
Tiger  Shark- 
A scalable 
file system 

by R. L. Haskin 

for multimedia 

Tiger  Shark is a scalable, parallel file system 
designed to support interactive multimedia 
applications, particularly large-scale ones such 
as interactive television (ITV). Tiger  Shark 
runs under the IBM AIX@ operating system, 
on  machines ranging from RS/6000'" 
desktop workstations to the SP2@ parallel 
supercomputer. In addition to supporting 
continuous-time data,  Tiger  Shark provides 
scalability, high availability,  and on-line system 
management, all of which are crucial  in large- 
scale video  servers.  These latter features also 
enable  Tiger  Shark to support nonmultimedia 
uses, such as scientific computing, data 
mining, digital library, and scalable network file 
servers.  Tiger  Shark  has  been employed in a 
number  of customer ITV trials. On the basis of 
experience obtained from these trials, Tiger 
Shark  has recently been  released in several 
IBM  video-server products. This paper 
describes the architecture and implementation 
of Tiger  Shark, discusses the experience 
gained from trials, and compares Tiger  Shark 
to other scalable video  servers. 

Introduction 
To  date, most multimedia  application  programs  run on 
stand-alone  personal  computers, with digitized video  and 
audio coming from local hard disks and CD-ROMs. 

Increasingly, there  has  been  a  demand  for file servers  for 
multimedia  data.  The  reasons  for this include  those  that 
motivate  the  use of file servers  for  conventional  data: 
sharing, security, and  centralized  administration. 

multimedia  data.  When a conventional file server  becomes 
overloaded, all users experience lower throughput  and 
greater  response  time.  For  multimedia,  the file server 
must  deliver  digitized  video and/or  audio  data  at  a  rate 
that allows it to  be  presented  to  the  user in a  smooth, 
continuous  stream  (this is called continuous-time,  or 
isochronous, presentation). Any nontrivial  delay by the 
server  results in stream starvation, which appears  to  the 
user as an annoying interruption in the  presentation. 
Stream  starvation can be avoided by buffering  data 
and/or  underloading  the file server,  but  either of these 
alternatives  can  increase cost  prohibitively. A video server 
differs from  a  conventional file server by incorporating an 
admission control mechanism to prevent  overloading  and  a 
scheduling mechanism  to  ensure  that  data is supplied in a 
continuous  manner. 

In large-scale multimedia  applications, like  video on 
demand (VOD), interactive television (ITV)', and 
browsers for  the  World  Wide  Web,  the difficulty of 
providing continuous-time  presentation is exacerbated by 
the  sheer  magnitude of the systems. A single  video stream 

It is difficult for a conventional file server  to  handle 

ot movies.  Interactive  television  includes  applications  such  as  home  shopping, 
' Vldeo on  demand  includes  relatively  nonintcractive  applications  such  as  playback 

educatwn,  and  training, in which  the u x r  mteracts  with  the  system. 

Topyripht 1908 by lnternatmnal  Busmess  Machine5  Corporation.  Copying in printed  form  for  private  use is pcrmitted  wlthout  payment of royalty provided  that ( I )  each 
reproduction is done  without  alteration  and (2) the Journal referencc  and  IBM  copyright  notice  are  included  on  the first page. The title  and  ahstract,  but  no  other  portionr, 
of  this  paper may be  copied or distributed royalty frcc without  further  permission hy computer-bared  and  other  information-service Fystems. Permission to republish any  other 

portion  of  this  paper  must  be  ohtaincd  from  the  Edltor. 

0018-8646/98/$5.00 0 1998 IBM 

185 

IBM J. RES.  DEVELOP. VOL. 42 NO. 2 MARCH 1998 R. L. HASKIN 



requires  between 1.5 and 6 Mbis of bandwidth.’ At  the 
6 Mbis typically required  for  ITV, even the  100-stream 
servers  that have been  deployed in  a number of small- 
scale  ITV  trials  must  support a throughput of 75 MB/s, 
yet most conventional  network file servers  are  limited  to 
well under 10 MB/s. A 1000-stream server, which is the 
minimum considered  for  production  ITV systems, requires 
at  least a 19-node SPz3 system, with all nodes accessing 
the  same video data  simultaneously, making the  need  for 
scalability  obvious. 

The  need  for high  availability and manageability in a 
large-scale VOD or ITV  server is obvious  as well. Failure 
of a  1000-stream ITV system presenting  two-hour movies 
at $5 each  costs $2500 an  hour.  Failure of a  digital  video- 
broadcast  server can put a cable  TV system, broadcast 
station,  or  broadcast  network off the air. Ordinary 
component  failures must not  take down the  server  or even 
unduly interrupt viewers, and  it  must  be possible to  repair, 
service, and reconfigure the  server while it remains 
operational. 

of the  Tiger  Shark file system,  with emphasis  on  the 
features  that allow it  to  function as  a  video server, 
describes its use in  a  variety of IBM  ITV  trials  and video- 
server  products,  and  concludes by discussing the lessons 
learned  to  date  and possible future  directions. 

The  Tiger  Shark file system 
Broadly speaking, a  video server consists of three 
components: a control component  that  responds  to client 
requests, a communication component  that moves data 
through  the  network  from  the  server to the  client,  and a 
file-system component  that  manages  the  storage  and 
retrieval of data  from disk. To  enable  the  use of the 
RSi6000* and SP2 computers  as video servers, we 
developed  the  Tiger  Shark file system, which incorporates 
the following features  that  permit its use in  a  video 
server: 

The  remainder of this paper discusses the  architecture 

Tiger  Shark is designed  to  handle  isochronous  data by 
making  use of the  real-time  features of the  AIX* 
operating system and by scheduling disk IiO to  ensure 
that  data is read  and  written  on time. 
Tiger  Shark provides  a high degree of scalability, both in 
the  amount of data it can  store  and  the  data  throughput 
(bandwidth) it supports. 

properly configured,  it remains  operational in the  face of 
any  single disk or  node  failure. 

Tiger  Shark is designed  for high availability. When 

Tiger  Shark is designed  to simplify or eliminate  routine 
system-management  tasks.  Automatic  load  balancing 

M b  = megabits, MB = megabytes, Kb = kilobits, KB = kllobytcs. 
3 The  Microchannel*  on  each  SP2*  node, which  has  a  hardware  throughput  limit 

186 of 40 MB/s. determines  the  number of nodca. 

R. L. HASKlN 

across  disks is inherent in the design. All operator- 
initiated  management  functions  can  be  performed while 
the system remains  operational. 

In addition  to  supporting video, Tiger  Shark  contains 
the following features  that  make it suitable as  a general- 
purpose  parallel file system: 

Tiger  Shark  presents a POSIX**-compliant [l] 
programming  interface;  thus,  application  programs  can 
use it with few, if any, modifications. 
Tiger  Shark provides  high-speed  access to files from a 
single application  or  from any number of applications 
running in parallel. 
Tiger  Shark is fully cache-coherent  across  nodes in the 
SP2 system. Cache  coherence is implemented by means 
of a byte-range locking  mechanism that allows parallel 
access to  nonoverlapping  regions of a file, with little  or 
no  communication  overhead. 

In  summary,  Tiger  Shark  enables  the RSi6000 and  the 
SP2 to efficiently  satisfy the  data-access  demands of both 
multimedia  and  parallel  computing. 

Tiger  Shark  overview 
Tiger  Shark  runs  on a cluster of processors (file-system 
nodes) that  share a pool of disks. File-system nodes  can 
access the disks  directly  over  a switching network or via 
other  processors (storage nodes) to which the disks are 
physically attached. A single node  can serve as both a file- 
system node  and a storage  node,  but  for simplicity, our 
discussion treats  the two types of nodes as if they were 
distinct. Each file-system node  can  read  from  and write 
to all of the disks. A single RSi6000 processor can be 
considered  to be a single-node  cluster.  In  the SP2 system, 
Tiger  Shark file-system nodes  use a software  component 
called Virtual  Shared Disk (VSD) [2] to  send disk  block- 
read  and block-write requests  to  storage  nodes over the 
high-speed  switch. This is illustrated in Figure 1. 

systems4. In  Tiger  Shark,  each  mountable file system  is 
striped across  a collection of disks called a stripe group 
and  can be accessed  in parallel  from all file-system nodes. 
Tiger  Shark  presents a  single-system image  to its clients- 
programs  on  separate file-system nodes  see a globally 
consistent view of each  mounted file system. 

