Progressive
search and
retrieval

In large image
archives

by V. Castelli
L. D. Bergman
I. Kontoyiannis
C.-S. Li
J. T. Robinson
J. J. Turek

In this paper, we describe the architecture and
implementation of a framework to perform
content-based search of an image database,
where content is specified by the user at one
or more of the following three abstraction
levels: pixel, feature, and semantic. This
framework incorporates a methodology

that yields a computationally efficient
implementation of image-processing
algorithms, thus allowing the efficient
extraction and manipulation of user-specified
features and content during the execution of
queries. The framework is well suited for
searching scientific databases, such as
satellite-image-, medical-, and seismic-data
repositories, where the volume and diversity
of the information do not allow the a priori
generation of exhaustive indexes, but we have
successfully demonstrated its usefulness on
still-image archives.

1. Introduction

The last several years have seen the advent of numerous
digital image and video libraries that, today, comprise tens
of terabytes of on-line data. As a result of the continued
proliferation of this kind of nontraditional data, these
libraries will continue to grow significantly. For example,

the instruments on the first two Earth Observing System
platforms, to be launched in 1998 and 2000, will generate
data at a rate of 281 gigabytes a day [1]. Other examples
are in the seismic- and medical-imaging areas, in which
terabytes of data are continuously acquired and stored.
Consequently, new infrastructure that can support efficient
storage, retrieval, and transmission of such data is needed.
The search of image and video libraries, unlike the search
of conventional text-based digital libraries and databases,
cannot be realized simply through the search of text
annotations. Because of the richness of detail in image
and video data, it is difficult to provide automatic
annotation of each image or video scene without human
intervention. Therefore, we face the challenge of
developing completely automatic mechanisms that extract
meaning from this data and characterize the information
contents in a compact and meaningful way—in other
words, provide means for content-based search—and to
ensure that these mechanisms scale well with the number
of users, size of the library, and size of the objects stored
within the library.

In general, there exist three different levels of
abstraction at which image or video objects can be defined
and searched—semantic, feature, and pixel. For instance,
one can search for images containing houses (semantic
level), regions with a specified texture (feature level), or
similar, pixel-by-pixel, to a template (pixel level). Objects
at each level can be either pre-extracted and indexed (an

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Jownal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to repablish any other
portion of this paper must be obtained from the Editor.

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

V. CASTELLI ET AL.

253

254

index is a data structure designed to allow efficient
retrieval) when new images are placed in the data
repository, or evaluated at query time by analyzing pre-
extracted information or even the images themselves.
Current systems tend to pre-extract as much information
as is practical, in order to allow efficient indexing and
access to the desired information.

A pixel-level object is a connected subimage. Two
subimages are similar at the pixel level if they have the
same size and shape (e.g., they are both square and have
the same number of pixels), and if pixels in the same
position have similar values. Similarity matching thus
relies on low-level operations, such as correlation
(template matching). Template matching for satellite
images can be used for coregistering images of the same
region acquired by a satellite in different orbits. Since it is
not practical to pre-extract all possible subimages, such
operations must be performed at query time. Because this
has been prohibitively expensive, most systems avoid the
use of pixel-level techniques on large archives.

A feature-level object is a connected region of an image
having uniform feature values: for instance, a region with
homogeneous texture constitutes a texture object. The
user specifies feature-level search parameters either by
providing sample images, from which “feature vectors” for
search are extracted, or by explicit specification of feature
values or ranges. Our system allows the user to specify
queries at the feature level with forms such as

Find all areas that have texture similar to this sample image.
and

Find all images that have color histograms similar to this
set of color components: Red = X%, Purple = Y%,
Green = Z%.

Feature-level objects are often pre-extracted by either
blocking the image (i.e., by subsetting it into rectangular
regions, possibly overlapping) or employing clustering and
segmentation 2] techniques. Efficient indexing techniques,
such as R-trees [3], can then be used to optimize the
search for particular feature values.

A semantic-level object is a connected region of an
image to which we can assign a unique semantic content.
For instance, a photographic image can contain
mountains, houses, flowers, people, animals, etc. Our

system supports searches at the semantic level in the form:

Find all bodies of water in the selected geographic region
that are within 50 miles of any fire that is greater than 10
miles in diameter and has been burning for less than 3
days.

Semantic objects are typically predefined by applying
classification algorithms to image features (such as texture
or spectral histograms), or to the original data. Note that
the primary distinction between semantic objects and

V. CASTELLI ET AL.

feature objects is that semantic objects have a semantic
label (such as “water” or “pine forest”), while feature
objects are simply characterized by their feature values.

Extraction of features from pixels and of semantic
objects from features are lossy operations. Although each
higher level of abstraction improves search efficiency by
reducing information volume, there are corresponding
losses of accuracy. For this reason, it is necessary to
provide mechanisms that support searches specified at
all of these abstraction levels.

At the present time, there are many systems that
perform indexing of image or video through the use of
low-level image features such as shape, color histogram,
and texture. Prominent examples for photographic images
include IBM QBIC [4], the MIT PhotoBook [5],
VisualSeek from Columbia University [6], and the
Multimedia Datablade from Infomix/Virage [7]. These
techniques have also been applied to specific application
domains, such as medical imaging [8, 9], art [10], and
video clips [11-15]. All of these examples rely on a
preprocessing stage in which appropriate features are
extracted and indexed. Although pre-extracted features
and/or semantic objects permit efficient indexing schemes,
they do not allow searching with all possible query
semantics. To support a wide range of content-based
queries, we must allow the user to form new semantic
categories and/or new feature definitions.

We are currently studying these issues in a project
under joint sponsorship by IBM and the NASA
Goddard Space Flight Center. Our goal is to explore
technologies that will facilitate the storage, query, and
retrieval of images from large digital libraries by a diverse
community of users, and to demonstrate the use of these
technologies in a functional test bed. It is our thesis that
though employing predefined schema, similar to those
used in conventional databases, is useful and necessary,
such schema will be insufficient to adequately support
content-based search. It is necessary to provide users the
capability to dynamically define new features and objects,
and interactively specify and refine the target for content-
based search of the image data. Thus, to extract the
content dynamically defined by the user, we need the
ability to analyze the raw images in the repository at query
time. But the large size of the images stored in typical
scientific repositories and the complexity of the operations
involved make it impossible to use traditional image-
processing operations in an interactive system. To
overcome this difficulty, we have developed an extendible
framework (called a progressive framework) in which the
search targets are specified at one or more different
abstraction levels. In this paper, we describe elements
of our system that maximize retrieval efficiency,
concentrating on the combination of image representation
with image analysis at the heart of the progressive

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

HITP
Data HTTP ;
explorer server :
I DXLINK I CcGl
Search engine . Query parser
I SOL I
DB2v2
Satellite images database
5!
E:
g
=

Server

Architecture of the content-based retrieval system.

framework. In particular, we show how to rely on
properties of image-compression schemes that reorganize
the information contained in the data, how to
appropriately stage the analysis operators to produce
successive approximations of their final results, by
selectively operating on very small portions of the data,
and how to identify and discard early in the computation
those images that do not match the query.

To evaluate the effectiveness of the approach, we have
developed a set of benchmark queries. We observed
that conventional implementations of image-processing
operators result in unacceptable execution times, while the
progressive approach yields a significant increase in speed,
which makes it appealing, even in an interactive system.
The net effect is to make a wider range of image-
processing and image-understanding operators available at
run time, thereby extending the range of query operators
that can be provided to the user.

