Tiger Shark—
A scalable
file system
for multimedia

by R. L. Haskin

Tiger Shark is a scalable, parallel file system
designed to support interactive multimedia
applications, particularly large-scale ones such
as interactive television (ITV). Tiger Shark

runs under the IBM AIX® operating system,

on machines ranging from RS/6000™

desktop workstations to the SP2% paraliel
supercomputer. In addition to supporting
continuous-time data, Tiger Shark provides
scalability, high availability, and on-line system
management, all of which are crucial in large-
scale video servers. These latter features also
enable Tiger Shark to support nonmultimedia
uses, such as scientific computing, data
mining, digital library, and scalable network file
servers. Tiger Shark has been employed in a
number of customer ITV trials. On the basis of
experience obtained from these trials, Tiger
Shark has recently been released in several
IBM video-server products. This paper
describes the architecture and implementation
of Tiger Shark, discusses the experience
gained from trials, and compares Tiger Shark
to other scalable video servers.

Introduction

To date, most multimedia application programs run on
stand-alone personal computers, with digitized video and
audio coming from local hard disks and CD-ROMs.

Increasingly, there has been a demand for file servers for
multimedia data. The reasons for this include those that
motivate the use of file servers for conventional data:
sharing, security, and centralized administration.

It is difficult for a conventional file server to handle
multimedia data. When a conventional file server becomes
overloaded, all users experience lower throughput and
greater response time. For multimedia, the file server
must deliver digitized video and/or audio data at a rate
that allows it to be presented to the user in a smooth,
continuous stream (this is called continuous-time, or
isochronous, presentation). Any nontrivial delay by the
server results in stream starvation, which appears to the
user as an annoying interruption in the presentation.
Stream starvation can be avoided by buffering data
and/or underloading the file server, but either of these
alternatives can increase cost prohibitively. A video server
differs from a conventional file server by incorporating an
admission control mechanism to prevent overloading and a
scheduling mechanism to ensure that data is supplied in a
continuous manrer.

In large-scale multimedia applications, like video on
demand (VOD), interactive television (ITV)', and
browsers for the World Wide Web, the difficulty of
providing continuous-time presentation is exacerbated by
the sheer magnitude of the systems. A single video stream

1 Video on demand includes relatively noninteractive applications such as playback
of movies. Interactive television includes applications such as home shopping,
education, and training, in which the user interacts with the system.
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requires between 1.5 and 6 Mb/s of bandwidth.> At the

6 Mb/s typically required for ITV, even the 100-stream
servers that have been deployed in a number of small-
scale ITV trials must support a throughput of 75 MB/s,
yet most conventional network file servers are limited to
well under 10 MB/s. A 1000-stream server, which is the
minimum considered for production ITV systems, requires
at least a 19-node SP2’ system, with all nodes accessing
the same video data simultaneously, making the need for
scalability obvious.

The need for high availability and manageability in a
large-scale VOD or ITV server is obvious as well. Failure
of a 1000-stream ITV system presenting two-hour movies
at $5 each costs $2500 an hour. Failure of a digital video-
broadcast server can put a cable TV system, broadcast
station, or broadcast network off the air. Ordinary
component failures must not take down the server or even
unduly interrupt viewers, and it must be possible to repair,
service, and reconfigure the server while it remains
operational.

The remainder of this paper discusses the architecture
of the Tiger Shark file system, with emphasis on the
features that allow it to function as a video server,
describes its use in a variety of IBM ITV trials and video-
server products, and concludes by discussing the lessons
learned to date and possible future directions.

The Tiger Shark file system

Broadly speaking, a video server consists of three
components: a control component that responds to client
requests, a communication component that moves data
through the network from the server to the client, and a
file-system component that manages the storage and
retrieval of data from disk. To enable the use of the
RS/6000* and SP2 computers as video servers, we
developed the Tiger Shark file system, which incorporates
the following features that permit its use in a video
server:

« Tiger Shark is designed to handle isochronous data by
making use of the real-time features of the AIX*
operating system and by scheduling disk I/O to ensure
that data is read and written on time.

* Tiger Shark provides a high degree of scalability, both in
the amount of data it can store and the data throughput
(bandwidth) it supports.

» Tiger Shark is designed for high availability. When
properly configured, it remains operational in the face of
any single disk or node failure.

* Tiger Shark is designed to simplify or eliminate routine
system-management tasks. Automatic load balancing

2 Mb = megabits, MB = megabytes, Kb = kilobits, KB = kilobytes.
3 The Microchannel* on each SP2* node, which has a hardware throughput limit
of 40 MB/s, determines the number of nodes.
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across disks is inherent in the design. All operator-
initiated management functions can be performed while
the system remains operational.

In addition to supporting video, Tiger Shark contains
the following features that make it suitable as a general-
purpose parallel file system:

» Tiger Shark presents a POSIX**-compliant [1]
programming interface; thus, application programs can
use it with few, if any, modifications.

Tiger Shark provides high-speed access to files from a
single application or from any number of applications
running in parallel.

Tiger Shark is fully cache-coherent across nodes in the
SP2 system. Cache coherence is implemented by means
of a byte-range locking mechanism that allows parallel
access to nonoverlapping regions of a file, with little or
no communication overhead.

In summary, Tiger Shark enables the RS/6000 and the
SP2 to efficiently satisfy the data-access demands of both
multimedia and parallel computing.