From  Tiger Shark’s point of view, a video-server 
component  that  streams video to  external users,  such  as 
an  ATM  stream  driver  or  the  Network  File  System** 
daemon, is simply an application  program  running  on file- 
system nodes.  Other  programs  can  run simultaneously and 

Tiger  Shark  supports  multiple,  separately  mountable file 

4 The  operating  system  literature  uses  the  term “file system” to  refer  to  both  the 
software  that  manages file data  and  the  Wucturc of this  data  on d ~ s k .  This  paper 
attempt5  to  make  the  contcxt  sufficient to dlramhigudte  thesc  two  rncanings. 

IBM J. RES. DEVELOP.  VOL. 42 NO. 2 M A R C H  1998 



6 7 

Video ourput 

I 

- - w 
Storage nodes File-system nodes 

Disk pool Tape library 

share  data with video-server  components.  For  example, a 
tape-archive  manager  running on one file-system node  can 
begin retrieving  a movie from  a  tape library and, slightly 
later,  an  ATM  stream driver on  another  node  can  start 
streaming  the movie to  a viewer. 

Tiger  Shark  makes files available through  the  AIX 
virtual file system [3] interface, which makes  Tiger  Shark 
compatible with the  AIX  native file system. Programs  do 
not have to  be modified to  use  Tiger  Shark unless  they 
make  use of the  functions  that  control its multimedia 
features. 

Tiger  Shark architecture 
Tiger  Shark  has  a  number of architectural  elements  that 
allow it to  meet its  design  goals.  Following is a brief 
discussion of the  major  ones. 

Isochronous  file access Tiger  Shark uses real-time 
features of the  AIX  operating system [4] to prevent  the 
kernel  and  other  programs  from  interfering with 
isochronous  data delivery. It  also  implements  real-time 
disk scheduling  to  execute disk I/O operations in the 
proper  order  for achieving an  uninterrupted flow of data 
to clients. Tiger  Shark uses deadline  scheduling  (as 

opposed  to  conventional scan or  elevator  algorithms [5]) 
to  implement  both  recording  and playback of files with 
arbitrary video rates. 

Large disk blocks To efficiently support  multimedia  and 
supercomputing,  a file system must maximize throughput 
from  the available disks. Since  disk throughput is strongly 
related  to disk  block  size, Tiger  Shark uses a large  disk 
block, 256 KB being  the  default.  Conventional file systems 
optimize  to  reduce  space  rather  than  to  increase 
throughput, by using  small  disk  blocks; for  example,  the 
AIX native file system uses 4KB blocks.  Since Tiger  Shark 
can  store several  small files (or  partial blocks at  the  end of 
large files) together in a single large block, its disk-space 
utilization is comparable  to  that of a  conventional, small- 
block file system. 

Wide striping In both  supercomputing  and  multimedia, 
much or all  file-system activity is often  directed  at  a single 
file. For  example, many or all clients of a VOD system 
may be viewing the  same  “blockbuster” movie 
simultaneously  the first night it becomes available. For  the 
1000-stream server  mentioned in a previous  example, the 
entire 750MBis server throughput may be  used  for  the 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1908 R. L. HASKIN 



Table 1 Example of file-system block replication with 
round-robin striping. The entry is the number of the disk on 
which the block is written. The striping order is 1-2-3-4. 

Replica number Block number 

0 1 2 3 

1 3 4 1 2 
2 4 1 2 3 
3 1 2 3 4 

single file containing this  movie. This is higher  than  the 
throughput of an individual disk (5-10 MB/s) or even 
of an individual storage  node in the SP2 (40  MBis). 
Achieving higher  throughput  than  that of a disk or  node 
from  a single file requires striping it  across multiple disks 
and  storage  nodes, so that successive blocks of the file go 
on different disks and  nodes.  Each  Tiger  Shark file system 
can  be  striped across  as  many  as  512  disks.  Since each file 
is striped evenly across all  disks  in a  stripe  group,  the disk 
load is inherently  balanced,  regardless of file-access  skew 
(the  unevenness of demand  for  different files). 

Fault-tolerance As the  number of disks and  nodes in the 
system increases, so does  the  probability of component 
failures. If hardware  RAID (e.g., a disk  such  as that 
described in [6]) is available, Tiger  Shark can use it as a 
means of protecting disk data.  However,  hardware  RAID 
subsystems can  be  more  than twice as  expensive per byte 
as conventional disks, RAID  controllers  are  often 
performance  bottlenecks,  and,  for  large systems, the 
probability of an  entire  RAID subsystem  failing is 
significant.  As an  alternative  to  RAID,  Tiger  Shark  uses 
block-level replication of both file data  and  metadata  (the 
bookkeeping  information  that  keeps  track of the  location 
of files on  disk).  Tiger  Shark also recovers  from file- 
system-node  failures, so if a  node  crashes in the process of 
modifying the file  system  (e.g.,  while recording  or while 
loading  content  from  tape),  the file system will be  restored 
to  a  consistent  state. 

On-line  system  management Tiger  Shark  responds  to 
commands  from  the  AIX  operating system to 
automatically recover and reconfigure  in response  to  the 
failure  or  repair of hardware  components.  The system 
remains  operational while reconfiguration occurs.  System- 
administration  commands  (creating  and  deleting file 
systems, adding  and removing  disks from file systems, etc.) 
are also executed while the system is operational. Files 
can  be  reorganized (e.g., restriped  onto newly added 
disks)  on-line, with the  reorganization  taking  place in the 

188 background. 

File-system metadata 
Tiger  Shark file-system metadata  (data  structures  on disk) 
roughly correspond  to  those of a conventional  UNIX** 
file system [7] but  have been substantially redesigned  to 
work well in a  cluster. 

The  root  data  structure of a file system is the stripe- 
group  descriptor, analogous  to  the  UNIX  superblock.  It 
contains  overall file-system attributes,  pointers  to  other 
data  structures  (for  example,  the  inode  and  allocation  map 
files described below), and  information  about  each disk  in 
the  stripe  group.  The  stripe-group  descriptor is replicated 
on each disk of the  stripe  group  and is read  and  written 
by the  use of a  quorum  algorithm [8], which makes  the 
operations of reading  and  updating  the  stripe-group 
descriptor  tolerant of disk and  node  crashes.  Because 
reading  and writing the  stripe-group  descriptor is done 
infrequently,  the  overhead of the  quorum algorithm is not 
significant. 

Each disk  in a  stripe  group  can  be  a  data disk  (which 
holds  only file data),  a  metadata disk  (which  holds  only 
metadata),  or  both.  This allows the  use of disks  with 
different physical characteristics  for  data  and  metadata. 

File-system  blocks  in Tiger  Shark  (both  data  and 
metadata)  can  be  replicated.  Each disk address  contained 
in file-system metadata is an array,  with one  element  per 
replica.  The disk information in the  stripe-group 
descriptor  contains system-topology information  that 
allows Tiger  Shark  to  allocate block replicas  on disks with 
no  common  failure  point.  The  degree of replication  can  be 
different  for  each  object.  A  stripe  group  can have 
replicated  metadata  but  unreplicated files, or it can have 
different levels of replication  for  different files; for 
example, only popular movies  might be  replicated.  This 
allows making tradeoffs  between  fault-tolerance  and 
system cost. 

Each  data file is striped across all of the  data disks  in 
the  stripe  group.  Metadata is similarly striped across all 
of the  metadata disks in the  stripe  group.  Tiger  Shark 
supports two striping policies: round  robin  and  balanced 
random.  For  round-robin  striping, a single striping  order is 
used for all files. All replicas of the first block of a file are 
written  to  randomly  chosen disks, subject  to  the  constraint 
that  they have no common  failure  point. Successive blocks 
of each  replica  are  written  to  data disks chosen  according 
to  the  striping  order, as illustrated in Table 1. For 
balanced  random  striping (Table 2), a separate,  randomly 
generated  striping  order is used for  each  k blocks of the 
file, where k is the number of data disks (k = 4 in Table 2). 
Again, replicas of a single  block are offset by a random 
amount within  this order.  Round  robin gives higher 
throughput  without missed deadlines,  but files in a 
balanced  random  striping system can  be  restriped (e.g., 
when  disks are  added  to  the  stripe  group) by moving only 
likth of their blocks. 

