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In this paper, we describe the architecture and 
implementation of a framework to perform 
content-based search of an image database, 
where content is  specified by the  user at one 
or more of the  following three abstraction 
levels:  pixel, feature, and  semantic.  This 
framework incorporates  a  methodology 
that yields  a  computationally  efficient 
implementation of image-processing 
algorithms,  thus  allowing the efficient 
extraction and  manipulation of user-specified 
features and  content  during the execution of 
queries.  The framework is  well  suited  for 
searching  scientific  databases, such as 
satellite-image-, medical-, and  seismic-data 
repositories,  where  the volume and diversity 
of the information do not  allow the a priori 
generation of exhaustive  indexes,  but we have 
successfully demonstrated its  usefulness  on 
still-image  archives. 

1. Introduction 
The  last several  years have seen  the  advent of numerous 
digital  image and  video  libraries  that, today, comprise  tens 
of terabytes of on-line  data. As a result of the  continued 
proliferation of this  kind of nontraditional  data,  these 
libraries will continue  to grow significantly. For example, 

the  instruments on the first two Earth Observing System 
platforms,  to  be  launched in 1998 and 2000, will generate 
data  at  a  rate of 281 gigabytes a day [l]. Other examples 
are in the seismic- and medical-imaging areas, in which 
terabytes of data  are  continuously  acquired  and  stored. 
Consequently, new infrastructure  that can support efficient 
storage,  retrieval,  and transmission of such data is needed. 
The  search of image  and video libraries, unlike the  search 
of conventional text-based  digital libraries  and  databases, 
cannot  be realized simply through  the  search of text 
annotations.  Because of the richness of detail in image 
and video data, it is difficult to  provide  automatic 
annotation of each  image  or video scene  without  human 
intervention.  Therefore, we face  the  challenge of 
developing  completely automatic mechanisms that  extract 
meaning  from this data  and  characterize  the  information 
contents in a  compact  and meaningful way-in other 
words,  provide means  for content-based search-and to 
ensure  that  these mechanisms  scale well with the  number 
of users, size of the library, and size of the  objects  stored 
within the library. 

abstraction  at which image or video objects can be defined 
and searched-semantic, feature,  and pixel. For instance, 
one can search  for images containing  houses  (semantic 
level),  regions with a specified texture  (feature level), or 
similar, pixel-by-pixel, to  a  template (pixel  level). Objects 
at  each level can  be  either  pre-extracted  and indexed (an 

In  general,  there exist three  different levels of 
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index is a data  structure  designed  to allow efficient 
retrieval) when  new  images are placed  in the  data 
repository,  or  evaluated  at  query  time by analyzing pre- 
extracted  information  or  even  the images  themselves. 
Current systems tend  to  pre-extract as  much information 
as is practical, in order  to allow efficient  indexing and 
access to  the  desired  information. 

A pixel-level object is a connected  subimage. Two 
subimages  are similar at  the pixel level if they  have the 
same size and  shape (e.g.,  they are  both  square  and have 
the  same  number of pixels), and if pixels in the  same 
position have  similar  values.  Similarity matching  thus 
relies on low-level operations,  such as correlation 
(template  matching).  Template  matching  for  satellite 
images  can  be used for  coregistering images of the  same 
region  acquired by a satellite in different  orbits. Since  it is 
not  practical  to  pre-extract all  possible subimages, such 
operations  must  be  performed  at query time.  Because this 
has  been prohibitively  expensive,  most systems avoid the 
use of pixel-level techniques on large archives. 

A feature-level object is a connected region of an  image 
having uniform  feature values: for  instance, a region with 
homogeneous  texture  constitutes a texture  object.  The 
user specifies feature-level  search  parameters  either by 
providing sample images, from which “feature  vectors”  for 
search  are  extracted,  or by explicit specification of feature 
values or ranges. Our system allows the  user  to specify 
queries  at  the  feature level with forms  such  as 

Find  all  areas that have texture similar to this sample image 

and 

Find all images that have color histograms similar to this 
set  of color components: Red = X%, Purple = Y%, 
Green = Z%. 

Feature-level  objects  are  often  pre-extracted by either 
blocking the  image (Le., by subsetting it into  rectangular 
regions, possibly overlapping)  or employing clustering  and 
segmentation [2] techniques. Efficient  indexing techniques, 
such as R-trees [3], can  then  be used to  optimize  the 
search  for  particular  feature values. 

A semantic-level object is a connected  region of an 
image  to which we can assign a unique  semantic  content. 
For  instance, a photographic image can  contain 
mountains,  houses, flowers, people, animals, etc.  Our 
system supports  searches  at  the  semantic level in the  form: 

Find  all bodies of  water in the selected  geographic  region 
that are within 50 miles of any fire that is greater than 10 
miles in diameter and has been burning for less than 3 
days. 

Semantic  objects  are typically predefined by applying 
classification algorithms  to  image  features (such as  texture 
or  spectral  histograms),  or  to  the original data.  Note  that 
the primary distinction  between  semantic  objects  and 

feature  objects is that  semantic  objects have  a semantic 
label  (such  as “water”  or  “pine  forest”), while feature 
objects are simply characterized by their  feature values. 

Extraction of features  from pixels and of semantic 
objects  from  features  are lossy operations.  Although  each 
higher  level of abstraction improves search efficiency by 
reducing  information volume, there  are  corresponding 
losses of accuracy. For  this  reason, it is necessary to 
provide mechanisms  that  support  searches specified at 
all of these  abstraction levels. 

At  the  present time, there  are many  systems that 
perform indexing of image  or video through  the  use of 
low-level image features such  as shape,  color  histogram, 
and  texture.  Prominent examples for  photographic images 
include  IBM  QBIC [4], the  MIT  PhotoBook 151, 
Visualseek  from  Columbia University 161, and  the 
Multimedia  Datablade  from InfomixiVirage [7]. These 
techniques have  also been  applied  to specific application 
domains,  such as  medical  imaging [8, 91, art [lo], and 
video  clips 111-151. All of these examples rely on a 
preprocessing  stage in which appropriate  features  are 
extracted  and  indexed.  Although  pre-extracted  features 
and/or  semantic  objects  permit efficient  indexing schemes, 
they do  not allow searching with all possible query 
semantics. To support a  wide range of content-based 
queries, we must allow the  user  to  form new semantic 
categories  and/or new feature definitions. 

