
Video-server 
designs 
for supporting 
very  large 
numbers 
of concurrent 
users 

We present a design for a video  server in 
which video content is stored in special 
video-delivery subsystems attached directly 
to network components such as switches 
or high-speed-network ports rather than 
the magnetic disk storage attached to 
conventional computer systems.  Video is 
preformatted and stored in the form of 
network packets. This design approach 
overcomes the CPU- and I/O-bandwidth 
limitations of conventional computers in 
executing the file-system and network- 
protocol code for many concurrent video 
streams, resulting in higher performance at a 
lower cost.  Two designs for the approach are 
discussed.  The first extends the packet buffer 
of a shared-buffer switch  with additional 
memory for storing the video packets. The 
second design uses a stream controller as the 
interface between an  array  of disks and a 
traditional switch or network port. We have 
built a prototype based on the second design. 

To avoid interference on the disks, data is 
interleaved across all disks connected to a 
stream controller in units of fixed playback 
time. This also reduces the jitter  in the 
response time of the disks and, therefore, 
the size  of the buffers needed to maintain 
interruption-free delivery. The cost benefits 
of both approaches  are  discussed. 

Introduction 
It is widely believed that  advances in computer  and 
communication  technologies will make  possible a wide 
variety of new residential  and  commercial  interactive 
multimedia services. The  contemplated  residential services 
include  video  on  demand  for movies, news, sports, TV 
programs, etc., home  shopping,  interactive games, 
surrogate travel, and a wide  variety of educational  and 
information services. The  commercial services include 
video  mail, conference  record-keeping,  multimedia 
manuals,  training,  and industry-specific  uses  such  as  videos 
of homes  for  sale, used  in the  real  estate  industry,  and 
videos of vacation  resorts  for  the travel industry. 
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Video  servers  are  the specialized systems used by the 
providers of the services mentioned above to  store  the 
vast amount of video needed  and  to  deliver it to individual 
users when requested by them. 

has  permitted  upgrades  to  cable  TV  trunk  and  feeder 
systems, allowing each active subscriber  to have  a 
dedicated  channel to a server  for receiving compressed 
digital  video. Personal  computers  and  set-top boxes have 
evolved to  support  networked  multimedia  applications, 
taking  advantage of low-cost video-decompression  chips 
and  network-interface  chips  for  the cable network. 

The  current choice of video servers  for  interactive 
multimedia services,  however, continues  to  be  standard 
mainframes  or  workstation-based  parallel/clustered 
computing systems. Their system architecture,  hardware 
organization,  operating systems, and I/O subsystems 
are  not  matched  to  the  requirements  associated with 
delivering multimedia  content  to a large  number of 
networked  users.  Mainframe  and  workstation  hardware 
is optimized  for processing computation-intensive 
applications, with very limited  emphasis on moving data 
efficiently between  the  network  interfaces  and  storage 
devices, which is the primary requirement  for a  video 
server.  For  example,  the  bandwidth  between  the memory 
and  cache in standard systems is an  order of magnitude 
higher  than  the  bandwidth  between  the memory and  the 
storage  or  network devices. The  floating-point  units  add  to 
the cost of the systems without providing  any benefit  to 
the delivery of multimedia  data,  and  the  caches  are  too 
small to capture any locality  in the accesses to  multimedia 
data. 

Fiber  optic technology, one example of these advances, 

Similarly,  most operating systems of mainframes  or 
parallel-computer-based  servers  are  optimized  to maximize 
utilization of the  CPU  and  to maximize throughput in a 
time-sharing  environment.  The  response  time  for  an 
operating system  service can vary significantly from 
request  to  request.  Therefore,  large  buffers in system 
memory are  needed  for  multimedia  data  being  retrieved 
from  secondary  storage. Finally, the disk-array  subsystem 
of a standard system is itself usually optimized  to  retrieve 
data called for by a  single 110 request with the minimum 
latency  and highest bandwidth possible. The high 
bandwidth is achieved by reading  large blocks of data 
from  the disk array, which creates  the  need  for  large 
semiconductor  storage  buffers if many multimedia  streams 
have to  be  provided simultaneously. This  increases  the 
total cost of the  server. 

The  aforementioned  limitations in  using general- 
purpose  computers as  video servers  force  the 
priceiperformance of such servers  to  be  much  higher  than 
that of a system designed  optimally for delivery of video. 
(Of course,  this is true only if the design and  product- 
development costs of the  special-purpose system  can be 
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apportioned over  a sufficiently large number of units.) 
Several researchers have addressed  the  operating-system 
drawbacks by fine-tuning  the  operating-system services. 
Dan  and  Sitaram have developed innovative methods  for 
optimizing the  use of stream  buffers in the system  memory 
of a general-purpose  computer  being  used as  a  video 
server [l, 21. Haskin  has  proposed  increasing  the block 
size in the file system to  improve  performance [3]. Rangan 
and Vin  have  suggested  novel techniques  for  placement of 
data  on disks [4, 51. Several  researchers have developed 
improvements in scheduling disk read  commands [6-81. 
Tobagi  et al. have proposed a real-time  kernel-based 
system  in which a periodic  process  schedules  the  retrieval 
of multimedia  data  from a  disk array [9]. Serpanos  and 
Bouloutas have compared  the  performance of video 
servers  based  on  conventional  computers configured as 
centralized  and  distributed systems [lo]. A comprehensive 
tutorial  on  the design  issues  in  digital multimedia  servers 
is given in [ll]. 

In  this  paper, we describe a  radically different  approach 
for delivering  video  over  a network  from a centralized 
server to a large  number of clients. We observe  that much 
of the processing done  in a traditional video server  to 
retrieve  data  from a file system and  reformat it into 
network  packets is wasteful because video files stored in 
the server are  sent  repeatedly  at  different  times over the 
network, with a  nearly identical  sequence of packets  being 
created  each  time,  the only difference  being  that  they  are 
addressed  to  different  recipients. A logical approach  to 
reducing  the processing requirement,  hence  the  cost of the 
server, is to  create  this  sequence of packets  once  and  store 
it in memory  coupled closely to  the  network, so that  the 
packets can be  retrieved much less expensively than with  a 
conventional file system and  delivered  to  the  network 
without  incurring  the  network-protocol  overhead  more 
than  once.  This  reduces  the processing required to send 
video from a few instructions  per byte transmitted  to a 
few instructions  per  packet  transmitted,  the exact number 
of instructions  depending  on  the cleverness of the 
implementation in both cases. 

In  the next section of this  paper, we present a  video- 
server  architecture  that  embodies  the above  philosophy 
of preformatting  data  into  packets  and  storing  them in 
memory closely coupled  to  the network. The  storage  for 
video packets is integrated directly into a network switch. 
This  architecture is suitable  for  high-end video servers 
providing tens of thousands of streams, which is an  order 
of magnitude  higher  than what can  be accomplished  with 
general-purpose-computer-based  servers with similar 
hardware complexity. The design of large switches is 
optimized  to move data  at high speeds  from  the switch 
inputs  to  the  outputs via intermediate buffers, though  the 
switches cannot  do any significant  processing on the  data 
passing through  them. By extending  the  internal  buffers of 
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the switch to  enable  them  to  store video and minimizing 
the processing required  to  create  network  packets by 
preformatting  the  stored video  as network  packets,  one 
can  transform  a basic switch into  a video server  that is 
much more cost-effective than  a  general-purpose 
computer. 