R. L. HASKIN IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 



Because of the  random position of the  starting  point in 
the  striping  order  from  one replica of a block to  the next, 
the  replicas of each block will be  more  or less evenly 
distributed across the disks  in a  stripe  group.  After  the 
failure of one disk, the load on  the  other k - 1 disks in 
its stripe  group  increases by only llkth.  Contrast  this  to 
mirroring, in which the  entire  load of a failed  disk  must 
be  borne by its mirror.  Thus,  Tiger  Shark  can  operate its 
disks at ( k  - l ) / k  of their maximum throughput  and still 
not have them  overload  after  a  failure, as opposed to the 
limit of 112 that would be  the  case with mirroring. 

Tiger  Shark  can  use logical disks (for example, AIX 
logical volumes)  interchangeably with physical disks.  Most 
hardware  RAID subsystems make  a parity group,  or rank, 
of physical  disks appear  to  the  operating system  as a 
single logical disk. In such a  configuration,  the  RAID 
subsystem stripes individual file blocks  across the physical 
disks in a parity group,  and  Tiger  Shark  stripes successive 
file blocks  across successive RAID parity groups  according 
to  the  striping  order. Tiger Shark  optimizes  performance 
for  different  RAID subsystems by proper  choice of the 
size and  alignment of their  data blocks. For example, the 
IBM RAIDiant system [6] performs best for 256KB reads 
and writes  aligned on 256KB boundaries, which the 
RAIDiant  executes as 64KB operations in parallel  on  each 
disk in the parity group. 

As in UNIX,  each file consists of a  number of data 
blocks, and  has  associated with it an inode and possibly 
one  or  more indirect blocks. The  inode is a fixed-sized 
data  structure  that  contains  the file size, creation  and 
modification  times, access-control  information,  and 
pointers  to  the file’s data blocks. If it is too small to 
contain  pointers  to all data blocks, the  inode  instead 
contains  pointers to indirect blocks, which in turn  point  to 
the  data blocks. 

The  inodes of all files in a  stripe  group  are  stored in a 
special file called the inode file. Each  inode is referred  to 
by its inode  number, which is its ordinal position in the 
inode file. The  stripe-group  descriptor  contains  a  pointer 
to  the first  block of the  inode file; the first inode in the 
file (inode 0) is that of the  inode file. 

Another special file, the  allocation-map file, contains 
the  allocated/unallocated  state of disk space in the  stripe 
group. File-system  blocks are subdivided into 32 equal- 
sized fragments (fractional blocks); the  allocation  map 
contains  the  state of each  fragment of every block in the 
stripe  group.  Fragments  are used to efficiently store  the 
following together in a single file-system block: multiple 
metadata blocks,  small files, or  partial blocks at  the 
end of large files. The  allocation  map is divided into n 
segments, each of which describes llnth of the  space  on 
each disk in the  stripe  group.  The  segmented  allocation 
map allows n separate  nodes  to  allocate disk space 
simultaneously without  contention.  The  number of 

Table 2 File-system block replication with balanced 
random striping. The entry is the number of the disk on  which 
the block is written. The striping orders are 3-1-4-2 and 
1-3-4-2. 

Replica number Order number I Order number 2 

Block number 

0 1 2 3 4 5 6 7  

1 3 1 4 2 1 3 4 2  
2 4 2 3 1 2 1 3 4  
3 1 4 2 3 3 4 2 1  

segments n is specified  when the file system is created, 
according to the  number of nodes  expected  to  be writing 
at  the  same  time. 

Each  stripe  group also contains  a  number of log files. 
Each  node has  its own log file, in which it maintains 
its  recovery log. Recovery logging is discussed below. 

with inode  numbers,  are also stored in files. Directories 
are  structured as extendible  hash  tables [9] rather  than 
as the  more  familiar  linear list or  B-tree  structures. 
Extendible hashing allows effectively uniform  lookup time, 
regardless of the  number of files in a  directory.  Each  hash 
bucket is stored in an 8KB  block in the  directory file. 
When  a  hash  bucket overflows, the hash table is extended 
and  the full bucket is split into two  partially  full buckets 
stored in separate 8KB  blocks. 

Directories, which associate human-readable file names 

Software structure 
Figure 2 illustrates  the  Tiger  Shark software structure. 
Tiger  Shark is implemented as a  multithreaded  dsmon 
process  (labeled  “Tiger  Shark dzemon” in the figure) 
and  a dynamically loaded  kernel  extension.  The  kernel 
extension  implements  the  virtual file system (VFS) 
functions.  The  application  program calls Tiger  Shark 
through  the  standard file-system interface  (open, close, 
read,  write,  etc.).  The  AIX  kernel  routes  each call to the 
corresponding  VFS  function in the  kernel  extension. 

mechanisms: a highly efficient  mailbox mechanism  for 
communication  between  the  kernel extension and  the 
dsmon,  and a  set of remote  procedure call (RPC) 
interfaces  for  the  dsmons  to  communicate  among 
themselves. 

Tiger  Shark  implements two communication 

Tiger  Shark uses memory  shared  between  the  dzmon 
and  kernel extension to  store  its  internal  data  structures, 
buffered file data,  and  buffered  metadata.  The  kernel 
extension can  obtain locks from  AIX  on  objects in shared 
memory and  can examine or modify them.  Simple VFS 
operations (such as  reads  and writes of buffered  data  or 
directory  lookups in cached  directory files) are  performed 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 R. L. HASKIN 



r \ 

manager 

Control node 
L I 

r 

manager 

Control node 
L 

/ 

manager 

Control node 
i J 

f > File-system node \' Tiger  Shark  daemon 

> 
Application program ... 

NFS damon, stream  driver, 
daemon  thread other 

"""""""" 

r 

POSIX interface User 

f VFS  interface Kernel 

\ 
Shared  memory I, Tiger  Shark 

kernel extension 

Buffer pool 

f f  k 
\ J 

Virtual  Shared Disk 
(VSD) client ["I 

Storage node 

server 

Storage  node 

server 

Storage  node 

in the  kernel  extension.  The  kernel extension sends 
mailbox  messages to  the daemon to  perform  more 
complicated  operations,  particularly  those  that  require 
IiO. For  example, if a  program issues sequential 4KB read 
operations,  the  kernel  extension  sends  a  read message to 
the daemon for  each 256KB data block to  be  read (i.e., 
one message for every 64 read calls) and  performs  the 
other  reads itself from  buffered  data in shared  memory. 
For  real-time playback, Tiger  Shark  attempts  to  prefetch 
data, so that  a  program  reading  at  the playback rate will 
never  be blocked on  a  read call. 

The  RPC  interfaces  are  implemented by means of TCP 
sockets.  When  the  Tiger  Shark daemon receives an  RPC, 
a daemon thread is dispatched  to  perform  the  requested 
operation. Two of these  RPC  interfaces,  the configuration 
manager and  the stripe-group manager interfaces,  are 
discussed here. 

The configuration manager  keeps  track of what stripe 
groups  are  mounted  and  chooses  the  stripe-group  manager 
for  each active stripe  group.  One of the file-system nodes 
is elected by the  other  nodes  to  become  the  configuration 
manager  when  the system starts  up  and,  thereafter, 
whenever  the previous configuration  manager  terminates. 
The  stripe-group  manager  maintains  the list of nodes  that 

have the  stripe  group  mounted  (more accurately, the file 
system contained in the  stripe  group), processes mount 
requests,  and  allocates log files to nodes. System- 
management  commands  that affect the  stripe  group (e.g., 
adding  or removing a disk, restriping) can be  initiated  on 
any node  but  are  performed by the  stripe-group  manager. 
The  stripe-group  manager  also  manages  other global state 
operations, e.g., changes  to  user-disk-space  quotas  and 
assignment of allocation  segments  to  nodes.  When  a file- 
system node  mounts  a file system,  it sends  an  RPC  to  the 
configuration manager to request the identity of the  proper 
stripe-group  manager. If no  stripe-group  manager exists, 
the  configuration  manager  appoints  the  requesting  node 
as stripe-group  manager. If a  stripe-group  manager fails, 
the  configuration  manager  chooses  another  node as  its 
successor. 

Tiger  Shark is a  general-purpose file system that 
allows any number of nodes  to  read  and write files 
simultaneously while giving all nodes  a  coherent view of 
the file system.  Since file-system nodes  buffer (or cache) 
data to improve  performance,  nodes  must  be  informed 
when other  nodes  perform  operations  that affect their 
cached  data. Tiger Shark  uses  a modified  version of 
the  token  manager in the Calypso file system [lo] for 

R. L. HASKIN IBM J .  RES.  DEVELOP.  VOL. 42 NO. 2 MARCH 1998 



distributed locking. Buffer-pool-coherency locking is 
functionally distinct  from POSIX (fcntl) locking, although 
the  latter is also implemented via the  token  manager. 