Tiger Shark overview

Tiger Shark runs on a cluster of processors (file-system
nodes) that share a pool of disks. File-system nodes can
access the disks directly over a switching network or via
other processors (storage nodes) to which the disks are
physically attached. A single node can serve as both a file-
system node and a storage node, but for simplicity, our
discussion treats the two types of nodes as if they were
distinct. Each file-system node can read from and write
to all of the disks. A single RS/6000 processor can be
considered to be a single-node cluster. In the SP2 system,
Tiger Shark file-system nodes use a software component
called Virtual Shared Disk (VSD) [2] to send disk block-
read and block-write requests to storage nodes over the
high-speed switch. This is illustrated in Figure 1.

Tiger Shark supports multiple, separately mountable file
systems’. In Tiger Shark, each mountable file system is
striped across a collection of disks called a stripe group
and can be accessed in parallel from all file-system nodes.
Tiger Shark presents a single-system image to its clients—
programs on separate file-system nodes see a globally
consistent view of each mounted file system.

From Tiger Shark’s point of view, a video-server
component that streams video to external users, such as
an ATM stream driver or the Network File System**
dzemon, is simply an application program running on file-
system nodes. Other programs can run simultaneously and

4 The operating system literature uses the term “file system” to refer to both the
software that manages file data and the structurc of this data on disk. This paper
attempts to make the context sufficient to disambiguate these two meanings.
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Tiger Shark architecture for an SP2 system.

share data with video-server components. For example, a
tape-archive manager running on one file-system node can
begin retrieving a movie from a tape library and, slightly
later, an ATM stream driver on another node can start
streaming the movie to a viewer.

Tiger Shark makes files available through the AIX
virtual file system [3] interface, which makes Tiger Shark
compatible with the AIX native file system. Programs do
not have to be modified to use Tiger Shark unless they
make use of the functions that control its multimedia
features.

Tiger Shark architecture

Tiger Shark has a number of architectural elements that
allow it to meet its design goals. Following is a brief
discussion of the major ones.

Isochronous file access  Tiger Shark uses real-time
features of the AIX operating system [4] to prevent the
kernel and other programs from interfering with
isochronous data delivery. It also implements real-time
disk scheduling to execute disk 1/O operations in the
proper order for achieving an uninterrupted flow of data
to clients. Tiger Shark uses deadline scheduling (as
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opposed to conventional scan or elevator algorithms [5])
to implement both recording and playback of files with
arbitrary video rates.

Large disk blocks ~ To efficiently support multimedia and
supercomputing, a file system must maximize throughput
from the available disks. Since disk throughput is strongly
related to disk block size, Tiger Shark uses a large disk
block, 256 KB being the default. Conventional file systems
optimize to reduce space rather than to increase
throughput, by using small disk blocks; for example, the
AIX native file system uses 4KB blocks. Since Tiger Shark
can store several small files (or partial blocks at the end of
large files) together in a single large block, its disk-space
utilization is comparable to that of a conventional, small-
block file system.

Wide striping  In both supercomputing and multimedia,
much or all file-system activity is often directed at a single
file. For example, many or all clients of a VOD system
may be viewing the same “blockbuster” movie
simultaneously the first night it becomes available. For the
1000-stream server mentioned in a previous example, the
entire 750MB/s server throughput may be used for the
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Table 1 Example of file-system block replication with
round-robin striping. The entry is the number of the disk on
which the block is written. The striping order is 1-2-3-4,

Replica number Block number

0 1 2 3
1 3 4 1 2
2 4 1 2 3
3 1 2 3 4

single file containing this movie. This is higher than the
throughput of an individual disk (5-10 MB/s) or even

of an individual storage node in the SP2 (40 MB/s).
Achieving higher throughput than that of a disk or node
from a single file requires striping it across multiple disks
and storage nodes, so that successive blocks of the file go
on different disks and nodes. Each Tiger Shark file system
can be striped across as many as 512 disks. Since each file
is striped evenly across all disks in a stripe group, the disk
load is inherently balanced, regardless of file-access skew
(the unevenness of demand for different files).

Fault-tolerance  As the number of disks and nodes in the
system increases, so does the probability of component
failures. If hardware RAID (e.g., a disk such as that
described in [6]) is available, Tiger Shark can use it as a
means of protecting disk data. However, hardware RAID
subsystems can be more than twice as expensive per byte
as conventional disks, RAID controllers are often
performance bottlenecks, and, for large systems, the
probability of an entire RAID subsystem failing is
significant. As an alternative to RAID, Tiger Shark uses
block-level replication of both file data and metadata (the
bookkeeping information that keeps track of the location
of files on disk). Tiger Shark also recovers from file-
system-node failures, so if a node crashes in the process of
modifying the file system (e.g., while recording or while
loading content from tape), the file system will be restored
to a consistent state.

On-line system management  Tiger Shark responds to
commands from the AIX operating system to
automatically recover and reconfigure in response to the
failure or repair of hardware components. The system
remains operational while reconfiguration occurs. System-
administration commands (creating and deleting file
systems, adding and removing disks from file systems, etc.)
are also executed while the system is operational. Files
can be reorganized (e.g., restriped onto newly added
disks) on-line, with the reorganization taking place in the
background.
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File-system metadata

Tiger Shark file-system metadata (data structures on disk)
roughly correspond to those of a conventional UNIX**
file system [7] but have been substantially redesigned to
work well in a cluster.