Though we have worked  out  the design and 
implementation  details of this architecture, it  has not  been 
implemented, in part  because  the perceived demand  for 
such large  servers was revised  sharply  downward during 
the design period  (a few months in  1992). Instead, we 
built  a  smaller  server, primarily a  software  rendering of 
the design  philosophy. In this design, we store video  in the 
format of network  packets in a disk array  that is coupled 
via a  stream  controller directly to  network  interface  cards 
in a  workstation.  This design is described in the  third 
section of this paper.  It is applicable  to  servers providing 
several hundred  streams. 

The  stream  controller is capable of completing  the 
recipient  address in the  stored  packets.  The  packets of a 
video file are  linked  together.  Therefore,  the  stream 
controller  can  deliver  packets directly to  the  network 
without  the  intervention of a  general-purpose  computer. 
Buddhikot  et  al.  proposed a system for directly  delivering 
multimedia  data  from  an  array of disks to  an  ATM 
network [12], but, as is the  case with RAID I1 [13] 
(Redundant  Array of Inexpensive  Disks), a  general- 
purpose  computer is still responsible  for  initiating every 
data  transfer  from  the disk. Therefore,  the scalability of 
their  approach is limited by the  computer’s  processing 
capability. 

In  our system, data is interleaved’ in units of fixed 
playback  time,  as proposed by Lougher  and  Shepherd [14] 
and  Chang  and  Zakhor [15]. Therefore, we can use a 
software  scheduler in the  stream  controller  to  coordinate 
the access to  the disks by the video streams  to completely 
avoid interference.  This achieves not only higher 
throughput  from  the disks but  also much tighter  control 
on  response  time,  thus avoiding jitter  (the  irregularity 
observed by the viewer or  listener when  video or  audio 
packets  are  not received in time).  Therefore,  the size of 
the  buffers  required  for  a video stream  can  be  reduced by 
nearly  an order of magnitude,  from 512  kilobytes (KB) or 
1 megabyte (MB) to 64 or 128 KB. This  reduces  cost  and 
is critical for  implementing  the  stream  controller so that 
the  video-stream  buffers  are all on  a single card  that fits 
in  a  workstation  adapter. If the video  buffers  must be in 
the system  memory of a  general-purpose  processor 
instead, video data will move twice over the  I/O bus, 
reducing  the  number of streams  that can be  delivered. 

S U C C ~ S S I V ~  disks, I t o  d ,  and  repeating  this  untll  all o f  the tile has been written. 
’ Interleaving a filc on d disks rncan? writing  wccessivc  portlons of the file on  

Then,  each  disk  contains  every  dth  portion of the file. Interleaving  is  also  called 
“striping.” 
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In  the  last  section of this  paper, we discuss the 
performance of the  video-server  prototype  and  comment 
on  the  importance of the  proposed  ideas in  achieving 
the  performance.  Simulation  results  are  presented  to 
demonstrate  the  problem of disk interference, which 
limits the  throughput of conventional  servers,  but is 
circumvented by our design. We  also discuss the  advantage 
of using semiconductor  memory  for  large video servers 
that  can  serve  tens of thousands of streams  from  a few 
dozen files. Briefly, when  economics  are  determined  for 
this situation,  the  total cost of storing  the video must  be 
divided by the  number of streams  that  can  be  served. 
Surprisingly, DRAM is cheaper  than disk storage  because 
it  has  much higher bandwidth. 

of video servers,  namely their ability to move data  from 
storage  to  network in large  volume  at low cost, a  video 
server must  provide other capabilities, such  as  accepting 
requests  for  starting new streams,  authentication of 
authorized  users,  and billing  systems. These  are  not 
covered in this  paper  but  can  be  found in [16]. The 
proposed design is also  applicable  to  large  servers 
delivering information  other  than video and  audio over 
networks.  Nonvideo files in network file servers  can be 
similarly prepacketized  and  off-loaded  to specialized 
packet-delivery  systems,  especially if the files are  large 
and  are  requested  frequently. 

While we have focused  on  a very important  requirement 

Placing  video data in network switches 
Our  video-server design is motivated by the following 
observation  about  the  traditional  implementation shown  in 
Figure l (a) .  When  thousands of streams access the  same 
video material  at slightly different times, the  general- 
purpose  processor  fetches  the  data  from  the disk 
subsystem each  time,  executes  the file-system code  for  that 
purpose,  and  then  executes  the  network-protocol  code  to 
deliver the video. However,  the  result is essentially the 
same  sequence of packets  each  time, differing  minimally 
from  the  packets of the previous stream,  perhaps only in 
the  destination-address field of the  network  headers  and 
trailers.  The  number of streams  delivered is limited by the 
CPU’s ability to  perform  these  functions. 

Since the video data  for  an  application  program is not 
processed  or modified by the  general-purpose  processor 
running  that  application, it can  be  partitioned  into video 
messages (for  example,  frames), which can  be  represented 
by pointers  (addresses) in the memory of the  processor 
to  the  actual video  message stored in a switch of the 
network.  (In  general, all of the messages of a video are 
stored in one switch. Copies of messages can  be  stored in 
different switches, for  the  sake of reliability or  increased 
throughput.)  When  the  processor must send video to  an 
end  user, it sends  requests  to  the  network switch storing 
that video to deliver the  constituent video  messages, 
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instead of reading video from its own secondary  storage. 
The  processor  sends  one  request  for  each message into 
which the  video is partitioned,  or, as  discussed below, the 
processor may send only one  request  for  a  group of video 
messages that  are  connected by links. A request consists 
of a  pointer  to  the video  messages, the  address of the 
recipient,  and possibly the  time  at which the video 
message should  be  read  out. Figure l (b)  illustrates  this 
concept.  Thus, we eliminate  the  recurring  overhead of 
generating nearly identical video  messages for delivering 
the  same video material  to  multiple viewers. Furthermore, 
instead of using the expensive computational  resources of 
a  general-purpose  (host)  computer, we use less expensive 
dedicated  hardware  (special-purpose  processor)  integrated 
into  the switches of the  network. 

Before  the video  messages are  stored in the switch, 
transport-layer  headers  and  trailers  are  attached  to  the 
messages, the messages are  segmented  into  network- 
packet payloads, and  network-layer  headers  and  trailers 
are  attached  to  these payloads. The fields in the  network- 
or  transport-layer  headers  or  trailers  that  can  be 

222 precomputed when the  packets  are  stored in the switch 

are so computed  and  stored in the  network  packets.  The 
fields that  cannot be precomputed (eg. ,  recipient)  are 
completed  subsequently, as described below. By storing 
these  preprocessed  packets in the  network switch, we 
further  reduce  the processing required in the switch to 
deliver  video data. 