In  common with  many modern file systems, Tiger  Shark 
implements recovery by means of jouvnaling, or  write- 
ahead logging [11]. Operations  that modify metadata (with 
the exceptions noted below) are logged, and  the log 
records  are  written  to disk before  the modified metadata 
is written.  Within  a  stripe  group,  each  node has a  separate 
log file, which is replicated.  After  a  node  failure,  the 
stripe-group  manager  reads  the failed node’s log file, 
applies  the  changes  described in  its log records,  and  then 
instructs  the  token  manager  to  release any tokens  that 
might  have been held by the failed node.  This recovery 
processing requires of the  order of seconds. In  the  interest 
of performance,  updates  to  inodes  and  indirect blocks are 
not logged. Instead,  Tiger  Shark observes the following 
order of operations when  writing to  a file: 

Data blocks and log records describing allocations of 

Indirect blocks are  written. 
The  inode itself is written. 

new data  and/or  indirect blocks are  written. 

This  ordering  prevents file metadata  from  pointing to 
unallocated  or uninitialized data blocks  when a file i s  
being  written. Similarly, a special ordering is required 
when a file is truncated  or  deleted: 

A list of all blocks to  be  deallocated is built in memory. 
The modified inode  and/or  indirect blocks that used to 
refer  to  the  deallocated disk block are  written. 
The blocks in the  aforementioned list are  deallocated. 

This  protocol  ensures  that  a disk block is never 
deallocated as long as a  reference  to it exists on disk. 
When  a file is deleted,  before  the  inode  and  indirect 
blocks are  traversed  to build the  deferred  deallocation list, 
the tile’s inode is updated to show that it has been  deleted. 

The write ordering  described above maintains  metadata 
consistency after file-system node  failures, with  less I/O 
than  journaling,  but  a  node crash can result in a limited 
number of unused blocks  being marked as allocated in the 
allocation map. To reclaim this space, an  on-line version of 
the  familiar  UNIX fsck command was implemented  to 
traverse file-system metadata  and reclaim any  allocated 
but  unused blocks. This  on-line fsck, done in the 
background while the system is running,  does  not  interfere 
with real-time 110. The  more  familiar off-line fsck is also 
used in rare  failure  situations, such  as the loss of a log file 
or tile-system corruption  due  to  a  software bug. Reloading 
a  multi-terabyte file system from  tape  takes so long  that 
even these  rare  failures must be  guarded against. The 
Tiger  Shark fsck command  restores a corrupted file system 

to  a usable state  and saves as  much file data as  possible. 
In a video server, with large blocks and relatively few files, 
the  time  required  to  execute off-line fsck is acceptable 
even  for  large file systems. 

kernel  to  enable it to  implement  isochronous access to 
multimedia  data.  When used  in a video server, all Tiger 
Shark  code  and  data  buffers  are fixed (pinned)  in  memory, 
in order  to  prevent  page  faults  from  interfering with 
isochronous  performance.  Furthermore,  the  Tiger  Shark 
dzmon runs  at high priority.  This  prevents  other 
processes (including the  AIX  process  scheduler)  from 
interfering with Tiger  Shark  and disables time slicing for 
the  diemon. Finally, the  AIX  real-time clock is used to 
implement  deadline  scheduling. 

Background activities  such  as content  loading  require 
Tiger  Shark  to  perform  non-isochronous I/O to  the file 
system while isochronous  streams are being played and 
recorded. Tiger Shark allows all disk-system bandwidth not 
consumed by isochronous  streams  to  be used for  non- 
isochronous  time  I/O  according  to  the following algorithm. 
During file-system operation,  Tiger  Shark  keeps  track of 
the  fraction u of this  bandwidth actually used by currently 
playing streams.  After executing a non-isochronous I/O 
operation  taking  time t ,  Tiger  Shark waits for  time 
t(1 - u)/v before  starting  the next non-isochronous  I/O. 
This  heuristic is similar to  that  described in [12]. 

Tiger  Shark uses an  EDF  (earliest  deadline first [13]) 
policy to  schedule  isochronous I/O. The  deadline 
(completion  time) of the  ith block in a stream is that of 
the  i - 1st block  plus the  i - 1st block’s playback time 
(block size/data  rate).  Isochronous I/O to  each disk is 
executed in EDF  order.  In  single-node configurations, 
Tiger  Shark calls the  AIX disk  device driver  to  perform 
I/O operations.  To  restrain disk drivers, adapters,  and 
devices from  reordering I/O to  optimize  throughput,  Tiger 
Shark limits the  number of I/O  operations on each disk at 
any time  to  at most two, one executing and  the  other 
queued. When the executing operation  completes  and  the 
queued  operation begins  executing, Tiger  Shark  queues 
the  subsequent  operation  to  the disk. 

As was mentioned  above,  Tiger  Shark uses Virtual 
Shared Disk (VSD)  to  perform I/O to  shared disks on 
storage  nodes.  VSD was modified to allow a  deadline  to 
be specified for  each  disk-I/O  request.  Tiger  Shark 
computes  the  deadline  for  each  isochronous I/O request, 
and  VSD  executes  requests  to  each disk in  global deadline 
order, as described below. VSD was also  modified to 
prevent  AIX  and  the  hardware  from  reordering I/O 
operations, as described above. 

clocks to  be synchronized  within approximately  the 
duration of an I/O operation.  Tiger  Shark  generates 
deadlines with the use of the  SP2 switch clock, which is 

Tiger  Shark employs the  real-time  features of the  AIX 

Global  deadline scheduling requires file-system-node 

IBM J .  RES. DEVELOP.  VOL 42 NO. 2 MARCH l99R R. L. HASKIN 



synchronized on all nodes  to within a  microsecond. Since 
the  duration of a 256KB disk-IiO  operation is 
approximately 50 ms, if the switch clock were  not 
available, each node’s time-of-day clock could be used  in 
conjunction with a standard clock-synchronization 
algorithm [14, 151 to  generate sufficiently precise  deadlines. 

(tsfattr) that allows application  programs  to  control  the 
isochronous  reading  and writing of an  open file. 
Programs call tsfattr to  reserve  bandwidth  for  reading  or 
writing the file, specify the  readiwrite  data  rate,  and  set 
the  prefetch  depth  (the  number of read-ahead  buffers). 

The  kernel extension also  implements  a zero-copy 
interface  that allows stream drivers to directly  access the 
pinned  Tiger  Shark  data buffers. The  standard UNIX read 
and  write  functions copy data  between file-system buffers 
and  program  buffers.  This  adds  substantially  to  the  CPU 
overhead  required  to  stream video from  the  server. 
The zero-copy functions, called from  AIX  kernel  code 
(including interrupt  handlers), allow the  inner  loop of a 
stream  driver  to  be  implemented very efficiently. Because 
the zero-copy functions must be called from  the  kernel, 
file-system data  buffers  are  protected  against access by 
unprivileged programs.  The zero-copy functions  include 
prefetch, which starts  real-time  prefetching of data blocks, 
getbuf, which locks a  prefetched  buffer so that its data  can 
be accessed, and putbuf, which returns  a  locked  buffer  to 
Tiger  Shark  after its data  has  been  consumed.  A simple 
zero-copy  stream  driver  opens  the file and calls tsfattr to 
reserve  bandwidth  and  set  the  data  rate  and  prefetch 
depth.  It next callsprefetch to  read  the  number of prefetch 
buffers specified by tsfattr, calls getbuf to lock the  buffer 
containing  the first data block, and  starts  sending  data  to 
the  output device  (e.g., an  ATM  adapter).  Each  time  the 
device interrupts  subsequently,  the  interrupt  handler 
checks whether  the  data  buffer is empty. If so, it calls 
putbuf to  return  the  empty  buffer  to  Tiger  Shark  and calls 
getbuf in nonblocking  mode  to lock the next prefetched 
buffer. Normally (Le., if deadlines  are  met),  this  buffer 
will have been  read  and getbuf will return successfully with 
the lock. If  by some  chance  the  buffer  has  not  yet  been 
read, getbuf returns  an  error  to  the  interrupt  handler. In 
this  case, the  interrupt  handler signals a recovery process 
in the  stream  driver (e.g., via an  event), which in turn calls 
getbuf in blocking mode  to wait for  the  data,  after which 
the  interrupt  handler  resumes  sending  data  to  the device. 
The  use of nonblocking getbuf and  the recovery process 
bounds  the  interrupt latency (as  required by AIX).  Zero 
copy not only avoids  copying the  data; it  also  avoids the 
process switch into  the  stream  driver  and  the  piniunpin of 
the device output  buffer.  Depending  on  the  output device, 
zero copy can save up  to 40% of the  instructions. 

