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We present a design for a video server in
which video content is stored in special
video-delivery subsystems attached directly
to network components such as switches

or high-speed-network ports rather than

the magnetic disk storage attached to
conventional computer systems. Video is
preformatted and stored in the form of
network packets. This design approach
overcomes the CPU- and I/O0-bandwidth
limitations of conventional computers in
executing the file-system and network-
protocol code for many concurrent video
streams, resulting in higher performance at a
lower cost. Two designs for the approach are
discussed. The first extends the packet buffer
of a shared-buffer switch with additional
memory for storing the video packets. The
second design uses a stream controller as the
interface between an array of disks and a
traditional switch or network port. We have
built a prototype based on the second design.

To avoid interference on the disks, data is
interleaved across all disks connected {o a
stream controller in units of fixed playback
time. This also reduces the jitter in the
response time of the disks and, therefore,
the size of the buffers needed to maintain
interruption-free delivery. The cost benefits
of both approaches are discussed.

Introduction

It is widely believed that advances in computer and
communication technologies will make possible a wide
variety of new residential and commercial interactive
multimedia services. The contemplated residential services
include video on demand for movies, news, sports, TV
programs, etc., home shopping, interactive games,
surrogate travel, and a wide variety of educational and
information services. The commercial services include
video mail, conference record-keeping, multimedia
manuals, training, and industry-specific uses such as videos
of homes for sale, used in the real estate industry, and
videos of vacation resorts for the travel industry.
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Video servers are the specialized systems used by the
providers of the services mentioned above to store the
vast amount of video needed and to deliver it to individual
users when requested by them.

Fiber optic technology, one example of these advances,
has permitted upgrades to cable TV trunk and feeder
systems, allowing each active subscriber to have a
dedicated channel to a server for receiving compressed
digital video. Personal computers and set-top boxes have
evolved to support networked multimedia applications,
taking advantage of low-cost video-decompression chips
and network-interface chips for the cable network.

The current choice of video servers for interactive
multimedia services, however, continues to be standard
mainframes or workstation-based parallel/clustered
computing systems. Their system architecture, hardware
organization, operating systems, and I/O subsystems
are not matched to the requirements associated with
delivering multimedia content to a large number of
networked users. Mainframe and workstation hardware
is optimized for processing computation-intensive
applications, with very limited emphasis on moving data
efficiently between the network interfaces and storage
devices, which is the primary requirement for a video
server. For example, the bandwidth between the memory
and cache in standard systems is an order of magnitude
higher than the bandwidth between the memory and the
storage or network devices. The floating-point units add to
the cost of the systems without providing any benefit to
the delivery of multimedia data, and the caches are too
small to capture any locality in the accesses to multimedia
data.

Similarly, most operating systems of mainframes or
parallel-computer-based servers are optimized to maximize
utilization of the CPU and to maximize throughput in a
time-sharing environment. The response time for an
operating system service can vary significantly from
request to request. Therefore, large buffers in system
memory are needed for multimedia data being retrieved
from secondary storage. Finally, the disk-array subsystem
of a standard system is itself usually optimized to retrieve
data called for by a single I/O request with the minimum
latency and highest bandwidth possible. The high
bandwidth is achieved by reading large blocks of data
from the disk array, which creates the need for large
semiconductor storage buffers if many multimedia streams
have to be provided simultaneously. This increases the
total cost of the server.

The aforementioned limitations in using general-
purpose computers as video servers force the
price/performance of such servers to be much higher than
that of a system designed optimally for delivery of video.
(Of course, this is true only if the design and product-
development costs of the special-purpose system can be
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apportioned over a sufficiently large number of units.)
Several researchers have addressed the operating-system
drawbacks by fine-tuning the operating-system services.
Dan and Sitaram have developed innovative methods for
optimizing the use of stream buffers in the system memory
of a general-purpose computer being used as a video
server [1, 2]. Haskin has proposed increasing the block
size in the file system to improve performance [3]. Rangan
and Vin have suggested novel techniques for placement of
data on disks {4, 5]. Several researchers have developed
improvements in scheduling disk read commands [6-8].
Tobagi et al. have proposed a real-time kernel-based
system in which a periodic process schedules the retrieval
of multimedia data from a disk array [9]. Serpanos and
Bouloutas have compared the performance of video
servers based on conventional computers configured as
centralized and distributed systems [10]. A comprehensive
tutorial on the design issues in digital multimedia servers
is given in [11].

In this paper, we describe a radically different approach
for delivering video over a network from a centralized
server to a large number of clients. We observe that much
of the processing done in a traditional video server to
retrieve data from a file system and reformat it into
network packets is wasteful because video files stored in
the server are sent repeatedly at different times over the
network, with a nearly identical sequence of packets being
created each time, the only difference being that they are
addressed to different recipients. A logical approach to
reducing the processing requirement, hence the cost of the
server, is to create this sequence of packets once and store
it in memory coupled closely to the network, so that the
packets can be retrieved much less expensively than with a
conventional file system and delivered to the network
without incurring the network-protocol overhead more
than once. This reduces the processing required to send
video from a few instructions per byte transmitted to a
few instructions per packet transmitted, the exact number
of instructions depending on the cleverness of the
implementation in both cases.

In the next section of this paper, we present a video-
server architecture that embodies the above philosophy
of preformatting data into packets and storing them in
memory closely coupled to the network. The storage for
video packets is integrated directly into a network switch.
This architecture is suitable for high-end video servers
providing tens of thousands of streams, which is an order
of magnitude higher than what can be accomplished with
general-purpose-computer-based servers with similar
hardware complexity. The design of large switches is
optimized to move data at high speeds from the switch
inputs to the outputs via intermediate buffers, though the
switches cannot do any significant processing on the data
passing through them. By extending the internal buffers of
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the switch to enable them to store video and minimizing
the processing required to create network packets by
preformatting the stored video as network packets, one
can transform a basic switch into a video server that is
much more cost-effective than a general-purpose
computer.