We  are  currently studying these issues in a project 
under  joint  sponsorship by IBM  and  the  NASA 
Goddard  Space Flight Center.  Our goal is to  explore 
technologies  that will facilitate  the  storage,  query,  and 
retrieval of images from  large digital libraries by a  diverse 
community of users, and  to  demonstrate  the use of these 
technologies in a functional  test  bed.  It is our  thesis  that 
though employing predefined  schema, similar to  those 
used  in conventional  databases, is useful and necessary, 
such schema will be insufficient to  adequately  support 
content-based  search.  It is necessary to provide users  the 
capability to dynamically  define new features  and objects, 
and interactively specify and refine the  target  for  content- 
based  search of the  image  data.  Thus,  to  extract  the 
content dynamically  defined by the  user, we need  the 
ability to analyze the raw images  in the  repository  at  query 
time.  But the  large size of the images stored in typical 
scientific repositories  and  the complexity of the  operations 
involved make it  impossible to  use  traditional image- 
processing operations in an  interactive system. To 
overcome this difficulty, we have developed  an  extendible 
framework (called  a  progressive framework) in which the 
search  targets  are specified at  one  or  more  different 
abstraction levels. In this paper, we describe  elements 
of our system that maximize  retrieval efficiency, 
concentrating  on  the  combination of image representation 
with image analysis at  the  heart of the progressive 
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framework.  In  particular, we show how to rely on 
properties of image-compression schemes  that  reorganize 
the  information  contained in the  data, how to 
appropriately  stage  the analysis operators  to  produce 
successive approximations of their final results, by 
selectively operating  on very small portions of the  data, 
and how to identify and  discard early  in the  computation 
those images that  do  not match the query. 

To evaluate  the effectiveness of the  approach, we have 
developed  a  set of benchmark  queries.  We  observed 
that  conventional  implementations of image-processing 
operators result in unacceptable execution  times, while the 
progressive approach yields a significant increase in speed, 
which makes it appealing,  even in an  interactive system. 
The  net effect is to  make  a wider range of image- 
processing and  image-understanding  operators available at 
run  time,  thereby  extending  the  range of query  operators 
that  can  be provided to  the user. 

The  remainder of this paper is organized as follows. 
The  current system architecture is discussed  in Section 2. 
Section 3 describes data  representation  and  outlines  the 
ways in which we use data  representation  to  make  the 
processing more efficient. Section 4 is devoted  to  the 
description of some  fundamental  content-search  operators. 
In  Section 5 ,  we describe  a set of queries  that  measures 
the  benefits of our  approach. Discussion and conclusions 
are in Section 6. Although  the analysis in this  paper is 
focused  on  satellite-image  databases,  the  concepts 
presented  herein  are  also  applicable  to  other  multimedia 
databases. 

2. System architecture 
In  this  section, we describe  the  architecture  and  the basic 
functionality of our  content-based  search system. As 
shown in Figure 1, our system is composed of a client and 
a server  using the  http  protocol  to  communicate across the 
Internet. 

The client is a  modular  Java**  applet, which can be 
launched by any Java-enabled  Internet browser. A 
navigation interface allows the user to visually navigate 
through  the image database by graphically selecting 
geographical  regions of interest,  relevant  time  periods,  and 
datasets (specified  as instruments  on  satellite  platforms, 
such  as the  LANDSAT MSS, or as  derived product  sets, 
such  as the  NALC  triplicates).  The navigation interface 
also allows the  user  to  zoom in and  out on selected 
portions of available  images. The  user can specify content- 
based  queries in a  quasi-natural  language with the query- 
generation  module, which is based on a  drag-and-drop 
interface.  Queries consist of relations  between  objects  and 
constraints  on  the objects. Relations  and  objects  are  either 
predefined  or specified by the  user,  through  a  relation- 
definition module  and  an objectifeature-definition module, 
respectively.  Finally, the  user, by employing a visualization 
console,  can specify the  format  for visualizing the results. 

The following scenario provides  an  example of query 
specification. A fire manager  from  the  forest service  wants 
to assess the  status of water  sources  near  a  forest fire. 
Helicopters, which can  retrieve  water  (even  from  beaver 
ponds, if they are  deep  enough),  are effective if the  water 
is not  too  far  from  the fire, and they are much cheaper  to 
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deploy than  tanker  planes.  The fire manager  thus  restricts 
the region of interest  to  a  large  area  around  the fire, 
selects as time  frame  the last five months,  and limits the 
datasets  to  those having at least 30 meters of resolution. 
Then  the  manager  constructs  the query: Find all of the 
bodies of  water at least 50 meters wide and 3 feet deep 
that are within 10 miles of the portion of the forest  to which 
the fire might quickly extend. The  last  part of the query 
is specified by providing an  example of texture  that 
corresponds  to  a  “fuel type” that is particularly  prone  to 
burning quickly and by requiring  the system to find all 
examples of this texture that are near the geographical 
coordinates of the fire. The  depth of the  lake  cannot  be 
directly  derived from  a  satellite image, but it can  be 
inferred, or guessed,  from  the  reflectance in appropriate 
spectral  bands. Finally, the fire manager  requests  that  the 
results be plotted as bounding boxes on  a  map of the 
area.  The query contains  restrictions  on  the  metadata, 
two types of objects  (bodies of water  and  the  region 
characterized in terms of texture),  constraints  on  each 
of the  objects  (the size and  depth of the  lake  and  the 
location of the  texture  object),  and  a  relation  between 
the  objects  (they must  lie  within ten miles of each  other). 
The client prepares  the  query in the  form of a  properly 
formatted message and  sends it to  the  server.  The  server 
architecture is centered  around  a  query  parser, which 
communicates with an  HTTP server via the  CGI 

(Common Gateway Interface).  The  query  parser receives 
the  formatted message containing all of the query 
specifications from  the client and  translates it into  a 
program  [written in an  internal  representation  language 
that  combines  Structured  Query  Language  (SQL) 
statements with  powerful search primitives and  operators]. 
The  query  parser  can  communicate with a  database,  for 
example DB2*  Version 2 (DB2v2  in the figure),  using 
SQL. The  program  generated by the  query  parser is 
executed by the  search  engine.  The  search  engine 
interfaces with the  database  and with a  data  repository, in 
our  case  containing  satellite images, that,  for scalability, 
can rely on  a  Hierarchical  Storage  Manager (HSM). 
Finally, to  produce complex  visualizations, the  search 
engine  can  use  a visualization engine.  In  particular, we 
currently use the  IBM  Data  Explorer*, with the  DXLINK 
application  library as the  interface. 

During  the  execution of a query, the  search  engine first 
reduces  the  search  space  to  the images that satisfy the 
metadata  restrictions  (region of interest,  time  frame,  and 
data  sets) by issuing an  SQL  query  to  the  database  and 
then  executes  the  program only on  the  reduced  search 
space.  The  latter  step involves the  retrieval of objects  and 
features  and  the  evaluation of constraints  and  relations. 