The remainder of this paper is organized as follows.
The current system architecture is discussed in Section 2.
Section 3 describes data representation and outlines the
ways in which we use data representation to make the
processing more efficient. Section 4 is devoted to the
description of some fundamental content-search operators.
In Section 5, we describe a set of queries that measures
the benefits of our approach. Discussion and conclusions
are in Section 6. Although the analysis in this paper is
focused on satellite-image databases, the concepts
presented herein are also applicable to other multimedia
databases.

IBM 1. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Internet Object/feature
browser definition
Navigation .
. e uery generation
interface Query g
Visualization

console . .

Relation definition
Client

2. System architecture

In this section, we describe the architecture and the basic
functionality of our content-based search system. As
shown in Figure 1, our system is composed of a client and
a server using the http protocol to communicate across the
Internet.

The client is a modular Java** applet, which can be
launched by any Java-enabled Internet browser. A
navigation interface allows the user to visually navigate
through the image database by graphically selecting
geographical regions of interest, relevant time periods, and
datasets (specified as instruments on satellite platforms,
such as the LANDSAT MSS, or as derived product sets,
such as the NALC triplicates). The navigation interface
also allows the user to zoom in and out on selected
portions of available images. The user can specify content-
based queries in a quasi-natural language with the query-
generation module, which is based on a drag-and-drop
interface. Queries consist of relations between objects and
constraints on the objects. Relations and objects are either
predefined or specified by the user, through a relation-
definition module and an object/feature-definition module,
respectively. Finally, the user, by employing a visualization
console, can specify the format for visualizing the results.

The following scenario provides an example of query
specification. A fire manager from the forest service wants
to assess the status of water sources near a forest fire.
Helicopters, which can retrieve water (even from beaver
ponds, if they are deep enough), are effective if the water
is not too far from the fire, and they are much cheaper to

V. CASTELLI ET AL.

255

256

Object type

Y v

Is the
object type
pre-extracted

Is the
feature type
pre-extracted

Object definition

Analyze
image to produce - Satellite
features 1mages
Segment features Cluster/classify
" to produce object R to produce
boundaries semantic labels

Object retrieval for a content-based query.

deploy than tanker planes. The fire manager thus restricts
the region of interest to a large area around the fire,
selects as time frame the last five months, and limits the
datasets to those having at least 30 meters of resolution.
Then the manager constructs the query: Find all of the
bodies of water at least 50 meters wide and 3 feet deep

that are within 10 miles of the portion of the forest to which
the fire might quickly extend. The last part of the query

is specified by providing an example of texture that
corresponds to a “fuel type” that is particularly prone to
burning quickly and by requiring the system to find all
examples of this texture that are near the geographical
coordinates of the fire. The depth of the lake cannot be
directly derived from a satellite image, but it can be
inferred, or guessed, from the reflectance in appropriate
spectral bands. Finally, the fire manager requests that the
results be plotted as bounding boxes on a map of the
area. The query contains restrictions on the metadata,
two types of objects (bodies of water and the region
characterized in terms of texture), constraints on each

of the objects (the size and depth of the lake and the
location of the texture object), and a relation between
the objects (they must lie within ten miles of each other).
The client prepares the query in the form of a properly
formatted message and sends it to the server. The server
architecture is centered around a query parser, which
communicates with an HTTP server via the CGI

V. CASTELLI ET AL.

(Common Gateway Interface). The query parser receives
the formatted message containing all of the query
specifications from the client and translates it into a
program [written in an internal representation language
that combines Structured Query Language (SQL)
statements with powerful search primitives and operators].
The query parser can communicate with a database, for
example DB2* Version 2 (DB2v2 in the figure), using
SQL. The program generated by the query parser is
executed by the search engine. The search engine
interfaces with the database and with a data repository, in
our case containing satellite images, that, for scalability,
can rely on a Hierarchical Storage Manager (HSM).
Finally, to produce complex visualizations, the search
engine can use a visualization engine. In particular, we
currently use the IBM Data Explorer*, with the DXLINK
application library as the interface.

During the execution of a query, the search engine first
reduces the search space to the images that satisfy the
metadata restrictions (region of interest, time frame, and
data sets) by issuing an SQL query to the database and
then executes the program only on the reduced search
space. The latter step involves the retrieval of objects and
features and the evaluation of constraints and relations.

The control flow of object retrieval is diagrammed in
Figure 2. First, the search engine determines whether the
type of the desired object has been pre-extracted and

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

stored in an appropriate file. In the example, the object
type “body of water” would be pre-extracted, and all of
the object instances of the type “body of water” that fall
within the region of interest would be retrieved. Of
course, not all possible types of objects are pre-extracted,;
rather, their definition in terms of elements at lower
abstraction levels (such as pixels or features) can be
stored or provided by the user. In the example, the user
specifies a new object type in terms of a texture example—
the fuel type. The search engine then determines whether
texture data has been pre-extracted and stored in a file; if
this is the case, it retrieves all of the feature elements for
the region of interest, segments them into homogeneous
regions (the “texture” objects), and retrieves those similar
to the user-provided example. A further step involving
automatic classification can be used to produce semantic
objects. Finally, if the features are not pre-extracted, the
search engine computes them by directly analyzing the
stored images using image-processing operators.

Operators (such as retrieval from existing files,
classification, feature extraction, and segmentation)
produce candidate objects that are either “sharp” (e.g.,

a body of water) or “fuzzy” (e.g., a texture object that is
similar to a user-provided sample image). Analogously,
constraints on objects can be either sharp (in the example,
the minimum width of the lake) or fuzzy (e.g., we could
be looking for “deep” bodies of water). Finally, the
relations between objects can themselves be sharp (as the
“within 10 miles” relation in the example) or fuzzy (the
texture objects must be “near” the fire). Fuzzy logic [16]
is then used to compute a membership function (used as
score) for each of the retrieved results, and the system
returns them ranked in order of descending score.

The order of extraction of the objects and of the
evaluation of constraints and relations is dynamically
selected to maximize the pruning of the search space;
each new step further reduces the amount of data and
progressively refines the search (hence the name
progressive framework).

3. Progressive image representation

Although the price of storage devices continues to drop at
a dramatic rate, there is no doubt that the major cost of
providing a digital library will continue to be in the
storage devices. Thus, a reduction of even 30%, by the use
of compression, in the storage required by the system
would result in a significant reduction in overall cost.
Although it would seem that processing images stored
using compression techniques would result in reduced
efficiency, this need not be the case; in fact, if we organize
the data appropriately, the search process becomes more
efficient and requires accessing only a small fraction of the
data. One of the primary ideas of our project is the
possibility of increasing the speed of searching through

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

images stored in a digital library while simultaneously
reducing the storage requirements. The remainder of this
section explores this subject in more detail.

© Compression and progression

Image compression, or, more generally, source coding, can
be categorized as lossless or lossy, depending on whether
all of the original data can be recovered.