A video message is the smallest unit of video that  can 
be  sent  to  a  client.  The size of the  video message has  to 
be small enough  to provide  quick response  time in 
interactive  multimedia  applications (e.g., to  stop  the play 
of a  video  or  to switch to  a new stream). However, short 
video  messages require  more  frequent  interactions 
between  the  general-purpose  processor  and  the switches, 
demanding  more powerful (therefore  more expensive) 
processors.  Furthermore,  more  hardware is required in the 
switches to  handle  the  increased  number of request 
messages. In  order  to minimize both message  size and 
general-purpose  processor  and switch processing, 
successive video messages of a video file are  connected by 
a link  field. Thus,  a  request  from  the  general-purpose 
processor identifying the first video  message in the video 
stream  and  the  number of subsequent messages to  be 
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1 Shared-buffer  switch: (a) Conventional  design; (b) augmented  in  order  to  store  video  data. 

delivered  enables  the switch to deliver all of the specified 
messages  in the  stream  without  further  processor 
intervention.  We expect the message  size to  be  between 
16 KB and 32 KB. The link  field,  in addition  to carrying a 
pointer  to  the next message  in the video storage,  can 
optionally  include  a  time value,  expressed as  an offset 
from  the video start  time.  When  a link field contains  a 
time  value,  the  video message to which the link points is 
requested  at  the specified  time. Otherwise,  that message is 
requested immediately. 

The video  messages can  contain multiple  links,  in order 
to  provide access to  video  data  packets in sequences 
different  from  those  requested  for  normal playback. For 
example,  for video compressed using the  MPEG** 
(Moving Picture  Expert  Group)  algorithm [17], all of the 
I-frames  can  be  linked  together as a doubly linked list for 
providing  fast-forward and  reverse  modes.  Additional 
time values  can be  included  for  supporting slow motion. 
Finally,  links that  point  to syntactic boundaries such  as the 
start of a  scene or the  start of a  spoken  sentence  can  be 
generated  and used for  sophisticated  forward-  or 
backward-motion  functions. 

Shared-buffer switch modified to store video 
In this section, we first briefly discuss the design of a 
conventional  shared-buffer switch and its operation.  Then 
we describe  the modifications that give the switch the 
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capability to  store video and  dispatch specified  video 
packets  to specified  clients  when instructed by the  general- 
purpose  processor. Such  switches are  used in high-speed 
packet-switched networks  to move packets  from  one link 
to  the next on their  path  to  the  destination. 

Figure 2(a) shows the high-level architecture of a 
conventional  shared-buffer switch. At its core is a  large 
shared  buffer, with an  input  bus  for receiving packets  into 
the memory from incoming switch links, and  an  output  bus 
for  sending  packets  from  the memory to  output links. The 
bandwidths of the  input  and  output buses are  equal  to  the 
aggregate  bandwidth of all the  input  and  output links, 
respectively. A list of free cells (fixed-size blocks)  in the 
shared  buffer is maintained in a FIFO queue  in  the 
central  controller.  Each  output link  also  has an  address 
queue  associated with it in the  central  controller,  for 
storing  the  addresses in the  shared  buffer of the  network 
packets  that  must  be delivered to it. 

Network  packets  are  transmitted  through such a switch 
as follows. The  network  packets arriving on  each  input 
link are processed  in the  input  adapter  to  determine  to 
which switch output  the  packet  must  be  routed,  and  the 
selected switch output is signaled on  the select-output bus. 
In  order  to  store  the incoming packet  into  the  shared 
buffer,  the  address of a  free cell must be  obtained  from 
the list of free cells, placed on the  write  address  bus of 
the  shared  buffer  (labeled  Wr in the figure), removed 
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from  the list of free cells, and  placed in the  address  queue 
of the  output link to which the  packet is being  sent.  Each 
output  adapter  dequeues  the  addresses of packets in the 
shared  buffer  from its address  queue in the  central 
controller,  reads  the  packets over the  output bus, and 
sends  them  on its output link. The  address is stored back 
into  the list of free cells. 

The  input  bus is operated in a  slotted  manner  (thus,  no 
arbitration is required), with each of the N input  adapters 
accessing the  bus every Nth  time  slot.  This is possible 
because  the  bus  bandwidth is N times  that of the  fastest 
input link. The  output  bus is operated in a similar 
manner,  and  each  input  and  output  adapter  interacts with 
the  central  controller only in the clock cycle in which it 
gains  access to  the  input or output bus. A  microprocessor 
in each  input  and  output  adapter is used to  perform 
various  link-monitoring  and service functions. 

The  control  point in Figure 2 is a  general-purpose 
computer  that  performs  network-management  functions. 

Figure 2(b)  illustrates  a  conventional  shared-buffer 
switch with the  hardware modifications required  to give it 
the capability to  store video  messages and  to  deliver  a 
specified group of video  messages to  a specified  client 
when instructed by the  general-purpose  processor  to  do 
so. In  order  that  network  packets of a video  message can 
be  stored in the  shared-buffer switch of Figure  2(b),  the 
shared  buffer is augmented with video  memory. (The 
shared  buffer is used  for  regular  network traffic, with 
packets arriving and  departing.  The  video memory is used 
to  store  video  packets, which remain  until explicitly 
deleted.)  The  shared  buffer  and  the video  memory share 
the  input  and  output  buses,  the  write  address  bus  (labeled 
Wr),  and  the  write-enable  control  (not shown in the 
figure). The link field and  other auxiliary fields associated 
with the video  messages are  stored  separately in a  tag 
memory, which resides in the  video  dispatch  unit. 

The  output  adapters  perform  the  function of managing 
the video streams  originating  from video  memory. Unlike 
the fields in the  packets coming from  the  shared memory 
of a  conventional  shared-buffer switch, the  destination 
address fields and  some  other fields of the  packets coming 
from  the  video memory do  not  contain  the  proper values; 
however, the  microprocessors in the  output  adapters  are 
programmed  to  complete  the  headers  and  trailers of the 
packets received from video  memory before  forwarding 
them.  The  command  sent  (in  a  packet)  from  the  general- 
purpose  computer  [Figure  l(b)]  for  dispatching  a 
video message is intercepted by the  output  adapter 
through which the messages will be  transmitted.  The 
microprocessor in the  output  adapter  maintains  a  stream- 
control  table with an  entry  for  each  video  stream it 
controls.  The video-service application  running in the 
general-purpose  computer  manipulates  the  stream-control 
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adapters, which use these  tables  to  send  requests  to  the 
video dispatch  unit  to deliver  individual  video  messages. 
The video dispatch  unit, in turn,  requests  the  central 
controller of the switch to deliver all of the  network 
packets in the message, by issuing requests  for  one  packet 
at  a  time  to  the  central  controller.  The  output  adapters 
interact with the  video  dispatch unit via the video control 
bus  in Figure  2(b).  As with the  central  controller,  each 
input  and  output  adapter  interacts  with  the video dispatch 
unit only in the cycle in  which  it  accesses the  input  bus  or 
the  output bus; therefore,  no  arbitration is required  for 
the video control  bus. 