The  control flow  of object  retrieval is diagrammed  in 
Figure 2. First,  the  search  engine  determines  whether  the 
type of the  desired  object  has  been  pre-extracted  and 
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stored in an  appropriate file. In  the example, the  object 
type “body of water” would be  pre-extracted,  and all of 
the  object  instances of the type “body of water”  that fall 
within the region of interest would be  retrieved. Of 
course,  not all  possible  types of objects  are  pre-extracted; 
rather,  their definition  in terms of elements  at lower 
abstraction levels (such as pixels or  features)  can  be 
stored  or provided by the user. In  the example, the user 
specifies a new object type in terms of a  texture example- 
the  fuel type. The  search  engine  then  determines  whether 
texture  data  has  been  pre-extracted  and  stored in a file; if 
this is the case,  it retrieves all of the  feature  elements  for 
the  region of interest,  segments  them  into  homogeneous 
regions  (the  “texture” objects), and  retrieves  those similar 
to  the  user-provided example. A  further  step involving 
automatic classification can be used to  produce  semantic 
objects. Finally, if the  features  are  not  pre-extracted,  the 
search  engine  computes  them by directly  analyzing the 
stored images  using  image-processing operators. 

Operators (such as  retrieval  from existing files, 
classification, feature  extraction,  and  segmentation) 
produce  candidate  objects  that  are  either  “sharp” (e.g., 
a body of water)  or “fuzzy” (e.g., a  texture  object  that is 
similar to  a  user-provided  sample  image). Analogously, 
constraints  on  objects  can  be  either  sharp (in the example, 
the minimum  width of the  lake)  or fuzzy (e.g., we could 
be looking for  “deep”  bodies of water). Finally, the 
relations  between  objects  can themselves be  sharp (as the 
“within 10 miles” relation in the  example)  or fuzzy (the 
texture  objects must be  “near”  the fire). Fuzzy logic [16] 
is then used to  compute  a  membership  function  (used as 
score)  for  each of the  retrieved results, and  the system 
returns  them  ranked in order of descending  score. 

The  order of extraction of the  objects  and of the 
evaluation of constraints  and  relations is dynamically 
selected  to maximize the  pruning of the  search  space; 
each new step  further  reduces  the  amount of data  and 
progressively refines the  search  (hence  the  name 
progressive framework). 

3. Progressive image representation 
Although  the  price of storage devices continues  to  drop  at 
a  dramatic  rate,  there is no doubt  that  the  major cost of 
providing a digital  library will continue  to  be in the 
storage devices. Thus,  a  reduction of even 30%, by the use 
of compression, in the  storage  required by the system 
would result in a significant reduction in overall cost. 
Although it  would seem  that processing  images stored 
using compression  techniques would  result in reduced 
efficiency, this need  not be the  case; in fact, if we organize 
the  data  appropriately,  the  search process becomes  more 
efficient and  requires accessing only a small fraction of the 
data.  One of the primary ideas of our  project is the 
possibility of increasing  the  speed of searching  through 
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images stored in a digital  library while simultaneously 
reducing  the  storage  requirements.  The  remainder of this 
section  explores  this subject in more  detail. 

Compression and progression 
Image  compression,  or,  more generally, source coding, can 
be  categorized as  lossless or lossy, depending on whether 
all of the original data  can  be  recovered. 

is a  transform, such as  the  discrete cosine transform 
(DCT) used  in both  JPEG [17] and  MPEG [18], or  the 
discrete wavelet transform  (DWT) [19] that  improves 
the  compression  performance by concentrating most of the 
information (Le., most of the energy) in a few transform 
coefficients. The  transformed  data is then  “thresholded” 
(i.e.,  values  less than  a specified threshold  are  changed 
to  zero) in order  to  eliminate  the coefficients that  are 
close to  zero,  quantized,  and finally coded using 
lossless compression  techniques.  The  thresholding  and 
quantization  steps in existing lossy compression  standards 
such  as JPEG  are usually designed  to minimize the 
perceptual  difference  between  the original and  the  stored 
data. However, quantization  schemes  can  be  selected  to 
best  suit the  requirements of the  intended  applications. 

Applying query  and  retrieval  operations directly on 
lossily compressed  data generally leads  to  improved 
computational efficiencies along two fronts: 

The first step of a  large class of compression  algorithms 

The  required I/O bandwidth  between  storage units and 

The  features  and  properties of the  data  can  be 
CPU is significantly reduced. 

emphasized by the  transform  step of the  compression 
scheme. 

In  particular,  query  operations (e.g., analysis, retrieval, 
evaluation,  transmission,  and visualization) on image or 
video  data  can  be  staged progressively to minimize the 
total execution time as follows: Instead of operating  on  an 
entire image, the  algorithm first analyzes  small, selected 
portions of the  transform  and,  on  the basis of this 
information,  decides  whether  the image can satisfy the 
query.  Images  that  do  not satisfy the  query  are quickly 
discarded;  the  others  are  further analyzed by accessing 
additional  portions of the  transformed  data,  and  the 
process is repeated.  At  each  step,  the  search  space is 
progressively  refined. 

Wavelet-based compression 
Our system  uses a  transform-based image-coding scheme, 
which we call multiresolution  compression  for image 
analysis (MCIA),  that simultaneously  yields lossless and 
lossy compression.  The  structure of our  algorithm is shown 
schematically  in Figure 3. It consists of a lossy component 
and  a lossless component;  the lossy component uses DWT 
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coding  (for a  simple introduction  to wavelets and  DWT, 
see [19] and  the  references  therein) followed by 
quantization of the  transform coefficients and lossless 
coding of the  quantized values. To achieve  lossless 
compression, we compute  the  difference  between  the lossy 
image  and  the original  image, to  produce a residual image, 
which is then losslessly coded ([20], Chapters 5 and 6). 

We  use a  wavelet transform  based  on  short  orthogonal 
or  biorthogonal filters,  such  as the  Daubechies 
biorthogonal symmetric  wavelets [21] of order 1 to 5 
(although  the system supports a large variety of wavelets). 
If the original data is stored in integer  format,  these filters 
allow perfect  reconstruction; i.e., the  transform  step is 
perfectly  invertible (of course, if the original data is stored 
as real  numbers  and  the  computation is performed with 
finite precision,  rounding  errors might prevent  perfect 
reconstruction).  The wavelet transform  takes as input  an 
image  and  produces a  matrix of coefficients  with the  same 
number of rows and columns. This matrix is divided 
into  portions called subbands, which, from  the signal- 
processing  viewpoint, are  obtained by separating  different 
spectral  components using linear filtering operations,  and 
sampling the results. 