The first step of a large class of compression algorithms
is a transform, such as the discrete cosine transform
(DCT) used in both JPEG [17] and MPEG [18], or the
discrete wavelet transform (DWT) [19] that improves
the compression performance by concentrating most of the
information (i.e., most of the energy) in a few transform
coefficients. The transformed data is then “thresholded”
(i.e., values less than a specified threshold are changed
to zero) in order to eliminate the coefficients that are
close to zero, quantized, and finally coded using
lossless compression techniques. The thresholding and
quantization steps in existing lossy compression standards
such as JPEG are usually designed to minimize the
perceptual difference between the original and the stored
data. However, quantization schemes can be selected to
best suit the requirements of the intended applications.

Applying query and retrieval operations directly on
lossily compressed data generally leads to improved
computational efficiencies along two fronts:

« The required I/O bandwidth between storage units and
CPU is significantly reduced.

« The features and properties of the data can be
emphasized by the transform step of the compression
scheme.

In particular, query operations (e.g., analysis, retrieval,
evaluation, transmission, and visualization) on image or
video data can be staged progressively to minimize the
total execution time as follows: Instead of operating on an
entire image, the algorithm first analyzes small, selected
portions of the transform and, on the basis of this
information, decides whether the image can satisfy the
query. Images that do not satisfy the query are quickly
discarded; the others are further analyzed by accessing
additional portions of the transformed data, and the
process is repeated. At each step, the search space is
progressively refined.

o Wavelet-based compression

Our system uses a transform-based image-coding scheme,
which we call multiresolution compression for image
analysis (MCIA), that simultaneously yields lossless and
lossy compression. The structure of our algorithm is shown
schematically in Figure 3. It consists of a lossy component
and a lossless component; the lossy component uses DWT

V. CASTELLI ET AL.

257

258

'
- SO
!

1 .

1 Quantized wavelet
(-1 transform

) (lossy) !

image

Original
image

1

1
[P 1 Inverse 1
DWT :
1

Opverall structure of the compression algorithm. The image is transformed, quantized (Q), entropy-coded (EC), and stored. The difference
between the original and the lossy data (residual) is entropy-coded and stored. The combination of compressed lossy data and residual yields

lossless compression.

coding (for a simple introduction to wavelets and DWT,
see [19] and the references therein) followed by
quantization of the transform coefficients and lossless
coding of the quantized values. To achieve lossless
compression, we compute the difference between the lossy
image and the original image, to produce a residual image,
which is then losslessly coded ([20], Chapters 5 and 6).

We use a wavelet transform based on short orthogonal
or biorthogonal filters, such as the Daubechies
biorthogonal symmetric wavelets [21] of order 1 to 5
(although the system supports a large variety of wavelets).
If the original data is stored in integer format, these filters
allow perfect reconstruction; i.e., the transform step is
perfectly invertible (of course, if the original data is stored
as real numbers and the computation is performed with
finite precision, rounding errors might prevent perfect
reconstruction). The wavelet transform takes as input an
image and produces a matrix of coefficients with the same
number of rows and columns. This matrix is divided
into portions called subbands, which, from the signal-
processing viewpoint, are obtained by separating different
spectral components using linear filtering operations, and
sampling the results.

We quantize ([20], Chapter 13) the coefficient matrix
using a uniform scalar quantization scheme. A different
number of bits for each coefficient is allocated for
each subband. Since quantization results in a loss of
information, this step is the (only) lossy portion of our
coding scheme. The quantized subbands are then losslessly
coded independently by means of predictive coding
(DPCM [17], Chapter 5.2.1) followed by a fixed-model
two-pass arithmetic coding [17, 22]. These two steps are
denoted by EC (entropy coding) in the figure. The

V. CASTELLI ET AL.

resulting lossily compressed image requires ten to twenty
times less space than the original, without displaying
appreciable artifacts.

The residual is computed by inverting the DWT of
the quantized wavelet coefficients and calculating the
difference between that and the original image; this
difference is then losslessly encoded, using DPCM
followed by arithmetic coding. The residual contains
information that is difficult to predict (hence to compress),
such as the sensor noise in satellite images. Thus, the
residuals account for most of the storage requirement.

Some of the results from extensive comparison of our
MCIA compression algorithm with several existing lossless
image coding schemes on heterogeneous satellite images
and on classical test images are summarized in Figure 4.
In general, we have found that the compression rate (ratio
of volume of coded data to volume of input data) of
MCIA is close to the compression rates of the best
commonly available lossless algorithms.

Our scheme has several advantages. First, it has low
computational complexity: The cost of reconstructing the
original image is directly proportional to the number of
pixels. Furthermore, while inverting the DWT, one can
generate a multiresolution representation of the image—
a sequence of increasingly larger and more detailed
approximations, ending with the image itself. (For lossy
compression, the final image is a lossy version of the
original.) In particular, our scheme yields a dyadic
multiresolution pyramid: The original image is at level 0
of the pyramid, and the approximation at each level
has half the number of rows and columns of the
approximation at the previous level. Reconstructing an
approximation at a specified level of the pyramid requires

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

four times fewer operations than retrieving the one at the
immediately lower resolution level. Thus, from the wavelet
transform, we can readily generate thumbnails and low-
resolution representations of the original image. By

using short filters and storing the data on disk using a
proprietary scheme, we can also quickly reconstruct
arbitrary portions of the image at the desired level of
detail. This provides a significant speedup during the
query process, since in general we do not need to analyze
the whole image for content-based-search purposes.
Finally, the space-frequency representation produced by
the wavelet transform simplifies the implementation of
certain image-processing operations, such as certain types
of texture matching [23]. Since the search algorithms can
operate on the lossy and highly compressed version of the
image, the scheme is amenable to implementations that
use hierarchical storage systems, where the relatively high
volume of residuals would be stored on tertiary (slow)
media and accessed only on user request.

4. Progressive content-based search operation
The primary objective of our system is to provide a
framework for automatic search of an image repository
based on the image content.

When the user specifies content by means of objects or
features that are not extracted a priori and stored in the
database, the image search engine can extract the desired
information from the stored data using a set of image
operators, combined through a C-like interpreted
programming language.

Combining compression and image-processing operators
has proved very effective in reducing the high
computational complexity of the feature-extraction task,
and sometimes in increasing the accuracy of statistical
operators, such as classification.

While the approach has been used in conjunction with
a variety of elementary image-processing operators, we
discuss in more detail how to apply the progressive
framework to three complex operations: template
matching, which retrieves content at the pixel level;
texture extraction, which retrieves information at the
feature level; and classification, which attaches semantics
to portions of the images.

o Template matching

In a query-by-example framework [4], template matching
([2], Chapter 7.5) allows the retrieval of images that
contain exactly (or almost exactly) the example (template)
specified by the user. Indexing is impossible in this
context, since the user is allowed to specify at query time
any template of any size. Thus, template matching
requires comparing, pixel by pixel, the example (say of
size Ax X Ay) with each Ax X Ay subimage at execution
time. In practice, template matching is rarely exact, as a

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

70
DPCM -+ arithmetic coding
65F 7 MCIA
~ Ml JPEG lossless
®
E 60
g
£ sst
g 50F
5
&}
45 I
Images: Indiana Louisville Lena Tahoe
8e8: (TM, band 4) (TM, band4) (gray scale) (MSS, band 3)

Comparison of MCIA compression ratio with the lossless mode of
the JPEG standard and DPCM arithmetic coding. The Indiana and
Louisville images were obtained with the LANDSAT Thematic
Mapper; Lena is the most commonly used image in the image-
compression literature, depicting the head of a woman wearing a
feathered hat; the Tahoe image is a portion of a NALC dataset.

result of image noise, quantization effects, and differences
in the images themselves. In the satellite-image domain,

seasonal changes alone introduce effects that make the
matching process difficult. Thus, the goal is to retrieve the
subimages that most closely approximate the template.
Our experiments have shown that the correlation coefficient,
discussed below, is a particularly robust measure of the
“distance” between the template and a subimage.