Though we have worked out the design and
implementation details of this architecture, it has not been
implemented, in part because the perceived demand for
such large servers was revised sharply downward during
the design period (a few months in 1992). Instead, we
built a smaller server, primarily a software rendering of
the design philosophy. In this design, we store video in the
format of network packets in a disk array that is coupled
via a stream controller directly to network interface cards
in a workstation. This design is described in the third
section of this paper. It is applicable to servers providing
several hundred streams.

The stream controller is capable of completing the
recipient address in the stored packets. The packets of a
video file are linked together. Therefore, the stream
controller can deliver packets directly to the network
without the intervention of a general-purpose computer.
Buddhikot et al. proposed a system for directly delivering
multimedia data from an array of disks to an ATM
network {12], but, as is the case with RAID II [13]
(Redundant Array of Inexpensive Disks), a general-
purpose computer is still responsible for initiating every
data transfer from the disk. Therefore, the scalability of
their approach is limited by the computer’s processing
capability.

In our system, data is interleaved' in units of fixed
playback time, as proposed by Lougher and Shepherd [14]
and Chang and Zakhor [15]. Therefore, we can use a
software scheduler in the stream controller to coordinate
the access to the disks by the video streams to completely
avoid interference. This achieves not only higher
throughput from the disks but also much tighter control
on response time, thus avoiding jitter (the irregularity
observed by the viewer or listener when video or audio
packets are not received in time). Therefore, the size of
the buffers required for a video stream can be reduced by
nearly an order of magnitude, from 512 kilobytes (KB) or
1 megabyte (MB) to 64 or 128 KB. This reduces cost and
is critical for implementing the stream controller so that
the video-stream buffers are all on a single card that fits
in a workstation adapter. If the video buffers must be in
the system memory of a general-purpose processor
instead, video data will move twice over the 1/O bus,
reducing the number of streams that can be delivered.

! Interleaving a file on d disks means writing successive portions of the file on
successive disks, 1 to d, and repcating this until all of the file has been written.
Then, cach disk contains every dth portion of the file. Interleaving is also called
“striping.”
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In the last section of this paper, we discuss the
performance of the video-server prototype and comment
on the importance of the proposed ideas in achieving
the performance. Simulation results are presented to
demonstrate the problem of disk interference, which
limits the throughput of conventional servers, but is
circumvented by our design. We also discuss the advantage
of using semiconductor memory for large video servers
that can serve tens of thousands of streams from a few
dozen files. Briefly, when economics are determined for
this situation, the total cost of storing the video must be
divided by the number of streams that can be served.
Surprisingly, DRAM is cheaper than disk storage because
it has much higher bandwidth.

While we have focused on a very important requirement
of video servers, namely their ability to move data from
storage to network in large volume at low cost, a video
server must provide other capabilities, such as accepting
requests for starting new streams, authentication of
authorized users, and billing systems. These are not
covered in this paper but can be found in [16]. The
proposed design is also applicable to large servers
delivering information other than video and audio over
networks. Nonvideo files in network file servers can be
similarly prepacketized and off-loaded to specialized
packet-delivery systems, especially if the files are large
and are requested frequently.

Placing video data in network switches

Our video-server design is motivated by the following
observation about the traditional implementation shown in
Figure 1(a). When thousands of streams access the same
video material at slightly different times, the general-
purpose processor fetches the data from the disk
subsystem each time, executes the file-system code for that
purpose, and then executes the network-protocol code to
deliver the video. However, the result is essentially the
same sequence of packets each time, differing minimally
from the packets of the previous stream, perhaps only in
the destination-address field of the network headers and
trailers. The number of streams delivered is limited by the
CPU’s ability to perform these functions.

Since the video data for an application program is not
processed or modified by the general-purpose processor
running that application, it can be partitioned into video
messages (for example, frames), which can be represented
by pointers (addresses) in the memory of the processor
to the actual video message stored in a switch of the
network. (In general, all of the messages of a video are
stored in one switch. Copies of messages can be stored in
different switches, for the sake of reliability or increased
throughput.) When the processor must send video to an
end user, it sends requests to the network switch storing

that video to deliver the constituent video messages, 221
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instead of reading video from its own secondary storage.
The processor sends one request for each message into
which the video is partitioned, or, as discussed below, the
processor may send only one request for a group of video
messages that are connected by links. A request consists
of a pointer to the video messages, the address of the
recipient, and possibly the time at which the video
message should be read out. Figure 1(b) illustrates this
concept. Thus, we eliminate the recurring overhead of
generating nearly identical video messages for delivering
the same video material to multiple viewers. Furthermore,
instead of using the expensive computational resources of
a general-purpose (host) computer, we use less expensive
dedicated hardware (special-purpose processor) integrated
into the switches of the network.

Before the video messages are stored in the switch,
transport-layer headers and trailers are attached to the
messages, the messages are segmented into network-
packet payloads, and network-layer headers and trailers
are attached to these payloads. The fields in the network-
or transport-layer headers or trailers that can be
precomputed when the packets are stored in the switch
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are so computed and stored in the network packets. The
fields that cannot be precomputed (e.g., recipient) are
completed subsequently, as described below. By storing
these preprocessed packets in the network switch, we
further reduce the processing required in the switch to
deliver video data.

