Theory of spin-
dependent

conductivity in
GMR materials

by R. K. Nesbet

This paper presents a critical review of
theoretical studies of spin-dependent
conductivity in GMR (giant magnetoresistive)
materials. Earlier studies used relatively simple
models of the electronic states and energy-
band structure. Several more recent
calculations of electronic transport in layered
materials are based on ab initio treatment of
the spin-dependent energy bands and Fermi
surface. By including realistic energy-band
structures, these studies have been able to
make quantitative comparisons of alternative
mechanisms for enhanced magnetoresistance
and to explain the relative importance of spin-
dependent scattering at interfaces.

1. Introduction

Giant magnetoresistance (GMR) was first observed in
layered Fe/Cr magnetic structures by Baibich et al. {1] and
by Binasch et al. [2]. These structures have magnetized
layers separated by a nonmagnetic spacer metal.

A material with magnetized layers or granules that is
spontaneously antiferromagnetic, or whose magnetization
vectors are randomly oriented, exhibits GMR when the
electrical resistivity is significantly reduced by a magnetic
field that induces parallel magnetization alignment. GMR
is characterized by the magnetoresistance ratio AR/R,
where AR is the total decrease of electrical resistance as
the applied magnetic field is increased to saturation and

R is measured in the state of parallel magnetization.

The underlying physical process in GMR materials is
dissipative scattering that is stronger for one spin
component of the electronic current density, depending on
magnetization. If the spin polarization of the electrons is
well-defined on a length scale that is large compared with
the spacing of magnetized layers or granules, both spin
components are relatively strongly scattered when local
magnetization directions vary. If the magnetization vectors
are ferromagnetically aligned, the more weakly scattered
spin component carries electric current with lower
resistivity and shunts out the more strongly scattered
component,

Although the original experiments were done with
nearly perfect crystalline films produced by molecular
beam epitaxy (MBE), Parkin et al. [3] showed that GMR
occurs in metallic films deposited by sputtering, allowing
much simpler fabrication. An experimental survey of
GMR for Co/Ru, Co/Cr, and Fe/Cr sputtered superlattice
structures revealed that the saturation magnetoresistance
oscillates with spacer layer thickness [3]. This has turned
out to be due to oscillation of the interlayer exchange
coupling between magnetized layers, which is not
discussed here. If antiparallel alignment is forced on
the initial structure, the GMR ratio simply decreases
monotonically with spacer thickness [4]. Another result
discovered using sputtered samples is that Co/Cu layered
structures have large room-temperature GMR ratios if the
Cu spacer thickness is chosen to make the oscillatory

exchange coupling between Co layers antiferromagnetic [5, 6].

©Copyright 1998 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

0018-8646/98/$5.00 © 1998 IBM

IBM J. RES. DEVELOP. VOL. 42 NO. 1 JANUARY 1998

R. K. NESBET

53




54

While GMR was originally observed for layered
elemental metals, it was found to occur for ferromagnetic
permaltoy (Nig,Fe, ) [7] and also for granular materials
[8]. In the case of permalloy (Py), the magnetoresistance
ratio is reduced by compositional intermixing at Py/Cu
interfaces [9]. This is attributed to reduction of
magnetization in the mixed layers. An inverse GMR effect
is observed if thin Cr layers are intercalated into Fe in an
Fe/Cu multilayer structure [10].

In a series of experiments designed to probe the relative
effect of interface and bulk scattering in GMR materials,
Parkin [11] showed for many different combinations of
metals that the magnetoresistance depends exponentially
on the thickness of an interface layer, with a characteristic
length that is extremely short. These experiments were
done with sputtered spin-valve structures described as
exchange-biased sandwiches (EBS), of the form
F|/S/F,/FeMn. The magnetization of layer F, is pinned by
exchange coupling to antiferromagnetic FeMn, and the
magnetization of layer F| is controlled by the applied
magnetic field. In the principal experiment, metals | and
F, were permalloy (Py) and the spacer § was Cu. Very
thin layers of Co were deposited at the Py/Cu interfaces.
These layers produced a large increase in the GMR ratio,
which approaches a saturation value on a length scale
of atomic size (= 2.3 A) as the Co layer thickness is
increased. This scale parameter is insensitive to the
thickness of the Py layers. In order to examine the relative
importance of bulk scattering, EBS samples were prepared
with atomically thin Co layers displaced into the interior
of the Py layers. Magnetoresistance decreased rapidly with
increasing displacement distance, on the same length
scale, and saturated at the original value for Py/Cu.

When Py interface layers were inserted in a Co/Cu EBS
structure, GMR decreased with Py layer thickness on a
length scale = 2.8 A. A survey of other combinations of
metals gave similar results in all cases studied, indicating
the predominant effect of the magnetic/spacer interface on
an atomic scale = 1.5 to 3 A. A recent review of GMR
experimental findings has been given by Parkin [12].

Fert and Bruno [13] and Levy [14] have recently
reviewed experimental data and theory relevant to
electrical conductivity in GMR materials. These authors
discuss parametrized theoretical models that have been
used to describe the enhanced magnetoresistance
characteristic of these materials. The present paper
concentrates on the theory of spin-dependent conductivity,
developing a general formalism applicable to GMR
materials. The physical basis of the observed enhanced
magnetoresistance is discussed in Section 2. A general
review of semiclassical and quantum transport theory is
given in Section 3, while the question of nonlocal response
is discussed in Section 4 in the context of Maxwell’s
equations for the local electric field. Parametrized
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semiclassical and quantum models of GMR are surveyed
in Section 5. Section 6 surveys more recent theoretical
studies based on ab initio energy-band calculations for the
conduction electrons. General conclusions are summarized
in the last section.

2. The physical basis of enhanced
magnetoresistance

The essential physical process in GMR materials is spin-
dependent dissipative scattering. One spin component of
the electronic current is everywhere relatively weakly
scattered if magnetization vectors in magnetized sheets

or granules are aligned parallel to one another. In
antiferromagnetic alignment, both spin components are
equally strongly scattered. Experimental data and
theoretical models indicate that the predominant spin-
dependent scattering process is associated with the
interfaces in layered elemental materials and with the
grain boundaries in granular materials. This is consistent
with data indicating a significant volume effect in
permalloy, since an alloy might be considered to be a
granular material with grains of atomic size throughout its
volume. Although most experiments have been carried out
in CIP geometry (conduction in-plane), the largest GMR
ratios occur in CPP geometry (conduction perpendicular
to the plane). This is consistent with a predominantly
interfacial mechanism, since in CPP geometry the current
must flow through all interfaces between the measuring
leads, while in CIP geometry each conducting spacer layer
acts as a current shunt.

As originally pointed out by Mott [15-17] and discussed
in the textbook by Mott and Jones [18], the observed
reduced conductivity of transition metals as compared to
noble metals is due not to conduction by d-carriers but to
transitions into empty d-states at the Fermi level in the
transition metals. Because the s/p effective mass is much
less than that of the d-electrons, s/p electrons are the
principal charge carriers in both noble and transition
metals. Any dissipative mechanism for scattering into
unoccupied d-states at the Fermi level reduces the lifetime
of conduction electrons. In a magnetized transition metal,
this final-state effect causes the mean free path of
minority electrons to differ from that of majority
electrons. Hence, the conductivity depends on spin. In the
two-fluid model it is an immediate consequence of Ohm’s
law that the two spin components of the conduction
electrons, subject to different resistivities but sharing a
common voltage drop, carry different current densities
under steady-state conditions. This implies that the
electronic current is spin-polarized, a result confirmed in
detailed studies of the Boltzmann equation discussed
below. A correct description of the spin-dependent Fermi
surface is essential to any realistic theory of this Mott
effect. If some scattering process is itself strongly spin-
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selective, it provides a mechanism for spin-dependent
conductivity in addition to the Mott mechanism. An
important example is scattering by atoms interchanged
randomly across the boundary of a magnetized layer or
across the surface of a magnetized granule.