Let S denote the image and S(i, j) denote the pixel at
location i, j, wherei = 0,---, N —landj=20,---,
M~ 1; let S:’;Ay denote the subimage of size Ax X Ay
starting at location m, n. The correlation coefficient
p(m, n) is defined in the usual way, as the empirical cross-
correlation between properly normalized versions of the

subimage S:ffy and of the template T:

p(m, n) &

ME

E [TG, j) - TISE2G, j) - S22
j=0

0

i

Ax-1 Ay-1

VG > TG, j) - T7

i=0 =0

Av—1 Ay-1

> D ISENG,) - SENT

=0 j=0
where

()
Ax-Ay

TG, j)

Ar=1 Ay-
A b
:§ %Ax'Ay‘

Ar—1 Ay—
S 4 E D e
=0 jo

V. CASTELLI ET AL.

259

260

¢ Geometrical interpretation of the progressive correlation coefficient
: algorithm.

1

09}
~ 08}
&D
z 07F
2
306}
£
g 05}
% 04 Energy distribution across levels
§ T Additional energy contribution of individual level
o3t

02§

01k

O i I\ L L L
0 1 2 3 4 5 6

Resolution level

¢ Energy distribution of the wavelet transform of a typical satellite
% image, as a function of the multiresolution level, and the additional
a contribution of each level to the energy of a six-level pyramid.
i Note that the lowest level contains about 50% of the total energy.

From the computational viewpoint, the set of quantities
S, hm=0- M-A~-1n=0--N-d-1,
can be computed in O(M + N) + O(Ax - Ay)
operations;' for very large images and moderate-sized
templates, the latter term is negligible. Calculation of the
quantities 7 and 32" E}.Aj(;l [T(, j) — T]* requires

1 We use here the Bachmann-Landau O-notation: A function f(x) = Q[g(x)] as
x — x,, if there exist finite constants K and dx > 0, such that for all x satisfying
[x = x,| < 8, the inequality |f(x)| < K|g(x)] holds.

V. CASTELLI ET AL.

O(Ax - Ay) operations. Thus, the real computational cost
is associated with the correlation in the numerator of p(m, n).
By invoking the convolution theorem for the Fourier
transform [24], we can compute the correlation coefficient
in O(N + M - log, M - log, N) operations, and better
algorithms to compute the correlation coefficient

exist only if Ax - Ay < log, M - log, N. Thus, the
computational cost of the correlation coefficient is
superlinear in the number of pixels in the image.

Progressive template matching, by first computing the
correlation coefficient on a low-resolution version of the
image and then progressively refining the results only
around local maxima, allows one to approximate p without
having to involve the entire image in the computation.
More specifically, we start at a low resolution level, say €,
and compute the correlation coefficient between the level-
¢, approximations of the image and of the template. At
each level ¢ we identify regions where a match can occur,
by first appropriately thresholding the correlation
coefficient result and then finding local maxima. Areas,
with size that depends on the level and on the size of the
template, are then declared candidate regions. We then
proceed to the immediately higher resolution, i.e., level
£ — 1, where we analyze witk the same algorithm only the
candidate regions, and discard the rest of the image. The
procedure is recursively repeated until full resolution is
reached.

The theoretical foundations of the approach rely on the
results in [25] applied to models of real images. While the
mathematical details are beyond the scope of the current
paper, we give here a simple geometric justification. If we
think of the normalized subimage and template as vectors
in a Ax X Ay-dimensional Euclidean space, W, the
correlation coefficient can be interpreted as the cosine of
the angle 6 between these two vectors (for instance, the
angle 0 between T and S in Figure 5). Here, an exact
match yields the maximal correlation coefficient, 1. The
approximations to the template and the image at level 1
are the projections T, and S, of T and 8, respectively,
onto an appropriate subspace, W, defined by the wavelet
transform. The correlation coefficient at level 1 is the
cosine of the angle 0,. If the difference vectors T| and §;
(T)2T - T, and S; &4 § — 8)) are short, we can closely
approximate 6 with 6,. On the other hand, if the
difference vectors T| and 8| are long, the approximation
is poor. Similarly, the approximations at level £ can be
represented by vectors T, and S, in the subspace W,
where W, C W, , C---C W, T/f A ijl - TI., and
SIT A SI.A1 - Sj. Thus, T = T, + Ejé:l Tlf; similarly for S.
The energy of a typical satellite image is distributed across
the different resolution levels, as shown in Figure 6.

It is apparent that the level-3 approximation captures
approximately 73% of the energy of the normalized
template (the energy is equal to the length of the vector

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

squared); that is, the length of the vector 8] + §) + 8! is
about half the length of §,. We have developed techniques
that allow us to quantify the effects of approximating the
angle 6 with 6, without having to convert back to the
spatial domain [26]. By appropriately choosing the starting
level €, we can still guarantee that the results of our
search are identical to those obtained when operating on
the full-resolution image.

In practice, the larger the template, the better the
speedup that can be achieved through this technique. For
templates of size 64 pixels X 64 pixels, our experiments
indicate an expected speedup ranging between 20 and 50.
We have observed that the technique is very robust with
respect to sensor noise, being essentially insensitive to the
noise levels usually observed in satellitc images. Also, for
remotely sensed images, the very nature of the correlation
coefficient (which does not depend on the length of the
vectors) ensures that the effects of changes in sensor gain,
sun angle, and seasonal variations in reflectance have little
impact on the performance of the technique.

® Texture analysis

Texture is a perceptual concept that is rather difficult to
formalize. It roughly captures regularity and organization,
or lack thereof, of the luminance of neighboring pixels. As
such, it is a local property of an image; i.e., different
regions can have different texture. Many different
approaches have been proposed to capture mathematically
or numerically the concept of texture. Usually, the image
is divided into square, rectangular, or irregular blocks,
possibly overlapping, and certain numerical quantities,
called texture features, are extracted from each block.

We have compared the effectiveness of different texture
features in retrieving satellite images on the basis of
similarity {27], and we have identified and included in our
system a set of features that outperforms all of the other
most commonly used ones. These texture features include
fractal dimension [28], coarseness, entropy, spatial gray-
level difference (SGLD) statistics {29, 30], and several
circular Moran autocorrelation functions [30].

Texture extraction is a rather time-consuming task,
since it involves the computation of complex quantities
for each block of the image. For interactive situations
in which the features cannot be precomputed, such as
content-based search of real-time images and video,
feature extraction can become the major bottleneck. In
our system, we pre-extract texture vectors, store them in
files, and generate indexes. Still, given the large amount of
data associated with each image, similarity search is a
daunting task.