The root data structure of a file system is the stripe-
group descriptor, analogous to the UNIX superblock. It
contains overall file-system attributes, pointers to other
data structures (for example, the inode and allocation map
files described below), and information about each disk in
the stripe group. The stripe-group descriptor is replicated
on each disk of the stripe group and is read and written
by the use of a quorum algorithm [8], which makes the
operations of reading and updating the stripe-group
descriptor tolerant of disk and node crashes. Because
reading and writing the stripe-group descriptor is done
infrequently, the overhead of the quorum algorithm is not
significant.

Each disk in a stripe group can be a data disk (which
holds only file data), a metadata disk (which holds only
metadata), or both. This allows the use of disks with
different physical characteristics for data and metadata.

File-system blocks in Tiger Shark (both data and
metadata) can be replicated. Each disk address contained
in file-system metadata is an array, with one e¢lement per
replica. The disk information in the stripe-group
descriptor contains system-topology information that
allows Tiger Shark to allocate block replicas on disks with
no common failure point. The degree of replication can be
different for each object. A stripe group can have
replicated metadata but unreplicated files, or it can have
different levels of replication for different files; for
example, only popular movies might be replicated. This
allows making tradeoffs between fault-tolerance and
system cost.

Each data file is striped across all of the data disks in
the stripe group. Metadata is similarly striped across all
of the metadata disks in the stripe group. Tiger Shark
supports two striping policies: round robin and balanced
random. For round-robin striping, a single striping order is
used for all files. All replicas of the first block of a file are
written to randomly chosen disks, subject to the constraint
that they have no common failure point. Successive blocks
of each replica are written to data disks chosen according
to the striping order, as illustrated in Table 1. For
balanced random striping (Table 2}, a separate, randomly
generated striping order is used for each k blocks of the
file, where k is the number of data disks (k = 4 in Table 2).
Again, replicas of a single block are offset by a random
amount within this order. Round robin gives higher
throughput without missed deadlines, but files in a
balanced random striping system can be restriped (e.g.,
when disks are added to the stripe group) by moving only
1/kth of their blocks.
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Because of the random position of the starting point in
the striping order from one replica of a block to the next,
the replicas of each block will be more or less evenly
distributed across the disks in a stripe group. After the
failure of one disk, the load on the other & — 1 disks in
its stripe group increases by only 1/kth. Contrast this to
mirroring, in which the entire load of a failed disk must
be borne by its mirror. Thus, Tiger Shark can operate its
disks at (k — 1)/k of their maximum throughput and still
not have them overload after a failure, as opposed to the
limit of 1/2 that would be the case with mirroring.

Tiger Shark can use logical disks (for example, AIX
logical volumes) interchangeably with physical disks. Most
hardware RAID subsystems make a parity group, or rank,
of physical disks appear to the operating system as a
single logical disk. In such a configuration, the RAID
subsystem stripes individual file blocks across the physical
disks in a parity group, and Tiger Shark stripes successive
file blocks across successive RAID parity groups according
to the striping order. Tiger Shark optimizes performance
for different RAID subsystems by proper choice of the
size and alignment of their data blocks. For example, the
IBM RAIDiant system [6] performs best for 256KB reads
and writes aligned on 256KB boundaries, which the
RAIDiant executes as 64KB operations in parallel on each
disk in the parity group.

As in UNIX, each file consists of a number of data
blocks, and has associated with it an inode and possibly
one or more indirect blocks. The inode is a fixed-sized
data structure that contains the file size, creation and
modification times, access-control information, and
pointers to the file’s data blocks. If it is too small to
contain pointers to all data blocks, the inode instead
contains pointers to indirect blocks, which in turn point to
the data blocks.

The inodes of all files in a stripe group are stored in a
special file called the inode file. Each inode is referred to
by its inode number, which is its ordinal position in the
inode file. The stripe-group descriptor contains a pointer
to the first block of the inode file; the first inode in the
file (inode 0) is that of the inode file.

Another special file, the allocation-map file, contains
the allocated/unallocated state of disk space in the stripe
group. File-system blocks are subdivided into 32 equal-
sized fragments (fractional blocks); the allocation map
contains the state of each fragment of every block in the
stripe group. Fragments are used to efficiently store the
following together in a single file-system block: multiple
metadata blocks, small files, or partial blocks at the
end of large files. The allocation map is divided into n
segments, each of which describes 1/nth of the space on
each disk in the stripe group. The segmented allocation
map allows n separate nodes to allocate disk space
simultaneously without contention. The number of
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Table 2 File-system block replication with balanced
random striping. The entry is the number of the disk on which
the block is written. The striping orders are 3-1-4-2 and
1-3-4-2.

Replica number Order number 1 Order number 2

Block number

0 1 2 3 4 5 6 7
1 3 1 4 2 1 3 4 2
4 2 3 1 1 3
3 1 4 2 3 3 4 2 1

segments x is specified when the file system is created,
according to the number of nodes expected to be writing
at the same time.
Each stripe group also contains a number of log files.
Each node has its own log file, in which it maintains
its recovery log. Recovery logging is discussed below.
Directories, which associate human-readable file names
with inode numbers, are also stored in files. Directories
are structured as extendible hash tables [9] rather than
as the more familiar linear list or B-tree structures.
Extendible hashing allows effectively uniform lookup time,
regardless of the number of files in a directory. Each hash
bucket is stored in an 8KB block in the directory file.
When a hash bucket overflows, the hash table is extended
and the full bucket is split into two partially full buckets
stored in separate 8KB blocks.