The  Tiger  Shark  kernel  extension  implements  a  function 

The  standard  AIX  NFS**  (Network File  System) 
damon can  use  Tiger  Shark  to allow NFS  clients to play 
audio  and  video over a  LAN.  Because it was considered 
impractical to modify NFS,  Tiger  Shark was modified 
slightly to provide continuous-time playback through  NFS. 
Tiger  Shark provides a  command  to  permanently assign a 
default playback rate to a file. This  rate  can  be directly 
specified by a  user  or  can  be  generated by an analysis tool 
that examines the  videoiaudio  content of the file to 
determine its  playback rate.  When  an  NFS client reads  a 
file sequentially  and  the file has  a  default playback rate, 
Tiger  Shark  assumes  that  the client is performing 
isochronous playback. It  then  reserves  bandwidth  for  the 
client and  uses  deadline  scheduling  to  read  the file at  the 
default  rate. 

Experience and applications 

Video on demand and interactive television 
Tiger  Shark  has  been used  in a  number of VOD  and  ITV 
trials. The first was the Bell Atlantic  Field  Trial [16, 171, 
one of the  earliest  video-on-demand trials, which took 
place from  April 1993 through  September 1994. This  trial 
used Shark  [IS],  a  predecessor of Tiger  Shark,  to  provide 
50 simultaneous video streams  from  a single  RSi6000 
Model 970 computer.  Video was sent over standard 
telephone lines at 1.544 Mbis (T1  rate)  to  the customer’s 
set-top  decoder.  Customers  ordered movies  over the 
telephone via an  automated  menu system, which sent 
requests  to play movies to  the video server. 

A  later  trial  at  Hong Kong Telecom [19, 201, which 
provided 150 simultaneous 1.5Mbis streams,  ran  Tiger 
Shark successfully from  March  through  September 1995. 
The  server  throughput was too low to justify the  use of an 
SP2, so the server consisted of two independent RSi6000 
Model 980 processors, each with  its own IBM 7135 
RAIDiant disk subsystems. A single-node version of Tiger 
Shark was used on  each RSi6000 to  provide  real-time 
access to its  local data.  Video  content was replicated  on 
each  server. As in the Bell Atlantic  trial, video was sent 
over telephone  lines  at 1.544 Mbis. However,  the  Hong 
Kong Telecom  trial was truly interactive.  The  set-top 
decoder  contained  an X.25 data  port  for exchanging 
control  commands with the  server.  The  user  interface 
included  menus with “image overlays” and video “fly-ins.’’ 
Other  interactive  features, such as direct  seek  to  a 
position  in the video, were  also  provided.  Tiger  Shark 
itself was able  to  start  streams in less than  a  second in  this 
system, although  other delays  in the  set-top box, X.25, and 
application  program  contributed to  a response  time  as  seen 
by the user of more than  a second. In  the initial architecture 
for the  Hong Kong Telecom server, the disk storage on each 
RSi6000 was divided between permanent file-storage space 
and a temporary file cache. Each video file had  a  permanent 

R.  L. HASKIN  IBM J .  RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 



home on  one of the RSi6000s; when the file  was needed  on 
the  other RSi6000, it was copied over an FDDI ring to  that 
machine’s cache. In practice, the  CPU averhead of copying 
files over the  FDDI ring was so high that even a small 
number of cache misses overloaded the server. It was 
eventually decided to  store  the  entire 200 hours of video 
content  on each RSi6000. 

[21], which began in May 1996, is the first to  use  Tiger 
Shark  running in  a shared-disk configuration  on an SP2. 
This  server  stores 200 hours of 6Mbis  video and  supports 
100 streams, with  video  delivery via hybrid fibericoax 
(HFC).  The  SP2 is configured with five storage  nodes  and 
seven file-system nodes.  Each  storage  node  controls  32 
4.5GB IBM 7133 (Serial  Storage  Adapter) disks,  a total of 
720 GB of video  data.  Each file-system node  contains  four 
MPEG-2 multiplexor cards,  each of which combines  four 
6Mbis MPEG-2  streams  into a  single  20Mb/s MPEG 
transport  stream.  The  transport  stream is modulated  onto 
an  analog  TV  channel  and  distributed via HFC.  The 
number of nodes was determined by the  number of Micro 
Channel* slots required  for disk adapters  and  MPEG 
multiplexors. The 720 GB of disk storage is more  than 
adequate  to  store 200 hours of hMb/s  video but  not 
adequate  to fully replicate  it.  To provide some  measure of 
protection  against disk failures, 67 hours of the most 
popular video is replicated (two copies)  on  one 80-disk 
stripe  group (half the disks). The  remaining video is 
stored  on a number of smaller,  unreplicated  stripe  groups. 
If a  disk failure  occurs in an  unreplicated  stripe  group, all 
files in it  must be  reloaded  from  tape.  The size of the 
smaller  stripe  groups is chosen  to  be  large  enough  to 
provide sufficient throughput  to  handle its expected 
content while being small enough  to  be  reloaded in an 
acceptable  period.  The decision to use unreplicated  data 
was dictated by cost  constraints. 

supercomputing  centers,  collaborated with IBM  to  develop 
an  experimental  WAN-based video server  that employs 
Tiger  Shark  on a 28-node SP2. This system uses an 
implementation of RTP  (Real-Time  Protocol) [23] to 
transmit video  over the  MBone  (multicast  backbone) 
network  interconnecting  the  supercomputing  centers.  The 
system was demonstrated  at  the  Supercomputing ’95 
conference in San  Diego  (December 3-6, 1995), with 
video sent  to  an IBM location in New York. 

The Tokyo Metropolitan  Government  (TMG)  ITV  trial 

Argonne  Laboratories,  one of the U.S. national 

computer reflects the  current  demands of the  marketplace. 
As  customer  needs grow to  require  an SP2: the technology 
is available to quickly fill this  demand. 

IBM  Multimedia Server for AIX uses  Tiger  Shark  to 
stream video to  personal  computers  and  workstations over 
video-capable  LANs (e.g., ATM, switched Ethernet,  or 
FDDI) using the  standard NFS protocol.  Multimedia 
Server  supports  up  to 75 Mbis (60 streams)  from a  single 
RSi6000 server.  Tiger  Shark  uses  the  streaming  heuristic 
described in the previous section  to  support  real-time 
playback through  the  stateless NFS protocol.  The  LAN 
used to  transport video  must  have sufficiently high 
throughput, low latency, and low error  rate  to  transport 
video smoothly. Although  conventional  LANs have no 
means  to  reserve  bandwidth or schedule delivery, new 
LAN  technologies such  as ATM  and switched Ethernet 
have  sufficient bandwidth  to  transport video  acceptably to 
a  reasonably large  number of clients. In  practice,  more 
video “jitter”  results  from  background activity of the client 
operating system (e.g., paging) than  from  network delay or 
errors. 

IBM Videocharger Server provides  video  playback to 
Internet  clients  through a Web browser. It  supports low- 
bit-rate (28.8Kbis) video over  WANs and  high-bit-rate 
(e.g., MPEG) video  over campus or corporate  intranets.  It 
uses Tiger  Shark  to  store  and play back video  and  uses  the 
RTP  protocol  to  transmit video  over the  network.  For 
low-bit-rate  video, a file block  size of 32 KB is used, since 
devoting 256KB buffers  to  each low-speed stream wastes 
RAM. 

IBM Media  Streamer supports video capture  and 
playback from locally attached video boards (SCSI- 
attached  MPEG  to  analog video decoders)  and over 
reserved-bandwidth  ATM  connections.  It  can  be used 
in  small to mid-sized video-on-demand  applications 
(hotels,  cable  TV systems, digital video broadcast,  etc.). 
It  can also replace digital or  analog  videotape  recorders in 
applications  such as ad  insertion  at a broadcast  station, 
video editing,  etc.  Media  Streamer provides up  to 
120 Mb/s on  an RSi6000 server. 