A magnetic material with spin-dependent conductivity
must exhibit magnetoresistance, because within each
magnetized layer or granule one spin component of the
conduction electrons is subject to lower resistivity. A spin
component can have this “correct” spin polarization sense
throughout the material only if the local magnetization
vectors are ferromagnetically aligned. If the alignment is
antiferromagnetic or random, the electronic current must
flow at least in part through regions or domains in which
the magnetization direction differs, so that both spin
components are subject to relatively strong scattering
in some region. This implies enhanced resistivity.
Magnetoresistance is always reduced by spin-flip
scattering, since the distinction between the two spin
polarizations is lost. In order for the spin sense to be
retained between magnetized layers or granules, the
intervening distance must be smaller than the mean free
path for spin-flip (spin diffusion length). This is a
necessary condition for validity of the two-fluid model and
for GMR due to spin-dependent scattering. Values of the
spin-dependent mean free path due to spin-conserving
dissipative scattering, which determines the spin-
dependent conductivity, are generally much shorter than
the spin diffusion length.

3. Transport theory

A quantitative theory of electronic transport requires
simultaneous solution of the coupled Maxwell and
Schrodinger equations of nonrelativistic electrodynamics.
This formidable task must be simplified in order to derive
any useful results for GMR materials, somehow without
distorting or overlooking important elements of the
problem. These elements include the necessarily irregular
spin-dependent Fermi surfaces in these heterogeneous
materials, and scattering processes due to lattice
vibrations, structural irregularities, interfaces, and
displaced atoms. Spin-flip scattering by magnons may
become important at higher temperatures. There are
several simplifying aspects of the GMR problem that

can be exploited in constructing a practical theory.

In particular, the materials of primary interest are
macroscopic samples, for which it is unlikely that quantum
effects beyond the usual electronic structure theory of
metals and alloys are relevant. The interior regions

of layers or granules may be sufficiently large and
homogeneous that they have the properties of bulk
materials. The electric and magnetic fields are of
moderate strength, so that it is consistent to work in the
linear-response limit of theory. In these circumstances, a
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quantum Boltzmann equation is valid and has the same
physical validity as the more fundamental quantum Kubo
theory [19-21]. This quantum formalism originated

in work by Greenwood [22], who showed that the
semiclassical Boltzmann equation for impurity scattering
could be derived in the limit of large relaxation time from
the equation of motion for the quantum density matrix.
Results of theory based on the semiclassical Boltzmann
equation and on the Kubo formalism are expected to be
indistinguishable if both describe the same physical system
and scattering mechanisms at a comparable level of
internal accuracy [23-25].

In order to incorporate the Mott effect into transport
theory, an intermediate form of Boltzmann theory is used
here. Identifying the eigenstates of self-consistent energy-
band calculations with the electron quasiparticles of Fermi
liquid theory, the Boltzmann theory is applied to the
occupation numbers of these quasiparticles. This
formalism has the advantage of maintaining conservation
laws at each stage of computation, and of treating all
scattering processes at a common leve] of theory. In this
formalism, the distinction among physical properties of
CIP, CPP, and granular GMR materials occurs at the level
of solution of Maxwell’s equations for macroscopic current
flow, based on a common theory of microscopically
averaged linear response or conductivity. It is postulated
that the electronic states considered in the semiclassical
Boltzmann theory of metallic conductivity [23] are the
electron quasiparticles of Fermi liquid theory [26],
computed with a Hamiltonian that includes electronic
interactions but omits dissipative scattering processes.

A scattering process is defined as “dissipative” here if it
causes the energy of a quasiparticle to become complex.
This distinguishes such processes as phonon scattering or
scattering by random impurities from the phase-coherent
scattering incorporated in the self-consistent construction
of Bloch waves. The postulated electron quasiparticles are
modeled by seif-consistent energy-band calculations using
the density-functional theory [27, 28], which includes
electronic interactions and correlation. As eigenstates of
the model system, these quasiparticles do not scatter from
one another. A quasiparticle state is defined at each point
on the spin-dependent Fermi surface. Considered as an
application of the quantum Boltzmann equation [21],

the theory developed here builds the real part of the
interaction self-energy into the energies of Bloch waves.
The imaginary part of the self-energy is attributed to
dissipative scattering processes. Since the energy-band
model omits dissipative scattering completely, except in
the case of alloys, such processes must be treated by
perturbation theory in the quasiparticle basis. Dissipative
scattering rates are defined point-to-point over the Fermi
surface as transition rates between quasiparticle states.
This Boltzmann formalism in principle requires 565

R. K. NESBET




56

computation of the net lifetime, subtracting the scattering-
in rate from the decay rate at all points on the Fermi
surface.

For a regular periodic solid or superlattice model
system, noninteracting quasiparticles are indexed by a
spin index s, by a band index b, and by momentum k.
Each quasiparticle state is modeled by a wave packet
constructed from a Bloch wave with specified parameters
(s, b, k). When these parameters are denoted by a single
index k, the energy of a quasiparticle is a real number ¢,,
determined by the self-consistent density-functional model.
In the presence of a local electric field €, Ehrenfest’s
theorem determines mean time-derivatives of the
momentum and position of an electron described
by such a wave packet. The implied group velocity is
v, = (1/24)V ¢, given ¢_in Rydberg units, The statistical
distribution function for quasiparticles is the occupation
number f,. In linear-response theory, the steady-state
occupation probability f, is approximated by the
Fermi-Dirac distribution function f; plus an incremental
term g, = f, — f, that is proportional to the driving field.
The mean value of electric current density for each
quasiparticle is j, = —evg,. A steady-state Boltzmann
transport theory based on these postulates and definitions
is developed here.

In a homogeneous material or superlattice with no
thermal gradient, a Bloch wave defines the probability of
finding an electron with specified parameters (s, b, k) at a
point x. At the Fermi surface, the mean velocity of such
an electron is the Fermi velocity v,. If there is a thermal
gradient, f, must vary with position as the temperature
parameter changes. In an inhomogeneous material, the
response increment g, must vary with position as the local
conductivity changes. In the general case, f,(x) defines the
local statistical occupation probability of a quasiparticle
state modeled by the Bloch wave ¢, (x). In this
interpretation of the Boltzmann theory, phase information
is contained in the Bloch wave, but not in the distribution
function f,. Neglecting thermal gradients, f, is constant,
while both g, and € can be considered to vary on a length
scale larger than a typical atomic radius, but smaller than
the extent of a Bloch wave packet. If € varies within a
polyatomic translational unit cell, the continuity equation
for the current density requires g, to vary on the same
scale. This can be described in terms of nonlocal response
or by local averaging for inhomogeneous materials. Such
extensions of the theory are discussed in the following
section.

In a steady state, the incremental occupation probability
g, for each quasiparticle is determined by balancing the
rate of change at a fixed point x due to transport away
from that point, and to conversion of the state (s, b, k)
into other states (s’, ', k') by the driving field, against
the net rate of change due to dissipative scattering. This is
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expressed in a quasiparticle Boltzmann equation indexed
by k = (s, b, k),

v, ng—f% v.f E(gk P, (1)

assuming symmetry of state-to-state transition probabilities
P. Neglecting spin-flip transitions, the sum over index k'
here denotes a sum over band index ' and an integral
over the reduced Brillouin zone in k-space. This integral is
weighted by the number-of-states element for each spin,
(Q/167 ' hv)dedS, for energies in rydbergs. Here () is the
volume of the translational unit cell and dS is the area
element of an energy surface. The Mott final-state effect
results from the dependence of this formula on electron
velocity and on Fermi surface area. The electric field must
be a local solution of Maxwell’s equations. This implies
nonuniformity in inhomogeneous materials, requiring
consistent local averaging of g, and €.

The two scattering terms on the right-hand side of
Equation (1) represent scattering-in and scattering-out,
respectively. The scattering-out terms deﬁne a
quasiparticle lifetime 7, such that ’Tk ot = ZpPyy To
include scattering-in terms, it is convenient to define a net
relaxation time (s, b, k) such that the right-hand side of
Equation (1) takes the simple form —r'g. The defining
equation is

EPkkgk ’ (2)

-1
Tk g Tk outgk

again using the symmetry of state-to-state transition
probabilities. Since g is a scalar function of the electric
field vector, in linear response theory it must take the
form CA, - €. This defines a vector mean free path

A, = 7.y, in terms of a net relaxation-time tensor T,.
With these definitions, Equation (2) is equivalent to

« = Tk,out(vk + E Pk,k’Ak’)’ 3)
o

A

for iterative computation of the scattering-in terms

[29, 30]. If there is a thermal gradient, or in an
inhomogeneous material, the constant C becomes a
function C(x). In applying transport theory to
substitutional alloys, random composition implies a
dissipative scattering effect at the level of the self-
consistent coherent potential approximation (CPA) [31].
So long as the resulting energy width is small at the Fermi
level, real energies €, acquire an imaginary part —(i/2)y,
corresponding to a quasiparticle lifetime 7, = #/y,.