Software structure

Figure 2 illustrates the Tiger Shark software structure.
Tiger Shark is implemented as a multithreaded demon
process (labeled “Tiger Shark demon” in the figure)
and a dynamically loaded kernel extension. The kernel
extension implements the virtual file system (VFS)
functions. The application program calls Tiger Shark
through the standard file-system interface (open, close,
read, write, etc.). The AIX kernel routes each call to the
corresponding VES function in the kernel extension.

Tiger Shark implements two communication
mechanisms: a highly efficient mailbox mechanism for
communication between the kernel extension and the
deemon, and a set of remote procedure call (RPC)
interfaces for the deemons to communicate among
themselves.

Tiger Shark uses memory shared between the demon
and kernel extension to store its internal data structures,
buffered file data, and buffered metadata. The kernel
extension can obtain locks from AIX on objects in shared
memory and can examine or modify them. Simple VFS
operations (such as reads and writes of buffered data or

directory lookups in cached directory files) are performed 189
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in the kernel extension. The kernel extension sends

mailbox messages to the demon to perform more
complicated operations, particularly those that require
I/O. For example, if a program issues sequential 4KB read
operations, the kernel extension sends a read message to
the deemon for each 256KB data block to be read (i.e.,
one message for every 64 read calls) and performs the
other reads itself from buffered data in shared memory.
For real-time playback, Tiger Shark attempts to prefetch
data, so that a program reading at the playback rate will
never be blocked on a read call.

The RPC interfaces are implemented by means of TCP
sockets. When the Tiger Shark deemon receives an RPC,
a deemon thread is dispatched to perform the requested
operation. Two of these RPC interfaces, the configuration
manager and the stripe-group manager interfaces, are
discussed here.

The configuration manager keeps track of what stripe
groups are mounted and chooses the stripe-group manager
for each active stripe group. One of the file-system nodes
is elected by the other nodes to become the configuration
manager when the system starts up and, thereafter,
whenever the previous configuration manager terminates.
The stripe-group manager maintains the list of nodes that
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have the stripe group mounted (more accurately, the file
system contained in the stripe group), processes mount
requests, and allocates log files to nodes. System-
management commands that affect the stripe group (e.g.,
adding or removing a disk, restriping) can be initiated on
any node but are performed by the stripe-group manager.
The stripe-group manager also manages other global state
operations, e.g., changes to user-disk-space quotas and
assignment of allocation segments to nodes. When a file-
system node mounts a file system, it sends an RPC to the
configuration manager to request the identity of the proper
stripe-group manager. If no stripe-group manager exists,
the configuration manager appoints the requesting node
as stripe-group manager. If a stripe-group manager fails,
the configuration manager chooses another node as its
successor.

Tiger Shark is a general-purpose file system that
allows any number of nodes to read and write files
simultaneously while giving all nodes a coherent view of
the file system. Since file-system nodes buffer (or cache)
data to improve performance, nodes must be informed
when other nodes perform operations that affect their
cached data. Tiger Shark uses a modified version of
the token manager in the Calypso file system [10] for
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distributed locking. Buffer-pool-coherency locking is
functionally distinct from POSIX (fcntl) locking, although
the latter is also implemented via the token manager.

In common with many modern file systems, Tiger Shark
implements recovery by means of journaling, or write-
ahead logging [11]. Operations that modify metadata (with
the exceptions noted below) are logged, and the log
records are written to disk before the modified metadata
is written. Within a stripe group, each node has a separate
log file, which is replicated. After a node failure, the
stripe-group manager reads the failed node’s log file,
applies the changes described in its log records, and then
instructs the token manager to release any tokens that
might have been held by the failed node. This recovery
processing requires of the order of seconds. In the interest
of performance, updates to inodes and indirect blocks are
not logged. Instead, Tiger Shark observes the following
order of operations when writing to a file:

« Data blocks and log records describing allocations of
new data and/or indirect blocks are written.

» Indirect blocks are written.

» The inode itself is written.

This ordering prevents file metadata from pointing to
unallocated or uninitialized data blocks when a file is
being written. Similarly, a special ordering is required
when a file is truncated or deleted:

* A list of all blocks to be deallocated is built in memory.

» The modified inode and/or indirect blocks that used to
refer to the deallocated disk block are written.

e The blocks in the aforementioned list are deallocated.

This protocol ensures that a disk block is never
deallocated as long as a reference to it exists on disk.
When a file is deleted, before the inode and indirect
blocks are traversed to build the deferred deallocation list,
the file’s inode is updated to show that it has been deleted.

The write ordering described above maintains metadata
consistency after file-system node failures, with less I/O
than journaling, but a node crash can result in a limited
number of unused blocks being marked as allocated in the
allocation map. To reclaim this space, an on-line version of
the familiar UNIX fsck command was implemented to
traverse file-system metadata and reclaim any allocated
but unused blocks. This on-line fsck, done in the
background while the system is running, does not interfere
with real-time 1/O. The more familiar off-line fsck is also
used in rare failure situations, such as the loss of a log file
or file-system corruption due to a software bug. Reloading
a multi-terabyte file system from tape takes so long that
even these rare failures must be guarded against. The
Tiger Shark fsck command restores a corrupted file system
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to a usable state and saves as much file data as possible.
In a video server, with large blocks and relatively few files,
the time required to execute off-line fsck is acceptable
even for large file systems.