Discussion 

IBM  products using Tiger Shark 
Positive results  from  the  aforementioned  customer  trials 
have led  to  Tiger  Shark being included in three  IBM 
video-server  products.  At  present,  these  products  use 
Tiger  Shark in single-node  configurations  to provide real- 
time delivery,  wide  striping, and high throughput.  The  fact 
that  these  products  are  not yet offered  on  the  SP2 

9 Scalability 
The  Tiger  Shark system  used  in the  TMG  trial has been 
tested with 112 6Mb/s  streams, limited by the  number of 
available MPEG multiplexor adapters.  This size is modest 
in comparison  to  that  anticipated  for a large  ITV system. 
However, even  the  TMG  server  represents several 
hundred  thousands of dollars of hardware, which 

IBM J .  RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 R. L. HASKIN 



Table 3 Effect of grouping on performance for IBM 
Ultrastar* 2ES  SCSI-2 disk drive (4.5GB capacity, 5600 rpm, 
56 KBitrack avg., seek times 1.1 ms min., 8.5 ms avg., 15 ms 
max.). 

Streamslgroup  Throughput  Latency 
(MBls) (ms) 

1 4.03 62.08 
2 4.20 119.16 
4 4.34 230.32 
8 4.44 449.97 

16 4.51 887.39 

illustrates why scalability  must be  determined by modeling 
rather  than empirically. 

architecture  are  presented in [24]. This  study  modeled  the 
performance of a server with up  to 500 4Mbis streams. 
It  studied  the effects of a number of configuration 
parameters,  including switch bandwidth, disk  block  size, 
read-ahead  buffer size, I/O-scheduling policy, and  number 
of nodes.  To  summarize  the  pertinent  results of this 
modeling  as  they apply to  Tiger  Shark: 

The  model was  used to  predict  the  probability of stream 
starvation  due  to  variations in queuing delay at  the switch 
ports.  The  model  indicated  that  the  stream capacity of the 
server  remains  proportional  to  the  number of file-system 
nodes  (until  the  number of ports  supported by the switch 
is reached).  The  highest  switch-port  bandwidth  modeled in 
[24] was 60 MBls, at which the  stream-starvation  rate was 
0.02ihrlstream for  the “two-tier’’ architecture used in the 
TMG  trial  (separate file-system and  storage  nodes).  The 
SP2 used  in the  TMG  trial differs from  the  model in that 
it has a  switch-port bandwidth of 80 MB/s (as  opposed  to 
60 MB/s in the  model)  and  ran  at a CPU  utilization of 
37% (70% in the  model).  Both of these  differences would 
indicate  that  the  stream-starvation  rate in the  actual  Tiger 
Shark system would be lower than  the O.O2/hr/stream rate 
of the  model.  The  model  assumed a nonblocking switch 
(e.g., crossbar),  whereas  the  SP2 switch can block at high 
loads. Numerous analyses of switch blockage  as  a function 
of load have been  published  (see,  for example,  [25]), 
showing that  for a port  utilization of less than SO%, the 
probability of packet loss due  to blocking is negligible. In 
the  TMG system, the switch port utilization is 20% in the 
storage  nodes  and 15% in the file-system nodes. 

The  model  evaluated  optimum block  size  as  a function 
of disk-bandwidth  utilization. The  model in [24] indicates 
that  for  up  to  90% disk-bandwidth utilization,  the 256KB 
block size used in the  TMG configuration is within 5% of 
optimal.  The  TMG system has 140  disks, each  capable of 
reading 256KB blocks at 6 MBls. The  modeling  results 
indicate  that this number of disks  could provide 784 6Mbis 

194 streams  at 70% bandwidth utilization  with  a starvation 

Extensive modeling  results of the  Tiger  Shark 

R. L. HASKlN 

rate of O.Ol/stream/hr. For this result,  the  model  assumed 
first-come  first-served scheduling  and  random  striping of 
data blocks  across  disks. The  TMG system uses EDF 
scheduling  and  round-robin  striping,  both of which would 
result in an  even lower stream-loss  rate  than  that of the 
model. 

The  model also evaluated  stream  starvation as  a 
function of read-ahead  buffer size. In  the  TMG system, 
each  stream  has two full-block read-ahead  buffers in Tiger 
Shark, a buffer in the  HFC  card device driver,  and a 
buffer  on  the  card itself. The  model shows that  for  80% 
disk-bandwidth  utilization,  the  starvation  probability  for a 
system with  four  buffers is negligible  (less than 0.1%). 

The  model shows the possibility of stream  starvation  for 
video  clips too  short  to  be  striped across  all of the disks. 
The  model  indicates  that in order  to  maintain a constant 
starvation  rate of O.Ol/hr/stream when  short files are 
played, the  stream capacity for  each  node  must  be  lowered 
from 20 4Mbis streams  for a single-node  server  to  18 
streams  for a 128-node  server.  Tiger  Shark avoids even 
this  minimal degradation by replicating  short files to 
whatever  degree is necessary to  distribute  their blocks 
across  all  disks  in the  stripe  group. 

Disk  scheduling 
The  modeling  results of [24] indicate  that  disk-bandwidth 
utilization  over 80% can  be achieved  with  essentially no 
stream  starvation  through  the  use of EDF scheduling.  A 
number of algorithms have been  proposed [26-281 that 
provide  higher disk throughput by grouping  read  requests 
for a number of streams,  and  scheduling  each  group  to 
maximize throughput with  a conventional scan algorithm. 
Modeling  results  presented in [29] indicate  that  for  the 
large block sizes used by Tiger  Shark (256 KB and  up), 
the throughput  increase is negligible. For example, Table 3 
shows the effect of grouping for  a typical SCSI-2 disk drive. 
The  throughput gain from grouping indicated by the 
simulation does not warrant the increase in stream-startup 
latency caused by grouping. 

Other scalable multimedia file systems 
Although a number of scalable video servers have been 
developed  and commercially deployed, relatively little 
detailed  description of them exists in the  technical 
literature,  and little of that discusses the file systems. The 
closest comparable  published work  discusses Tiger [30] 
and  XFS** [31]. 

XFS is a high-performance file system for Silicon 
Graphics systems. Like Tiger  Shark, it provides isochronous 
delivery (“guaranteed-rate IiO”), wide striping, and a  large 
data-block size. In addition, like Tiger Shark, XFS can 
replicate  data, uses journaling  for recovery, allows very 
large files and file systems, supports  sparse files, and  has 
on-line system management.  However,  there  are a number 

IBM I. RES.  DEVELOP. VOL.  42  NO. 2 MARCH 1998 



of major  differences between  XFS and  Tiger  Shark. XFS 
directories  use a B-tree  rather  than  extendible hashing. 
[B-tree  lookup  performance is O(log n )  in the  number of 
files n ,  whereas  that of extendible hashing is 0(1).]  XFS 
replicates  data by mirroring logical  disks, compared with 
the  Tiger  Shark block-level replication.  Consequently, 
when an XFS  disk  fails,  its entire  load is taken  up by its 
mirror  rather  than  being  spread evenly over the  remaining 
disks, as it is in Tiger  Shark.  XFS  has  a  “direct I/O” 
mechanism  to  read  data  from disk  directly into  the  user 
buffer. Like the  Tiger  Shark  zero-copy  feature,  direct I/O 
avoids  copying data  from  the file-system buffer  pool  to 
user  space (by eliminating  the file-system buffer  rather 
than by giving the  user access to  it). However, direct I/O 
prevents  the  buffer  pool  from providing  any  benefit. This 
can affect the  stream-startup latency for  frequently 
accessed files (e.g.,  video fly-ins used  in  top-level menus). 
Finally, the scalability of XFS is limited by servers  on 
which it currently  runs,  the  largest at present  being  the 
Challenge  XL  shared-memory  multiprocessor with 32 
processors  and 1.2GBls I/O throughput.  The  SP2 switch- 
connected  cluster  can  expand to 512 processors,  with an 
I/O throughput of up  to 20 GBls. 