The video dispatch  unit also monitors  the  addresses of 
all cells read  from  the video  memory, and  the video 
streams  to which they  belong. If the  packet  read  from  the 
video  memory is not  the  last  packet of a video  message, 
the  video  dispatch  unit  generates  a  request  for  the next 
packet in the video  message by reading  the link field of 
the  current  packet  and  sending it to  the  central  controller. 
If the  packet  read  from  the video  memory is the last 
packet of a message, the link field of that message  (which 
contains  the  address of the next video message  in the 
stream  and,  optionally,  the  time  at which the next  message 
should  be  delivered  to  the  client) is read  from  the  tag 
memory  in the video dispatch  unit  and  sent  to  the  output 
adapter receiving the video  message. The link field is used 
by the  microprocessor in the  output  adapter  to  send  a 
request  for  a new video message to  the video dispatch  unit 
or to notify the  general-purpose  processor (by means of a 
packet  sent  from  the  output  adapter  to  the  processor) of 
completion of the  video message  delivery. 

So that it can  interact with the video dispatch  unit  and 
with the  input  adapters  (to  load  video  content),  the 
central  controller is modified  as follows. A multiplexer 
unit, M1, is provided  between  the  free-cell list and  the 
output-address  queues, in order  to allow the video 
dispatch  unit  to  add s t reamids  to  the  packet  addresses 
stored in the  address  queues.  When  a  packet  address is 
dequeued  from  the  output-address  queue,  the  video 
dispatch  unit  uses  the stream-id part  to  determine which 
video stream  it  belongs  to  and,  consequently,  the  video 
stream  for which it  must perform  further activity, such as 
completing  the  information in the  header  and/or  trailer 
fields of the  packets.  Another multiplexer, M2, allows the 
address  queue  to  be  selected by the video dispatch  unit 
when  it is writing the  address of a  packet in  video memory 
into  an  address  queue.  Addresses  dequeued  from  address 
queues  are recycled into  the  free-cell list only for cells 
associated with the  shared  buffer,  not with video memory. 

Loading  video  memory  from  the  general-purpose  processor 
To  load  information  into  the video  memory, the 
microprocessor in an  input  adapter receives  messages, 
from  the  general-purpose  processor, comprising the 
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network  packets  to  be  loaded  and  their  starting  addresses 
in the video memory.  In  response,  the  input  adapters 
place the  packets on the  input bus and place the  addresses 
in video  memory where  the  packets  should  be  stored  on  a 
separate bus connected  to  the third  new multiplexer, M3, 
in Figure 2(b).  Multiplexer M3 selects  the  write  address 
for  the  shared  buffer  and  the video  memory. The  general- 
purpose  computer  used as the  control  point in the  shared- 
buffer switch also functions  as  the  video-memory  manager, 
to  allocate  and reclaim  video storage.  The  general-purpose 
processor  or  application server interacts with the video- 
memory  manager (by means of command  packets)  to 
request  a block of free video  memory or  to  return a block 
of video  memory. Once  the  video-memory  manager 
allocates  a block of video memory to  the  general-purpose 
processor  and  provides  the  processor with the  address 
range  for  that block, the  processor  can  request  an  input 
adapter  to write  directly into  the  allocated video memory, 
as explained in the  preceding  paragraph,  without  further 
involvement from  the video-memory manager. 

Stream controller  to attach disks to a switch 
In  the previous section, we presented  a high-level  design 
for  storing video content in the switches of a network. An 
alternative  to  this  approach is to  store video  in a  separate 
subsystem that  can be connected  to  the switches, or 
alternatively, connected  to  a  general-purpose  computer  to 
augment its  video-delivery  capability. 

In  this  section, we first review the design of the  stream 
controller,  a  hardware unit designed  to  attach  an  array of 
disks  directly to  an  input  port of a switch. Several  such 
stream  controllers,  each  controlling  a  separate  array of 
disks, can be connected  to  different  input  ports of a switch 
in order to increase  the capacity of a server, both in terms 
of amount of storage  and  the  number of streams  delivered 
concurrently.  Then we describe  the  format  for  storing 
video data  on disks  as  network packets  collected  into disk- 
access  units  called groups of blocks (GOBs), the GOBs of 
a video stream  being  connected by link fields. The GOBs 
have fixed playback time, which allows us to  use  the disk 
bandwidth  more efficiently. 

Stream-controller design 
The  function of the  stream  controller is to  retrieve  the 
network  packets of video  clips stored  on disks and  send 
them  to  the switch inputs.  The design is optimized  for 
handling  a  large  number of low-bandwidth 1 /0  transfers 
concurrently, which is required  for video  servers. In 
contrast,  traditional  RAID systems are  optimized  to 
support  infrequent high-bandwidth transfers. 

The design of the stream  controller is shown in Figure 3. 
At its core is the  stream-buffer memory, constructed 
from  semiconductor  storage  and  organized as a  two-port 
memory. One  port,  labeled in the figure as  the disk port, 
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is used  to receive data  from  the disks. The disk port of 
the  stream-buffer memory has  interfaces  to several  disk 
controllers,  each  connected  to  several disks. The  other 
port,  labeled as the  network  port, is used predominantly 
to  read  network  packets  for delivery to  the  network.  The 
network  port of the  stream-buffer memory is connected  to 
the  input of a switch through  the  network  interface logic. 
The  stream-buffer memory is partitioned  into  multiple 
stream  buffers, two of which are  allotted  to  each active 
video stream when the  video  stream is set  up  (created). 
A  real-time  control  processor, typically an off-the-shelf 
microprocessor, is connected  to  its local  memory through 
the local processor bus. An  Ethernet  or RSi232 interface 
allows a  remote  general-purpose  processor  to  perform 
setup  and service functions, such as downloading  programs 
for  the  control  processor  to its  local  memory and 
monitoring  error logs. The  transceivers  and  arbitration 
logic,  shown  in the figure, allow the  control  processor  to 
access the  stream  buffers,  the  control  registers in the disk 
controllers,  and  the  control  registers  and  storage in the 
network  interface. They  also  allow the  network  interface 
logic and  the disk controllers  to  interrupt  the  control 
processor  and access  its  local  memory. 

The  timer  provides  periodic  interrupts to the  control 
processor in the  stream  controller.  In  response to these 
interrupts,  the  control  processor  sets  up  the disk 
controllers  to  transfer  prepacketized video data  from 
their disks to  the  stream buffers. It writes a list of read 
commands  for  each disk controller in an  area of the 
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GOB 
header 

the  packets  are  scheduled  to  be  sent  out  to  the  network 
interface,  the  destination  addresses  and  port  numbers  are 

that much less CPU  time is required  to  do this than  to 
compute  the  entire  header  and checksum “from  scratch.” 
This  technique is equally applicable  to  ATM networks. 