This implies an intrinsic time decay of the quasiparticle
occupation numbers. Since Equation (1) is expressed here
in the context of energy-band theory with real energy
values, such an intrinsic lifetime could be parametrized by
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adding a term of the form T[;lg into the left-hand side of
this equation and into the right-hand side of Equation (2).
For consistency, scattering due to random occupation of
lattice sites, treated by CPA, must then be omitted from
the detailed mechanisms included in the transition
probabilities P, ..

Using the definitions of Fermi velocity and vector mean
free path given above, the quasiparticle Boltzmann
equation takes the form

df,
Ak-ng-l-gk:ZeEAk-%. (4)
k

This is an inhomogeneous diffusion equation for each
quasiparticle at the Fermi surface. The first term here
(diffusion term) vanishes in the interior of a homogeneous
solid if there is no thermal gradient. It must be included
when considering effects near an external bounding
surface, as in the semiclassical Fuchs—Sondheimer theory
[32, 33]. The electric current density is the sum of terms
J = —evyg for all quasiparticle Bloch functions at the Fermi
level. This sum is related to the mean local electric field
by a conductivity tensor such that j, = 2, ¢,%,. The
conductivity tensor is derived by weighting g, from
Equation (4) by the density of states and integrating over
an energy range about the Fermi energy. If diffusion
terms are neglected and the derivative of f; is replaced by
an energy delta function, this gives

2
e
0,(8) = 5 > f nA,, ds, )
b e=¢

where n is a unit vector normal to the Fermi surface. The
conductivity tensor is an integral over the Fermi surface
of the tensor nA. If the net relaxation time is a scalar
quantity, this reduces to nA,n, where A, = 7,v,, defined
by values of 7, and v, evaluated at each point (s, b, k).

The diffusi(;n term in the Boltzmann equation describes
the net effect of transport by convection due to the group
velocities of quasiparticle wave packets. This can be
neglected in the interior of a uniform metal if there is no
thermal gradient, but there is an asymmetrical effect near
an external boundary. Since all wave functions vanish
outside such a boundary (neglecting field emission or
tunneling into a classically forbidden region), transport to
an internal point by convection from the exterior must
vanish. This requires g, to vanish on the external
boundary if the velocity v, is directed inward. If the
driving field € is uniform, the value of g valid in the
interior of a uniform metal is a particular solution of the
Boltzmann equation. To satisfy the boundary condition,

a solution of the homogeneous diffusion equation is
subtracted which exactly cancels the particular solution at
the boundary for each inward-directed group velocity. This
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subtracted term decreases exponentially into the interior
with a length scale given by the projected mean free path
n - A, where n is the inward normal vector on the
boundary surface. Thus, this boundary condition is
propagated into the interior of a metal by the diffusion
term in the quasiparticle Boltzmann equation, resulting in
reduced conductivity.

The Fuchs-Sondheimer theory [32, 33] sums the
g-functions considered here over all quasiparticles at the
Fermi level and imposes this boundary condition. It is
attributed to diffusive scattering at an external boundary.
An additional parameter p is used to represent the
relative probability of specular reflection, considered to be
a physical process in competition with diffusive scattering.
The discussion given above indicates that this is a false
dichotomy. Diffusive scattering is not relevant to the
truncation of wave functions due to an external potential
barrier. Standing-wave functions with a fixed nodal surface
establish a coherent phase relationship between two time-
reversed traveling-wave components. Phase-coherent
scattering processes due to static potential functions in the
Schrodinger equation are fully taken into account in the
construction of Bloch waves. Hence, they affect the
Boltzmann equation only through properties of these wave
functions, in the present case through vanishing electron
number density outside a physical boundary surface. It is
interesting to note that in several parametric studies of
experimental data on thin films and wires, summarized
by Sondheimer [33], the best value of the “specular
reflection” coefficient p was found to be p = 0.

The most important consequence of the Fuchs-
Sondheimer theory is that resistivity increases when
geometrical dimensions are reduced to the scale of the
mean free path in a metal. Large effects are observed for
current flow parallel to a boundary surface [33]. This
might appear to be counterintuitive, but it is important to
recognize that electronic wave functions are not confined
to a single atomic layer or to a precisely defined
propagation direction. A useful conceptual model is that
even in the absence of an external driving field, a very
large number of electrons are moving in all directions in a
normal metal, at very high velocity (the Fermi velocity).
This dynamic swarm does not transport electric current,
because the statistical net flow cancels exactly. An applied
electric field produces a relatively small imbalance biased
in the direction of the field, but the electron swarm still
samples the entire material within the statistical mean free
path. In this model, it is clear that any reduction of the
mean free path must affect all components of the
conductivity tensor, so that the large observed CIP effect
is not inconsistent with confinement in the direction
normal to the plane of net current flow.

For any regular periodic solid metal described as a
Fermi liquid, the quasiparticle Boltzmann theory is

R. K. NESBET

57




expected to be quantitatively correct if the underlying
energy-band calculations are adequate. For metallic
substitutional alloys, calculations and theoretical analysis
by Butler and Stocks [31, 34] show that the Kubo
formalism, without vertex corrections, and the Boltzmann
formalism, without scattering-in terms, are at a common
level of accuracy. Because a Green’s-function formalism is
used in the alloy theory, extension to the Kubo theory is
quite natural, but the calculation of vertex corrections [24]
appears to be very difficult to implement. Scattering-in
terms can be included in the Boltzmann equation by
solving inhomogeneous linear equations of large
dimension [31], for which an iterative method is available
[29, 30]. The fact that scattering-out and scattering-in
terms are computed from the same set of state-to-state
transition probabilities gives the Boltzmann theory the
practical advantage that detailed balance is maintained
within the formalism, avoiding artifacts such as spurious
accumulation of occupation probabilities that are
inconsistent with the basic steady-state condition. In the
Kubo formalism [24, 35], scattering-out rates correspond
to lifetimes deduced from self-energies, while scattering-in
rates must be computed as vertex corrections.

4. Nonlocality and Maxwell’s equations
Equation (1), the quasiparticle Boltzmann equation, is
expected to be valid for any crystalline metal if the local
electric field is averaged over the translational cell. If a
homogeneous layer or granule of this metal is embedded
in a macroscopically inhomogeneous material, the bulk
conductivity should be valid for the interior of the layer or
granule, but special consideration of the boundary region
is needed. In the case of a cleaved surface of an otherwise
regular periodic solid, all properties of electronic wave
functions remain valid in the interior, but the wave
functions must terminate at the boundary. This is modeled
in the Boltzmann equation by allowing the incremental
distribution function g to vary in space in the boundary
region, while retaining the energy and Fermi velocity

of each Bloch function as in the uncut solid. In CIP
geometry, the local electric field is constant and the
current density is proportional to the g-function. In CPP
geometry, the current density is constant and the local
electric field must vary inversely with the g-function. In
either case, conductivity is reduced in the boundary
region, as derived in the Fuchs-Sondheimer theory. This
example shows that g and the electric field must be
treated consistently in boundary or interface regions.
Attributing spatial variation to g does not imply that wave
functions can be localized on the same scale. For example,
the truncated Bloch waves in a semi-infinite solid are still
delocalized over its full volume. It is consistent with the
linear-response model to represent a response varying on
the length scale of the mean free path in a basis of

R. K. NESBET

unperturbed wave functions that are uniform in a larger
region, using coefficients or weight functions that vary on
the lesser of the two length scales. Different theoretical
models, discussed below, consider wave functions defined
globally for a layered material or only locally for a subset
of layers. A global definition may require a density-matrix
formalism for an inhomogeneous material or when the
elastic mean free path is small compared with relevant
geometrical structures, such as layer spacings, because the
phase coherence implied by well-defined wave functions is
lost.

The nonlocal conductivity tensor is defined in the fully
coupled linear-response theory as the kernel of a linear
integral operator,

ix)= J a(x, x')E(x)d X, (6)

where j is the current density and € is the local field
derived by solving Maxwell’s equations as determined by
the conductivity tensor. If magnetization vectors are
collinear and if spin-flip scattering can be neglected, each
spin component of j satisfies a similar equation. Because
the electric field cannot carry an electronic spin index, this
defines a separate conductivity tensor for each spin
component of j.

