase compression  on all frames in a 
segment  and  then moves to  the next, non-overlapping 
segment  and  encodes it independently.  This  technique 
cannot be applied  to delay-critical applications when 
frames  cannot be prebuffered.  A  scheme  to  deal with 
real-time  applications is discussed  in [20]. 

Bamba  stream format and synchronization 
The  Bamba  stream  format was designed with the  UDPiIP 
environment in mind,  where it is assumed  that  packets can 
be lost at any time  during  the transmission and  that new 
clients may join  a multicast  transmission at any point 
during  an ongoing broadcast.  This  makes it necessary that 
the packetized stream  contain sufficient information  for  a 
client to  interpret  a  packet's  content  at any point in the 
stream.  This  can be done by either  a) packetizing the 
audio  and video on distinct audio  and video frame 
boundaries, so that  the  splitter  module  can automatically 
separate  audio  from video, or b) providing a  means  to 
detect  the  frame  boundaries within the  stream.  The first 
approach  adds  overhead  to  the  server,  since  the server 
must be  aware of the  audio  and  video  frame  boundaries 
and  perform special packetization.  The  Bamba file format 
is equivalent  to  the  streaming  format; Le., the  server  does 
not have to process the  data in the file, but must simply 
place contiguous  chunks of data  from  the file into  packets 
and  send  them.  For this reason,  Bamba is implemented 
using the  second  approach, in which every  Bamba file is 
separated  into  Bamba  frames,  each  containing  a  header, 
a  portion of audio,  and  a  portion of video.  Each  Bamba 
frame  header  contains  a  unique synchronization symbol 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 



(bit pattern)  that  does  not  reappear within the  data  (audio 
and video) portions of the  stream.  This way, whenever a 
packet is lost, the client  begins searching  the incoming  bit 
stream until  it detects  the  unique synchronization symbol. 
To  ensure  that  the  header synchronization symbol does 
not  occur within the  stream,  the  audio  and video data 
are  run  through a byte-stuffing  filter that  alters  the byte 
sequence in the event that  the special symbol is detected 
in the  input  stream.  The  stream must be  destuffed  at  the 
receiver. Sufficient information is provided  within each 
Bamba  frame  header  for  the client to  interpret how the 
audio  and video data  are  apportioned within the variable- 
length Bamba frame  and  to  initiate synchronization of the 
two. 

The  unique synchronization symbol consists of 4 bytes: 
00 00 FO  FO. The byte-stuffing algorithm  scans  the  stream 
in search of the  pattern 00 00 FO.  If the  pattern is found, 
the algorithm inserts  an FF. The destuffing routine 
searches  for 00 00 FO.  If it finds  an FF following the 
sequence, it removes it; if it finds an FO, it  recognizes 
the  header-synchronization symbol (any other byte 
would represent  an  error).  This  guarantees  that  the 
synchronization symbol, 00 00 FO  FO, can  occur only 
within the  header. 

The  synchronization between audio  and video is 
severely complicated when the possibility of lost packets 
exists. Basically, video is synchronized to  audio.  This is 
done by including audio  and video segments within a 
Bamba frame so that  the  start of each  audio  segment 
corresponds  to  the  start of the  corresponding video 
segment.  Hence,  each Bamba frame  contains  an  integral 
number of video frames  along with the  corresponding 
audio  segment. 

on a variety of Web  sites  both within and  outside IBM. 
For example,  it was used on  the official 1996 Olympics 
Web  site  to  distribute  audio  and video  clips concerning 
the  games. For that event, approximately 100000  users 
installed the  Bamba plug-in and played  clips from  the 
“Sights and  Sounds” pages of the  Web site.  Clips  were 
offered  at two target bit rates: 24 Kb/s for  modem- 
connected users and 100 Kb/s for ISDN- and LAN- 
connected users. More recently, a variety of education  and 
training  applications have been  developed  that  incorporate 
Bamba.  These  include Web-based courses  that  combine 
graphics,  course maps,  discussion forums,  and Bamba 
audio  and video files, as well as seminar  applications  that 
deliver  choreographed  presentations of audio  streams with 
graphics  and text in a Web  browser. 