A video message is the smallest unit of video that can
be sent to a client. The size of the video message has to
be small enough to provide quick response time in
interactive multimedia applications (e.g., to stop the play
of a video or to switch to a new stream). However, short
video messages require more frequent interactions
between the general-purpose processor and the switches,
demanding more powerful (therefore more expensive)
processors. Furthermore, more hardware is required in the
switches to handle the increased number of request
messages. In order to minimize both message size and
general-purpose processor and switch processing,
successive video messages of a video file are connected by
a link field. Thus, a request from the general-purpose
processor identifying the first video message in the video
stream and the number of subsequent messages to be
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delivered enables the switch to deliver all of the specified
messages in the stream without further processor
intervention. We expect the message size to be between
16 KB and 32 KB. The link field, in addition to carrying a
pointer to the next message in the video storage, can
optionally include a time value, expressed as an offset
from the video start time. When a link field contains a
time value, the video message to which the link points is
requested at the specified time. Otherwise, that message is
requested immediately.

The video messages can contain multiple links, in order
to provide access to video data packets in sequences
different from those requested for normal playback. For
example, for video compressed using the MPEG**
(Moving Picture Expert Group) algorithm [17], all of the
I-frames can be linked together as a doubly linked list for
providing fast-forward and reverse modes. Additional
time values can be included for supporting slow motion.
Finally, links that point to syntactic boundaries such as the
start of a scene or the start of a spoken sentence can be
generated and used for sophisticated forward- or
backward-motion functions.

& Shared-buffer switch modified to store video

In this section, we first briefly discuss the design of a
conventional shared-buffer switch and its operation. Then
we describe the modifications that give the switch the
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{ Shared-buffer switch: (a) Conventional design; (b) augmented in order to store video data.

capability to store video and dispatch specified video
packets to specified clients when instructed by the general-
purpose processor. Such switches are used in high-speed
packet-switched networks to move packets from one link
to the next on their path to the destination.

Figure 2(a) shows the high-level architecture of a
conventional shared-buffer switch. At its core is a large
shared buffer, with an input bus for receiving packets into
the memory from incoming switch links, and an output bus
for sending packets from the memory to output links. The
bandwidths of the input and output buses are equal to the
aggregate bandwidth of all the input and output links,
respectively. A list of free cells (fixed-size blocks) in the
shared buffer is maintained in a FIFO queue in the
central controller. Each output link also has an address
queue associated with it in the central controller, for
storing the addresses in the shared buffer of the network
packets that must be delivered to it.

Network packets are transmitted through such a switch
as follows. The network packets arriving on each input
link are processed in the input adapter to determine to
which switch output the packet must be routed, and the
selected switch output is signaled on the select-output bus.
In order to store the incoming packet into the shared
buffer, the address of a free cell must be obtained from
the list of free cells, placed on the write address bus of
the shared buffer (labeled Wr in the figure), removed
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from the list of free cells, and placed in the address queue
of the output link to which the packet is being sent. Each
output adapter dequeues the addresses of packets in the
shared buffer from its address queue in the central
controller, reads the packets over the output bus, and
sends them on its output link. The address is stored back
into the list of free cells.

The input bus is operated in a slotted manner (thus, no
arbitration is required), with each of the N input adapters
accessing the bus every Nth time slot. This is possible
because the bus bandwidth is N times that of the fastest
input link. The output bus is operated in a similar
manner, and each input and output adapter interacts with
the central controller only in the clock cycle in which it
gains access to the input or output bus. A microprocessor
in each input and output adapter is used to perform
various link-monitoring and service functions.

The control point in Figure 2 is a general-purpose
computer that performs network-management functions.

Figure 2(b) illustrates a conventional shared-buffer
switch with the hardware modifications required to give it
the capability to store video messages and to deliver a
specified group of video messages to a specified client
when instructed by the general-purpose processor to do
so. In order that network packets of a video message can
be stored in the shared-buffer switch of Figure 2(b), the
shared buffer is augmented with video memory. (The
shared buffer is used for regular network traffic, with
packets arriving and departing. The video memory is used
to store video packets, which remain until explicitly
deleted.) The shared buffer and the video memory share
the input and output buses, the write address bus (labeled
Wr), and the write-enable control (not shown in the
figure). The link field and other auxiliary fields associated
with the video messages are stored separately in a tag
memory, which resides in the video dispatch unit.

The output adapters perform the function of managing
the video streams originating from video memory. Unlike
the fields in the packets coming from the shared memory
of a conventional shared-buffer switch, the destination
address fields and some other fields of the packets coming
from the video memory do not contain the proper values;
however, the microprocessors in the output adapters are
programmed to complete the headers and trailers of the
packets received from video memory before forwarding
them. The command sent (in a packet) from the general-
purpose computer [Figure 1(b)] for dispatching a
video message is intercepted by the output adapter
through which the messages will be transmitted. The
microprocessor in the output adapter maintains a stream-
control table with an entry for each video stream it
controls. The video-service application running in the
general-purpose computer manipulates the stream-control
table through control messages sent to the output

M. KUMAR

adapters, which use these tables to send requests to the
video dispatch unit to deliver individual video messages.
The video dispatch unit, in turn, requests the central
controller of the switch to deliver all of the network
packets in the message, by issuing requests for one packet
at a time to the central controller. The output adapters
interact with the video dispatch unit via the video control
bus in Figure 2(b). As with the central controller, each
input and output adapter interacts with the video dispatch
unit only in the cycle in which it accesses the input bus or
the output bus; therefore, no arbitration is required for
the video control bus.