Tiger Shark employs the real-time features of the AIX
kernel to enable it to implement isochronous access to
multimedia data. When used in a video server, all Tiger
Shark code and data buffers are fixed (pinned) in memory,
in order to prevent page faults from interfering with
isochronous performance. Furthermore, the Tiger Shark
demon runs at high priority. This prevents other
processes (including the AIX process scheduler) from
interfering with Tiger Shark and disables time slicing for
the demon. Finally, the AIX real-time clock is used to
implement deadline scheduling.

Background activities such as content loading require
Tiger Shark to perform non-isochronous I/O to the file
system while isochronous streams are being played and
recorded. Tiger Shark allows all disk-system bandwidth not
consumed by isochronous streams to be used for non-
isochronous time I/O according to the following algorithm.
During file-system operation, Tiger Shark keeps track of
the fraction o of this bandwidth actually used by currently
playing streams. After executing a non-isochronous I/O
operation taking time ¢, Tiger Shark waits for time
t(1 — o)/o before starting the next non-isochronous I/O.
This heuristic is similar to that described in [12].

Tiger Shark uses an EDF (earliest deadline first [13])
policy to schedule isochronous I/O. The deadline
(completion time) of the ith block in a stream is that of
the i — Ist block plus the i — 1st block’s playback time
(block size/data rate). Isochronous I/O to each disk is
executed in EDF order. In single-node configurations,
Tiger Shark calls the AIX disk device driver to perform
I/O operations. To restrain disk drivers, adapters, and
devices from reordering I/O to optimize throughput, Tiger
Shark limits the number of I/O operations on each disk at
any time to at most two, one executing and the other
queued. When the executing operation completes and the
queued operation begins executing, Tiger Shark queues
the subsequent operation to the disk.

As was mentioned above, Tiger Shark uses Virtual
Shared Disk (VSD) to perform 1/O to shared disks on
storage nodes. VSD was modified to allow a deadline to
be specified for each disk-1/O request. Tiger Shark
computes the deadline for each isochronous I/O request,
and VSD executes requests to each disk in global deadline
order, as described below. VSD was also modified to
prevent AIX and the hardware from reordering I/O
operations, as described above.

Global deadline scheduling requires file-system-node
clocks to be synchronized within approximately the
duration of an 1/O operation. Tiger Shark generates
deadlines with the use of the SP2 switch clock, which is
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synchronized on all nodes to within a microsecond. Since
the duration of a 256KB disk-1/O operation is
approximately 50 ms, if the switch clock were not
available, each node’s time-of-day clock could be used in
conjunction with a standard clock-synchronization
algorithm [14, 15] to generate sufficiently precise deadlines.
The Tiger Shark kernel extension implements a function
(tsfattr) that allows application programs to control the
isochronous reading and writing of an open file.
Programs call #sfattr to reserve bandwidth for reading or
writing the file, specify the read/write data rate, and set
the prefetch depth (the number of read-ahead buffers).
The kernel extension also implements a zero-copy
interface that allows stream drivers to directly access the
pinned Tiger Shark data buffers. The standard UNIX read
and write functions copy data between file-system buffers
and program buffers. This adds substantially to the CPU
overhead required to stream video from the server.
The zero-copy functions, called from AIX kernel code
(including interrupt handlers), allow the inner loop of a
stream driver to be implemented very efficiently. Because
the zero-copy functions must be called from the kernel,
file-system data buffers are protected against access by
unprivileged programs. The zero-copy functions include
prefetch, which starts real-time prefetching of data blocks,
getbuf, which locks a prefetched buffer so that its data can
be accessed, and putbuf, which returns a locked buffer to
Tiger Shark after its data has been consumed. A simple
zero-copy stream driver opens the file and calls tsfartr to
reserve bandwidth and set the data rate and prefetch
depth. It next calls prefetch to read the number of prefetch
buffers specified by tsfattr, calls getbuf to lock the buffer
containing the first data block, and starts sending data to
the output device (e.g., an ATM adapter). Each time the
device interrupts subsequently, the interrupt handler
checks whether the data buffer is empty. If so, it calls
putbuf to return the empty buffer to Tiger Shark and calls
getbuf in nonblocking mode to lock the next prefetched
buffer. Normally (i.e., if deadlines are met), this buffer
will have been read and getbuf will return successfully with
the lock. If by some chance the buffer has not yet been
read, getbuf returns an error to the interrupt handler. In
this case, the interrupt handler signals a recovery process
in the stream driver (e.g., via an event), which in turn calls
getbuf in blocking mode to wait for the data, after which
the interrupt handler resumes sending data to the device.
The use of nonblocking gerbuf and the recovery process
bounds the interrupt latency (as required by AIX). Zero
copy not only avoids copying the data; it also avoids the
process switch into the stream driver and the pin/unpin of
the device output buffer. Depending on the output device,
zero copy can save up to 40% of the instructions.
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The standard AIX NFS** (Network File System)
demon can use Tiger Shark to allow NFS clients to play
audio and video over a LAN. Because it was considered
impractical to modify NFS, Tiger Shark was modified
slightly to provide continuous-time playback through NFS.
Tiger Shark provides a command to permanently assign a
default playback rate to a file. This rate can be directly
specified by a user or can be generated by an analysis tool
that examines the video/audio content of the file to
determine its playback rate. When an NFS client reads a
file sequentially and the file has a default playback rate,
Tiger Shark assumes that the client is performing
isochronous playback. It then reserves bandwidth for the
client and uses deadline scheduling to read the file at the
default rate.