To improve the speed of searching an image or video
database for texture similarity, we use an approach called
progressive texture matching [31]. The goal is to find a
specified number of textures in the database that are most

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

similar to an example that the user provides by specifying
one or more blocks of existing images. We assume that a
progressive representation of the images and the videos
being searched already exists, and in the following we
identify it with an L-level multiresolution pyramid created
by subband coding or by the wavelet transform. For each
resolution level of the pyramid, we can divide the image
approximation into regular regions (for example,
overlapping square blocks) or into irregular regions
according to boundaries determined by edge-detection or
image-segmentation techniques, and compute a texture-
feature vector for each of the regions. In general, lower-
resolution approximations will result in a substantially
smaller number of texture vectors. The extracted feature
vectors can then be stored separately, level by level,
together with other information about the region from
which they were extracted, and indexed.

The steps of the progressive texture-matching algorithm
are the following:

1. Compute the approximations at level 0, -+, L — 1
of the example provided by the user, and calculate a
texture feature vector for each level.

2. Retrieve from the level-L — 1 textures of the images
in the database being searched, the Q, vectors most
similar to the level-L — 1 vector extracted from the
example. Call the regions from which the retrieved
feature vectors were extracted Rl", BN Ré‘L.

3. At the next higher level, €, consider only the level-£
texture vectors that were extracted from regions that
overlap the regions obtained in the previous step
(R, Ré;ll), and from them retrieve the Q,
vectors most similar to the level-€ vector extracted from
the example, together with the corresponding regions
Rf,---.Ry.

4. Repeat the previous step until level 0 is reached.

The procedure progressively refines the search space by
further pruning it at each level. The method is clearly
nonexact, since it relies on the approximations. The choice
of the {Q,} influences the result and the efficiency of

the method. Since detailed description of the selection
algorithm is beyond the scope of the present paper,

we refer the interested reader to [31].

® (lassification

Classification of a satellite image is the process of
assigning semantic labels to the individual pixels or to
distinct regions ([32], Chapter 8). In the remote-sensing
community, images are often classified by analyzing each
pixel location independently, and using as input to the
classifier the spectral bands acquired by the instrument
(typically four to two hundred). Different land-cover
classes have different “spectral signatures”; for instance,

V. CASTELLI ET AL.

261

262

Let:

region = level-L approximation
current level = L

no. of columns = (M /2%y — 1
=w/s2hH -1

no. of rows
row = 0, column = 0
row =
row + 1 .
colump = -
column + 1

Classify coefficient
at location
(row, column)

Label entire
block

No *

—(column = no. of columns ? thes

—(row = no. of rows ?

)——» End

Coefficient
corresponds to
homogeneous
block ?

Region = 2 X 2 block
corresponding to
coefficient at
current level — 1

Current level =
current level — 1

no. of rows = 2

no. of columns = 2

row = 1, column = 1

R

Schematic algorithm of progressive classification.

water has low reflectance across the visible and infrared
portion of the spectrum, vegetation has low reflectance
in the red and high reflectance in the green and near-
infrared bands, and barren terrain has similar, medium-
high reflectance in all bands.

Classification is an expensive operation— especially
when complex classifiers, such as neural networks [33], are
used. The typical size of a satellite image ranges from a
million to one hundred million pixels; thus, classical
techniques cannot be used as the basis for search
operators. Still, classification is one of the essential image-
analysis operations in the remote-sensing community, for
which the ability to perform searches at the semantic
level is essential. Different user groups use different
classification taxonomies that cannot be easily reconciled.
For instance, the “fuel type” classifications used by the
U.S. Forest Service and the American Forest Service are
rather different and cannot be reduced to a common
denominator. This implies that we can only pre-extract
and index semantic content corresponding to very simple
taxonomies, and that searching for more complex semantic
content must be done at query time.

V. CASTELLI ET AL.

Our approach, called progressive classification, relies on
properties of the multiresolution pyramid to alleviate the
computational cost. It is not a new classifier; rather, it is
a framework that can be used with essentially all of the
existing classifiers.

In a multiresolution framework, we can consider a
wavelet coefficient at level € “essentially” as the low-
resolution representation of a block of 2° pixels X 2°
pixels at level 0. A progressive classifier operates as
depicted in Figure 7: First, the approximation of the
image at a predefined resolution level L is labeled by an
appropriately trained classifier, which decides whether
each coefficient corresponds to a homogeneous or to a
heterogeneous 2" X 2" block of pixels in the
untransformed image. In the former case, the block is
assigned a label, while in the latter, the transform is
inverted within a small region surrounding the pixel,
to yield four coefficients at the immediately higher
resolution level, and the classifier further analyzes them
independently. The recursive process terminates when
either a homogeneous block is detected or full resolution
(level 0) is reached.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

As proved in [34], this scheme has two advantages.
First, it is faster than the full-resolution, pixel-by-pixel
approach, since in images from nature there is significant
dependence between the labels of adjacent pixels, which
allows large portions of the image to be classified at low
resolution. Second, somewhat surprisingly, it is more
accurate than the pixel-by-pixel approach.

In practical experiments, we have used progressive
classification in conjunction with different parametric and
nonparametric methods, such as discriminant analysis
(based on the assumption of Gaussian behavior, and also
known, regrettably, as the maximume-likelihood classifier),
k-nearest neighbor, learning vector quantization,
clustering-based schemes [2], and CART [35]. Our
experiments have shown that the progressive approach is
substantially faster than the straightforward classification
of the original image. For instance, when the process
was started at level L = 2, the classification time was
consistently reduced by a factor of 5. More detailed
descriptions of the construction of a progressive classifier
and of experimental results can be found in [36].

Further speedups can be achieved by ending the process
at a higher level than full resolution. This results in a
higher number of classification errors, but experiments
summarized in Figure 8 show that the increase in error
rate from one resolution level to the next is in most cases
comparatively small, making this a viable option when the
user is willing to trade accuracy for response time. The
different “curves” in the figure correspond to different
sizes of the training sets used to construct the classifier.
Our system has a facility that allows the user to construct
a classifier “on-the-fly” by selecting regions of images and
assigning labels to them. This process, which is also
supported by many image-processing packages commonly
used in the remote sensing community, is rather tedious,
and constructing large, reliable training sets is a
burdensome task. Thus, we decided to capture in the
figure the penalty that one incurs by using a small training
set.

To generate the figure, we used a satellite image of the
Black Hills, acquired by the Landsat multispectral scanner
in 1972, for which the “ground truth” is known. For each
final resolution and each of the training-set sizes, we
randomly selected 20 training sets with which we trained a
progressive classifier. With each trained classifier, we
labeled the rest of the image (i.e., the part not used for
training) and compared the results against the ground
truth, thus producing an estimate of the accuracy. For
each pair (resolution and training-set size), we have
summarized the 20 experiments by plotting the mean and
the standard deviation of the probability of error. The
increase in accuracy that occurs in the change from level 2
to level 3 is partially due to statistical variations, partly
because about 75% of the pixels in the image belong to

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

32
st}
30
g | |
2 2} T
‘g Training-set R
E 28F size '
) 200 .- N
lP7d T {
£ 400
< -0
2%} oo
» Jﬁieoo
24 1 L i 1] I -
0 1 2 3

Multiresolution level at termination

Accuracy of progressive classification as a function of the
resolution level at which the process is terminated and the training-
set size. The data points give the mean error rate, and the vertical
lines give the estimated standard deviation for 20 experiments with
different training sets and test images.

few dominant classes, and the classifier that terminated
the execution at level 3 essentially ignored all of the
nondominant classes.