The video dispatch unit also monitors the addresses of
all cells read from the video memory, and the video
streams to which they belong. If the packet read from the
video memory is not the last packet of a video message,
the video dispatch unit generates a request for the next
packet in the video message by reading the link field of
the current packet and sending it to the central controller.
If the packet read from the video memory is the last
packet of a message, the link field of that message (which
contains the address of the next video message in the
stream and, optionally, the time at which the next message
should be delivered to the client) is read from the tag
memory in the video dispatch unit and sent to the output
adapter receiving the video message. The link field is used
by the microprocessor in the output adapter to send a
request for a new video message to the video dispatch unit
or to notify the general-purpose processor (by means of a
packet sent from the output adapter to the processor) of
completion of the video message delivery.

So that it can interact with the video dispatch unit and
with the input adapters (to load video content), the
central controller is modified as follows. A multiplexer
unit, M1, is provided between the free-cell list and the
output-address queues, in order to allow the video
dispatch unit to add stream_ids to the packet addresses
stored in the address queues. When a packet address is
dequeued from the output-address queue, the video
dispatch unit uses the stream_id part to determine which
video stream it belongs to and, consequently, the video
stream for which it must perform further activity, such as
completing the information in the header and/or trailer
fields of the packets. Another multiplexer, M2, allows the
address queue to be selected by the video dispatch unit
when it is writing the address of a packet in video memory
into an address queue. Addresses dequeued from address
queues are recycled into the free-cell list only for cells
associated with the shared buffer, not with video memory.

® [oading video memory from the general-purpose processor
To load information into the video memory, the
microprocessor in an input adapter receives messages,
from the general-purpose processor, comprising the
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network packets to be loaded and their starting addresses
in the video memory. In response, the input adapters
place the packets on the input bus and place the addresses
in video memory where the packets should be stored on a
separate bus connected to the third new multiplexer, M3,
in Figure 2(b). Multiplexer M3 selects the write address
for the shared buffer and the video memory. The general-
purpose computer used as the control point in the shared-
buffer switch also functions as the video-memory manager,
to allocate and reclaim video storage. The general-purpose
processor or application server interacts with the video-
memory manager (by means of command packets) to
request a block of free video memory or to return a block
of video memory. Once the video-memory manager
allocates a block of video memory to the general-purpose
processor and provides the processor with the address
range for that block, the processor can request an input
adapter to write directly into the allocated video memory,
as explained in the preceding paragraph, without further
involvement from the video-memory manager.

Stream controller to attach disks to a switch
In the previous section, we presented a high-level design
for storing video content in the switches of a network. An
alternative to this approach is to store video in a separate
subsystem that can be connected to the switches, or
alternatively, connected to a general-purpose computer to
augment its video-delivery capability.

In this section, we first review the design of the stream
controller, a hardware unit designed to attach an array of
disks directly to an input port of a switch. Several such
stream controllers, each controlling a separate array of
disks, can be connected to different input ports of a switch
in order to increase the capacity of a server, both in terms
of amount of storage and the number of streams delivered
concurrently. Then we describe the format for storing
video data on disks as network packets collected into disk-
access units called groups of blocks (GOBs), the GOBs of
a video stream being connected by link fields. The GOBs
have fixed playback time, which allows us to use the disk
bandwidth more efficiently.

® Stream-controller design

The function of the stream controller is to retrieve the
network packets of video clips stored on disks and send
them to the switch inputs. The design is optimized for
handling a [arge number of low-bandwidth I/O transfers
coucurrently, which is required for video servers. In
contrast, traditional RAID systems are optimized to
support infrequent high-bandwidth transfers.

The design of the stream controller is shown in Figure 3.
At its core is the stream-buffer memory, constructed
from semiconductor storage and organized as a two-port
memory. One port, labeled in the figure as the disk port,
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is used to receive data from the disks. The disk port of
the stream-buffer memory has interfaces to several disk
controllers, each connected to several disks. The other
port, labeled as the network port, is used predominantly
to read network packets for delivery to the network. The
network port of the stream-buffer memory is connected to
the input of a switch through the network interface logic.
The stream-buffer memory is partitioned into multiple
stream buffers, two of which are allotted to each active
video stream when the video stream is set up (created).
A real-time control processor, typically an off-the-shelf
microprocessor, is connected to its local memory through
the local processor bus. An Ethernet or RS/232 interface
allows a remote general-purpose processor to perform
setup and service functions, such as downloading programs
for the control processor to its local memory and
monitoring error logs. The transceivers and arbitration
logic, shown in the figure, allow the control processor to
access the stream buffers, the control registers in the disk
controllers, and the control registers and storage in the
network interface. They also allow the network interface
logic and the disk controllers to interrupt the control
processor and access its local memory.

The timer provides periodic interrupts to the control
processor in the stream controller. In response to these
interrupts, the control processor sets up the disk
controllers to transfer prepacketized video data from
their disks to the stream buffers. It writes a list of read
commands for each disk controller in an area of the
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stream-buffer memory reserved for that purpose and
passes to the disk controller a pointer to the command
list. The disk controllers indicate the completion of the
read commands by interrupting the control processor.

The missing fields in the network header and/or trailer
are computed by the control processor and updated in the
stream buffer, and the completed packet is forwarded to
the network-interface logic. The network-interface logic
also receives a command list from the control processor,
each command in which specifies the address in the
stream buffer of a network packet to be transmitted to the
switch, the size of the packet, and optionally a header that
should be appended to the packet. Similar to the disk-
controller command lists, the network-interface command
lists are also written by the control processor into the
stream buffer, and the starting address and size of the
command list are written into the control memory of the
network interface logic.