The electric field relevant to conductivity is an
infinitesimal perturbation of the Coulomb field in the
density-functional Schrodinger equation. Averaging either
this electric field or the current density over an atomic cell
is assumed here to be a valid approximation, as it should
be except for very large current density or very strong
fields. If the local field varies sufficiently slowly on an
atomic scale, only the average of the conductivity tensor
over each atomic cell affects the Maxwell equations for
steady-state current flow in a heterogeneous macroscopic
material. Averaging over each atomic cell, and
approximating the electric field within each cell by its
mean value in that cell, Equation (6) for the cell indexed
by un reduces to a linear algebraic expression,

i,= 2 0,8, (7)

summed over cells indexed by ». It should generally be
valid for GMR materials to approximate the nonlocal
(two-point) conductivity tensor by the response matrix
defined in Equation (7), indexed by atomic cells. This
provides a finite-element representation of the classical
Maxwell equations for steady-state current flow. They
could be solved by summing partial solutions obtained in a
diagonalized representation of the response matrix.

For a regular periodic solid or superlattice model of a
layered or inhomogeneous material, the conductivity
response matrix defined in Equation (7) can be restricted
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to indices for atomic cells within a single translational cell,
by summing over all translationally equivalent atoms.
Following Zhang and Butler [36], the linear Boltzmann
equation can easily be adapted to compute the
incremental distribution function as a matrix with the
same structure as the conductivity matrix, indexed by
atoms in a translational cell. This is done for the
quasiparticle Boltzmann equation by computing g,
separately for constant electric field elements, one for
each atomic cell and for each coordinate axis, and then
constructing linear combinations of the response elements
such that the equations of continuity for current density
and electric field are satisfied to the extent consistent with
averaging over atomic cells. This construction requires
only the subdivision of quasiparticle or Bloch wave
occupation numbers into partial atomic occupation
probabilities, which are always computed in a self-
consistent energy-band calculation.

If the electric field varies sufficiently slowly that it can
be replaced by an average, denoted by €*, over atomic
cells in a neighborhood of a particular cell p, and if the
nonlocal conductivity tensor o, vanishes sufficiently
rapidly as the distance between atomic cells v and p
increases, the averaged value of € can be substituted into
Equation (7), which reduces to the form

ot ®)
where
ot = 2 o, )]

These assumptions are inherent in applications of the
usual semiclassical Boltzmann equation to regular periodic
solids. They define a local response model (LRM). When
this model is valid in some region of an inhomogencous
system, the solution of Maxwell’s equations simplifies in
this region to solution of a classical potential problem,
since a constant local conductivity tensor is associated with
each atomic cell. The local electric field is computed by
solving a (tensorial) Laplace equation for the scalar
potential. At a cell boundary, the normal component of
the current density and the tangential component of the
electric field must be continuous. The equation of
continuity holds rigorously for the current density.

The local response model provides a rationale for
applying the quasiparticle Boltzmann equation to
inhomogeneous macroscopic materials. The basic idea is
to use the best possible representation of the near
environment of each atomic cell to compute a set of Bloch
wave functions at the Fermi level, obtained by a self-
consistent supercell or layer KKR [37] calculation. These
wave functions are not localized, but they are associated
with an atomic cell. The construction outlined above,
computing the linear response to atomic components of
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the electric field, then combining these linear elements to
satisfy the continuity conditions required by Maxwell’s
equations, gives a conductivity response matrix indexed by
atoms within a translational unit cell. Tensorial elements
of this matrix are determined by any three linearly
independent electric field solutions. Designating a
particular atomic cell by index u, the quasiparticle
Boltzmann equation for each of these electric field
solutions defines an incremental distribution function gf,
for quasiparticles indexed by k. With all quantities
averaged over atomic cells, the conductivity response is

jf=—e XY v gt (10)
k

In this construction, the electric field elements € must
vary in proportion to the particular element €, when each
electric field solution is multiplied by a constant. This
implies that the atomically averaged field elements are
related by constant tensorial coefficients. Summing these
coefficients over the translational cell gives an effective
single-atom local response corresponding to the LRM.
Thus, the LRM model can be assumed as an Ansatz when
calculations are subdivided into linear elements that are
combined to give a total g-function and electric field
consistent with Maxwell’s equations, in the step-function
approximation implied by averaging all quantities over
atomic cells. This construction can be rationalized by
noting that it is physically impossible to produce a local
electric field that does not satisty Maxwell’s equations.

A formalism that is valid only for such solutions is

in fact completely general for physical systems.

The usual Boltzmann formalism for the conductivity
tensor of a model superlattice assumes uniform electric
field in the translational cell, which is not generally valid
for polyatomic cells. The modification proposed here for
inhomogeneous magnetic materials is to associate a spin-
dependent conductivity tensor with each atomic cell,
appropriate to its near environment in the actual material
under study. Spatial variation of conductivity near an
external boundary should be computed as in the
Fuchs-Sondheimer theory. In general, the local electric
field must be computed by combining partial solutions of
the Boltzmann equation so that the sum is consistent with
Maxwell’s equations, although this may not be necessary in
simple geometries. If tetragonal symmetry is assumed for
layered systems, the principal axes of local conductivity
tensors are the same in all layers. Thus, CIP and CPP
geometries are separately described by local conductivity
tensors whose elements have different numerical values.
In CIP geometry, the in-plane electric field is constant in
each uniform layer and must be continuous across layer
boundaries. Hence, the local field is uniform throughout a
layered material, and the current density varies from layer
to layer in proportion to the local in-plane conductivity. In
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CPP geometry, the current density normal to the layers
must be uniform and continuous, while the electric field
varies inversely to the local normal conductivity.

5. Parametrized models

In the Fuchs-Sondheimer theory [32, 33] of thin-film
conductivity, geometrical confinement of conduction
electrons is described by a boundary condition on the
electronic distribution function. The incremental function
g must vanish at an external boundary for velocities
directed inward from the boundary. The influence of this
boundary condition is propagated into the interior of a
conductor by the diffusion term in the Boltzmann
equation. This effect on g occurs in a surface layer whose
thickness is measured by the mean free path of the
electrons, which is several hundred angstroms in normal
metals at laboratory temperatures. It explains an
experimentally observed increase in resistivity for
geometrical confinement of electrons on a length scale
comparable to or less than their unconstrained mean free
path. Camley and Barna$ [38] extended this theory to
magnetic multilayers. The parametric model of Camley
and Barna$ has been used extensively to study GMR
materials. A spin-dependent incremental electronic
distribution function g(v,, z) is assumed to be a function
only of the coordinate z orthogonal to the planes of a
layered material and of the component v, of the Fermi
velocity. The local electric field € is assumed to be a
constant vector in the tangential direction x. The
simplified Boltzmann equation used in this model is

(11)

where f is the Fermi-Dirac function. In nonplanar
geometry the first term becomes A - Vg [39]. Equation
(11) is of the same form as the quasiparticle Boltzmann
equation (4) except that the distribution functions are
summed over all quasiparticles at the Fermi level. Spin-
dependent relaxation times are associated with the interior
of each layer. The relaxation-time parameters in this
model can be considered to be averages of quasiparticle
lifetimes whose detailed values would exhibit the band-
structure effects considered by Mott. Empirical values
of these parameters do not distinguish among different
microscopic scattering mechanisms.

Since the incremental distribution function g in
Equation (11) varies with coordinate z, the model requires
specifying the relationship between values of g across
internal boundaries. The rotation of spin quantization axes
between magnetized layers is modeled by spin-dependent
transmission coefficients. Spin-dependent diffusive
scattering parameters are assigned to each internal
interface [38]. The physical basis for the Fuchs—
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Sondheimer boundary condition has been discussed
above in connection with the quasiparticle Boltzmann
theory. For reasons given there, it is not obvious that
variation of g, considered as a distribution of occupation
numbers for Bloch wave functions that are continuous
over many atomic layers, can be defined by boundary
conditions at interfaces on the atomic scale. In particular,
introduction of specular reflection coefficients at layer
boundaries may not be justified. In fact, the reflection
coefficients have been set to zero in applications of the
Camley and Barna$ theory. It was found to be difficult to
fit the strong interface scattering observed experimentally
with the spin-dependent diffusive scattering parameters of
the original theory. Much better agreement was obtained
when interface scattering was treated as spin-dependent
bulk scattering in a thin interface mixing layer [40, 41].
Inoue and Maekawa [42] modeled the expected strong
spin-dependent scattering effect of randomly displaced
magnetized interface atoms in terms of random exchange
potentials.