We  quantize ([20], Chapter 13) the coefficient  matrix 
using  a uniform  scalar  quantization scheme.  A different 
number of bits for  each coefficient is allocated  for 
each  subband. Since quantization  results in a loss of 
information, this step is the (only) lossy portion of our 
coding  scheme.  The  quantized  subbands  are  then losslessly 
coded  independently by means of predictive coding 
(DPCM [17], Chapter 5.2.1)  followed by a  fixed-model 
two-pass arithmetic coding [17, 221. These two steps  are 
denoted by EC (entropy  coding) in the figure. The 

resulting lossily compressed image requires  ten  to twenty 
times less space  than  the original, without displaying 
appreciable  artifacts. 

The  residual is computed by inverting  the  DWT of 
the  quantized wavelet  coefficients and calculating the 
difference between that  and  the original  image; this 
difference is then losslessly encoded, using DPCM 
followed by arithmetic coding. The  residual  contains 
information that is difficult to predict  (hence to compress), 
such as  the  sensor noise in  satellite images. Thus,  the 
residuals  account  for most of the  storage  requirement. 

Some of the  results  from extensive comparison of our 
MCIA  compression  algorithm with several existing  lossless 
image coding schemes  on  heterogeneous  satellite images 
and  on classical test  images  are  summarized in Figure 4. 
In  general, we have found  that  the  compression  rate  (ratio 
of volume of coded  data  to  volume of input  data) of 
MCIA is close to  the  compression  rates of the  best 
commonly  available  lossless  algorithms. 

Our  scheme has  several advantages.  First, it has low 
computational complexity: The cost of reconstructing  the 
original image is directly proportional  to  the  number of 
pixels. Furthermore, while  inverting the  DWT,  one  can 
generate a multiresolution  representation of the image- 
a sequence of increasingly larger  and  more  detailed 
approximations,  ending with the  image itself. (For lossy 
compression,  the final  image is a lossy version of the 
original.) In  particular,  our  scheme yields  a  dyadic 
multiresolution pyramid: The original image is at level 0 
of the pyramid, and  the  approximation  at  each level 
has half the  number of rows and  columns of the 
approximation  at  the previous level. Reconstructing  an 
approximation  at a  specified level of the pyramid requires 
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four  times fewer operations  than  retrieving  the  one  at  the 
immediately  lower resolution level. Thus,  from  the wavelet 
transform, we can readily generate  thumbnails  and low- 
resolution  representations of the original  image. By 
using short filters and  storing  the  data on disk  using  a 
proprietary  scheme, we can  also quickly reconstruct 
arbitrary  portions of the image at  the  desired level of 
detail.  This provides  a  significant speedup  during  the 
query process,  since  in general we do  not  need  to analyze 
the  whole  image  for  content-based-search  purposes. 
Finally, the  space-frequency  representation  produced by 
the wavelet transform simplifies the  implementation of 
certain image-processing operations, such  as certain types 
of texture  matching [23]. Since the  search  algorithms  can 
operate  on  the lossy and highly compressed  version of the 
image, the  scheme is amenable  to  implementations  that 
use  hierarchical  storage systems, where  the relatively  high 
volume of residuals would be  stored  on  tertiary (slow) 
media  and accessed only on  user  request. 

4. Progressive  content-based  search  operation 
The primary  objective of our system is to provide  a 
framework  for  automatic  search of an image repository 
based  on  the  image  content. 

When  the  user specifies content by means of objects or 
features  that  are  not  extracted a priori and  stored in the 
database,  the  image  search  engine  can  extract  the  desired 
information  from  the  stored  data using  a set of image 
operators,  combined  through a  C-like interpreted 
programming  language. 

has proved very effective  in reducing  the high 
computational complexity of the  feature-extraction task, 
and  sometimes in  increasing the accuracy of statistical 
operators, such  as  classification. 

a  variety of elementary image-processing operators, we 
discuss  in more  detail how to apply the progressive 
framework  to  three complex operations:  template 
matching, which retrieves  content  at  the pixel level; 
texture  extraction, which retrieves  information  at  the 
feature level; and classification, which attaches  semantics 
to  portions of the images. 

Template  matching 
In a  query-by-example framework [4], template  matching 
( [ 2 ] ,  Chapter 7 .5 )  allows the  retrieval of images that 
contain exactly (or almost  exactly) the example (template) 
specified by the user.  Indexing is impossible  in  this 
context, since the  user is allowed to specify at  query  time 
any template of any  size. Thus,  template  matching 
requires  comparing, pixel by pixel, the example  (say of 
size Ax X Ay) with each LIX X Ay subimage  at execution 
time.  In  practice,  template  matching is rarely  exact,  as  a 

Combining  compression  and image-processing operators 

While the  approach has been used in conjunction with 
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result of image  noise,  quantization effects, and  differences 
in the images  themselves. In the  satellite-image  domain, 
seasonal  changes  alone  introduce effects that  make  the 
matching  process difficult. Thus,  the goal is to  retrieve  the 
subimages  that most closely approximate  the  template. 
Our experiments have shown that  the correlation coefficient, 
discussed below, is a particularly robust measure  of the 
“distance”  between the template and a subimage. 

Let S denote  the image and S ( i ,  j )  denote  the pixel at 
location i ,  j ,  where i = 0, . . . , N - 1 and j = 0, . . . , 
M - 1; let S:: denote  the  subimage of size Ax X Ay 
starting  at  location m, n. The  correlation coefficient 
p(m, n )  is defined  in the  usual way, as the  empirical cross- 
correlation  between  properly  normalized versions  of the 
subimage Sm”l;p’ and of the  template T: 

d m ,  n )  = A 

L - I  A”-1 

t=n ,=n 

where 

V. CASTELLI ET AL. 

259 



1 

0.9 - 
0.8 - 

E 

$ 0.6 

8 8 P 0.4 0.5 
3 - Energy distribution across levels 

0.7 - 
.- 

0.3 - Additional energy contribution of individual  level 

0.2 0.1 - A ~ / c  zJ 

0 I I 1 

0 1 2 3 4 5 6 
Resolution level 

6 Energy distribution of the wavelet transform of a typical satellite 
1 image, as a function of the multiresolution level, and the additional 
4 contribution of each level to the energy of a six-level pyramid. 
,: Note that the lowest level contains about 50%  of the total energy. 