A video  jukebox service was created  for IBM internal 
use to  distribute  audio  and video content over the Web. 
Content providers  can  send their  content  to a multimedia 
laboratory,  where it is converted  to  Bamba files at several 
target bit rates.  The  Bamba files are placed on a Web 

Bamba  streaming technology  has been used extensively 

IBM J. KES. DEVELOP.  VOL. 42 NO. 2 MARCH 1998 

Capture station 

Audio$$- Encoder H Packet 1 Video - Encoder H Packet 
- 

, 

TCP Reflector 

TCP or UDP 

Playback station 

server,  and  the  URL  pointers  to  the files are  sent back to 
the  content  providers  for  their use. The service has  seen a 
steady  increase in usage; it has  been used by corporate 
communications  personnel to distribute  important 
messages to  IBM employees. For example,  recently one of 
these clips, of 7.5 minutes  duration, was placed on  the server. 
Over a three-day  period  there  were  21000 viewings of the 
clip, with a 6:l preference  for  the  higher-bit-rate version. 
At  the  peak,  there  were 10000  hits  in one day and 1000 in 
one  hour, with a peak  bandwidth  consumption of 7.6 Mb/s 
and  an  average bandwidth consumption of 2.2 Mbls. We 
continue  to  monitor  the  streaming  performance  and 
characterize the audience viewing trends to best understand 
how the  content is used and its impact  on  the networks 
over which it is delivered. 

4. Live Bamba architecture 
A Live Bamba system was developed  to  stream  audio  and 
video from  a live source across the  Web  to  multiple 
recipients.  This system uses  the  same  audio  and video 
compression  technologies.  The Live Bamba system consists 
of three primary components (as illustrated in Figure 6 ) :  
an  audioivideo  capture  station,  an  audioivideo reflector, 
and an audioivideo playback station.  In  the  capture 
station,  audio  and video inputs  are  converted  from  analog 
to digital form,  compressed,  and  then  packetized.  The 
Live Bamba packets  are  transmitted  to  the reflector via a 

M. H. WILLEBEEK-LEMAIK, K. G. KUMAR,  AND  E.  C. SNIBLE 

277 



capability. For  example,  point-to-point  TCP/IP 
connections may be  established  between  reflectors  through 
firewall boundaries  that  separate  intranets  from  the global 
Internet.  Within  the  intranets,  the  reflector may establish 
multicast UDP/IP  connections  to local  playback stations. 

The  reflector  concept also provides a platform  upon 
which customized  features  are easily built.  For example, 
format  conversions  from high to low compressed  bit  rates 
to satisfy different  network  and  playback-station 
capabilities  are possible. It may also be  preferable  to 
maintain  different  audio  tracks (e.g., different  languages) 

Source 

0 Reflector 
0 Multicast router for  the  same video feed  and  to  route  these  audio  tracks  to 
0 Playback station different reflectors, depending  on  the reflectors’  local 

audience  preferences. A hierarchical  Bamba  reflector 

1 Hierarchical Bamba reflector configuration. reflector in the  Internet, which in turn is forwarding  the 

TCP/IP  connection  that is established  between  the 
reflector  and  the  capture  station.  The  reflector  then 
establishes  and  manages  multiple  connections  to  interested 
recipients.  These  connections  are  initiated by the playback 
stations, which can  either  establish a direct  connection  to 
the  reflector given the  correct  IP  address,  or  establish a 
connection indirectly via a Web server through  an  HTTP 
URL, which returns a file to  the playback station 
containing  the  appropriate  address  information  and file 
type. The browser then  launches  the Live Bamba  helper 
application  or browser  plug-in. 

the  various playback stations in the  network. Playback 
stations may join  an  ongoing session (live broadcast in 
progress)  at any point in the transmission. The  reflector 
maintains a circular  buffer  queue  containing  the most 
recent  several  seconds of a live transmission for  each 
playback station  to which it is connected.  When a new 
station  connects,  the  reflector  produces a  new  copy of the 
circular  buffer  queue  for  that  connection.  Each of the 
circular  buffers is written  to by the  incoming  capture 
station  input  and  read  from by the  TCP/IP  connection  to 
the  corresponding playback station.  The  TCPiIP  approach 
allows the  connections  to  traverse firewalls easily and 
maintain high quality. 