The ratio of diffusive scattering parameters D | /D ,
describes the effect of spin-selective dissipative scattering
at an interface. As noted by Baibich et al. [1] in
presenting their original GMR experimental data, this
ratio can be approximated by the experimental ratio
a = p,/p, of the incremental resistivities due to isolated
impurities in a magnetized host metal [43]. Camley and
Barna$ [38] used the experimental value of « for Cr
impurities in bulk Fe in their model calculations. If atoms
of the spacer and magnetic metal were exchanged
randomly across an interface, the resulting spin-dependent
impurity scattering would be proportional to this ratio,
and to the concentration of such displaced atoms in the
vicinity of the interface. Distortion described as interface
roughness on a macroscopic scale requires detailed
modeling if the length scale of the roughness is
comparable to the experimentally very short mean free
path associated with interface scattering. Geometrical
irregularities on a larger scale could not affect an
essentially atomic scattering mechanism. Together with
layer thicknesses, the important parameters of the
simplified Boltzmann equation (11) are bulk mean free
paths and the experimental ratio a. Fert and Bruno [13]
show that these parameters can be used directly in a
classical circuit model of the magnetoresistance, which
depends only on « in the limit of infinite bulk mean free
path. A similar resistor network model has been used by
Mathon and collaborators [44-46].

GMR increases with decreasing temperature because
spin-mixing due to magnon scattering decreases and
because spin-independent bulk scattering by various
mechanisms (structural irregularities, phonons) decreases.
The model of Camley and Barna$ [38] omits effects of
magnon scattering and cannot distinguish spin-dependent
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energy-band effects (the Mott effect) from spin-selective
impurity scattering. Using the same bulk mean free path
A for Cr and Fe in Cr/Fe, values of A required to fit

the temperature variation of GMR increased from

180 A to 6000 A over the range from room temperature
down to 4.2 K [38]. This low-temperature value of A is
unrealistically large. An analytic solution of the simplified
Boltzmann equation was derived and applied to study

the relationship between mean free path and the
magnetoresistance ratio [47], modeling spin-dependent
scattering only at interfaces. Values of the mean free path
at low temperatures were found to be in reasonable
agreement with experimental values. Applications of the
model of Camley and Barna$ include a study of Fe/Cr and
Co/Au multilayers [48], and a study of spin-dependent
bulk scattering in permalloy-based spin-valve structures
[49].

Valet and Fert [50, 51] used the Camley and Barnas
model to consider CPP geometry. Assuming uniform
current flow, the Boltzmann equation determines the
electric field or scalar potential function consistent with
steady-state conditions. A spin-dependent chemical
potential is added to the scalar potential to account for
spin accumulation if that should occur. When the spin
diffusion length is large compared with the mean free
path, the simplified Boltzmann equation reduces to a
macroscopic model in which the parameters are spin-
dependent mean free paths and chemical potentials.
Assuming a spherical Fermi surface not indexed by spin
(constant magnitude of the Fermi velocity), conductivity is
proportional to mean free path with the same factor for
both spin directions, and the spin-dependent current
density is proportional to the product of conductivity and
local electric field. This derivation justifies a formula that
equates a simple function of measured resistivities to a
linear function of the number of bilayers in a multilayer
material of fixed total thickness. The coefficients in this
linear formula determine the bulk spin asymmetry
coefficient B and the interfacial spin asymmetry coefficient
v, which can thus be deduced from experimental data
[52-54]. If the chemical potential parameters vanish, the
macroscopic equations simply state Ohm’s law separately
for the two spin components of the current density. The
local etectric field derived from Maxwell’s equations is not
indexed by spin. Valet and Fert [50, 51] consider only
collinear magnetization. If the magnetization in successive
magnetic layers is not collinear, the quantization axis for
electronic spin must be rotated, which may cause spin-flip
scattering in analogy to magnetic domain theory. This
subject is beyond the scope of the present review.

Levy and Zhang [14, 55] have recently reviewed
parametric models of GMR based on quantum theory.
The theory was derived for layered materials by Levy
et al. [56, 57), by Vedyayev et al. [58], and with some
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revisions by Camblong et al. [59-62]. Kubo formalism

is used rather than the Boltzmann equation. Green’s
functions are computed using a free-electron Hamiltonian
with delta function scattering potentials whose spin-
dependent coefficient parameters vary from layer to layer,
including both bulk and surface terms. Because a free-
electron model is used, spin-dependent Fermi surface

and Mott effects are not included directly. The essential
parameters are the spin asymmetry parameter «, which
may be different for bulk and surface scattering, and the
layer thickness.

In the Kubo linear-response theory [24, 35], the two-
point conductivity tensor is a current—current correlation
function, expressed in terms of the Green’s function for an
exact solution of the N-electron Schrodinger equation,
including all potential functions or operators responsible
for dissipative scattering. Since dissipative scattering is a
statistical process, as in the case of random impurities,
some statistical assumption is already inherent in the
definition of this Green’s function. This is explicit in
applications to substitutional alloys, using the CPA
(coherent potential approximation) model [31]. Camblong
[60] develops the Kubo formalism in real space, for
inhomogeneous conductors. In-plane periodicity is
assumed. The formalism uses a mixed representation
defined by in-plane momentum and normal coordinate z.
If spin-flip transitions are neglected and magnetization is
collinear, then

4 62 ﬁZ 2 oo
ot r) == | o] 4,6 1)V, V4,00, 1), (12)

where « is a spin index. Here

< = «—

V=V -V, (13)

r r r

where the arrows indicate an operator acting to the right
or left, respectively, and

A (r,r') = —Im Gli(r, 1'), (14)

in terms of the retarded Green’s function. Assuming in-
plane uniformity of multilayers, which implies a statistical
average of dissipative scattering built into the Green’s
function and also that the local electric field is uniform
in each plane, the nonlocal conductivity tensor can be
integrated in each plane to give a two-point tensor in

the z coordinates only. This is

delodky (1 -
O'H(Z,Z ) :;'Ef W (5/('1 +k ezez) [Aa(kﬂ;l,l )71,
(15)

where 4 _(k;; z, z') is the in-plane Fourier transform of
Equation (14). The integral here can be carried out

analytically and expressed in terms of the functions
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in which z_ and z_ are the lesser and greater of z, z',
respectively; A is an in-plane averaged spin-dependent
mean free path. The principal elements of the conductivity
tensor are

| 3C,
Ua(z’ Z’) = T {El[d)a(z’ ZI)] - E3[¢a(z’ Z/)]}’

. 3C,
o'ﬂ(zyzl) :TE3[¢01(Z’Z,)]’ (17)

where E (x) = [T ¢ "t dt and C, = e’k}/6m°h.