From  the  computational viewpoint, the  set of quantities 
{S,,"}, m = O;.., M - Ax - 1, n = O , . . . ,  N - Ay - 1, 
can  be  computed in O(M N )  + O(Ax . Ay) 
operations;'  for very large images and  moderate-sized 
templates,  the  latter  term is negligible. Calculation of the 
quantities T and Elf;' X,?;' [T( i ,  j )  - TI2 requires 

- 

x + xO, if there exist finite constants K and f ix > 0, such that for all x satlsiymg 
We use here  the Bachmann-Landau 0-notation: A  function f ( x )  = O [ g ( x ) l  as 

260 lx - x,,l < fix, the  inequality l f (x) l  < Klg(x) /  holds. 
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O(Ax Ay) operations.  Thus,  the  real  computational cost 
is associated with the correlation in the  numerator of p(m, n). 
By invoking the convolution theorem  for  the  Fourier 
transform [24], we can  compute  the  correlation coefficient 
in O(N M log, M . log, N )  operations,  and  better 
algorithms  to  compute  the  correlation coefficient 
exist only if Ax Ay < log, M . log, N .  Thus,  the 
computational cost of the  correlation coefficient is 
superlinear in the  number of pixels in the image. 

Progressive template  matching, by first computing  the 
correlation coefficient on a low-resolution  version of the 
image and  then progressively  refining the  results only 
around local  maxima, allows one  to  approximate p without 
having to involve the  entire image  in the  computation. 
More specifically, we start  at  a low resolution level, say eo, 
and  compute  the  correlation coefficient  between the level- 
eo approximations of the  image  and of the  template.  At 
each level e we identify regions  where  a  match  can  occur, 
by first appropriately  thresholding  the  correlation 
coefficient result  and  then finding  local  maxima. Areas, 
with size that  depends  on  the level and  on  the size of the 
template,  are  then  declared  candidate regions. We  then 
proceed  to  the immediately  higher resolution, i.e., level 
e - 1, where we analyze with the  same  algorithm only the 
candidate regions, and  discard  the  rest of the image. The 
procedure is recursively repeated  until full resolution is 
reached. 

The  theoretical  foundations of the  approach rely on  the 
results in [25] applied  to  models of real images.  While the 
mathematical  details  are beyond the  scope of the  current 
paper, we give here  a simple geometric justification. If we 
think of the  normalized  subimage  and  template as vectors 
in a Ax X Ay-dimensional Euclidean  space, I+'(,, the 
correlation coefficient can  be  interpreted as the cosine of 
the angle 0 between  these two vectors (for  instance,  the 
angle 0 between T and S in Figure 5 ) .  Here,  an exact 
match yields the maximal correlation coefficient, 1. The 
approximations  to  the  template  and  the  image  at level 1 
are  the  projections T, and SI of T and S, respectively, 
onto  an  appropriate  subspace, W, ,  defined by the wavelet 
transform.  The  correlation coefficient at level 1 is the 
cosine of the angle 0,. If the  difference  vectors TI and Si 
(TI A T - T, and S; S - SI)  are  short, we can closely 
approximate 0 with 0 , .  On  the  other  hand, if the 
difference vectors Ti and Si are long, the  approximation 
is poor. Similarly, the  approximations  at level e can  be 
represented by vectors T, and S t  in the  subspace We, 
where W, C W,-, C . ' . C W,, T,' e T,-, - Ti, and 
S' J S J - I  - S,. Thus, T = T, + E,'=, T,!; similarly for S. 
The energy of a typical satellite image is distributed across 
the  different  resolution levels, as shown  in Figure 6. 
It is apparent  that  the level-3 approximation  captures 
approximately 73% of the energy of the  normalized 
template  (the energy is equal  to  the  length of the  vector 
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squared);  that is, the length of the  vector S; + S; + SI is 
about half the  length of S,. We have developed  techniques 
that allow us to quantify the effects of approximating  the 
angle 0 with O1 without having to  convert back to  the 
spatial  domain [26]. By appropriately choosing the  starting 
level e,,, we can  still guarantee  that  the  results of our 
search  are  identical  to  those  obtained when operating on 
the  full-resolution image. 

In  practice,  the  larger  the  template,  the  better  the 
speedup  that  can  be achieved through this technique.  For 
templates of size 64 pixels X 64 pixels, our  experiments 
indicate  an  expected  speedup ranging between 20 and 50. 
We have  observed that  the  technique is very robust with 
respect  to  sensor  noise, being  essentially  insensitive to  the 
noise levels usually observed in  satellite images. Also, for 
remotely sensed  images, the very nature of the  correlation 
coefficient (which does  not  depend  on  the  length of the 
vectors)  ensures  that  the effects of changes in sensor gain, 
sun angle,  and  seasonal  variations in reflectance have little 
impact on  the  performance of the  technique. 

Texture analysis 
Texture is a  perceptual  concept  that is rather difficult to 
formalize. It roughly captures regularity and  organization, 
or lack thereof, of the  luminance of neighboring pixels. As 
such,  it is a local property of an image;  i.e., different 
regions  can  have different  texture. Many different 
approaches have  been proposed  to  capture mathematically 
or numerically the  concept of texture. Usually, the image 
is divided into  square,  rectangular,  or  irregular blocks, 
possibly overlapping,  and  certain numerical quantities, 
called texture features, are  extracted  from  each block. 

We have compared  the effectiveness of different  texture 
features in retrieving  satellite images on  the basis of 
similarity [27], and we have identified and  included in our 
system a  set of features  that  outperforms all of the  other 
most  commonly  used ones.  These  texture  features  include 
fractal  dimension [28], coarseness,  entropy,  spatial gray- 
level difference (SGLD) statistics [29, 301, and several 
circular  Moran  autocorrelation  functions [30]. 

Texture  extraction is a rather time-consuming  task, 
since it involves the  computation of complex quantities 
for  each block of the image. For  interactive  situations 
in which the  features  cannot  be  precomputed, such  as 
content-based  search of real-time images and video, 
feature  extraction  can  become  the  major  bottleneck. In 
our system, we pre-extract  texture vectors, store  them in 
files, and  generate indexes.  Still, given the  large  amount of 
data associated  with each image,  similarity search is a 
daunting task. 