Network  packet filled in and  the checksums are modified  as required.  Note 

Partially computed network header 
(and, optionally, trailers) 

For example, the  entire  ATM AAL5 (Adaptation Layer 5 
[IS]) convergence sublayer can  be  precomputed  at  the 
time video is stored  on  the disk. 

The size of the  network  packets  stored  on  the disks is 
typically in the  range of 512  bytes to 4 KB. Reading  one 

f Internal structure and format of a GOB (Group Of Blocks),  the unit packet  at a time  from  the disk will result in  inefficient use 
of interleaving video  data  on disks. of the disk  bandwidth. Therefore,  several  network  packets 

are  combined  into a  single  disk-access unit, which we call 
a group of blocks (GOB) of size 64 KB to 256 KB. A 

stream-buffer memory reserved  for  that  purpose  and 
passes to  the disk controller a pointer  to  the  command 
list. The disk controllers  indicate  the  completion of the 
read  commands by interrupting  the  control  processor. 

The missing fields in the  network  header  and/or  trailer 
are  computed by the  control  processor  and  updated in the 
stream  buffer,  and  the  completed  packet is forwarded  to 
the  network-interface logic. The  network-interface logic 
also receives  a command list from  the  control  processor, 
each  command  in which specifies the  address in the 
stream  buffer of a network  packet  to  be  transmitted  to  the 
switch, the size of the  packet,  and  optionally a header  that 
should  be  appended  to  the  packet. Similar to  the disk- 
controller  command lists, the  network-interface  command 
lists are  also  written by the  control  processor  into  the 
stream  buffer,  and  the  starting  address  and size of the 
command list are  written  into  the  control memory of the 
network  interface logic. 

We  propose  to  connect  the  stream  controller  to  the 
switch inputs in order  to avoid design changes in the 
switch. In the  case of shared-buffer switches, one could 
alternatively  couple  the  network  interface of the  stream 
controller directly to  the  shared  buffer in the switch. 
Though  the  latter  approach saves some  hardware (switch 
and  input  adapters in the switches and  network  interface 
logic in  the  stream  controller), it requires  redesign of the 
switch to  accommodate  this  connection. 

Optimized format for storing multimedia data on disks 
The  compressed  multimedia  data is stored in the disk 
array in the  form of network  packets in order to reduce 
the  amount of protocol processing carried  out in the 
stream  controller. If video data is stored in the  form of 
IPiUDP  (Internet  ProtocoliUser  Datagram  Protocol) 
packets,  the IP and  UDP  headers  are  precomputed 
(except  for  the  destination  address  and  port  numbers)  at 
the  time  the video data is loaded in the disk  array. When 

GOB is also the basic unit of disk-storage  allocation.  The 
format of a GOB is shown  in Figure 4 and is discussed 
below. 

The  compressed video data (e.g., compressed by the 
MPEG algorithm)  stored in  a GOB has a predetermined 
playback time, fixed for all the GOBs of a stream 
controller.  For  multimedia  data  compressed  at a constant 
bit  rate (i.e., a constant  number of bits  per  second of 
video), all GOBs in a stream  controller have the  same 
size. However, if multimedia  data is compressed  at a 
variable bit rate, as was the  case with our  prototype,  the 
GOBs have varying numbers of disk  blocks.  While the disk 
controller accesses data  from  the disk one GOB at a time, 
a GOB is too  large  to  be  sent  to a client in  a  single burst; 
thus, the GOB is further divided into n clusters of packets 
of equal playback duration  and,  therefore, of possibly 
different sizes. 

Each video file is interleaved across all disks of a stream 
controller, with each GOB having fixed playback time. 
Hence,  the  multimedia video streams  “hop”  from  one disk 
to  the next  in one disk cycle (the GOB playback period) 
when fetching GOBs, with all streams in  synchronism. 
That is, all streams  fetching a GOB from a  disk i in one 
disk cycle will fetch  their next GOBs from disk i + 1 
(modulo  the  number of disks) during  the next cycle. If a 
new video stream  can  be  added  to a group of streams 
simultaneously accessing  a disk without  overloading  the 
disk, the  expanded  group will move from one disk to  the 
next together, accessing  consecutive  disks  in consecutive 
disk cycles without  overloading  them.  (We have assumed 
that all  disks  have identical  throughput.  We have further 
assumed  that  there is a reasonable  upper  bound on the 
size of a GOB, so that we can  guarantee  the maximum 
number of GOBs that  can  be  read  from a  disk.) 

Interference  on  the disks is eliminated by using a 
schedule  table such  as Table 1. It  has  one  column  for  each 
disk controlled by the  stream  controller  and shows the 
relative  position of streams with respect to one  another. 
Stream S, is arbitrarily assigned to  the first disk in the 
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first  row. Thus,  the  schedule  table shows the  position of 
each  stream  (the disk  it is accessing)  when stream 1 is 
accessing  disk 1. In  Table 1, for  example,  streams S,, S,, 
and S, access  disk 1, while streams SI, and SI, access disk 
2, and so on.  In  the next disk cycle, S,, S,, and S, access 
disk 2, while SI, and S , ,  access  disk 3, and so on.  To  start 
a new stream Sn, the  scheduler in the  general-purpose 
computer simply finds an empty cell in the  schedule  table 
and  enters  the  stream identifier in it. Suppose  the cell is 
in column i. The new stream will always stay i - 1 
streams  ahead of stream SI, accessing  disks  with other 
streams in column i. The  number of rows in the  schedule 
table  equals  the maximum number of streams  that  can 
read  a GOB from  one disk in a disk cycle (three in 
Table 1). The above scheduling policy can  be  extended to 
optimally handle video files that  are played  back at widely 
varying bit rates.  These extensions and  the modifications 
required  to  support "trick"  playback modes, such as fast- 
forward, rewind, and slow motion,  are discussed  in [19]. 
To  handle trick  playback modes  and  keep  response  times 
low, five or  ten  percent of the cells  in the  schedule  table 
are  not  allocated by the  scheduler.  The  freed  bandwidth is 
also used  for  loading new content  into  the disk arrays 
managed by the  stream  controller.  We could also  keep 
GOB sizes  in the GOB header, which would allow the 
stream  controller to determine  whether  the  time  required 
to  read all of the GOBs scheduled  to  be  read in a disk 
cycle would be small enough  to  permit disk access for a 
stream playing in trick mode  or  for  downloading  content. 

The  remote  general-purpose  processor  allocates  the 
storage  for  multimedia  data in chunks of several hundred 
megabytes and  partitions it into GOBs having the fixed 
playback time  used by the  stream  controller, by analyzing 
the  data as  it is being  stored  there.  Each GOB is 
referenced by a GOB pointer (in both  the  general-purpose 
computer  and  the link fields stored in other GOBs) 
comprising the disk number,  the  starting block on  the 
disk, and  the  number of blocks in the GOB. 