The parametrized quantum theory has clarified some
questions regarding the meaning of parameters introduced
in the Camley and Barna$ model. In particular, it supports
the use of angle-dependent transmission coefficients to
represent the effect of spin-dependent scattering
associated with interfaces [60]. The underlying physical
model for interfaces is an atomically thin transition layer,
interposed between two homogeneous metallic layers, in
which very strong spin-dependent scattering can be treated
as a volume effect. Introduction of this model [40, 41,

56, 63, 64] significantly improved the parametric fit to
experimental data that showed strong interface scattering.
Because the Green’s-function formalism derives a nonlocal
response function, valid for any assumed local electric
field, it can treat both CIP and CPP geometries, as well as
granular materials, with the same theoretical model. As
pointed out above, the electric field must vary inversely to
the local conductivity in CPP geometry. A very important
general result obtained with the parametrized quantum
theory {14, 61, 65, 66] is that for the same scattering
model, CPP magnetoresistance will always be greater than
CIP magnetoresistance, possibly by a large factor. This
follows from the fact that magnetoresistance depends on
the spin-dependent dissipative scattering integrated along
a current path. CIP magnetoresistance is always reduced
by current shunting through the spacer layer, going

to zero when the spacer layer thickness becomes greater
than the mean free path in the spacer metal. CPP
magnetoresistance depends on the global pattern of
magnetization, not on the internal arrangement of
magnetic layers [65]. This supports a simple classical
resistance model that has been very useful in interpreting
CPP experimental data [54, 65, 67]. The theory indicates
that properties of granular materials and layered materials
in CPP geometry should be similar [67, 68], and has been
used to study granular Cu-Co alloys. Spin-dependent
scattering is attributed to surface boundaries of Co
particles and to bulk scattering in the interior of these
particles [69].
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The quantum model has in general confirmed
conclusions of the semiclassical Boltzmann model, but
both have similar limitations. The implications of Mott’s
analysis of electronic conduction in transition metals
cannot be examined in terms of the simple spin-
independent spherical Fermi surfaces used in these
models. While the Kubo formalism is in principle more
fundamental, its full implementation involves such formal
and practical difficulties that essential aspects of physical
processes may be omitted or overlooked. Formalism based
on a nonlocal conductivity response does not appear to be
required in treating either the CIP or CPP geometry, as
shown in the simplified Boltzmann model of Valet and
Fert [50, 51] for CPP geometry. Zhang and Butler [36]
present a critical evaluation of the parametric models
discussed here. These authors evaluate CIP and CPP layer
conductivities exactly, using the Kubo formula, for the
quantum model of free electrons and random point
scatterers (FERPS). In the semiclassical limit, the exact
Kubo formula gives Equations (17), in agreement with
Camblong and Levy [59, 60]. Calculations using exact
theory in this limit agree well with the parametrized
Boltzmann equation, but differ from the approximate
quantum theory of Levy et al. [56, 57] when the mean free
path is comparable to layer thicknesses. Exact Kubo
calculations in the FERPS model, carried out by Zhang
and Butler [70] for FeCr multilayers, confirm the general
conclusion that an important cause of enhanced
magnetoresistance is dissipative scattering due to
interdiffusion of atoms across interfaces.

The Fuchs-Sondheimer theory may have nonphysical
consequences for microscopically thin films [71]. In
particular, a diffusely reflective boundary would induce
no resistivity in the absence of impurity scattering. A
modified theory [71], valid in the limit of vanishing bulk
scattering, obtains nonzero resistivity due to surface
roughness as a quantum effect. This theory agrees better
with experimental data on thin films with a very long
mean free path [72] than does Fuchs-Sondheimer theory,
even assuming large values of the specularity parameter.
Zhang and Butler [36] have recently evaluated thin-film
conductivity in the FERPS model, comparing the exact
Kubo formula with Fuchs—Sondheimer theory. Existing
experimental data can be fitted by correcting semiclassical
theory for zero-point motion of the electrons
perpendicular to the film plane and by allowing the mean
free path to depend on the direction of the Fermi velocity.

Although quantum effects are probably not important
for typical macroscopic GMR materials, ballistic transport
theory has been invoked in several theoretical models. In
the extreme limits of high material purity (very long mean
free path) and small geometrical dimensions, a metallic
conductor acts as a quantum wave guide for electrons.
The electronic wave functions, determined by boundary
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conditions, provide a discrete number of transmission
channels through the wave-guide region. If dissipative
scattering in the wave guide is negligible, the conductance
given by the Landauer-Biittiker formula {73, 74] is the
quantized expression (e’/h) N, where N is the number of
transmission channels. In this ballistic limit, dissipation of
energy takes place only in the contact region. Bauer [75]
uses the Landauer-Biittiker formula including internal
scattering to study CPP transport. The conductance G is
the sum over all transmission channels,

2

€
_ 2
G= h E |tnm<s| ’

nm.s

(18)

where ¢, is the scattering amplitude between
transmission modes indexed by n and m, with spin s,
neglecting spin-flip scattering. Spin-indexed square-well
potential functions were used by Bauer to model Fermi
surface and Mott effects, together with impurity
concentration and potential parameters. A formula is
derived that agrees with Zhang and Levy [65] when the
square-well potentials vanish.

In its original form, the Fuchs-Sondheimer theory
models and explains the increased resistivity of thin strips
or films due to geometrical confinement. As applied by
Camley and Barnas, this was extended to include
parametrized diffuse scattering at interfaces in layered
structures and spin-dependent transmission coefficients.
Examined in detail, the most important source of the
observed GMR appears to be spin-selective dissipative
scattering in or near the interfaces between magnetic and
spacer layers, or at the boundaries of granules. In the two-
fluid model, the strong interface scattering is essentially
transparent to one of the spin fluids, which is not affected
by this scattering when layer magnetizations are
parallel. For antiparallel or randomly oriented layer
magnetizations, mean free paths are reduced equally for
both spin fluids, and the total conductivity is reduced.
Since this happens for layered systems of considerable
thickness, the electronic wave functions are well
approximated by assuming semi-infinite geometry, and are
not confined to individual material layers. In view of this,
the Fuchs-Sondheimer confinement effect is probably not
directly involved in the observed large magnetoresistance,
although it must be taken into account with respect to the
outer boundary (vacuum interface). For a strip of given
thickness, the confinement effect produces the greatest
reduction of conductivity for the largest value of mean
free path [33]. In the two-fluid model, this occurs for the
favored spin component. It follows that the confinement
effect actually reduces the magnitude of the GMR ratio,
whose large observed values must arise from some more
specific mechanism.
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The mean free path in Equation (5) is a product of two
factors, a relaxation time 7 and the Fermi velocity v,
which may be determined by very different aspects of the
underlying physics. A parametrized spin-dependent mean
free path may not help to distinguish between alternative
microscopic mechanisms. The Fermi velocity is a property
of the spin-dependent Fermi surface for the particular
material under consideration, while the relaxation time is
characteristic of dissipative scattering effects that may be
unrelated to the electronic structure of this material.
Equation (5) implies that conductivity is dominated by the
largest values of the mean free path. Thus, in examining
the cause of enhanced magnetoresistance in particular
materials, theory must consider the largest possible values
of the Fermi velocity, hence the s/p conduction electrons
in transition metals, and mechanisms for spin-selective
reduction of relaxation time, hence strong scattering by
any dissipative process. Since s/p energy bands are the
least sensitive to local magnetization, any large spin-
dependent effect must be due to a significant influence
of magnetization on some strong scattering mechanism.
To examine this issue requires a detailed theoretical
treatment of spin-dependent scattering. This has been
done in the ab initio calculations discussed below.

6. Models using ab initio band structure

Several groups have developed methodology capable of
combining self-consistent energy-band calculations with
transport theory. Butler et al. [76] use the layer KKR
(LKKR) method [37] for self-consistent local density
functional calculations of the electronic structure of
layered materials. Because the LKKR method constructs
electronic Green’s functions directly, it is compatible with
the Kubo formalism, and also with the coherent potential
approximation (CPA) for substitutional alloys. This has
made it possible to study permalloy spin-valve structures.
Mertig et al. [77, 78] combine self-consistent superlattice
calculations on layered magnetic materials with a Green’s-
function method for magnetic impurity scattering.
Electrical conductivity is computed using the quasiparticle
Boltzmann equation. Nesbet [79] combines self-consistent
superlattice calculations, by the LACO full-potential
method [80, 81], with perturbation-theory calculations of
spin-dependent scattering from displaced atoms at
interfaces, and uses the quasiparticle Boltzmann equation
to compute spin-dependent conductivity. Schep et al.

[82, 83] carry out self-consistent superlattice calculations,
but then use this band structure only for calculations in
ballistic transport theory, which is not appropriate to
current CIP and CPP experiments with normal metals and
magnetic alloys. Coehoorn [84, 85] uses self-consistent
superlattice calculations to discuss induced moments at
interfaces. Ni moments are reduced by contact with Cu at
an interface, but stabilized by a Co monolayer. Atomic 63
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moments are found to depend strongly on nearest-
neighbor environment at an Fe/V interface, but to be
insensitive to environment for Fe/Cr.