To improve the  speed of searching  an image or video 
database  for  texture similarity, we use an  approach called 
progressive texture matching [31]. The goal is to find a 
specified number of textures in the  database  that  are most 

similar to  an example that  the  user provides by specifying 
one  or  more blocks of existing  images. We  assume  that  a 
progressive representation of the images and  the videos 
being searched  already exists, and in the following we 
identify it with an L-level  multiresolution pyramid created 
by subband coding or by the wavelet transform.  For  each 
resolution level of the pyramid, we can  divide the  image 
approximation  into  regular  regions  (for example, 
overlapping  square blocks) or  into  irregular  regions 
according to  boundaries  determined by edge-detection  or 
image-segmentation  techniques,  and  compute  a  texture- 
feature  vector  for  each of the regions. In  general, lower- 
resolution  approximations will result  in a substantially 
smaller  number of texture vectors. The  extracted  feature 
vectors  can  then  be  stored  separately, level by level, 
together with other  information  about  the  region  from 
which they were  extracted,  and indexed. 

are  the following: 
The  steps of the progressive texture-matching  algorithm 

1. Compute  the  approximations  at level 0, . . . , L - 1 
of the example provided by the  user,  and  calculate  a 
texture  feature  vector  for  each level. 

2. Retrieve  from  the level-L - 1 textures of the images 
in the  database being searched,  the QL vectors most 
similar to  the level-L - 1 vector  extracted  from  the 
example. Call the  regions  from which the  retrieved 
feature  vectors were extracted R:, . . . , R i L .  

3. At  the next higher level, e,  consider only the  level4 
texture  vectors  that  were  extracted  from  regions  that 
overlap  the  regions  obtained in the  previous  step 
(R;- ’ ,  . . . , Ri l l , ) ,  and  from  them  retrieve  the Q, 
vectors most  similar to  the level-( vector  extracted  from 
the example, together with the  corresponding  regions 
R ; ,  . . . , R i ( .  

4. Repeat  the previous step  until level 0 is reached. 

The  procedure progressively  refines the  search  space by 
further  pruning it at  each level. The  method is clearly 
nonexact, since  it relies  on  the  approximations.  The  choice 
of the {Q,}  influences the  result  and  the efficiency of 
the  method. Since detailed  description of the selection 
algorithm is beyond the  scope of the  present  paper, 
we refer  the  interested  reader  to [31]. 

Classification 
Classification of a  satellite image is the  process of 
assigning semantic labels to  the individual pixels or  to 
distinct regions ([32], Chapter 8). In  the  remote-sensing 
community,  images are  often classified by analyzing  each 
pixel location  independently,  and using as input  to  the 
classifier the  spectral  bands  acquired by the  instrument 
(typically four  to two hundred).  Different land-cover 
classes  have different  “spectral  signatures”;  for  instance, 
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water  has low reflectance across the visible and  infrared 
portion of the  spectrum,  vegetation has low reflectance 
in the  red  and high reflectance in the  green  and  near- 
infrared  bands,  and  barren  terrain  has similar, medium- 
high reflectance in all bands. 

Classification is an expensive  operation-especially 
when complex classifiers, such  as neural  networks [33], are 
used. The typical  size of a satellite  image  ranges  from a 
million to  one  hundred million pixels; thus, classical 
techniques  cannot  be used  as the basis for  search 
operators. Still,  classification is one of the  essential image- 
analysis operations  in  the  remote-sensing community, for 
which the ability to  perform  searches  at  the  semantic 
level is essential.  Different  user  groups  use  different 
classification taxonomies  that  cannot  be easily reconciled. 
For  instance,  the  “fuel type”  classifications used by the 
U.S. Forest Service and  the  American  Forest Service are 
rather  different  and  cannot  be  reduced  to a common 
denominator.  This implies that we can only pre-extract 
and index semantic  content  corresponding  to very simple 
taxonomies,  and  that  searching  for  more complex semantic 
content must be  done  at  query  time. 

Our  approach, called  progressive  classification, relies  on 
properties of the  multiresolution pyramid to alleviate the 
computational cost. It is not a  new  classifier; rather, it is 
a framework  that  can  be  used with essentially all of the 
existing classifiers. 

In a multiresolution  framework, we can  consider a 
wavelet  coefficient at level e “essentially” as the low- 
resolution  representation of a block of 2e pixels X 2( 
pixels at level 0. A  progressive classifier operates as 
depicted in Figure 7: First,  the  approximation of the 
image at a predefined  resolution level L is labeled by an 
appropriately  trained classifier, which decides  whether 
each coefficient corresponds  to a homogeneous  or  to a 
heterogeneous 2L X 2” block of pixels in the 
untransformed image. In  the  former case, the block is 
assigned  a label, while  in the  latter,  the  transform is 
inverted within  a  small region  surrounding  the pixel, 
to yield four coefficients at  the immediately higher 
resolution level, and  the classifier further analyzes them 
independently.  The recursive process  terminates when 
either a homogeneous block is detected  or full resolution 
(level 0) is reached. 
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As proved  in [34], this scheme  has two advantages. 
First, it is faster  than  the  full-resolution, pixel-by-pixel 
approach, since  in images  from  nature  there is significant 
dependence  between  the labels of adjacent pixels, which 
allows large  portions of the  image  to  be classified at low 
resolution.  Second,  somewhat surprisingly, it is more 
accurate  than  the pixel-by-pixel approach. 

In  practical  experiments, we have  used  progressive 
classification  in conjunction with different  parametric  and 
nonparametric  methods, such  as discriminant analysis 
(based  on  the  assumption of Gaussian  behavior,  and also 
known, regrettably,  as  the maximum-likelihood  classifier), 
k-nearest  neighbor,  learning  vector  quantization, 
clustering-based  schemes [2], and  CART [35]. Our 
experiments have  shown that  the progressive approach is 
substantially faster  than  the  straightforward classification 
of the original  image. For  instance, when the  process 
was started  at level L = 2, the classification time was 
consistently reduced by a factor of 5. More  detailed 
descriptions of the  construction of a  progressive classifier 
and of experimental  results  can  be  found in [36]. 

at a higher level than full resolution.  This  results in  a 
higher  number of classification errors,  but  experiments 
summarized in Figure 8 show that  the  increase in error 
rate  from  one  resolution level to  the next is in most  cases 
comparatively  small,  making this a  viable option when the 
user is willing to  trade accuracy for  response  time.  The 
different “curves”  in the figure correspond  to  different 
sizes of the  training  sets used to  construct  the classifier. 
Our system has a facility that allows the  user  to  construct 
a classifier “on-the-fly” by selecting  regions of images and 
assigning  labels to  them. This  process, which is also 
supported by many image-processing packages  commonly 
used  in the  remote sensing  community, is rather  tedious, 
and  constructing  large,  reliable  training  sets is a 
burdensome task. Thus, we decided  to  capture in the 
figure the  penalty  that  one  incurs by using  a  small training 
set. 