Experience and applications

® Video on demand and interactive television

Tiger Shark has been used in a number of VOD and ITV
trials. The first was the Bell Atlantic Field Trial [16, 17],
one of the earliest video-on-demand trials, which took
place from April 1993 through September 1994. This trial
used Shark [18], a predecessor of Tiger Shark, to provide
50 simultaneous video streams from a single RS/6000
Model 970 computer. Video was sent over standard
telephone lines at 1.544 Mb/s (T1 rate) to the customer’s
set-top decoder. Customers ordered movies over the
telephone via an automated menu system, which sent
requests to play movies to the video server.

A later trial at Hong Kong Telecom [19, 20], which
provided 150 simultaneous 1.5Mb/s streams, ran Tiger
Shark successfully from March through September 1995.
The server throughput was too low to justify the use of an
SP2, so the server consisted of two independent RS/6000
Model 980 processors, each with its own IBM 7135
RAIDiant disk subsystems. A single-node version of Tiger
Shark was used on each RS/6000 to provide real-time
access to its local data. Video content was replicated on
each server. As in the Bell Atlantic trial, video was sent
over telephone lines at 1.544 Mb/s. However, the Hong
Kong Telecom trial was truly interactive. The set-top
decoder contained an X.25 data port for exchanging
control commands with the server. The user interface
included menus with “image overlays” and video “fly-ins.”
Other interactive features, such as direct seek to a
position in the video, were also provided. Tiger Shark
itself was able to start streams in less than a second in this
system, although other delays in the set-top box, X.25, and
application program contributed to a response time as seen
by the user of more than a second. In the initial architecture
for the Hong Kong Telecom server, the disk storage on each
RS/6000 was divided between permanent file-storage space
and a temporary file cache. Each video file had a permanent
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home on one of the RS/6000s; when the file was needed on
the other RS/6000, it was copied over an FDDI ring to that
machine’s cache. In practice, the CPU overhead of copying
files over the FDDI ring was so high that even a small
number of cache misses overloaded the server. It was
eventually decided to store the entire 200 hours of video
content on each RS/6000.

The Tokyo Metropolitan Government (TMG) ITV trial
[21], which began in May 1996, is the first to use Tiger
Shark running in a shared-disk configuration on an SP2.
This server stores 200 hours of 6Mb/s video and supports
100 streams, with video delivery via hybrid fiber/coax
(HFC). The SP2 is configured with five storage nodes and
seven file-system nodes. Each storage node controls 32
4.5GB IBM 7133 (Serial Storage Adapter) disks, a total of
720 GB of video data. Each file-system node contains four
MPEG-2 multiplexor cards, each of which combines four
6Mb/s MPEG-2 streams into a single 20Mb/s MPEG
transport stream. The transport stream is modulated onto
an analog TV channel and distributed via HFC. The
number of nodes was determined by the number of Micro
Channel* slots required for disk adapters and MPEG
multiplexors. The 720 GB of disk storage is more than
adequate to store 200 hours of 6Mb/s video but not
adequate to fully replicate it. To provide some measure of
protection against disk failures, 67 hours of the most
popular video is replicated (two copies) on one 80-disk
stripe group (half the disks). The remaining video is
stored on a number of smaller, unreplicated stripe groups.
If a disk failure occurs in an unreplicated stripe group, all
files in it must be reloaded from tape. The size of the
smaller stripe groups is chosen to be large enough to
provide sufficient throughput to handle its expected
content while being small enough to be reloaded in an
acceptable period. The decision to use unreplicated data
was dictated by cost constraints.

Argonne Laboratories, one of the U.S. national
supercomputing centers, collaborated with IBM to develop
an experimental WAN-based video server that employs
Tiger Shark on a 28-node SP2. This system uses an
implementation of RTP (Real-Time Protocol) [23] to
transmit video over the MBone (multicast backbone)
network interconnecting the supercomputing centers. The
system was demonstrated at the Supercomputing '95
conference in San Diego (December 3-6, 1995), with
video sent to an IBM location in New York.

& [BM products using Tiger Shark

Positive results from the aforementioned customer trials
have led to Tiger Shark being included in three IBM
video-server products. At present, these products use
Tiger Shark in single-node configurations to provide real-
time delivery, wide striping, and high throughput. The fact
that these products are not yet offered on the SP2
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computer reflects the current demands of the marketplace.
As customer needs grow to require an SP2, the technology
is available to quickly fill this demand.

IBM Multimedia Server for AIX uses Tiger Shark to

stream video to personal computers and workstations over
video-capable LANs (e.g., ATM, switched Ethernet, or
FDDI) using the standard NFS protocol. Multimedia
Server supports up to 75 Mb/s (60 streams) from a single
RS/6000 server. Tiger Shark uses the streaming heuristic
described in the previous section to support real-time
playback through the stateless NFS protocol. The LAN
used to transport video must have sufficiently high
throughput, low latency, and low error rate to transport
video smoothly. Although conventional LANs have no
means to reserve bandwidth or schedule delivery, new
LAN technologies such as ATM and switched Ethernet
have sufficient bandwidth to transport video acceptably to
a reasonably large number of clients. In practice, more
video “jitter” results from background activity of the client
operating system (e.g., paging) than from network delay or
errors.

IBM Videocharger Server provides video playback to
Internet clients through a Web browser. It supports low-
bit-rate (28.8Kb/s) video over WANs and high-bit-rate
(e.g., MPEG) video over campus or corporate intranets. It
uses Tiger Shark to store and play back video and uses the
RTP protocol to transmit video over the network. For
low-bit-rate video, a file block size of 32 KB is used, since
devoting 256KB buffers to each low-speed stream wastes
RAM.