Tiger is a  special-purpose file system developed by 
Microsoft for  use in video servers. It consists of a  number 
of nodes (called “Cubs”) acting under  the  direction of a 
central-controller  node. Files are  striped across the  Cubs, 
which are  analogous  to  the  Tiger  Shark  storage  nodes. 
The  Cubs  transport video to set-top boxes via an  ATM 
network.  To play a video stream,  a  “multipoint-to-point’’ 
ATM-switched virtual circuit is established  between every 
Cub  and  the  set-top box (presumably,  this is done  once, 
when the viewer starts using the  server).  The  stream is 
assigned a  free  time slot in a global schedule.  Time slots 
are  arranged cyclically, so if block i of a stream  comes 
from disk j during  time slot t ,  block i + 1 will come  from 
disk j + 1 (modulo  the  number of disks)  in slot t + 1. 
Each block is sent to the  set-top box in the  time slot 
following the  one  during which  it  was read. If the clocks 
in the  Cubs  are synchronized, there  are  no collisions 
along  the  multipoint-to-point  connection.  The  principal 
advantage of this architecture is that it  avoids the  expense 
of having both  storage  and file-system nodes  (and  the 
additional level of switching to connect  the two).  However, 
this advantage  also limits  Tiger’s flexibility. The  slotted 
schedule  requires all streams  to have the  same  data  rate. 
Tiger  Shark, by comparison,  can  support  arbitrary video 
rates, which can  provide significant  cost and  space savings 
for  content (e.g., news) that  does  not  require  the full 
6Mb/s data  rate used  in [30]. The  slotted  architecture 
makes it difficult or impossible to  expand  the  Tiger system 
(i.e.,  to  add  Cubs  and/or disks) on-line.  Because  adding 
disks or  Cubs would require all data  to  be  restriped,  the 
amount of downtime  required  for such reorganization in a 

IBM I. RES. DEVELOP.  VOL 42 NO. 2 MARCH 1998 

large  server  could  be  prohibitive. Finally, VOD  and  ITV 
systems, now and  for  the  foreseeable  future, will have to 
support  ADSL [32] and  HFC  for video distribution. 
Neither  ADSL nor HFC  supports  multipoint-to-point.  In 
order to use  Tiger,  ADSL or HFC would require  front- 
end  nodes to receive ATM  packets  from  the Cubs, 
combine  them  into  streams,  and  send  them  to  the  ADSL 
or  HFC  adapters.  The  resultant configuration of Cubs, 
ATM switches, and  front-end  nodes closely corresponds to 
the  storage  nodes, switch, and file-system nodes in Tiger 
Shark,  eliminating  the  purported cost advantage of the 
decentralized  Cub  architecture. 

Technical and  commercial applications 
Tiger Shark’s attributes of scalability,  high throughput, 
availability, manageability,  and  a  standard  programming 
interface  are  important in  many  technical and  commercial 
applications such as  simulation, seismic  processing, and 
data mining.  Many  such applications  require high-speed 
sequential  read  and  write access to  large files, which is 
precisely  what Tiger  Shark was designed for. This  has 
resulted in considerable  interest in Tiger  Shark as a 
general-purpose  parallel file system for  use in  technical 
computing  and  scalable  servers. 

To  date,  Tiger  Shark  has  been successfully used in the 
Scalable Web  Server  prototype  developed  at  the  IBM 
Thomas J. Watson  Research  Center [33]. Tiger  Shark  has 
also  been  used in a study with an IBM customer  for 
retrieving seismic data  for processing. In this  study, Tiger 
Shark  offered  a 15X speedup over  NFS and a 5X speedup 
over  the existing PIOFS  parallel file system for SP2 [34], 
which is designed  for  this type of parallel technical 
computing. 

Tiger  Shark is currently  being  developed as a  product 
for  the SP2. As part of this  product  development  effort, 
several extensions to Tiger  Shark  are  under way to allow it 
to  better  support  general-purpose  parallel  computing. Two 
of the most important of these  are dynamic prefetch  and 
fine-grained  write  sharing. Dynamic prefetch  senses when 
an  application  program is trying to read  a file at a high 
rate  and  automatically  increases  the  number of prefetch 
buffers in order to maximize I/O parallelism. Fine-grained 
write  sharing  extends  the  token  manager  and local  lock 
manager  to allow multiple  nodes  to work on 
nonintersecting  portions of a file with minimal  global 
locking traffic. This  permits  a  large  simulation,  for 
example, to involve many nodes simultaneously  making 
updates  to small pieces of a file on which they  are all 
working. 

Summary 
Multimedia  applications  place  demands on a file system 
beyond the ability to support  isochronous access. Tiger  Shark 
not only supports  isochronous access, but also provides a 

R. L. HASKIN 

195 



scalable,  robust,  and  manageable  system  adequate  for 
large  ITV  systems.  Tiger  Shark  has  proven  itself in a 
number of real-world  customer  trials,  which have been 
sufficiently  successful to justify  its  being  used  in  three 
IBM video-server  products.  At  present,  development is 
under way for a general-purpose  parallel-computing  file 
system  based on Tiger  Shark.  The  early  customer  feedback 
on this  product is promising. 

Acknowledgments 
The  author  acknowledges  the  contributions of the  many 
people  who  participated  in  the  development of Tiger 
Shark. The members of the Tiger Shark  project  at 
Almaden  Research  Center  include  Jim  Wyllie,  Frank 
Schmuck,  Daniel  McNabb,  Michael  Roberts,  Carol 
Hartman,  Thomas  Engelsiepen,  and  Marc  Eshel. Research 
colleagues at  the  Thomas  J.  Watson  Research  Center 
responsible  for  the  Calypso  token  manager  and  VSD 
components  used by Tiger  Shark  include  Murthy 
Devarakonda,  Daniel  Dias,  and  Rajat  Mukherjee.  The 
Video  on  Demand  project  team  at  the  IBM  Bethesda 
Laboratory,  under  Jack  Bottomley,  was  instrumental  in  the 
success of the  Bell  Atlantic  and  Hong Kong Telecom 
trials.  Special  thanks  go  to  Frank  Stein,  Leonard 
Degollado,  James  Tani,  and  Hatem  Ghafir.  The  On 
Demand  Systems  group  in  IBM  Japan  under  Y.  Satoh 
included T. Sanuki, Y. Asakawa,  and H. Yamasaki, all of 
whom  contributed  heavily  to  the  success of the  Tokyo 
Metropolitan  Government  Trial.  Thanks  go  to  the 
development  group  in  the  IBM  Austin  Laboratory  under 
Daniel  Bandera,  who  built  the  Multimedia  Server, 
Videocharger,  and  Media  Streamer  products  around  Tiger 
Shark;  David  Craft,  Scott  Porter,  Eugene  Johnson,  Brian 
Dixon,  Partha  Narayanan,  and  Damon  Permizel  deserve 
special  mention  for  their  tireless  work.  Finally,  the  work 
of the  Parallel  File-System  groups  in  Poughkeepsie 
(particularly  Lyle  Gayne,  Robert  Curran,  Radha 
Kandadai,  and  Andrew  Zlotek,  with  support  from  Jeffrey 
Lucash)  and  Haifa  (Zvi  Yehudai,  Boaz  Shmueli,  Benny 
Mandler,  John  Marberg,  Sybille  Schaller,  and  particularly 
Itai  Nahshon)  are  recognized. 

*Trademark  or  registered  trademark of International Business 
Machines  Corporation. 

**Trademark  or  registered  trademark of the  Institute of 
Electrical and  Electronics  Engineers, Sun  Microsystems,  Inc., 
XiOpen Company, Ltd.,  or Silicon Graphics, Inc. 

References 
1. “IEEE  Standard  for  Information Technology-Portable 

Operating System Interface (POS1X)-Part 1: System 
Application Programming  Interface,” IEEE Standard No. 
1003.1-1990, American  National  Standards  Institute, 
Washington,  DC, 1990. 

2. IBM Corporation, Virtual Shared Disk User’s Guide, Order 
No. GC23-3849-00, 1994; available through IBM branch 
offices. 196 

R. 1.. HASKIN 

3.  IBM Corporation, AIX  Version 4 Kernel Extensions  and 
Device Support  Programming  Concepts, Order  No. SC23- 
2611, 1995; available through IBM branch offices. 

4. IBM Corporation, AIX  Version 3.1 RISC Systemi6000 
as a  Real-Time  System, Order No. 0624-3633-00, 1991; 
available through IBM branch offices. 

Concepts, 4th  edition, Addison-Wesley  Publishing  Co., 
Reading, MA, 1994. 

RAID  Array, Order No. SG24-2565-00, 1985; available 
through IBM branch offices. 