To  generate  the figure, we used  a satellite  image of the 
Black Hills, acquired by the  Landsat  multispectral  scanner 
in 1972, for which the  “ground  truth” is known. For  each 
final resolution  and  each of the  training-set sizes, we 
randomly  selected 20 training  sets with which we trained a 
progressive classifier. With each  trained classifier, we 
labeled  the  rest of the image (Le., the  part  not  used  for 
training)  and  compared  the  results  against  the  ground 
truth,  thus  producing  an  estimate of the accuracy. For 
each  pair  (resolution  and  training-set size), we have 
summarized  the 20 experiments by plotting  the  mean  and 
the  standard  deviation of the probability of error.  The 
increase in  accuracy that occurs in the  change  from level 2 
to level 3 is partially due  to  statistical  variations, partly 
because  about 75% of the pixels in the  image belong to 

Further  speedups  can be achieved by ending  the  process 
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Multiresolution level at termination 

few dominant classes, and  the classifier that  terminated 
the execution at level 3 essentially ignored all of the 
nondominant classes. 

5. Evaluating the approach 
To  the best of our knowledge, there  are  no  standardized 
benchmarks  for  content-based  search  that would 
appropriately  capture  the benefits of our approach- 
in particular,  the effectiveness of the progressive  image- 
processing operators.  Consequently, we have  defined,  in 
collaboration with NASA, the following set of benchmark 
queries.  For  each  query, a region of interest (e.g., 
Montana), a time  frame (e.g., 1970-1990), and a list of 
satellite  instruments (e.g., Landsat  TM  and  Landsat MSS) 
are specified, and  the  search is run against  all of the 
images  in the  data  repository  that satisfy the  constraints. 

1. Given  a template T,  find the best matches  and  return 
their  locations.  (The  desired  number of matches is 
specified by the  user.) 

containing  textures  that best  match T,. The  texture- 
similarity criterion is defined a  priori. 

(dx X dy) with the  upper left corner  at  location ( x ,  y )  
from image  A  with another  image of size (du X d v )  
with the  upper  left  corner  at  location (u ,  v )  from image 
B, and display the result. (This  query is an example of 

2. Given  a texture  pattern Tx, find the two images 

3. “Mosaick”  a subimage  (create a composite) of size 
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image-processing operations  that  do  not benefit 
significantly from  the progressive framework.) 

4. Classify image S, using the  USGS  (United  States 
Geological  Survey)  nine-class  taxonomy,  identify the 
centroid of the  largest body of water,  and  return its 
coordinates. 

5. Find all images with  less than p %  cloud cover. 
6. Find all locations of urban  areas  adjacent  to  forests. 
7. Find all images  covering the region of interest  acquired 

between  1970 and 1990. For  each  location,  consider 
the  oldest  and  the most recent image. Classify them 
according  to  the  USGS nine-class  taxonomy,  identify 
areas  where  the  land cover has  changed,  and  return  the 
rate of change of the classes. (This  query shows the 
usefulness of our system in global change  and  other 
environmental  studies.) 

To  measure  the  performance, we executed  each query 
both using the progressive framework  from within our 
prototype system and  on  the original  images,  as a  stand- 
alone  process  (“baseline  implementation”).  The original 
images  are  stored in uncompressed  format;  for 
multispectral  data,  each  spectral  band is stored  separately 
in a flat file. No precomputed  metadata  or  pre-extracted 
features  are used during  the execution of the  queries; 
their main role within our system is to  prune  the  search 
space by limiting the  number of images to  be analyzed. 
Thus,  for  benchmarking  purposes,  metadata  and  pre- 
extracted  features  are  replaced by the specification of the 
input  dataset. 

The result of a progressive search  operation is usually 
different  from  the  result of the  corresponding  operation 
on  the original  images. This is partly because of the loss 
of information  due  to  the lossy compression  scheme 
and partly because of inherent  differences  between  the 
algorithms.  In  order  to  compare  the two approaches, we 
impose  the following requirements  on  the  query results: If 
a  query  returns  a list (possibly ranked),  both  baseline  and 
progressive implementations must return  the  same results; 
if the  query  returns  a  statistical  estimate,  the confidence 
intervals in the  compressed  domain must contain  the 
corresponding confidence intervals  produced by the 
baseline  implementation. 

For  each  query, we measured  the user execution  time 
and  the  real  execution  time,  for  both  the  baseline  and  the 
progressive implementation.  Real  execution  time was 
measured by means of the UNIX** time command. 
The user time is a  measure of the  CPU  time  spent in 
executing the  user  code. Since the  computers  used  for our 
experiments  were  devoted exclusively to  the  benchmarking 
tasks, the  real  time  comprises  user, system, input/output, 
wait, and  application-loading times. On  a  computer with 
more  than  one  user,  the  real  time is a less reliable 

264 measure.  Real-time  and  user-time  speedups  were 
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computed as the  ratios tubit,“ and trh//;, where t: is the  user 
execution  time  for  the  baseline  implementation, t,’ is 
the user  execution time  for  the  compressed-domain 
implementation,  and t: and t,‘ are  the  corresponding  real 
execution times. 

The  experiments  for  query 7b (query 7 on  a  large 
image)  were run  on  an  IBM RS/6000* Model 590 
workstation with 256 MB of RAM  and  the  remaining  ones 
on an IBM RSi6000 43P Model 132 workstation with 
160 MB of RAM.  The classification schemes used  in the 
baseline  and progressive implementations were  essentially 
identical. 

A  potential  problem with the  baseline  implementation is 
that with very large images, the memory requirement can 
exceed the available physical memory, and  the  resulting 
page faults  can significantly impair  the execution (the size 
of currently available satellite images is such that  a similar 
phenomenon  does  not  occur when  progressive searches 
are  executed  on  the  computers used in the  experiments). 
Under such conditions,  speedups of over 500 were 
observed; an  example is the  real-time  speedup  for  query 
7b in Table 1. For all of the  other  queries, we have 
decided  not  to modify the  baseline  implementations  to 
deal with very large images,  but to  choose  the image sizes 
in  such a way that  the  application  resides  entirely in 
physical memory.  Had we decided  to modify the  baseline 
implementations,  thus increasing their complexity, we 
would  have observed  additional  speedup.  The  experiments, 
therefore,  depict  the worst case  for  the progressive 
implementation. 