IBM Media Streamer supports video capture and

playback from locally attached video boards (SCSI-
attached MPEG to analog video decoders) and over
reserved-bandwidth ATM connections. It can be used

in small to mid-sized video-on-demand applications
(hotels, cable TV systems, digital video broadcast, etc.).

It can also replace digital or analog videotape recorders in
applications such as ad insertion at a broadcast station,
video editing, etc. Media Streamer provides up to

120 Mb/s on an RS/6000 server.

Discussion

® Scalability

The Tiger Shark system used in the TMG trial has been
tested with 112 6Mb/s streams, limited by the number of
available MPEG multiplexor adapters. This size is modest
in comparison to that anticipated for a large [TV system.
However, even the TMG server represents several
hundred thousands of dollars of hardware, which
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Table 3 Effect of grouping on performance for IBM
Ultrastar* 2ES SCSI-2 disk drive (4.5GB capacity, 5600 rpm,
56 KB/track avg., seek times 1.1 ms min., 8.5 ms avg., 15 ms
max.).

Streams/group Throughput Latency
(MB/s) (ms)
1 4.03 62.08
2 4.20 119.16
4 4.34 230.32
8 4.44 449.97
16 451 887.39

illustrates why scalability must be determined by modeling
rather than empirically.

Extensive modeling results of the Tiger Shark
architecture are presented in [24]. This study modeled the
performance of a server with up to 500 4Mb/s streams.

It studied the effects of a number of configuration
parameters, including switch bandwidth, disk block size,
read-ahead buffer size, I/O-scheduling policy, and number
of nodes. To summarize the pertinent results of this
modeling as they apply to Tiger Shark:

The model was used to predict the probability of stream
starvation due to variations in queuing delay at the switch
ports. The model indicated that the stream capacity of the
server remains proportional to the number of file-system
nodes (until the number of ports supported by the switch
is reached). The highest switch-port bandwidth modeled in
[24] was 60 MB/s, at which the stream-starvation rate was
0.02/hr/stream for the “two-tier” architecture used in the
TMG trial (separate file-system and storage nodes). The
SP2 used in the TMG trial differs from the model in that
it has a switch-port bandwidth of 80 MB/s (as opposed to
60 MB/s in the model) and ran at a CPU utilization of
37% (70% in the model). Both of these differences would
indicate that the stream-starvation rate in the actual Tiger
Shark system would be lower than the 0.02/hr/stream rate
of the model. The model assumed a nonblocking switch
(e.g., crossbar), whereas the SP2 switch can block at high
loads. Numerous analyses of switch blockage as a function
of load have been published (see, for example, [25]),
showing that for a port utilization of less than 50%, the
probability of packet loss due to blocking is negligible. In
the TMG system, the switch port utilization is 20% in the
storage nodes and 15% in the file-system nodes.

The model evaluated optimum block size as a function
of disk-bandwidth utilization. The model in [24] indicates
that for up to 90% disk-bandwidth utilization, the 256KB
block size used in the TMG configuration is within 5% of
optimal. The TMG system has 140 disks, each capable of
reading 256KB blocks at 6 MB/s. The modeling results
indicate that this number of disks could provide 784 6Mb/s
streams at 70% bandwidth utilization with a starvation
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rate of 0.01/stream/hr. For this result, the model assumed
first-come first-served scheduling and random striping of
data blocks across disks. The TMG system uses EDF
scheduling and round-robin striping, both of which would
result in an even lower stream-loss rate than that of the
model.

The model also evaluated stream starvation as a
function of read-ahead buffer size. In the TMG system,
each stream has two full-block read-ahead buffers in Tiger
Shark, a buffer in the HFC card device driver, and a
buffer on the card itself. The model shows that for 80%
disk-bandwidth utilization, the starvation probability for a
system with four buffers is negligible (less than 0.1%).

The model shows the possibility of stream starvation for
video clips too short to be striped across all of the disks.
The model indicates that in order to maintain a constant
starvation rate of 0.01/hr/stream when short files are
played, the stream capacity for each node must be lowered
from 20 4Mby/s streams for a single-node server to 18
streams for a 128-node server. Tiger Shark avoids even
this minimal degradation by replicating short files to
whatever degree is necessary to distribute their blocks
across all disks in the stripe group.

® Disk scheduling

The modeling results of [24] indicate that disk-bandwidth
utilization over 80% can be achieved with essentially no
stream starvation through the use of EDF scheduling. A
number of algorithms have been proposed [26-28] that
provide higher disk throughput by grouping read requests
for a number of streams, and scheduling each group to
maximize throughput with a conventional scan algorithm.
Modeling results presented in [29] indicate that for the
large block sizes used by Tiger Shark (256 KB and up),
the throughput increase is negligible. For example, Table 3
shows the effect of grouping for a typical SCSI-2 disk drive.
The throughput gain from grouping indicated by the
simulation does not warrant the increase in stream-startup
latency caused by grouping.

® Other scalable multimedia file systems

Although a number of scalable video servers have been
developed and commercially deployed, relatively little
detailed description of them exists in the technical
literature, and little of that discusses the file systems. The
closest comparable published work discusses Tiger [30]
and XFS** [31].