While each  packet in a GOB has its own network 
header (H1 in Figure 4) and possibly a trailer,  the  entire 
GOB has  a GOB header (H2), which includes  the GOB 
pointer  to  the next GOB of the  same  multimedia  stream, 
thus  enabling  the  stream  controller  to  autonomously 
access  consecutive GOBs of a  multimedia  stream.  For  the 
sake of checking  integrity of the  stored video data, we also 
included in the GOB header  a  pointer  to  the  preceding 
GOB of the  same  video  stream. If fault  tolerance is 
implemented by storing a parity GOB for a group of data 
GOBs, the GOB header  includes  pointers to all GOBs in 
the parity group of the next GOB. Finally, the GOB 
header also contains  pointers  to all of the  clusters of 
packets in the GOB. 

Table 1 Example  schedule  table  for  a  disk  array  with M 
disks. The  entries in column j are  the  streams accessing  disk j 
in  the first disk cycle. In  this  example,  three GOBs can  be 
read  from  each  disk  in  a  disk cycle. 

Disk number 

I 2 3 . . .  M 

For  situations in which a  large  number of different 
network  protocols must be  supported  from  the  same video 
content, it  would be  more efficient to  store  the  network- 
packet payloads and  packet  headers  and  trailers as 
separate  arrays in the GOB. For a single array of packet 
payloads, one  can have a  different  array of network 
headers  and/or  trailers to support  each  protocol.  The 
control  processor would then  place  separate  entries  for 
the  header,  trailer,  and payload components of the 
network  packet in the  command list sent  to  the  network 
interface.  The  network  interface, usually capable of 
performing  linked DMA, would  assemble the  packet  from 
the two or  three  entries. If different  video  clients, even 
when  using the  same  protocol,  must  be  sent  packets of 
different size because of peculiarities of their  connection 
to  the video server,  network  packet payloads  would again 
be  stored  separately  from  the  headers, as  above. The 
payload  size  would be  the maximum expected.  The  stream 
controller would fragment  the  packet by replicating  the 
header, just as routers  do  today. 

Stream-controller software 
The key software  running  on  the  control  processor in the 
stream  controller consists of two real-time processes, the 
disk-read  process  and  the  network-transmit process, which 
transfer  data  from  the disks to  stream  buffers  and  from 
there  to  the  network.  The disk read is a  periodic process, 
each  period  being  equal  to  the GOB playback time (disk 
cycle) for  the  stream  controller.  In  each GOB playback 
period,  the  disk-read  process issues a  read  command  for 
each active multimedia  stream, in order  to  retrieve  a GOB 
of that  stream  from  a disk. Each GOB playback period is 
further divided into n network cycles, and  the  network- 
transmit  process is executed  once every network cycle for 
each active multimedia  stream, in order  to  transmit  a 
cluster of packets  from  the  stream  buffer  to  the network. 
In  our  prototype,  timer-generated  interrupts define the 
disk and  network cycles and  initiate  the  disk-read  and 
network-transmit processes. 

A stream-control  table  regulates  the  disk-read  and 
network-transmit processes. It maintains  the  state  for  each 
active stream, which includes  the following entries  or 227 
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fields: pointers  to two stream  buffers in the  stream-buffer 
memory, one  to  the  read  buffer  that is receiving data  for 
that  stream  from  the disks and  the  other  to  a previously 
filled buffer  that holds data  being  transmitted  to  the 
network; a pointer  to  the GOB being  transferred  from  the 
disk to  the  stream  buffer;  a playback-mode field indicating 
whether  the  stream is in normal playback mode,  paused, 
or in  fast-forward or rewind mode;  the  client-information 
field, which points  to  the block of information  needed  to 
complete  the  network-protocol processing on  the network 
packets  retrieved  from  the disk (for  example,  for IP 
networks,  it  would contain  the  destination IP address  and 
UDP port  number  for  the video stream);  and a field that 
specifies the  stopping  condition  for  the  stream,  either as 
the  pointer  to  the last GOB to  be played  back or  the  time 
remaining  until  the  completion of playback. 

The  stream-controller  software also includes a non-real- 
time  process  that  presents  a  VCR-like  interface  to  the 
remote  general-purpose  processor  and  allocates  the  stream 
controller  resources  to  a  multimedia  video  stream  being 
created  or  releases  the  resources of a  stream  being 
terminated. Service processes  for  loading  data  from  the 
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remote  processor  to  the disks managed by the  stream 
controller, allowing the  processor  to check various  data 
structures in the  stream  controller  and  to verify the 
contents of the disks, are also part of the  stream- 
controller software. 

Stream-controller  prototype 
The  stream  controller in our first prototype is a set of 
three  Micro  Channel*  adapter  cards, which plug into  an 
RS/6000* workstation,  as shown  in Figure 5. One card has 
the  network-interface logic, the  second  has  the  control 
processor  and its local memory, and  the  third has the 
stream-buffer memory and  four SCSI controllers, which 
provide four  fast, wide SCSI buses, each having a peak 
transfer  rate of 20 MBis. The  control  processor is an off- 
the-shelf ARTIC 960 card  running  a  real-time  operating- 
system kernel.  The  network  interface is also an off-the- 
shelf card.  We  designed  and built the  card holding the 
stream  buffers  and SCSI controllers  because  one with the 
required  throughput  and  functionality was not available in 
1993. If the  stream  controller  were  reimplemented today, 
this piece of hardware probably  could also be  an  off-the- 
shelf component. 

The  prototype  stream  controller is capable of serving 
250 MPEG-1 digital compressed-video  streams, which 
requires  video  to  be  delivered  at a sustained  total 
bandwidth of 48 MB/s. Therefore,  each SCSI bus has to 
sustain  a  transfer  rate of 12 MBls, which is achieved by 
connecting eight  disks to  each SCSI bus. The disks are 
3.5-in. SCSI disks, each  capable of storing 2 gigabytes 
(GB) of data.  In  our  prototype,  the GOB playback time is 
200 milliseconds, which corresponds to approximately 64 KB, 
roughly the size of a  track  on  modern  magnetic disks. 
At  that GOB size, these disks easily sustain  the  required 
bandwidth of 1.5 MBls, especially  since the  queued  read 
requests  are  reordered  automatically in the disk 
controller  to minimize seek latency. Details  about  the 
implementation of this  prototype  can  be  found in [19]. 

To  support MPEG-2 streams  at 4 Mbis (megabits  per 
second), we would choose 100-millisecond  disk cycles, and 
the GOBs would be  approximately 50 KB. Three GOBs 
can  be  read  from  a disk  in each disk cycle, allowing 
96 MPEG-2 streams  to  be  supported  from  the 32 disks 
attached  to  the  stream  controller. 

The  above  prototype  has  been  implemented in 1993 
technology. If the design were  to  be  reimplemented today, 
much more powerful stream  controllers could be built at a 
lower cost. Not only are  more powerful microprocessors 
and  denser memory modules available at  a lower  cost, but 
the  speed of I/O buses  has  increased,  and  improvements 
in packaging  technology allow us to  place  more 
components in available card  areas. 