The LKKR method used by Butler et al. [76] explicitly
constructs an electronic Green’s function, but in order to
facilitate computations, the electronic mean free path
at the Fermi surface is parametrized and used in the
quasiparticle Boltzmann equation, without scattering-in
corrections. Calculations were done in CPP geometry only.
CoCu superlattices were studied with up to six alternating
layers of each metal [76]. Interdiffusion of the two atomic
species at a concentration of 1% was treated by CPA alloy
theory. In the absence of any other dissipative scattering
mechanism, large values were computed for the
magnetoresistance ratio, varying from factors of 9.80 to
21.23 depending on the number of atomic layers. Similar
calculations on permalloy (NigFe,;) (denoted here
by Py), in PyCu superlattices, obtained extremely large
magnetoresistance ratios, varying from factors of 204 to
1633 depending on the number of layers. These very large
ratios result from nearly zero resistivity computed for bulk
permalloy in the absence of the dissipative scattering
mechanisms present in the physical material but not
modeled, and also from the neglect of spin mixing in the
alloy. Recent ab initio CPA calculations by Banhart and
Ebert [86] on NiFe alloys included the spin-orbit
interaction and obtained residual resistivities and
anisotropic magnetoresistance of the same magnitude
as observed data at low temperatures.

Systematic calculations of layer-dependent nonlocal
conductivity were carried out for trilayer Co/Cu/Co spin-
valve structures [87, 88], using Kubo theory without vertex
corrections. The physical model is that of Cu layers of
varying thickness embedded in Co. The layers have (111)
orientation in an fcc lattice. Quasiparticle lifetimes were
parametrized, not computed from a first-principles model.
In this study, the methodology was verified by computing
the layer-dependent conductivity of a free-electron gas,
subject to a specified bulk relaxation time, and by
comparing results with the analytical model of Zhang
and Butler [36]. Similar tests of both CIP and CPP
conductivity were made for pure Cu and for both spin
components of the current density of pure Co.

It has been known for some time that the energy-band
structure of Cu at the Fermi level is very similar to that of
the majority-spin bands in magnetized Co, but different
from the minority-spin bands. This implies qualitatively
that spin-up (majority) conduction electrons move freely
between the two metals, while spin-down electrons are
impeded by a potential mismatch. How this affects
conductivity, which depends on dissipative scattering, has
been discussed by Nesbet [79], who computed the implied
strong spin-selective scattering due to interdiffusion of
atoms across a layer interface. Butler et al. [87, 88] compute
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several quantities that are related to this mismatch at
interface boundaries. The number of majority-spin
electrons per atom in the layered structures is very similar
for Cu and Co, 5.5 and 5.35, respectively, while the
number of minority-spin electrons on Co is only 3.65. The
density of states at the Fermi level is very similar for
majority electrons in Cu and Co but is much larger for
minority electrons in Co, as are the d-wave phase shifts
for the phase-coherent potential scattering that determines
energy-band structure. These data are consistent with
strong spin-dependent (or spin-selective) dissipative
scattering by atoms displaced at an interface. Calculations
in which a parametrized value of the quasiparticle lifetime
was set equal for all states at the Fermi level gave very
small magnetoresistance. A more detailed model used
different relaxation-time parameters for Cu and Co, the
same for both spins. The values used were appropriate to
room-temperature bulk resistivities of 2.8 uQ-cm for Cu
and 14.8 uQ-cm for Co. The scattering rate for majority-
spin Co at the interface was set equal to twice the bulk
value and, for minority electrons, to 24 times the bulk
rate. These numbers were taken from CPA alloy
calculations for Cu impurities in Co and for spin-aligned
Co impurities in Cu. Layer-dependent conductivities
computed with these parameters show large
magnetoresistance.

In a third series of calculations, the Mott final-state
effect was modeled by assuming that the electron lifetime
for majority carriers in the Co bulk layers is seven times
the corresponding rate for minority carriers. With lifetime
parameters assigned separately to Cu and Co, spin-up and
spin-down, and to bulk vs. interface layers, the layer-
dependent conductivity was computed and showed large
magnetoresistance. These calculations reinforce the
conclusion that spin-dependent scattering from atoms
displaced across an interface is an important mechanism
for enhanced magnetoresistance, and they add new
information on purely band-structure effects. Similar
calculations were carried out by Nicholson et al. [89]
to study the reduction of magnetoresistance due to
nonferromagnetic atoms at Ni/Cu and Py/Cu interfaces in
spin-valve structures. The Ni atomic moment is found to
be reduced by contact with Cu. At Py/Cu interfaces, the
Fe moments become disordered due to weakening of the
effective interatomic exchange interaction. Butler et al.
[90] give details of the theory relevant to alloys. Results of
these studies have been summarized and discussed by
Butler et al. [91]. This summary includes a survey of spin-
dependent matching of effective potential functions in the
transition metals, and indicates that the close match of
spin-up potentials in layered CoCu has counterparts in
PyCu, with a three-way match among Ni, Fe, and Cu, and
in FeCr, favoring spin-down electrons in the latter case.
Studies by this group show quite large ratios between
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majority and minority carrier conductivities in NiFe and
NiCo alloys.

Strong spin asymmetry of scattering by impurities in
transition-metal matrices is well established experimentally
and has been considered to be a likely cause of enhanced
magnetoresistance since the first observations of GMR [1].
Quantitative theoretical studies of residual resistivity have
been carried out by Mertig et al. [92-94] on Ni and
ternary alloys. The method used, described in detail by
Zeller [95] and applied to dilute Co alloys by Stepanyuk
et al. [96], is an application of multiple-scattering
theory using the muffin-tin model and local-density
approximation (LDA) in a Green’s-function formalism.
Spin-dependent charge densities, taken from self-
consistent calculations on the elemental metals, are used
to construct the structural Green’s-function matrix for the
host crystal. Each muffin-tin sphere is characterized by a
scattering ¢-matrix, so that an isolated substitutional
impurity defines an incremental matrix At at the site of
substitution. The Green’s function for the perturbed
system is related to that of the host crystal and to Az by a
matrix Dyson equation. The local scattering matrix At is
transformed into a nonlocal matrix T that incorporates
multiple scattering effects, using another algebraic
equation that involves the structural Green’s function [93].
Point-to-point transition probabilities over the Fermi
surface are computed from the T-matrix and used in the
quasiparticle Boltzmann equation to compute the residual
resistivity proportional to the concentration of impurity
atoms. Scattering-in terms are computed by iterative
solution of Equation (3) [29]. The required integrals
over the Fermi surface are evaluated using a modified
tetrahedron method [30]. These calculations were designed
to be fully quantitative within the limitations of the LDA
and muffin-tin models. The results most relevant to GMR
are those for 3d/4s/4p transition and noble metals. For
atomic impurities Fe through Zn in Ni, the majority-spin
conductivity is very little affected by impurity scattering,
while large effects are found for minority-spin
conductivity. This implies that scattering by an isolated
impurity atom in this series is strongly spin-selective.
Similar calculations were carried out for ternary alloys
[94].

Calculations using this methodology to study GMR were
carried out for FeCr multilayers [77, 78]. Spin-dependent
residual resistivities were computed for transition and
noble-metal impurities in bee Fe, using the methods
applied earlier. In agreement with qualitative ideas drawn
from comparison of band structures for the elemental
metals, an interesting reversal of spin-dependent effects is
found for impurity atoms that respectively precede and
follow Fe in the periodic table. Comparing Cr with Ni,
both in Fe, the former shows strong impurity scattering of
majority electrons, while the latter shows strong scattering
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of minority electrons, as in the case of CuCo discussed
above. For Co in Fe, electrons of neither spin are strongly
scattered. This spin-selective scattering effect was
examined in calculations of magnetoresistance for FeCr
multilayers. Self-consistent LDA calculations were carried
out for a series of layered materials with a superlattice
unit cell of composition Fe,Cr  with n = 2, 12 for parallel
magnetization vectors, twice as large for antiparallel
magnetization. The layered structure is described by a
(100) tetragonal unit cell on the fcc Fe lattice. The
Boltzmann equation was used to model impurity scattering
by a concentration ¢ of Cr atoms in the Fe layers. An
averaged relaxation time computed from the T-matrices
obtained in calculations on Cr impurity scatterers in Fe
was assigned to all Bloch states of majority spin, and a
corresponding averaged parameter value was assigned to
all states of minority spin. The ratio of these parameters is
the spin asymmetry ratio as obtained in calculations of
residual resistivity. Large GMR ratios were found in these
calculations, which omitted all scattering mechanisms
other than the Cr impurity scattering that was modeled.
As a function of spacer layer thickness, the computed
GMR showed oscillations described by the authors as
quantum coherence oscillations due to the supercell
geometry. Because the conductivity tensor is computed
directly in the Boltzmann formalism, results were obtained
for both CIP and CPP geometries. The latter values of the
GMR ratio are larger for all spacer thicknesses, by
approximately a factor of 4. Similar calculations using
spin-independent relaxation times gave much smaller
GMR ratios, consistent with other models based solely on
Fermi-surface effects [97]. From the residual resistivity
studies, it is expected that Cr and Cu atoms as scattering
centers in Fe should have opposite spin-dependent effects.
This was studied by Zahn et al. [78]. The combination of
both impurities was found to reduce the computed GMR
ratio significantly. An effect of this kind has been
observed as inverse spin-valve magnetoresistance [10].