XFS is a high-performance file system for Silicon
Graphics systems. Like Tiger Shark, it provides isochronous
delivery (“guaranteed-rate I/0”), wide striping, and a large
data-block size. In addition, like Tiger Shark, XFS can
replicate data, uses journaling for recovery, allows very
large files and file systems, supports sparse files, and has
on-line system management. However, there are a number
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of major differences between XFS and Tiger Shark. XFS
directories use a B-tree rather than extendible hashing.
[B-tree lookup performance is O(log #) in the number of
files n, whereas that of extendible hashing is O(1).] XFS
replicates data by mirroring logical disks, compared with
the Tiger Shark block-level replication. Consequently,
when an XFS disk fails, its entire load is taken up by its
mirror rather than being spread evenly over the remaining
disks, as it is in Tiger Shark. XFS has a “direct 1/0”
mechanism to read data from disk directly into the user
buffer. Like the Tiger Shark zero-copy feature, direct I/O
avoids copying data from the file-system buffer pool to
user space (by eliminating the file-system buffer rather
than by giving the user access to it). However, direct 1/O
prevents the buffer pool from providing any benefit. This
can affect the stream-startup latency for frequently
accessed files (e.g., video fly-ins used in top-level menus).
Finally, the scalability of XFS is limited by servers on
which it currently runs, the largest at present being the
Challenge XL shared-memory multiprocessor with 32
processors and 1.2GB/s 1/O throughput. The SP2 switch-
connected cluster can expand to 512 processors, with an
I/O throughput of up to 20 GB/s.

Tiger is a special-purpose file system developed by
Microsoft for use in video servers. It consists of a number
of nodes (called “Cubs”) acting under the direction of a
central-controller node. Files are striped across the Cubs,
which are analogous to the Tiger Shark storage nodes.
The Cubs transport video to set-top boxes via an ATM
network. To play a video stream, a “multipoint-to-point”
ATM-switched virtual circuit is established between every
Cub and the set-top box (presumably, this is done once,
when the viewer starts using the server). The stream is
assigned a free time slot in a global schedule. Time slots
are arranged cyclically, so if block i of a stream comes
from disk j during time slot ¢, block i + 1 will come from
disk j + 1 (modulo the number of disks) in slot ¢ + 1.
Each block is sent to the set-top box in the time slot
following the one during which it was read. If the clocks
in the Cubs are synchronized, there are no collisions
along the multipoint-to-point connection. The principal
advantage of this architecture is that it avoids the expense
of having both storage and file-system nodes (and the
additional level of switching to connect the two). However,
this advantage also limits Tiger’s flexibility. The slotted
schedule requires all streams to have the same data rate.
Tiger Shark, by comparison, can support arbitrary video
rates, which can provide significant cost and space savings
for content (e.g., news) that does not require the full
6Mb/s data rate used in [30]. The slotted architecture
makes it difficult or impossible to expand the Tiger system
(i.e., to add Cubs and/or disks) on-line. Because adding
disks or Cubs would require all data to be restriped, the
amount of downtime required for such reorganization in a
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large server could be prohibitive. Finally, VOD and ITV
systems, now and for the foreseeable future, will have to
support ADSL [32] and HFC for video distribution.
Neither ADSL nor HFC supports multipoint-to-point. In
order to use Tiger, ADSL or HFC would require front-
end nodes to receive ATM packets from the Cubs,
combine them into streams, and send them to the ADSL
or HFC adapters. The resultant configuration of Cubs,
ATM switches, and front-end nodes closely corresponds to
the storage nodes, switch, and file-system nodes in Tiger
Shark, eliminating the purported cost advantage of the
decentralized Cub architecture.

® Technical and commercial applications

Tiger Shark’s attributes of scalability, high throughput,
availability, manageability, and a standard programming
interface are important in many technical and commercial
applications such as simulation, seismic processing, and
data mining. Many such applications require high-speed
sequential read and write access to large files, which is
precisely what Tiger Shark was designed for. This has
resulted in considerable interest in Tiger Shark as a
general-purpose parallel file system for use in technical
computing and scalable servers.

To date, Tiger Shark has been successfully used in the
Scalable Web Server prototype developed at the IBM
Thomas J. Watson Research Center [33]. Tiger Shark has
also been used in a study with an IBM customer for
retrieving seismic data for processing. In this study, Tiger
Shark offered a 15X speedup over NFS and a 5X speedup
over the existing PIOFS parallel file system for SP2 [34],
which is designed for this type of parallel technical
computing.

Tiger Shark is currently being developed as a product
for the SP2. As part of this product development effort,
several extensions to Tiger Shark are under way to allow it
to better support general-purpose parallel computing. Two
of the most important of these are dynamic prefetch and
fine-grained write sharing. Dynamic prefetch senses when
an application program is trying to read a file at a high
rate and automatically increases the number of prefetch
buffers in order to maximize I/O parallelism. Fine-grained
write sharing extends the token manager and local lock
manager to allow multiple nodes to work on
nonintersecting portions of a file with minimal global
locking traffic. This permits a large simulation, for
example, to involve many nodes simultaneously making
updates to small pieces of a file on which they are all
working.

Summary
Multimedia applications place demands on a file system
beyond the ability to support isochronous access. Tiger Shark

not only supports isochronous access, but also provides a 195
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scalable, robust, and manageable system adequate for
large ITV systems. Tiger Shark has proven itself in a
number of real-world customer trials, which have been
sufficiently successful to justify its being used in three
IBM video-server products. At present, development is
under way for a general-purpose paraliel-computing file
system based on Tiger Shark. The early customer feedback
on this product is promising.
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