5. Evaluating the approach

To the best of our knowledge, there are no standardized
benchmarks for content-based search that would
appropriately capture the benefits of our approach—

in particular, the effectiveness of the progressive image-
processing operators. Consequently, we have defined, in
collaboration with NASA, the following set of benchmark
queries. For each query, a region of interest (e.g.,
Montana), a time frame (e.g., 1970-1990), and a list of
satellite instruments (e.g., Landsat TM and Landsat MSS)
are specified, and the search is run against all of the
images in the data repository that satisfy the constraints.

1. Given a template 7, find the best matches and return
their locations. (The desired number of matches is
specified by the user.)

2. Given a texture pattern T, find the two images
containing textures that best match T . The texture-
similarity criterion is defined a priori.

3. “Mosaick” a subimage (create a composite) of size
(dx X dy) with the upper left corner at location (x, y)
from image A with another image of size (du X dv)
with the upper left corner at location (¢, v) from image
B, and display the result. (This query is an example of

V. CASTELLI ET AL.

263

264

image-processing operations that do not benefit
significantly from the progressive framework.)

4. Classify image S, using the USGS (United States
Geological Survey) nine-class taxonomy, identify the
centroid of the largest body of water, and return its
coordinates.

5. Find all images with less than p% cloud cover.

. Find all locations of urban areas adjacent to forests.

7. Find all images covering the region of interest acquired
between 1970 and 1990. For each location, consider
the oldest and the most recent image. Classify them
according to the USGS nine-class taxonomy, identify
areas where the land cover has changed, and return the
rate of change of the classes. (This query shows the
usefulness of our system in global change and other
environmental studies.)

(=)

To measure the performance, we executed each query
both using the progressive framework from within our
prototype system and on the original images, as a stand-
alone process (“baseline implementation”). The original
images are stored in uncompressed format; for
multispectral data, each spectral band is stored separately
in a flat file. No precomputed metadata or pre-extracted
features are used during the execution of the queries;
their main role within our system is to prune the search
space by limiting the number of images to be analyzed.
Thus, for benchmarking purposes, metadata and pre-
extracted features are replaced by the specification of the
input dataset.

The result of a progressive search operation is usually
different from the result of the corresponding operation
on the original images. This is partly because of the loss
of information due to the lossy compression scheme
and partly because of inherent differences between the
algorithms. In order to compare the two approaches, we
impose the following requirements on the query results: If
a query returns a list (possibly ranked), both baseline and
progressive implementations must return the same results;
if the query returns a statistical estimate, the confidence
intervals in the compressed domain must contain the
corresponding confidence intervals produced by the
baseline implementation.

For each query, we measured the user execution time
and the real execution time, for both the baseline and the
progressive implementation. Real execution time was
measured by means of the UNIX** time command.

The user time is a measure of the CPU time spent in
executing the user code. Since the computers used for our
experiments were devoted exclusively to the benchmarking
tasks, the real time comprises user, system, input/output,
wait, and application-loading times. On a computer with
more than one user, the real time is a less reliable
measure. Real-time and user-time speedups were

V. CASTELLI ET AL.

computed as the ratios t:/tlf and trh/t:, where t: is the user
execution time for the baseline implementation, ¢; is

the user execution time for the compressed-domain
implementation, and t:’ and tf are the corresponding real
execution times.

The experiments for query 7b (query 7 on a large
image) were run on an IBM RS/6000* Model 590
workstation with 256 MB of RAM and the remaining ones
on an IBM RS/6000 43P Model 132 workstation with
160 MB of RAM. The classification schemes used in the
baseline and progressive implementations were essentially
identical.

A potential problem with the baseline implementation is
that with very large images, the memory requirement can
exceed the available physical memory, and the resulting
page faults can significantly impair the execution (the size
of currently available satellite images is such that a similar
phenomenon does not occur when progressive searches
are executed on the computers used in the experiments).
Under such conditions, speedups of over 500 were
observed; an example is the real-time speedup for query
7b in Table 1. For all of the other queries, we have
decided not to modify the baseline implementations to
deal with very large images, but to choose the image sizes
in such a way that the application resides entirely in
physical memory. Had we decided to modify the baseline
implementations, thus increasing their complexity, we
would have observed additional speedup. The experiments,
therefore, depict the worst case for the progressive
implementation.

The application of the progressive framework to
complex operations such as template matching and
classification results in tangible benefits: The real
execution times on the mentioned computers are reduced
to a few seconds or a fraction of a second per (large)
image. In some instances, we have observed smaller
improvements—most noticeably in queries 2, 3, and 5.
Query 2 was run on sea-ice images, where different types
of ice result in subtle differences in the texture vectors.
As a consequence, the progressive algorithm was started
at level 2 of the pyramid, and lower levels were analyzed
frequently. Query 3 demonstrates visualization operations;
thus, the result of both progressive and baseline
implementations is an image at full resolution. The image-
processing operations involved in the query are very
simple. The overheads of the progressive implementation
(database access, entropy decoding, and load time of the
system) then become comparable to, or even bigger than,
the operation itself, thus accounting for a large portion of
the execution time. Query 5 estimates the cloud-cover
percentage and returns only the images with less than p%
clouds. The reported execution times are the averages
over four different values of p, namely 10, 20, 30, and 40.
The algorithm estimates p and produces a 95% confidence

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Table 1 Speedups and measured times for queries involving classification and template matching. The images for queries 1,
4, and 6 have seven spectral bands, while the images used in query 7 have four spectral bands. The real execution time for the
progressive version of query 7a (smaller image) is dominated by the application loading time, while the real execution time for
the baseline implementation of query 7b (large image) is dominated by page faults, even on a machine with 256 MB of RAM.

Query Image Baseline Progressive search User time Real time
number size speedup speedup
User time Real time User time Real time
(s) (s) (s) (s)

1 2815 x 3082 93.51 277.03 8.2 18.11 11.40 15.29
2% 2815 x 3082 — — — — 4.4 3.7
3* 2815 X 3082 — — — — 2.3 6.8
4 2815 x 3082 208.96 315.15 4.94 10.18 42.30 30.96
5' 1400 x 1470 111.9 242.15 11.68 26.19 9.58 9.25
6 2815 X 3082 145.06 24215 4.76 8.64 30.47 28.03
7a* 1312 x 1312 26.69 29.4 0.79 2.85 33.78 10.32
7b* 4179 X 3988 297.42 7807.04 10.5 15.27 28.33 511.27

*The actual times for queries 2 and 3 were not computed, since the test program produced speedup figures directly.

"The reported times are for the analysis of 17 images.
*Query 7 involves the analysis of two images.

interval. In the progressive implementation, the images
are analyzed at the immediately higher resolution level
whenever the confidence interval of the estimate contains
the threshold p. In the experiment, we used low-resolution
data (2 km per pixel), most of which had cloud cover
between 30% and 50%. Then, for p = 30 and 40, the
progressive implementation analyzes most images at full
resolution, thus accounting for the small observed
speedup.

6. Discussion and conclusions

There are many important issues associated with providing
an infrastructure for integrated multimedia libraries.
Perhaps the single most important issue is the ability to
perform content-based search. The different groups of
users of satellite imagery with which we have interacted
have presented us with a large number of different types
of content. Thus, pre-extracting information and
generating indexes becomes too time-consuming and
impractical. We are exploring an approach that allows the
user to define new features at query-construction time and
to use such features to specify new, arbitrarily complex
searches. Within our project, we are developing and
demonstrating technologies that further our ability to
support this capability.