The  application of the progressive framework  to 
complex operations such  as template  matching  and 
classification results in tangible benefits: The  real 
execution times on the  mentioned  computers  are  reduced 
to  a few seconds or a  fraction of a  second  per  (large) 
image. In some  instances, we have observed  smaller 
improvements-most noticeably  in queries 2, 3, and 5. 
Query  2 was run  on sea-ice  images, where  different types 
of ice result in subtle  differences in the  texture vectors. 
As  a  consequence,  the progressive algorithm was started 
at level 2 of the pyramid, and lower levels were analyzed 
frequently.  Query 3 demonstrates visualization operations; 
thus, the  result  of  both progressive and  baseline 
implementations is an  image  at full resolution.  The image- 
processing operations involved in the  query  are very 
simple. The  overheads of the progressive implementation 
(database access, entropy  decoding,  and load time of the 
system) then  become  comparable  to, or even bigger than, 
the  operation itself, thus  accounting  for  a  large  portion of 
the  execution  time.  Query 5 estimates  the cloud-cover 
percentage  and  returns only the images  with less than p% 
clouds. The  reported  execution  times  are  the  averages 
over four  different values of p ,  namely 10, 20, 30, and 40. 
The  algorithm  estimates p and  produces  a 95% confidence 
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Table 1 Speedups and measured times for queries involving classification and template matching. The images for queries 1, 
4, and 6 have seven spectral bands, while the images used in query 7 have four spectral bands. The real execution time for the 
progressive version of query 7a (smaller image) is dominated by the application loading time, while the real execution time for 
the baseline implementation of query 7b (large image) is dominated by page faults, even on a machine with 256 MB of RAM. 

Quely  Image  Baseline Progressive search User time  Real  time 
number size 

User time  Real  time User time  Real  time 
speedup  speedup 

( S I  ( S I  (SI ( S I  

1 2815 X 3082  93.51  277.03  8.2  18.1 1 11.40  15.29 
2* 2815 X 3082 - - - - 4.4  3.7 
3* 2815 X 3082 - - 2.3  6.8 
4 2815 X 3082  208.96  315.15  4.94  10.18  42.30  30.96 

6 2815 X 3082 145.06 242.15 4.76 8.64 30.47 28.03 

7bq 4179 X 3988 297.42 7807.04 10.5 15.27 28.33 511.27 

- - 

5' 1400 X 1470 1 1  1.9 242.15 11.68 26.19 9.58 9.25 

7a5 1312 X 1312 26.69 29.4 0.79 2.85 33.78 10.32 

"The  actual  times  for  queries 2 and 3 were not computed, Fince the  tcst  program  produced  speedup figures  directly. 
'The reported  times  are  for  the analysis of 17 images 
'Query 7 involves thc  analysis of two  images. 

interval. In  the progressive implementation,  the images 
are analyzed at the immediately higher  resolution level 
whenever  the  confidence interval of the  estimate  contains 
the  threshold p .  In  the  experiment, we used  low-resolution 
data  (2 km per pixel),  most of which had cloud  cover 
between 30% and 50%. Then,  for p = 30 and 40, the 
progressive implementation analyzes  most  images at full 
resolution,  thus  accounting  for  the small observed 
speedup. 

6. Discussion and conclusions 
There  are many important issues associated with providing 
an infrastructure  for  integrated  multimedia  libraries. 
Perhaps  the single  most important issue is the ability to 
perform  content-based  search.  The  different  groups of 
users of satellite imagery with which we have interacted 
have presented us with a large  number of different types 
of content.  Thus,  pre-extracting  information  and 
generating indexes becomes  too  time-consuming  and 
impractical. We  are exploring an  approach  that allows the 
user to define new features at query-construction  time  and 
to use  such features to specify new, arbitrarily complex 
searches. Within our project, we are developing and 
demonstrating  technologies  that  further  our ability to 
support this  capability. 

computational  cost  and  associated delays, the design of 
efficient indexing schemes to manage  descriptors of the 
information in the library is highly desirable.  Currently, 
in our system, we use  indexes for  the  metadata  and  for 
precomputed  features  and objects.  Since we have been 
unable  to achieve  significant speedups in computing 
texture  features, which are  extracted by complex and 
computationally intensive algorithms, we have  identified, 
extracted,  and indexed a set of texture  features  for  each 

Clearly, to avoid inefficiencies and  reduce  the 
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image in the  database.  The  metadata  and  pre-extracted 
features  are used to  prune  the  search space,  usually 
allowing the  search  engine  to  restrict its attention to a 
limited set of images. 

The main contribution of our system is the capability 
of further narrowing the  search results by extracting  and 
manipulating  user-defined  features  at  query-execution  time 
from  this  candidate  set. Previously, this  process has been 
regarded as impractical, especially in an  interactive system, 
because of the high computational cost of the image- 
processing operations involved. 

framework  that  combines  image  representation (in 
particular,  image  compression) with image  processing. 
Progressive implementations of image-processing 
operators rely on  the  properties of the  compression 
scheme  to  reduce significantly the  amount of data  to 
analyze during  the  feature-extraction  and  -manipulation 
phases. 

To  measure  the benefits of our  approach, we have 
defined a set of benchmark  queries  and  compared  the 
results  obtained  from  the  baseline  and progressive 
implementations of the  algorithms.  The  observed  speedups 
are significant: The  computational  cost has been  reduced, 
on average, by a factor of almost 20, while the  response 
time has been  reduced by a factor of 16. We  attribute 
the  smaller  speedup in response  time to the  testing 
environment we have agreed  upon with NASA, in which 
the progressive  versions of the  queries  are  executed within 
our system. Thus, we incur  the costs of loading  the 
application  and establishing connections to the  database. 
While  such overhead is minimal  when the  response  time is 
of the  order of minutes, it becomes  substantial when the 
response  time is less than a second, as in query 7. 

To  overcome  this difficulty, we propose a progressive 
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The  progressive  operators  are  capable of extracting 
user-specified  features  at  query  time,  and  we  can  use  these 
features  to  search  for  new,  nonpredefined  content,  thus 
adding a new  dimension  to  the flexibility of our  query 
engine. We have  shown  the  ability  to  analyze a large 
image (of 3000 X 3000 pixels  and  seven  spectral  bands,  or 
4000 X 4000 pixels  and  four  spectral  bands)  in  less  than 
ten  seconds of CPU  time  and less than 20 seconds of total 
response  time,  while  the  analysis of smaller  images 
(1300 X 1300 pixels and  four  spectral  bands or 1400 X 1400 
pixels  and  two  spectral  bands)  requires  less  than  one 
second of CPU time. 

We  feel  that  the  results of our  experiments  are 
encouraging,  as  they  show  that  the  significant  increase in 
expressive  power  resulting  from  the  extraction of new 
features  at  execution  time can be achieved  with  reasonable 
computational  cost. 
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