We propose to connect the stream controller to the
switch inputs in order to avoid design changes in the
switch. In the case of shared-buffer switches, one could
alternatively couple the network interface of the stream
controller directly to the shared buffer in the switch.
Though the latter approach saves some hardware (switch
and input adapters in the switches and network interface
logic in the stream controller), it requires redesign of the
switch to accommodate this connection.

® Optimized format for storing multimedia data on disks
The compressed multimedia data is stored in the disk
array in the form of network packets in order to reduce
the amount of protocol processing carried out in the
stream controller. If video data is stored in the form of
IP/UDP (Internet Protocol/User Datagram Protocol)
packets, the IP and UDP headers are precomputed
(except for the destination address and port numbers) at
the time the video data is loaded in the disk array. When
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the packets are scheduled to be sent out to the network
interface, the destination addresses and port numbers are
filled in and the checksums are modified as required. Note
that much less CPU time is required to do this than to
compute the entire header and checksum “from scratch.”
This technique is equally applicable to ATM networks.
For example, the entire ATM AALS (Adaptation Layer 5
[18]) convergence sublayer can be precomputed at the
time video is stored on the disk.

The size of the network packets stored on the disks is
typically in the range of 512 bytes to 4 KB. Reading one
packet at a time from the disk will result in inefficient use
of the disk bandwidth. Therefore, several network packets
are combined into a single disk-access unit, which we call
a group of blocks (GOB) of size 64 KB to 256 KB. A
GOB is also the basic unit of disk-storage allocation. The
format of a GOB is shown in Figare 4 and is discussed
below.

The compressed video data (e.g., compressed by the
MPEG algorithm) stored in a GOB has a predetermined
playback time, fixed for all the GOBs of a stream
controller. For multimedia data compressed at a constant
bit rate (i.e., a constant number of bits per second of
video), all GOBs in a stream controller have the same
size. However, if multimedia data is compressed at a
variable bit rate, as was the case with our prototype, the
GOBs have varying numbers of disk blocks. While the disk
controller accesses data from the disk one GOB at a time,
a GOB is too large to be sent to a client in a single burst;
thus, the GOB is further divided into n clusters of packets
of equal playback duration and, therefore, of possibly
different sizes.

Each video file is interleaved across all disks of a stream
controller, with each GOB having fixed playback time.
Hence, the multimedia video streams “hop” from one disk
to the next in one disk cycle (the GOB playback period)
when fetching GOBs, with all streams in synchronism.
That is, all streams fetching a GOB from a disk i in one
disk cycle will fetch their next GOBs from disk i + 1
(modulo the number of disks) during the next cycle. If a
new video stream can be added to a group of streams
simultaneously accessing a disk without overloading the
disk, the expanded group will move from one disk to the
next together, accessing consecutive disks in consecutive
disk cycles without overloading them. (We have assumed
that all disks have identical throughput. We have further
assumed that there is a reasonable upper bound on the
size of a GOB, so that we can guarantee the maximum
number of GOBs that can be read from a disk.)

Interference on the disks is eliminated by using a
schedule table such as Table 1. It has one column for each
disk controlled by the stream controller and shows the
relative position of streams with respect to one another.
Stream S is arbitrarily assigned to the first disk in the
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first row. Thus, the schedule table shows the position of
each stream (the disk it is accessing) when stream 1 is
accessing disk 1. In Table 1, for example, streams S, S,
and §, access disk 1, while streams §,, and §, access disk
2, and so on. In the next disk cycle, S|, §,, and S, access
disk 2, while S|, and §,, access disk 3, and so on. To start
a new stream S , the scheduler in the general-purpose
computer simply finds an empty cell in the schedule table
and enters the stream identifier in it. Suppose the cell is
in column i. The new stream will always stay i — 1
streams ahead of stream S, accessing disks with other
streams in column i. The number of rows in the schedule
table equals the maximum number of streams that can
read a GOB from one disk in a disk cycle (three in

Table 1). The above scheduling policy can be extended to
optimally handle video files that are played back at widely
varying bit rates. These extensions and the modifications
required to support “trick” playback modes, such as fast-
forward, rewind, and slow motion, are discussed in [19].
To handle trick playback modes and keep response times
low, five or ten percent of the cells in the schedule table
are not allocated by the scheduler. The freed bandwidth is
also used for loading new content into the disk arrays
managed by the stream controller. We could also keep
GOB sizes in the GOB header, which would allow the
stream controller to determine whether the time required
to read all of the GOBs scheduled to be read in a disk
cycle would be small enough to permit disk access for a
stream playing in trick mode or for downloading content.

The remote general-purpose processor allocates the
storage for multimedia data in chunks of several hundred
megabytes and partitions it into GOBs having the fixed
playback time used by the stream controller, by analyzing
the data as it is being stored there. Each GOB is
referenced by a GOB pointer (in both the general-purpose
computer and the link fields stored in other GOBs)
comprising the disk number, the starting block on the
disk, and the number of blocks in the GOB.

While each packet in a GOB has its own network
header (H1 in Figure 4) and possibly a trailer, the entire
GOB has a GOB header (H2), which includes the GOB
pointer to the next GOB of the same multimedia stream,
thus enabling the stream controller to autonomously
access consecutive GOBs of a multimedia stream. For the
sake of checking integrity of the stored video data, we also
included in the GOB header a pointer to the preceding
GOB of the same video stream. If fault tolerance is
implemented by storing a parity GOB for a group of data
GOBs, the GOB header includes pointers to all GOBs in
the parity group of the next GOB. Finally, the GOB
header also contains pointers to all of the clusters of
packets in the GOB.
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Table 1 Example schedule table for a disk array with M
disks. The entries in column j are the streams accessing disk j
in the first disk cycle. In this example, three GOBs can be
read from each disk in a disk cycle.