Clearly, to avoid inefficiencies and reduce the
computational cost and associated delays, the design of
efficient indexing schemes to manage descriptors of the
information in the library is highly desirable. Currently,
in our system, we use indexes for the metadata and for
precomputed features and objects. Since we have been
unable to achieve significant speedups in computing
texture features, which are extracted by complex and
computationally intensive algorithms, we have identified,
extracted, and indexed a set of texture features for each

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

image in the database. The metadata and pre-extracted
features are used to prune the search space, usually
allowing the search engine to restrict its attention to a
limited set of images.

The main contribution of our system is the capability
of further narrowing the search results by extracting and
manipulating user-defined features at query-execution time
from this candidate set. Previously, this process has been
regarded as impractical, especially in an interactive system,
because of the high computational cost of the image-
processing operations involved.

To overcome this difficulty, we propose a progressive
framework that combines image representation (in
particular, image compression) with image processing.
Progressive implementations of image-processing
operators rely on the properties of the compression
scheme to reduce significantly the amount of data to
analyze during the feature-extraction and -manipulation
phases.

To measure the benefits of our approach, we have
defined a set of benchmark queries and compared the
results obtained from the baseline and progressive
implementations of the algorithms. The observed speedups
are significant: The computational cost has been reduced,
on average, by a factor of almost 20, while the response
time has been reduced by a factor of 16. We attribute
the smaller speedup in response time to the testing
environment we have agreed upon with NASA, in which
the progressive versions of the queries are executed within
our system. Thus, we incur the costs of loading the
application and establishing connections to the database.
While such overhead is minimal when the response time is
of the order of minutes, it becomes substantial when the
response time is less than a second, as in query 7.

V. CASTELLI ET AL.

265

266

The progressive operators are capable of extracting
user-specified features at query time, and we can use these
features to search for new, nonpredefined content, thus
adding a new dimension to the flexibility of our query
engine. We have shown the ability to analyze a large
image (of 3000 X 3000 pixels and seven spectral bands, or
4000 X 4000 pixels and four spectral bands) in less than
ten seconds of CPU time and less than 20 seconds of total
response time, while the analysis of smaller images
(1300 X 1300 pixels and four spectral bands or 1400 X 1400
pixels and two spectral bands) requires less than one
second of CPU time.

We feel that the results of our experiments are
encouraging, as they show that the significant increase in
expressive power resulting from the extraction of new
features at execution time can be achieved with reasonable
computational cost.

Acknowledgments

The authors wish to acknowledge the contributions of
Loey Knapp, Patricia Andrews, Larry Bradshaw, Bob
Burgan, Steven Carty, Carolyn Chase, Satheesh
Gannamraju, John Gerth, Sharmila Hutchins, Cam
Johnston, Bryan Lee, Richard Ryniker, Bernice Rogowitz,
Jerald Schoudt, Barbara Skelly, Alex Thomasian, Lloyd
Treinish, and Joel Wolf, during the development of our
prototype system. This work was funded in part by
NASA/CAN Grant No. NCC5-101.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc., Moving Picture Expert Group, or The Open Group.

References

1. J. C. Tilton and M. Manohar, “Earth Science Data
Compression Issues and Activities,” Remote Sensing Rev.
9, 271-298 (1994).

2. Richard O. Duda and Peter E. Hart, Pattern Classification
and Scene Analysis, John Wiley & Sons, Inc., New York,
1973.

3. A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” SIGMOD Record 14, No. 2, 47-57
(1984).

4, W. Niblack, R. Barber, W. Equitz, M. Flickner,

E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and
G. Taubin, “The QBIC Project: Querying Images by
Content Using Color, Texture, and Shape,” Storage
Retrieval for Image and Video Databases, Proc. SPIE 1908,
173-187 (1993).

5. A. Pentland, R. W. Picard, and S. S. Sclaroff,
“PhotoBook: Tools for Content-Based Manipulation of
Image Databases,” Storage and Retrieval for Image and
Video Databases, Proc. SPIE 2185, 34—47 (1994).

6. J. R. Smith and S.-F. Chang, “VisualSeek: A Fully
Automated Content-Based Image Query System,”
Proceedings of ACM Multimedia '96, Boston, November
1996, pp. 87-98.

V. CASTELLI ET AL.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. J. R. Bach, C. Fuller, A. Gupta, A. Hampapur,

. T. Y. Hou, P. Liu, A. Hsu, and M. Y. Chiu, “Medical

B. Horowitz, R. Humphrey, and R. Jain, “The Virage

Image Search Engine: An Open Framework for Image
Management,” Storage and Retrieval for Still Image and
Video Databases, Proc. SPIE 2670, 76—87 (1996).

Image Retrieval by Spatial Feature,” Proceedings of the
IEEE International Conference on System, Man, and
Cybernetics, 1992, pp. 1364-1369.

. T. Y. Hou, A. Hsu, P. Liu, and M. Y. Chiu, “A Content

Based Indexing Technique Using Relative Geometry
Features,” Image Storage and Retrieval Systems, Proc. SPIE
1662, 29-68 (1992).

B. Holt and L. Hartwick, “Visual Image Retrieval for
Applications in Art and Art History,” Storage and
Retrieval for Image and Video Databases, Proc. SPIE 2185,
70—81 (1994).

E. Deardorff, T. D. C. Little, J. D. Marshall, and D.
Venkatesh, “Video Scene Decomposition with the Motion
Picture Parser,” Digital Video Compression on Personal
Computers: Algorithms and Technologies, Proc. SPIE 2187,
44-55 (1994).

H. Zhang and S. W. Smoliar, “Developing Power Tools
for Video Indexing and Retrieval,” Storage and Retrieval
for Image and Video Databases, Proc. SPIE 2185, 140-149
(1994).

H. Zhang and S. W. Smoliar, “Content Based Video
Indexing and Retrieval,” IEEE Multimedia 1, No. 2, 62-72
(1994).

F. Arman, A. Hsu, and M. Y. Chiu, “Image Processing on
Compressed Data for Large Video Database,” Proceedings
of ACM Multimedia '93, 1993, pp. 267-272.

F. Arman, A. Hsu, and M. Y. Chiu, “Feature
Management for Large Video Database,” Proc. SPIE
1908, 2-12 (1993).

G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory
and Applications, Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1995.

William B. Pennebaker and Joan L. Mitchell, JPEG Stll
Image Data Compression Standard, Van Nostrand
Reinhold, New York, 1993.

Joan L. Mitchell, D. Le Gall, and C. Fogg, MPEG Video
Compression, Chapman & Hill, New York, 1996.

Oliver Rioul and Martin Vetterli, “Wavelets and Signal
Processing,” IEEE Signal Process Magazine 8, No. 4, 14-38
(1991).

Thomas M. Cover and Joy A. Thomas, Elements of
Information Theory (Wiley Series in Telecommunications),
John Wiley & Sons, Inc., New York, 1991.

Ingrid Daubechies, Ten Lectures on Wavelets, Society for
Industrial and Applied Mathematics, Philadelphia, 1992.
Ian H. Witten, Radford M. Neal, and John G. Cleary,
“Arithmetic Coding for Data Compression,” Commun.
ACM 30, No. 6, 520-540 (1987).