The  same physical reflector node  can  be  used  for 
multiple sessions. The  reflector  node  resource is limited, 
but  upper  bounds  can  be  set  for  the  number of 
connections  per session  as well as for  the  total  number of 
connections  per reflector. Furthermore,  reflectors may be 
cascaded  to  scale  and  handle  increased  demand. A 
reflector may also be configured to provide  multicast 
services when it is connected  to  networks with  multicast 

The  reflector  distributes  the  audio  and video streams  to 

signal to  reflectors within different  intranets. Within each 
intranet,  the signal is multicast to local  playback stations. 
Modifications to  the  streams  could  be  made locally at  each 
reflector. 

5. Summary 
The  Bamba system for  low-bit-rate  audio  and video 
streaming over the  World  Wide  Web  has  been  described, 
and a detailed  description of the  Bamba system design 
and significant  issues related  to its implementation have 
been discussed.  Several key features distinguish Bamba 
from existing streaming technologies. The first of these is 
the quality of the  audio  and video,  in particular  the video, 
which ranges  from very low bit rates of tens of kilobits per 
second  to  hundreds of kilobits per  second.  The  second is 
the fact that  both  the  audio  and  the  video  are  based  on 
standard  algorithms.  Third,  the  Bamba system can  operate 
using standard  HTTP  servers. No special  server  software 
is required  to  store  and  send  Bamba clips. Fourth,  since 
Bamba  uses  TCP/IP as the underlying communication 
protocol,  the  streams  can  traverse firewalls with no special 
configuration requirements. Finally, the  Bamba  player 
was implemented as  a Netscape plug-in, which enables 
application  developers  to easily embed  audio  and video 
clips  within an  HTML  document. A UDP/IP-based system 
for Bamba  has also been  described, which requires a 
special server  and  supports multicast. For  this system,  a 
novel approach  to  enhancing  the  video  robustness in lossy 
network  environments  has  been  presented. 

The Live Bamba  architecture was presented, which uses 
a reflector  as  the key building  block to deliver the  Bamba 
stream  to  multiple  recipients.  This  approach is scalable 
and  lends itself well to  handling  conversions of the  stream 
at local  access points,  depending  on local network  and 
playback-station requirements  and/or  capabilities. 
Reflectors  can  provide  secure  communications  and  make 
use of network  multicast  capabilities  when available. 

M.  H. WILLEBEEK-LEMAIR, ti. G. KUMAR, AND E. C. SNIBLE IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 



Future systems will incorporate  additional  media types 
(e.g., graphics  and  Java  applets) within the  Bamba 
stream  to  produce synchronized streamed  multimedia 
applications.  Additional  audio  and  video  CODECs  can 
easily be  incorporated  into  the  Bamba  framework. As 
network  technologies evolve, Bamba will make  use of 
more  advanced  network-resource-reservation mechanisms, 
which will provide more  control over the  connections’ 
quality of service. 

Acknowledgments 
We acknowledge the  contributions of Yuan-Chi  Chang, 
Zon-Yin  Shae, Xiping  Wang, and Steve Wood  for  their 
work on  Bamba,  and  Marcel  Kinard  for  the  Bamba 
statistics regarding  the video jukebox service. We  also 
acknowledge the  Science  and Technology Group of IBM 
Research in Haifa  for  their work on  the  audio  CODEC 
implementation,  and  the  Multimedia  Applications  Group 
of IBM  Research in Yorktown  Heights  for  their work on 
the  video  CODEC  implementation. 

*Trademark  or  registered  trademark of International Business 
Machines  Corporation. 

**Trademark  or  registered  trademark of VDONet 
Corporation  Ltd., Xing  Technology Corporation, Vosaic 
Corporation, Vivo Software  Inc., InterVU, Inc.,  Progressive 
Networks, Inc., Moving Picture  Expert  Group,  or Sun 
Microsystems, Inc. 

References 
1. M. Willebeek-LeMair  and Z.-Y. Shae,  “Videoconferencing 

Over  Packet-Based Networks,” Research Report RC-20480, 
IBM Thomas  J.  Watson  Research  Center, Yorktown 
Heights, NY, 1966. 

2. Richard  Schaphorst, Videoconferencing  and  Videotelephony, 
Artech  House,  Norwood, MA, 1996. 

3. T.  Turletti  and C. Huitema,  “Videoconferencing  on  the 
Internet,” IEEE Trans.  Networking 4, No. 3, 340-351 
(June 1996). 

for  Packet  Video,” Proceedings of Multimedia ’95, San 
Francisco, 1995, pp. 511-522. 