Disk number

1 2 3 M
Sy S, S,
S Sty Ss Sg
S S S

N
)

For situations in which a large number of different
network protocols must be supported from the same video
content, it would be more efficient to store the network-
packet payloads and packet headers and trailers as
separate arrays in the GOB. For a single array of packet
payloads, one can have a different array of network
headers and/or trailers to support each protocol. The
control processor would then place separate entries for
the header, trailer, and payload components of the
network packet in the command list sent to the network
interface. The network interface, usually capable of
performing linked DMA, would assemble the packet from
the two or three entries. If different video clients, even
when using the same protocol, must be sent packets of
different size because of peculiarities of their connection
to the video server, network packet payloads would again
be stored separately from the headers, as above. The
payload size would be the maximum expected. The stream
controller would fragment the packet by replicating the
header, just as routers do today.

o Stream-controller software
The key software running on the control processor in the
stream controller consists of two real-time processes, the
disk-read process and the network-transmit process, which
transfer data from the disks to stream buffers and from
there to the network. The disk read is a periodic process,
each period being equal to the GOB playback time (disk
cycle) for the stream controller. In each GOB playback
period, the disk-read process issues a read command for
each active multimedia stream, in order to retrieve a GOB
of that stream from a disk. Each GOB playback period is
further divided into n network cycles, and the network-
transmit process is executed once every network cycle for
each active multimedia stream, in order to transmit a
cluster of packets from the stream buffer to the network.
In our prototype, timer-generated interrupts define the
disk and network cycles and initiate the disk-read and
network-transmit processes.

A stream-control table regulates the disk-read and
network-transmit processes. It maintains the state for each

active stream, which includes the following entries or 227
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fields: pointers to two stream buffers in the stream-buffer
memory, one to the read buffer that is receiving data for
that stream from the disks and the other to a previously
filled buffer that holds data being transmitted to the
network; a pointer to the GOB being transferred from the
disk to the stream buffer; a playback-mode field indicating
whether the stream is in normal playback mode, paused,

or in fast-forward or rewind mode; the client-information
field, which points to the block of information needed to
complete the network-protocol processing on the network
packets retrieved from the disk (for example, for IP
networks, it would contain the destination IP address and
UDP port number for the video stream); and a field that
specifies the stopping condition for the stream, either as
the pointer to the last GOB to be played back or the time
remaining until the completion of playback.

The stream-controller software also includes a non-real-
time process that presents a VCR-like interface to the
remote general-purpose processor and allocates the stream-
controller resources to a multimedia video stream being
created or releases the resources of a stream being
terminated. Service processes for loading data from the
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remote processor to the disks managed by the stream
controller, allowing the processor to check various data
structures in the stream controller and to verify the
contents of the disks, are also part of the stream-
controller software.

® Stream-controller prototype

The stream controller in our first prototype is a set of
three Micro Channel* adapter cards, which plug into an
RS/6000* workstation, as shown in Figure 5. One card has
the network-interface logic, the second has the control
processor and its local memory, and the third has the
stream-buffer memory and four SCSI controllers, which
provide four fast, wide SCSI buses, each having a peak
transfer rate of 20 MB/s. The control processor is an off-
the-shelf ARTIC 960 card running a real-time operating-
system kernel. The network interface is also an off-the-
shelf card. We designed and built the card holding the
stream buffers and SCSI controllers because one with the
required throughput and functionality was not available in
1993. If the stream controller were reimplemented today,
this piece of hardware probably could also be an off-the-
shelf component.

The prototype stream controller is capable of serving
250 MPEG-1 digital compressed-video streams, which
requires video to be delivered at a sustained total
bandwidth of 48 MB/s. Therefore, each SCSI bus has to
sustain a transfer rate of 12 MB/s, which is achieved by
connecting eight disks to each SCSI bus. The disks are
3.5-in. SCSI disks, each capable of storing 2 gigabytes
(GB) of data. In our prototype, the GOB playback time is
200 milliseconds, which corresponds to approximately 64 KB,
roughly the size of a track on modern magnetic disks.

At that GOB size, these disks easily sustain the required
bandwidth of 1.5 MB/s, especially since the queued read
requests are reordered automatically in the disk
controller to minimize seek latency. Details about the
implementation of this prototype can be found in {19].

To support MPEG-2 streams at 4 Mb/s (megabits per
second), we would choose 100-millisecond disk cycles, and
the GOBs would be approximately 50 KB. Three GOBs
can be read from a disk in each disk cycle, allowing
96 MPEG-2 streams to be supported from the 32 disks
attached to the stream controller.

The above prototype has been implemented in 1993
technology. 1f the design were to be reimplemented today,
much more powerful stream controllers could be built at a
lower cost. Not only are more powerful microprocessors
and denser memory modules available at a lower cost, but
the speed of 1/O buses has increased, and improvements
in packaging technology allow us to place more
components in available card areas.
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& System-design issues

The maximum performance obtainable from any
implementation of the proposed design is limited by

the bandwidth of the connection between the stream
controller and the network. To achieve this performance,
the video buses between the stream-buffer memory and
the disk controllers must be able to provide the same
bandwidth. The number of disk controllers is chosen to
meet or exceed this bandwidth. The aggregate bandwidth
into and out of the stream-buffer memory must exceed the
bandwidth of the video buses, the excess needed to allow
the control processor, disk controller, and network-
interface logic to exchange command lists.