System-design  issues 
The maximum performance  obtainable  from any 
implementation of the  proposed design is limited by 
the  bandwidth of the  connection  between  the  stream 
controller  and  the  network. To achieve  this performance, 
the video  buses between  the  stream-buffer memory and 
the disk controllers must be  able  to provide the  same 
bandwidth.  The  number of disk controllers is chosen  to 
meet  or exceed this  bandwidth.  The  aggregate  bandwidth 
into  and  out of the  stream-buffer memory  must  exceed the 
bandwidth of the video  buses, the excess needed  to allow 
the  control  processor, disk controller,  and  network- 
interface logic to exchange command lists. 

For  a fixed number of streams,  a  larger  stream-buffer 
memory allows one to choose  larger GOB sizes, which 
results in better  utilization of the  bandwidth of individual 
disks and  longer disk cycles. Longer disk cycles reduce  the 
performance  required of the  control  processor. Since the 
video  buses into  and  out of the  stream-buffer memory 
operate  near  peak  utilization, it is important  to design the 
arbitration logic to  ensure  that  the  control  processor has 
the necessary  access to  the  stream-buffer memory in order 
to  complete  its  chores in a timely manner.  Other  than 
these  normal design issues, we did not  encounter any 
major design problems. 

Comparison of the performance of the 
proposed  video  storage method with the 
conventional  approach 
In this section, we first discuss the  advantage of the 
proposed video storage  format  and  the  algorithm to 
schedule  disk-read  requests  over  the  conventional me 
While the  proposed  method is strictly deterministic, 

$hod. 

modeled as a  constant-bit-rate  stream  compressed  at 
512 KB/s. The  load on the disks was varied by varying the 
number of active streams.  When fully loaded,  each disk  in 
the  array would  have  an average of  five active streams. 
While the  model is very simple, it highlights the  problem 
inherent in stochastic  loading of disks. 

283 clips  could be  stored  on  the disk array.  The 256KB 
blocks of the  video clips were  mapped  at  random on the 
disk  blocks. Thus, disk interference  occurs  when two or 
more video streams accessing different  video clips, or even 
different  portions of the  same video clip, simultaneously 
attempt  to access the  same disk. [One could interleave 
these blocks on  the disk  in a  round-robin  manner. 
However, if the  video files use variable-bit-rate 
compression,  or if the individual files are  compressed  at  a 
fixed rate  but  different files have different  compression 
rates (a mix  of MPEG-1,  MPEG-2, and  audio files 
compressed with different  compression  algorithms),  the 
disk interference  behavior is quite complex. Accurate 
modeling with round-robin  placement would be difficult. 
Even if the  modeling  were  accurate,  the  results would 
be valid only for  the mix  of files used.  Using  random 
placement is a  good way  of eliminating this  complexity 
without affecting the  results significantly.] Each  stream 
selected  one of the 283 video clips according  to  one of 
two models of popularity  and  then  proceeded  to access 
the blocks of that clip sequentially.  The first model of 
popularity used equal probability for  choosing any of 
the 283 streams.  The  second  popularity  model used the 
Ziff distribution, in which the probability of accessing 
clip i is 

Video  content was modeled as 30-minute clips; hence, 

and its performance  can  be  projected  accurately,  the 
conventional  approach is stochastic,  and  simulations  were i - e /  , 

used to  predict its performance. Next we discuss the 
reductions in protocol-processing  overheads achieved by 
storing  data in the  format  of  network  packets.  At  the  end The exponent O1 was chosen to be 1.5 in Order that the 

semiconductor  storage  to  store video results in a less  exceed 80% (actually, 81.11%). The  stream-buffer sizes 
costly solution  than  the use of disks. were  varied from 512 KB to 4 MB. In order  to  start  a 

stream, initial read  requests  were issued simultaneously, 

, = I  

of this  section, we discuss the  situations  for which using probability Of accessing One  Of the ten most popular 'lips 

Advuntage of interleaving  video in fued  playback  units 

Simulation of conventional  video  server 
We  simulated  the retrieval of video from  an  array of disks 
attached  to  a  general-purpose  computer in a  conventional 
manner. We modeled 64 4GB disks, each  completing 
a  pending  read  request  for  a 256KB block in 100 
milliseconds. The 256KB blocks retrieved  from  the disk 
were  placed into  a  stream  buffer,  from which they were 
sent  to  the  clients in five equal  bursts  spaced 100 
milliseconds apart.  Thus,  the maximum  possible 
throughput  per disk is 2.56 MBls, and video content is 

and  the delivery of the  stream  to  the  network was delayed 
until  a sufficient number of initial read  requests to fill the 
stream  buffer  completely  had  been  completed.  From  then 
on,  a new read  request  for 256 KB of data was  issued  as 
soon as 256 KB of the  stream  buffer  became  free. 

One of the  quantities  measured  during  simulation was 
the  disruption count-the number of instances  during  the 
delivery of the  video clip in which data could not  be  sent 
over the  network  because  the  stream  buffer was empty. 
Table 2 summarizes  the  disruption  counts  for 512KB and 
1MB stream  buffers  for  a uniform  probability of selecting 
each video, and  for 2MB and 4MB stream  buffers  for  the 
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Table 2 Average number of disruptions per stream during 
a 30-minute video segment. 

Load  Popularity  model 
(%I 

Uniform Ziff 

stream-buffer size stream-buffer size 

512 KB 1 MB 2 MB 4 MB 

10 0 0 0 0 
20 0 0 5 0 
30 0.07 0 36 20 
40 1.5 0 91 66 
50 8 0 255 23 1 
60 38 0.2 572 580 
70 155 5.5 1113 1125 

probability of selecting video being  Ziff-distributed.  One 
can readily see in Table 2 that if the  popularity of the 
clips follows a Ziff distribution, five or  more  disruptions in 
a 30-minute  period  should  be  expected as soon  as  each 
disk has  to  support  an  average of more  than  one active 
stream  (20%  load)  even  though  the  stream  buffers  are 
2 MB  to 4 MB. When  the  popularity  model follows a 
uniform  distribution, five or  more  disruptions  can  be 
expected every half hour  when  an  average of two active 
streams  (40%  load)  are accessing each disk and  the  stream- 
buffer size is 512 KB, or  when  three active streams  (60% 
load)  are accessing each disk and  the  stream-buffer size is 
1 MB. 

On  the  other  hand,  the  stream  controller  proposed in 
this paper would be  able  to  support five streams  per disk 
if the disk cycle were  chosen  to  be 500 milliseconds and 
each  stream  had two 256KB buffers.  Interleaving video in 
units of GOBS  that have  a fixed playback duration  also 
gives us the flexibility to  reduce  the  buffer size. In  the 
above example, if we chose  the disk cycle to  be 100 
milliseconds, the two buffers  for  each  stream  could  be less 
than 64 KB each,  because  the disk response  time  can  be 
guaranteed  to  be less than  one  GOB playback period. 
However, since we are now accessing  disks for  requests of 
smaller size, we can fit in only three  requests in 100 
milliseconds. This is  still significantly better  than  the 
conventional  approach,  because  three  streams  per disk are 
supported  irrespective of the  uneven access pattern,  and 
with one  tenth of the  stream-buffer size. (Of course,  there 
are  no  disruptions.) 