5. “Visual Telephone Systems and  Equipment  for Local 
Area Networks  Which  Provide a  Non-Guaranteed Quality 
of Service,” Draft ITU-T  Recommendation  H.323, 
International  Telecommunication  Union, Place des 
Nations,  CH12-11  Geneva 20, Switzerland, May 1996. 

6. “Control of Communications Between  Visual Telephone 
Systems and  Terminal  Equipment,” ITU-T 
Recommendation  H.245, International  Telecommunication 
Union, Place des  Nations, CH12-11 Geneva 20, 
Switzerland, 1995. 

Internet  Draft, draft-ieif-avt-rtp-05, IETF  Secretariat, c/o 
Corporation  for  National  Research Initiatives, 1895 
Preston  White Drive, Suite 100, Reston,  VA 20191, July 
1994. 

8. H. Schulzrinne,  A. Rao,  and  R.  Lanphier,  “Real  Time 
Streaming  Protocol  (RTSP),” Internet Engineering Task 
Force MMUSIC  WG Internet Draft, IETF  Secretariat, c/o 
Corporation  for  National  Research Initiatives, 1895 
Preston  White Drive, Suite 100, Reston,  VA 20191, 
February 2, 1998. 

4. S. McCanne  and V. Jacobson, “vic: A Flexible Framework 

7. “RTP:  A  Transport  Protocol  for  Real-Time  Application,” 

1BM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 199X 

9. G.  Venditto,  “Instant  Video,” Internet  World, pp. 84-101 
(November 1996). 

10. T. Berners-Lee, R. T. Fielding, and  H. Frystyk Nielsen, 
“Hypertext  Transfer Protocol-HTTPil.0,” HTTP Working 
Group  Internet-Draft, http://www.w3.org/hypertext/WWWI 
Protocols/Overview.htrnl, March 1995. 

11. “Coding  of Moving Pictures  and Associated Audio-for 
Digital Storage  Media  at  Up  to  About 1.5  Mbitis,” I S 0  
Standard IS 11172, IS0 Central  Secretariat, 1, rue  de 
VarembC, Case  postale 56,  CH-1211 Genkve 20, 
Switzerland,  November 1992. 

12. “Video Coding for Low Bit-Rate  Communication,” ITU-T 
Recommendation  H.263, International  Telecommunication 
Union,  Place  des  Nations,  CH12-11  Geneva 20, 
Switzerland, May 1996. 

Language Specification-2.0,” Work in Progress (draft-ietf- 
html-spec-Ol.txt), CERN,  Hal  Computer Systems, IETF 
Secretariat,  c/o  Corporation  for  National  Research 
Initiatives, 1895 Preston  White  Drive,  Suite 100, Reston, 
VA 20191, February 1995. 

14. W. B. Pennebaker  and  J. L. Mitchell, JPEG: Still Image 
Data  Compression, Van  Nostrand  Reinhold, New York, 
1992. 

15. W. R. Cheswick and S. M. Bellovin, Firewalls and  Internet 
Security, Addison-Wesley  Publishing  Co., Inc., Reading, 
MA, 1994. 

ITU-T  Recommendation  H.324, International 
Telecommunication  Union, Place des  Nations, CH12-11 
Geneva 20, Switzerland, 1995. 

Communications  Transmitting  at 5.3 and 6.3  Kbitis,” 
ITU-T  Recommendation  G.  723, International 
Telecommunication  Union, Place des  Nations, CH12-11 
Geneva 20, Switzerland, 1996. 

Kbitis,” ITU-T  Recommendation  H.261, International 
Telecommunication  Union, Place des  Nations, CH12-11 
Geneva 20, Switzerland, July 1990. 

19. S. S.-P. Chang, J. J.-C. Chen, E. Feig, M.-H.  Lin,  L. K. 
Liu, and J. H.  Morgan, “IBM’s H.263 VideoCodec,” 
presented  at  the High  Definition Media Technology and 
Applications  Workshop,  Taipei,  Taiwan,  October 14-16, 
1996. 

20. L. K. Liu and  E. Feig, “A Block-Based Gradient  Descent 
Search  Algorithm  for Block Motion Estimation in Video 
Coding,” IEEE Trans.  Circuits & Syst. for  Video  Technol. 6, 
No. 4, 1-6 (August  1996). 