For a fixed number of streams, a larger stream-buffer
memory allows one to choose larger GOB sizes, which
results in better utilization of the bandwidth of individual
disks and longer disk cycles. Longer disk cycles reduce the
performance required of the control processor. Since the
video buses into and out of the stream-buffer memory
operate near peak utilization, it is important to design the
arbitration logic to ensure that the control processor has
the necessary access to the stream-buffer memory in order
to complete its chores in a timely manner. Other than
these normal design issues, we did not encounter any
major design problems.

Comparison of the performance of the
proposed video storage method with the
conventional approach

In this section, we first discuss the advantage of the
proposed video storage format and the algorithm to
schedule disk-read requests over the conventional method.
While the proposed method is strictly deterministic,

and its performance can be projected accurately, the
conventional approach is stochastic, and simulations were
used to predict its performance. Next we discuss the
reductions in protocol-processing overheads achieved by
storing data in the format of network packets. At the end
of this section, we discuss the situations for which using
semiconductor storage to store video results in a less
costly solution than the use of disks.

& Advantage of interleaving video in fixed playback units

Simulation of conventional video server

We simulated the retrieval of video from an array of disks
attached to a general-purpose computer in a conventional
manner. We modeled 64 4GB disks, each completing

a pending read request for a 256KB block in 100
milliseconds. The 256KB blocks retrieved from the disk
were placed into a stream buffer, from which they were
sent to the clients in five equal bursts spaced 100
milliseconds apart. Thus, the maximum possible
throughput per disk is 2.56 MB/s, and video content is

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

modeled as a constant-bit-rate stream compressed at

512 KB/s. The load on the disks was varied by varying the
number of active streams. When fully loaded, each disk in
the array would have an average of five active streams.
While the model is very simple, it highlights the problem
inherent in stochastic loading of disks.

Video content was modeled as 30-minute clips; hence,
283 clips could be stored on the disk array. The 256KB
blocks of the video clips were mapped at random on the
disk blocks. Thus, disk interference occurs when two or
more video streams accessing different video clips, or even
different portions of the same video clip, simultaneously
attempt to access the same disk. [One could interleave
these blocks on the disk in a round-robin manner.
However, if the video files use variable-bit-rate
compression, or if the individual files are compressed at a
fixed rate but different files have different compression
rates (a mix of MPEG-1, MPEG-2, and audio files
compressed with different compression algorithms), the
disk interference behavior is quite complex. Accurate
modeling with round-robin placement would be difficult.
Even if the modeling were accurate, the results would
be valid only for the mix of files used. Using random
placement is a good way of eliminating this complexity
without affecting the results significantly.] Each stream
selected one of the 283 video clips according to one of
two models of popularity and then proceeded to access
the blocks of that clip sequentially. The first model of
popularity used equal probability for choosing any of
the 283 streams. The second popularity model used the
Ziff distribution, in which the probability of accessing
clip i is

283

A
i=1

The exponent o was chosen to be 1.5 in order that the
probability of accessing one of the ten most popular clips
exceed 80% (actually, 81.11%). The stream-buffer sizes
were varied from 512 KB to 4 MB. In order to start a
stream, initial read requests were issued simultaneously,
and the delivery of the stream to the network was delayed
until a sufficient number of initial read requests to fill the
stream buffer completely had been completed. From then
on, a new read request for 256 KB of data was issued as
soon as 256 KB of the stream buffer became free.

One of the quantities measured during simulation was
the disruption count—the number of instances during the
delivery of the video clip in which data could not be sent
over the network because the stream buffer was empty.
Table 2 summarizes the disruption counts for 512KB and
IMB stream buffers for a uniform probability of selecting

each video, and for 2MB and 4MB stream buffers for the 229
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Table 2 Average number of disruptions per stream during
a 30-minute video segment.

Load Popularity model
(%)

Uniform Ziff

stream-buffer size stream-buffer size

512 KB 1 MB 2 MB 4 MB
10 0 0 0 0
20 0 0 5 0
30 0.07 0 36 20
40 15 0 91 66
50 8 0 255 231
60 38 0.2 572 580
70 155 5.5 1113 1125

probability of selecting video being Ziff-distributed. One
can readily see in Table 2 that if the popularity of the
clips follows a Ziff distribution, five or more disruptions in
a 30-minute period should be expected as soon as each
disk has to support an average of more than one active
stream (20% load) even though the stream buffers are

2 MB to 4 MB. When the popularity model follows a
uniform distribution, five or more disruptions can be
expected every half hour when an average of two active
streams (40% load) are accessing each disk and the stream-
buffer size is 512 KB, or when three active streams (60%
load) are accessing each disk and the stream-buffer size is
1 MB.

On the other hand, the stream controller proposed in
this paper would be able to support five streams per disk
if the disk cycle were chosen to be 500 milliseconds and
each stream had two 256KB buffers. Interleaving video in
units of GOBs that have a fixed playback duration also
gives us the flexibility to reduce the buffer size. In the
above example, if we chose the disk cycle to be 100
milliseconds, the two buffers for each stream could be less
than 64 KB each, because the disk response time can be
guaranteed to be less than one GOB playback period.
However, since we are now accessing disks for requests of
smaller size, we can fit in only three requests in 100
milliseconds. This is still significantly better than the
conventional approach, because three streams per disk are
supported irrespective of the uneven access pattern, and
with one tenth of the stream-buffer size. (Of course, there
are no disruptions.)