7. Maurice J. Bach, The Design of the UNIXa Operating 
System, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986. 

8. F. Cristian,  “Understanding  Fault-Tolerant  Distributed 
Systems,” Commun.  ACM 34, 56-78 (1991). 

9. Ronald Fagin,  Jiirg  Nievergelt,  Nicholas Pippenger,  and 
H.  Raymond  Strong,  Extendible Hashing-A Fast Access 
Method  for Dynamic  Files,” ACM Trans.  Database Syst. 4, 
315-344 (1979). 

Token  Management in the Calypso File System,” 
Proceedings of the  Sixth IEEE  Symposium on Parallel and 
Distributed Processing, New York, 1994, pp. 290-297. 

11. J. N. Gray,  “Notes  on  Database  Operating Systems,” 
Operating Systems, an  Advanced  Course, R. Bayer et  al., 
Eds.,  Springer-Verlag,  Berlin, 1979, pp. 393-400. 

12. Narasimha  Reddy  and  James C. Wyllie, ‘Ti0 Issues in a 
Multimedia System,” IEEE Computer 27, 69-74 (1994). 

13.  C. L. Liu and J. W. Leyland, “Scheduling  Algorithms  for 
Multiprogramming in a  Hard  Real-Time  Environment,” 

5. A.  Silberschatz and  P. B. Galvin, Operating  Systems 

6.  IBM Corporation, A Practical Guide  to  the  IBM 7135 

10. Ajay Mohindra  and  Murthy  Devarakonda,  “Distributed 

J. ACM 20, NO. 1, 46-61  (1973). 
14. Joseph Y .  Halpern,  Barbara Simons, H. Raymond 

Strong,  and  Danny Dolev, “Fault-Tolerant Clock 
Synchronization,” Proceedings of the Third Annual  ACM 
Symposium on Principles of Distributed Computing, 
Vancouver, B.C., August 27-29, 1984; ACM, ISBN 

15. Flaviu Cristian,  “Probabilistic Clock Synchronization,” 

16.  Larry Plumb,  “Bell  Atlantic  Demonstrates  Video  on 

0-89791-143-1, pp. 89-102. 

Distr. Computing 3, 146-158 (1989). 

Demand Over  Existing Telephone  Network,” Bell Atlantic 
press  release,  June 14, 1993. 

17. Bell Atlantic, “IBM  Announces  Agreement  for  Video  on 
Demand  Server,” World  News  Today, January 8, 1993. 

18. Roger L. Haskin,  “The  Shark  Continuous  Media File 
Server,” Proceedings of the IEEE  Computer Society 
International  Conference,  COMPCON ’93, February 1993, 
pp. 12-17. 

19. Alan  Patterson,  “Hong Kong Telecom,  IBM  Map  Video 
Effort,” Electronic Engineering Times, August 1, 1994, 

20. Roger L. Haskin  and  Frank B. Stein, “A System for  the 
p. 20. 

Delivery of Interactive Television Programming,” 
Proceedings of the IEEE Computer  Society  International 
Conference,  COMPCON ’95, March 1995, pp. 209-216. 

21. T.  Sanuki  and  Y. Asakawa, “Design of a  Video-Server 
Complex for  Interactive Television,” IBM L Res. Develop. 
42, 199-218 (1998, this issue). 

22. “Information Technology-Generic Coding of Moving 
Pictures  and  Associated  Audio  Information,” ISOIIEC 
13818, International  Standards  Organization,  Geneva, 
Switzerland, 1996. 

23. H. Schulzrinne, S. Casner,  R.  Fredrick,  and  V.  Jacobson, 
“RTP:  A  Transport  Protocol  for  Real-Time  Applications,” 
RFC 1889, Internet  Engineering  Task  Force, 1895 Preston 
White  Dr.,  Suite 100, Reston,  VA 22091, January 1996. 

24. Renu  Tewari,  Daniel  Dias,  Rajat  Mukherjee,  and  Harrick 
Vin, “Design  and  Performance  Tradeoffs  in  Clustered 
Multimedia  Servers,” Proceedings of the 1996 International 
Conference on Multimedia  Computing  and  Systems, IEEE 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 



25. 

26. 

27. 

28. 

29. 

30. 

31 

Computer Society,  Tokyo, June 1996. 
Achille Pattavina, “Asynchronous Time-Division Switching,” 
Communications  Handbook, Jerry  Gibson,  Ed., 
CRC Press,  Boca Raton,  FL, 1996, pp. 686-700. 
Narasimha  Reddy  and  James C. Wyllie, “Disk Scheduling 
in a Multimedia I/O System,” Proceedings of the 1st 
International ACM Conference on Multimedia, Anaheim, 

P. S. Yu, M. S. Chen,  and  D.  D.  Kandlur,  “Grouped 
Sweeping  Scheduling  for DASD-Based  Multimedia 
Storage  Management,” ACM Multimedia Syst. J. 1, 99-109 
(1993). 
D.  James  Gemmel  and Jiawei Han,  “Multimedia Network 
File  Servers: Multi-Channel Delay  Sensitive Data 
Retrieval,” ACM Multimedia Syst. J. 1, 240-252 (1994). 
Renu  Tewari,  Dan  Dias,  and  Rajat  Mukherjee,  “Real- 
Time Issues for a Clustered  Multimedia  Server,” Research 
Report  RC-20020, IBM  Thomas  J.  Watson  Research 
Center, Yorktown  Heights,  NY, April 1995. 
William J. Bolosky, Joseph S. Barrera 111, Richard P. 
Draves,  Robert P. Fitzgerald,  Garth A. Gibson, Michael 
B. Jones, Steven P. Levi, Nathan P.  Myhrvold, and 
Richard  F.  Rashid,  “The  Tiger  Video  Fileserver,” 
presented  at  the Sixth International  Workshop on 
Network and  Operating System Support  for Digital Audio 
and  Video  (NOSSDAV ’96), Zushi,  Japan,  April 23-26, 
1996. 
Mike  Holton  and  Raj Das, “XFS: A  Next Generation 
Journalled 64-bit  Filesystem with Guaranteed  Rate  IiO,” 
Silicon Graphics Inc., 2011 N. Shoreline Blvd., Mountain 
View, CA 94043; http://www.sgi.com/Technology/xfs- 
whiteoaner.htm1. 

CA,  August 1-6, 1993. 

Roger L. Haskin IBM  Research  Division,  Almaden Research 
Center, 650 Harry Road, Sun Jose, California  95120 
(roger@almaden.ibm.com). Dr.  Haskin is the  Manager of the 
Parallel File  Systems Department  at  the IBM Almaden 
Research  Center.  He received  his B.S. degree in computer 
engineering  from  the University of Illinois at  Urbana- 
Champaign in 1973, and received  his Ph.D. in computer 
science from  the University of Illinois at  Urbana-Champaign 
in 1980. His  Ph.D.  dissertation  pertained  to  special-purpose 
VLSI  processors  to  support full-text  searching.  Since joining 
IBM Research in 1980, Dr.  Haskin  has  pursued a  wide  variety 
of interests  and  has  published  numerous  papers  in  the  areas 
of full-text retrieval,  relational  database  extensions  to  support 
complex data  objects  and  long fields, distributed  operating 
systems, transaction processing  systems, file systems, and 
multimedia technology. He received an  Outstanding 
Innovation Award from IBM for his work on transaction 
processing in 1992 and received  IBM Outstanding  Technical 
Achievement Awards in 1994, 1995, and 1997 for his  work on 
file systems. Dr.  Haskin  currently works in the  area of parallel 
file systems for  commercial  and technical computing. 

32. “ADSL  Forum System Reference  Model,” Asymmetric 
E ‘  

Digital Subscriber Line  Forum  TR-001, The  ADSL  Forum, 
39355 California  St., Suite 307, Fremont,  CA 94538, 1997. 

33. D.  M. Dias, W. Kish, R.  Mukherjee,  and  R.  Tewari,  “A 
Scalable and Highly-Available Web  Server,” Proceedings of 
the IEEE Computer Society International  Conference, 
COMPCON  ’96, February 1996, pp. 85-92. 

34. Peter  F.  Corbett  and  Dror  G.  Feitelson,  “The  Vesta 
Parallel File  System,” ACM Trans.  Computer Syst. 14, 
225-264 (August 1996). 

Received  October 30, 1996; accepted for  publication 
March 25, 1997 

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998 R. L. HASKIN 



[[Page 198 is blank]] 