Processing Algorithms  and  Techniques, Proc. SPIE 1244, 
2-13 (June 1990). 

22. E. Feig and S. Winograd,  “Fast Algorithms for  the 
Discrete Cosine Transform,” IEEE Trans. Signal 
Processing 40, No. 9, 2174-2193 (September 1992). 

23. D.  Bertsekas  and  R.  Gallager, Data Networks, Prentice- 
Hall,  Inc., Englewood Cliffs, NJ, 1992. 

24. M. Willebeek-LeMair, Z. Y. Shae,  and Y. C. Chang, 
“Robust H.263 Video  Coding  for Transmission  Over the 
Internet,” Research  Report  RC-20532, IBM Thomas  J. 
Watson  Research  Center, Yorktown Heights. NY, 1996. 

13. T.  Berners-Lee  and  D. Connolly, “HyperText  Markup 

16. “Terminal  for Low Bitrate  Multimedia  Communications,” 

17. “Dual  Rate  Speech  Coder  for  Multimedia 

18. “Video  CODEC  for Audiovisual  Services at p X 64 

21. E. Feig, “A Fast Scaled DCT  Algorithm,” Image 

Received November 6, 1996; accepted for publication 
June 5, 1997 

M. H. WILLEBEEK-LEMAIR, K. G. KUMAR, AND E. C. SNIBLE 



Marc H. Willebeek-LeMair IBM Research Division, 
Thomas J. Watson Research Center, P.O. Box 218, Yorktown 
Heights, New York 10598 (mwlm@watson.ibm.com). Dr. 
Willebeek-LeMair received the B.S. degree in computer  and 
electrical  engineering  from  George Mason  University,  Fairfax, 
Virginia, in 1985, and MS.  and  Ph.D.  degrees  from  the 
School of Electrical Engineering  at Cornel1 University, Ithaca, 
New York, in 1988 and 1990, respectively. He is currently 
managing the  Multimedia Networking group  at  the IBM 
Thomas J. Watson  Research  Center, specializing in the 
development of networked multimedia systems. Dr. 
Willebeek-LeMair  joined IBM in 1990 as a  Research Staff 
Member in the  Research Division  High  Bandwidth Systems 
Laboratory.  His  research  interests  include  real-time networked 
applications such as  desktop  videoconferencing  and 
audioivideo streaming, high-bandwidth communications, 
computer  architecture,  parallel processing, and 
interconnection networks. Dr.  Willebeek-LeMair is a  member 
of the  IEEE  Computer Society, the IEEE Communications 
Society, Alpha Xi, and  Eta  Kappa  Nu. 

Keeranoor G. Kumar IBM Research Division, Thomas J.  
Watson Research Center, P.O. Box 704, Yorktown Heights, New 
York I0598  (kumar@watson.ibm.com). Dr.  Kumar received the 
B.Sc. degree in physics in 1978 from  Kerala University, India. 
He received the B.E. degree in electronics  and  communication 
in 1981 from  the  Indian  Institute of Science, Bangalore,  and 
the Ph.D. degree in computer science in 1989 from  the  Indian 
Institute of Technology, Bombay. Dr. Kumar’s research 
contributions have been in the  areas of real-time  distributed 
computing,  models of parallel  programming,  and compiling 
for parallelism.  His current  research  interests  are in the  area 
of system and network architectures  for  multimedia. 

Ed C. Snible IBM Research Division, Thomas J. Watson 
Research Center, P.O. Box 218, Yorktown Heights, New York 
10598 (snible@us.ihm.com). Mr.  Snible is a Software Engineer 
in the  Multimedia Networking group,  Internet  Department,  at 
the IBM Thomas J. Watson  Research  Center.  He received his 
B.S. in  computer  engineering  from  Arizona  State University in 
1990, joining  the  Research Division in 1997. At  IBM, Mr. 
Snible has implemented  Bamba  components in Plug-in, 
ActiveX, and IBM MediaBeans  (Java) frameworks. Current 
research  interests include multimedia  authoring, design 
patterns,  and working with user  interfaces. 

M. H. WILLEBEEK-LEMAIR, K G. KUMAR, AND E. C SNIRLE 1BM I. RES,  DEVELOP.  VOL. 42 NO. 2 MARCH 1998 