& Advantage of storing video in the format of network
packets

With prepacketization of the video stream, the 1960 CA
processor on the ARTIC 960 card (approximately 7-MIPS
performance) was able to handle 80 streams with 30%
processor utilization (even though the code was not fully
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optimized). The code required for header modification
and preparation of the network DMA transmit list for
each IP/UDP packet is well under 300 instructions.
Consequently, we are confident that 250 MPEG-1 streams
are achievable with the 1960 processor. (We were not able
to test the 250 streams because we did not have the
needed stream-buffer memory.)

On the other hand, network-protocol-processing
overheads and file-system overheads in conventional
workstations are much higher. Kay and Pasquale [20, 21]
have presented detailed measurements of various
overheads for the UDP/IP protocol stack on a DECstation
5000/200 running the Ultrix 4.2a operating system. From
the graphs presented in [20], we have determined that the
overhead for checksum calculation, data movement, and
protocol-specific operations limit the throughput to 3MB/s
or, equivalently, 16 streams, as explained in [19]. In {22]
Haskin and Schmuck describe a file system optimized for
video delivery that can support 60 and 75 streams on an
RS/6000 Model 970 and 980, respectively.

& Economics and technical feasibility of using DRAM
storage

For serving a large number of streams, we propose the use
of hundreds of gigabytes of semiconductor storage. An
obvious concern is the technical feasibility and cost of
building such a system. The media cost of disks (cost of
the individual disks, excluding the electronics needed to
build a system, power supplies, racks, markup, etc.), at
about $0.15 per megabyte, is one fortieth of the media
costs of DRAM, which is roughly $6 per megabyte.
However, the maximum bandwidth of a 4GB disk is only
8 MB/s, while the bandwidth available from 4GB DRAM
(organized in a configuration to provide maximum
bandwidth) is 80 GB/s.

A server designed to provide 20 hours of popular
programs and support 20000 simultaneous users would
require 36 GB of storage (MPEG-2 video at 4 Mb/s) and
10 GB/s of bandwidth. While 36 GB of DRAM, costing
$216 000, would exceed the bandwidth requirement, 1250
disks, costing $750000, would be needed to provide the
required bandwidth. Furthermore, in today’s technology,
36 GB of DRAM can be packaged in a workstation-sized
system, whereas 1250 disks would require at least 20 racks
of equipment. Additionally, a large number of power
supplies and disk controllers would be required to manage
the disks, making the disk-based system even more
expensive than the DRAM-based system. The operational
costs and system management problems for the disk-based
system would be larger.

Thus, even though disks are cheaper than DRAMSs per
bit of storage, the bandwidth constraints make the DRAM
solution eventually cheaper for servers designed for large
numbers of streams. Furthermore, if the content being
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placed on the server can be partitioned into a limited-
content, high-demand part and a large-content, low-
demand part (a situation predicted in many applications),
the cost of the overall system can be reduced significantly
by placing the high-demand part in DRAM and the low-
demand part on disks connected to the switch through
stream controllers.

In the published literature, we have not seen any claims
of substantial improvements in the execution of the
Internet protocol stack, despite its importance in
computer communication. Since it has existed for two
decades, one might infer that opportunities for order-of-
magnitude improvements are now unlikely. Of the many
video-server trials mentioned in the trade press, only the
work of Haskin et al. [3, 22] has been published in detail
in the computer science technical literature. Because of
the three-year hiatus between the two references and the
indication of continued work by the authors on this
subject during this time, we infer that [22] represents a
near-optimum implementation, which would be hard to
improve significantly. Hence, in our opinion it will be
difficult to match the performance achieved by the
proposed design approach. One should keep in mind that
as hardware becomes faster because of improvements in
semiconductor technology, both the conventional approach
and the design proposed in this paper will benefit equally.

In the above analysis, we made the comparison for 20
hours of video. This design point was considered suitable
for information and entertainment applications in which a
user connects to the information or entertainment
provider daily or weekly, and uses the service for thirty
minutes to two hours a day. Presenting the user with a 20-
hour selection for an average of one hour of viewing was
considered adequate.

Summary and discussion

In this paper, we proposed a design for video servers in
which video content is off-loaded from the magnetic
storage attached to a conventional computer system and
stored in special video-delivery subsystems attached
directly to network switches. One video-delivery subsystem
was a modified shared-buffer switch. Most other switch
designs can be similarly modified by providing data paths
from the video storage to all switch outputs and modifying
the arbitration logic associated with each switch output
port to accept the packets arriving from the video memory
with higher priority than other traffic.

We also described an unconventional way of storing
video content on a disk array. Though we proposed
attaching the disk array directly to the network switches,
as suggested in [19], the disks can be attached to a
conventional computer as well. By simulating a simple
model of a disk array, we showed the advantage over
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conventional disk-access methods of interleaving video
data in units of fixed playback time and accessing it
according to a fixed schedule. We also illustrated the
reduction in protocol-processing overhead achieved by
storing video content in the format of network packets
with the precomputable parts of packet headers and
trailers computed in advance and stored in the packets.
We presented the economic rationale for using
semiconductor storage for servers that have to support
large numbers of streams with limited content.

An alternative to building a single large video server is
to use many small servers, geographically distributed
among the users. This has the advantage of reducing
the network cost, but the content must be replicated.
Furthermore, the operational cost of multiple-disk-based
systems in residential neighborhoods would be higher
than the operational cost of a centralized system. In our
opinion, when video-on-demand systems become common,
the centralized-server approach will be more economical.

In conclusion, we have demonstrated that multimedia
servers architected and designed to optimize the delivery
of video and other multimedia data will have a
substantially better price/performance than general-
purpose computers used for the purpose. However, these
specialized servers will be economically viable only when
the demand for them justifies the initial design and
development costs.
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