J. R. Smith and S.-F. Chang, “Quad-Tree Segmentation
for Texture-Based Image Query,” Proceedings of ACM
Multimedia '94, October 1994, pp. 278-286.

Ronald N. Bracewell, The Fourier Transform and Its
Applications (McGraw-Hill Electrical and Electronic
Engineering Series), McGraw-Hill Book Co., Inc., New
York, 1978.

P. P. Vaidyanathan, “Orthonormal and Biorthonormal
Filter Banks as Convolvers, and Convolutional Coding
Gain,” IEEFE Trans. Signal Processing 41, No. 6, 2110-2130
(1993).

C.-S. Li, J. J. Turek, and E. Feig, “Progressive Template
Matching for Content-Based Retrieval in Earth Observing
Satellite Image Databases,” Proceedings of SPIE Photonics
East, Proc. SPIE 2606, 134—144 (1995).

Chung-Sheng Li and Vittorio Castelli, “Deriving Texture
Feature Set for Content-Based Retrieval of Satellite

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Image Database,” Proceedings of the 1997 IEEE
International Conference on Image Processing, November
1997, pp. 567-579.

28. A. R. Rao, 4 Taxonomy for Texture Description and
Identification, Springer-Verlag, New York, 1990.

29. J. Weszka, C. Dyer, and A. Rosenfeld, “A Comparative
Study of Texture Measures for Terrain Classifications,”
IEEFE Trans. Systems, Man, Cybernet. SMC-6, No. 4,
269-285 (1976).

30. Z. Q. Gu, C. N. Duncan, E. Renshaw, C. F. N.
Mugglestone, M. A. Cowan, and P. M. Grant,
“Comparison of Techniques for Measuring Cloud Texture
in Remotely Sensed Satellite Meteorological Image Data,”
IEE Proc. 136, No. 5, 236-248 (1989).

31. C.-S. Li and M.-S. Chen, “Progressive Texture Matching
for Earth Observing Satellite Image Databases,”
Proceedings of SPIE Photonics East, Proc. SPIE 2916,
150-161 (1996).

32. John A. Richards, Remote Sensing Digital Image Analysis,
Springer-Verlag, New York, 1993.

33. Samir R. Chettri, Robert F. Cromp, and Mark
Birmingham, “Design of Neural Networks for
Classification of Remotely Sensed Imagery,” Telematics &
Informatics 9, No. 3/4, 145-156 (1992).

34. Vittorio Castelli, Joannis Kontoyiannis, Chung-Sheng Li,
and John J. Turek, “Progressive Classification: A
Multiresolution Approach,” Research Report RC-20475,
IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1996.

35. Leo Breiman, Jerome H. Friedman, Richard A. Olshen,
and Charles J. Stone, Classification and Regression Trees,
Wadsworth & Brooks/Cole, Pacific Grove, CA, 1984,

36. Vittorio Castelli, Chung-Sheng Li, John J. Turek, and
Ioannis Kontoyiannis, “Progressive Classification in the
Compressed Domain for Large EOS Satellite Databases,”
Proceedings of the 1996 IEEE International Conference on
Acoustics, Speech and Signal Processing, May 1996, pp.
2201-2204.

Received November 13, 1996, accepted for publication
March 28, 1997

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

Vittorio Castelli IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (vittorio@watson.ibm.com). Dr. Castelli received a
“Laurea” degree in electrical engineering from the Politécnico
di Milano in 1988, with a thesis in bioengineering. He
received an M.S. in electrical engineering in 1990, an M.S. in
statistics in 1994, and a Ph.D. in electrical engineering in 1995
from Stanford University, with a dissertation in information
theory and statistical classification. From 1995 to 1996,

he was a Postdoctoral Fellow at the IBM Thomas J. Watson
Research Center, where he is currently a Research Staff
Member. His main research interests include image processing
and image compression, statistical data analysis, statistical
classification, and database mining. Dr. Castelli is a member
of the IEEE Information Theory Society, the American
Statistical Association, and Sigma Xi.

Lawrence D. Bergman IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown Heights, New
York 10598 (berginan @watson.ibm.com). Dr. Bergman is a
Research Staff Member at the IBM Thomas J. Watson
Research Center, where his work focuses on content-based
query and retrieval from image archives. He received his
Ph.D. in 1993 from the University of North Carolina at
Chapel Hill in computer science, with a focus on computer
graphics and visualization. His research interests include
visualization, user interfaces, and graphical languages.

loannis Kontoyiannis Information Systems Laboratory,
Stanford University, Durand 141A, Stanford, California 94305
(viannis@isl.stanford.edu). Mr. Kontoyiannis received an M.S.
in pure mathematics from Cambridge University in 1993,
graduating with a distinction in Part III of the Cambridge
Mathematics Tripos. Since then he has been a Research
Assistant to Professor Tomas M. Cover at Stanford
University, where he received an M.S. degree in statistics

in 1997, and expects to receive his Ph.D. in electrical
engineering in June 1998. From June to December 1995 he
worked as a co-op at IBM Research in Hawthorne, New
York, where he took part in the image-processing project
reported on in this work. His academic work has been in the
areas of universal data compression, entropy theory of
stationary processes and random fields, wavelet theory and
signal processing applications, nonparametric statistics, and
applied probability.

Chung-Sheng Li IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (csli@watson.ibm.com). Dr. Li received his B.S.E.E.
degree from the National Taiwan University, Taiwan, R.O.C,,
in 1984, and the M.S. and Ph.D. degrees in electrical
engineering and computer science from the University of
California at Berkeley in 1989 and 1991, respectively. He has
worked in the Computer Science Department of the IBM
Thomas J. Watson Research Center as a Research Staff
Member since September 1991. His research interests include
digital library, optical chip interconnects, optoelectronics, all-
optical networks, broadband switching architectures, and high-
speed analog/digital VLSI circuit design. He has co-initiated
several research activities in IBM on fast tunable receivers
for all-optical networks and content-based retrieval in the
compressed domain for large image/video databases. He is
currently the co-investigator of a satellite-image database
project funded by NASA. Dr. Li received a Research Division
Award from IBM in 1995 for his major contribution to the

V. CASTELLI ET AL.

267

268

tunable receiver design for WDMA, and numerous invention
and patent-application awards. He is serving as the technical
editor and feature editor for the JEEE Communication
magazine. He has authored or coauthored more than 80
journal and conference papers and received one of the best-
paper awards from the IEEE International Conference on
Computer Design in 1992. He is a senior member of the
IEEE Laser Electro-Optic Society, the Communication
Society, the Computer Society, and the Circuit and System
Society.

John T. Robinson IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 704, Yorktown

Heights, New York 10598 (robnson@watson.ibm.com,
http:/lwww.research.ibm.com/people/rirobnson/). Dr. Robinson
received the B.S. degree in mathematics from Stanford
University in 1974, and the Ph.D. degree in computer science
from Carnegie-Mellon University in 1982. Since 1981, he has
been with the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York. His research interests include
database systems, operating systems, parallel and distributed
processing, and design and analysis of algorithms. He is a
member of the ACM and the IEEE Computer Society.

John J. Turek IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (jjt@watson.ibm.com).

V. CASTELLI ET AL.

IBM J. RES. DEVELOP. VOL. 42 NO. 2 MARCH 1998