Advantage of storing video in the format of network 
packets 
With  prepacketization of the  video  stream,  the i960 CA 
processor  on  the  ARTIC 960 card  (approximately 7-MIPS 
performance) was able  to  handle 80 streams  with 30% 

230 processor  utilization  (even  though  the  code was not fully 
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optimized).  The  code  required  for  header modification 
and  preparation of the  network  DMA  transmit list for 
each  IP/UDP  packet is well under 300 instructions. 
Consequently, we are  confident  that 250 MPEG-1  streams 
are  achievable with the i960 processor.  (We  were  not  able 
to  test  the 250 streams  because we did  not have the 
needed  stream-buffer memory.) 

On  the  other  hand,  network-protocol-processing 
overheads  and file-system overheads in conventional 
workstations  are much higher. Kay and  Pasquale [20, 211 
have presented  detailed  measurements of various 
overheads  for  the  UDPiIP  protocol  stack  on a DECstation 
5000/200 running  the  Ultrix 4.2a operating system. From 
the  graphs  presented  in [20], we have determined  that  the 
overhead  for checksum calculation,  data  movement,  and 
protocol-specific operations limit the  throughput  to 3MB/s 
or, equivalently,  16 streams, as  explained  in [19]. In [22] 
Haskin  and Schmuck describe a file system optimized  for 
video  delivery that  can  support 60 and 75 streams on an 
RSi6000 Model 970 and 980, respectively. 

Economics and technical feasibility of using DRAM 
storage 
For serving  a large  number of streams, we propose  the  use 
of hundreds of gigabytes of semiconductor  storage.  An 
obvious concern is the  technical feasibility and  cost of 
building  such  a  system. The  media cost of disks  (cost of 
the individual  disks,  excluding the  electronics  needed  to 
build  a  system,  power supplies, racks, markup, etc.), at 
about $0.15 per megabyte, is one  fortieth of the  media 
costs of DRAM, which is roughly  $6 per megabyte. 
However, the maximum bandwidth of a 4GB disk is only 
8 MB/s, while the  bandwidth available from  4GB  DRAM 
(organized in  a configuration  to  provide maximum 
bandwidth) is 80 GB/s. 

A server  designed  to  provide 20 hours of popular 
programs  and  support  20000  simultaneous  users would 
require 36 GB of storage  (MPEG-2  video  at 4  Mbis) and 
10 GB/s of bandwidth.  While 36 GB of DRAM, costing 
$216000,  would  exceed the  bandwidth  requirement, 1250 
disks,  costing $750000, would be  needed  to  provide  the 
required  bandwidth.  Furthermore, in today’s technology, 
36 GB of DRAM  can  be  packaged in  a workstation-sized 
system, whereas 1250  disks  would require  at  least 20 racks 
of equipment.  Additionally, a large  number of power 
supplies  and disk controllers would be  required  to  manage 
the disks,  making the  disk-based system even  more 
expensive than  the  DRAM-based system. The  operational 
costs and system management  problems  for  the disk-based 
system would be  larger. 

Thus,  even  though disks are  cheaper  than  DRAMS  per 
bit of storage,  the  bandwidth  constraints  make  the  DRAM 
solution eventually cheaper  for  servers designed for  large 
numbers of streams.  Furthermore, if the  content  being 
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placed  on  the  server  can be partitioned  into a limited- 
content,  high-demand  part  and a large-content, low- 
demand  part  (a  situation  predicted in  many applications), 
the  cost of the overall system can  be  reduced significantly 
by placing the  high-demand  part in DRAM  and  the low- 
demand  part  on disks connected  to  the switch through 
stream  controllers. 

In  the  published  literature, we have not  seen  any claims 
of substantial  improvements in the  execution of the 
Internet  protocol  stack,  despite its importance in 
computer  communication. Since it  has existed for two 
decades,  one might infer  that  opportunities  for  order-of- 
magnitude  improvements  are now unlikely. Of the many 
video-server trials  mentioned in the  trade  press, only the 
work of Haskin  et al. [3, 221 has  been  published in detail 
in the  computer science  technical literature.  Because of 
the  three-year  hiatus  between  the two references  and  the 
indication of continued work by the  authors  on this 
subject during  this  time, we infer  that [22] represents a 
near-optimum  implementation, which would be  hard  to 
improve significantly. Hence, in our opinion it will be 
difficult to  match  the  performance achieved by the 
proposed design approach.  One  should  keep in  mind that 
as hardware  becomes  faster  because of improvements in 
semiconductor technology, both  the  conventional  approach 
and  the design proposed in this  paper will benefit equally. 

In  the above  analysis, we made  the  comparison  for 20 
hours of video. This design point was considered  suitable 
for  information  and  entertainment  applications in which a 
user  connects to the  information or entertainment 
provider daily or weekly, and  uses  the service for  thirty 
minutes  to two hours a  day. Presenting  the  user with  a 20- 
hour  selection  for  an  average of one  hour of viewing was 
considered  adequate. 

Summary and discussion 
In this paper, we proposed a  design for video servers in 
which video content is off-loaded  from  the  magnetic 
storage  attached  to a conventional  computer system and 
stored in  special  video-delivery  subsystems attached 
directly to  network switches. One video-delivery  subsystem 
was a  modified shared-buffer switch. Most other switch 
designs can  be similarly  modified by providing data  paths 
from  the video storage  to all switch outputs  and modifying 
the  arbitration logic associated with each switch output 
port  to  accept  the  packets arriving from  the  video memory 
with higher  priority  than  other traffic. 

We also described  an  unconventional way  of storing 
video content  on a  disk  array. Though we proposed 
attaching  the disk array directly to the  network switches, 
as suggested  in [19], the disks can  be  attached  to a 
conventional  computer as well. By simulating a  simple 
model of a  disk array, we showed the  advantage  over 

conventional disk-access methods of interleaving video 
data in units of fixed playback time  and accessing  it 
according to a fixed schedule.  We also illustrated  the 
reduction in protocol-processing  overhead achieved by 
storing video content in the  format of network  packets 
with the  precomputable  parts of packet  headers  and 
trailers  computed in advance  and  stored in the  packets. 
We presented  the  economic  rationale  for using 
semiconductor  storage  for  servers  that have to  support 
large  numbers of streams with  limited content. 

to  use many  small  servers,  geographically distributed 
among  the  users.  This  has  the  advantage of reducing 
the  network cost, but  the  content must be  replicated. 
Furthermore,  the  operational  cost of multiple-disk-based 
systems  in residential  neighborhoods would be  higher 
than  the  operational cost of a centralized system. In our 
opinion, when video-on-demand systems become  common, 
the  centralized-server  approach will be  more  economical. 

In conclusion, we have demonstrated  that  multimedia 
servers  architected  and  designed  to  optimize  the delivery 
of video  and  other  multimedia  data will have  a 
substantially better  price/performance  than  general- 
purpose  computers used for  the  purpose.  However,  these 
specialized servers will be economically  viable only when 
the  demand  for  them justifies the initial  design and 
development costs. 
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