All three of the methods cited above that have been
used for ab initio calculations of the electronic structure of
GMR materials are versions of multiple-scattering theory.
In this theory, local solutions of the LDA Schrodinger
equation are computed by numerical integration in each
atomic cell or sphere and then combined into solutions
that satisfy global continuity and boundary conditions.
Solutions corresponding to poles of the Green’s function
exist at energy values e(s, k) determined by the secular
equation

det (I — gt) = 0. (19)

Here t(e) is an atomic-cell scattering matrix and g(e, k) is
a matrix of structure constants. Matrix ¢ is constructed
from local solutions of the Schrédinger equation, while g
is a matrix representation of the free-electron Green’s
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function for a given geometrical structure. The energy
bands of magnetic and spacer metals in typical layered
GMR materials match closely at the Fermi energy in one
spin direction, while there is a substantial mismatch for
the opposite spin [87]. Because energy bands in a fixed-
space lattice are determined entirely by the ¢-matrices,
the spin-dependent ¢#-matrices of the two atomic species at
the Fermi energy must also be very similar for one spin
direction and different for the other. This observation
immediately implies a possible mechanism for enhanced
magnetoresistance [79]: If these two species interdiffuse
across a layer boundary in a magnetized material, the
resultant impurity scattering is determined by the
difference At of the spin-dependent ¢t-matrices. This will
be large for one spin direction and small for the other,
which implies spin-dependent dissipative scattering for
random interpenetration of the adjacent metals. This in
turn implies magnetoresistance. Since this scattering
mechanism must be concentrated at layer interfaces

or grain boundaries, it is consistent with the strong
interfacial spin-dependent scattering effect deduced from
experimental data and parametric theories. The question
to be resolved is whether the magnitude of resistivity due
to this scattering mechanism is large enough to make a
significant contribution to observed GMR ratios.
Calculations designed to examine this question were
carried out on superlattice models of layered CuCo {79]
and CrFe [98, 99]. The answer was found to be clearly
affirmative, in qualitative agreement with the large GMR
effects found in calculations by Butler et al. [76, 88] and
by Zahn et al. [78]. The general conclusion of these

ab initio studies is that this is in fact the dominant
mechanism for the observed GMR.

In the LACO method, as used for ab initio GMR
calculations, multiple-scattering theory is expressed in
terms of -matrices computed for space-filling local atomic
(Wigner-Seitz) cells. This allows a more direct treatment
of the outer region of each atom than does the muffin-tin
approximation, used for example in LKKR calculations.
In the reported study of layered CuCo, preliminary
self-consistent calculations on fcc Cu and on both
paramagnetic and ferromagnetic Co (on the fec Cu lattice)
provided initial radial density functions for (001)-
tetragonal (CuCoCu)(CuCoCu), also on the fcc Cu space
lattice. This defines the supercell of a layered model
system in which the magnetization of successive Co planes
can be set either parallel (11) or antiparallel ().
Self-consistent calculations were carried to convergence
for both magnetization alignments using an energy-
dependent basis set designated by spd(fg) for each atomic
cell [81]. These calculations provided the raw data needed
for perturbation theory computations of point-to-point
scattering rates over the Fermi surface due to a
concentration ¢ of impurity atoms Cu in Co (hence
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concentration ¢/2 of interchanged Co atoms in each Cu
layer) due to diffusion across the CoCu interface [79]. The
calculations assumed that spin polarization was preserved
for the displaced atoms and their neighbors, and simplified
the scattering problem by neglecting Green’s-function
corrections to the bare scattering matrix As and by
omitting scattering-in corrections. All results given here
are internally consistent, but numbers differ from the
original CuCo publication [79] because of some program
upgrades and a redefinition of c.

Retaining impurity concentration ¢ as an unknown
parameter, calculations in the sparse impurity limit give
relaxation times in the form cr for each Bloch wave state
at the Fermi level. The results show large spin dependence
and large variation with magnetization alignment. The
computed values, in atomic units, differ by orders of
magnitude:

M) er(1)=10" cr(|)=10"%
N@) er(1)=10" er(}) =10

The resulting conductivity tensor is strongly spin-
dependent. The computed in-plane conductivities (CIP)
are, in atomic units,

M(f) co(])=0.53096 co(|)=0.00068
co(f)=0.53163;

N(@@) ca(1)=0.00668 co(l)=0.00668
co(a) = 0.01336.

If this were the only dissipative scattering mechanism at
work, the implied magnetoresistance ratio, defined here by
[a(f) — o(a))/o(a), would be the very large factor 38.79.
LKKR calculations [76] of spin-dependent scattering due
to atomic diffusion in Cu/Co/Cu gave GMR ratios of
similar magnitude. The results given above for spin-
dependent scattering include the Mott final-state effect. In
order to evaluate its contribution to GMR, calculations
were carried out with the same spin-dependent transition
probabilities, but these were averaged over initial state
and spin. Explicitly, in the general formula 7, = 3, P, ,
for the quasiparticle lifetime, evaluated at each quadrature
grid point on the spin-dependent Fermi surface, the
summation symbol includes the spin-dependent density of
final states. If the transition probabilities P are averaged
over initial states, the computed lifetime 7 depends only
on the mean density of final states of given spin and
models the spin-dependent Mott effect. The modified
values of ca computed in this way are

M(f) ca(1)=0.00863 co()=0.00053
ca(f) =0.00916;
@) ca(1)=0.00057
co(a) = 0.00114,

ca(|) =0.00057
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The implied magnetoresistance ratio is 7.04. Hence,
the Mott effect by itself can produce enhanced
magnetoresistance, but the specific effect of spin-
dependent interface scattering gives much larger GMR.
These very large magnetoresistance ratios are valid
only in the absence of dissipative scattering by other
mechanisms. The observed ratios combine this specific
interface scattering effect with the bulk resistivity of the
pure metals. Under experimental conditions, mean free
paths in the nominally pure metals are by no means
infinite. Using estimates of A(Cu) = 200 A and A(Co) =
70 A, and weighting 1/A for each species by the relative
number of atoms in the supercell, the resulting spin-
averaged mean free path is given by 1/A = (n. /A, +
ne /A M (e, + 1, ). Bulk scattering was modeled by
substituting this value of scalar A into Equation (5). The
implied values of ¢ for spin-independent bulk scattering
are

M) o(1)=0.41071 o(])=0.38671

a(f) = 0.79741;

V@) o(1)=0.47604 o(])=0.47604

a(a) = 0.95209.

The implied magnetoresistance ratio for spin-independent
bulk scattering is —0.16, opposite in sign from the
observed GMR, if spin-dependent impurity scattering is
neglected. This result indicates that despite the spin
dependence of the Fermi surface, purely spin-independent
scattering cannot account for GMR. For comparison with
observed data, resistivities due to bulk scattering and to
spin-dependent interface scattering must be combined.
Resistivities are added separately for each spin; then the
resulting spin-indexed conductivities are added. This gives
a rational function of interpenetration concentration ¢
that interpolates AR/R between pure bulk and interface
scattering limits. If ¢ is taken to be 0.05, and other
quantities are taken from the data given above, this
formula gives AR/R = 0.96, which is comparable to
estimates of the empirical limit of GMR values for this
extreme example of single atomic layers.

These superlattice calculations obtain similar results for
the perpendicular principal axis of the conductivity tensor,
relevant to CPP geometry if the local electric field can be
averaged over the tetragonal translational unit cell of this
model. From the Fermi surface and relaxation times used
above for CIP geometry, the corresponding results for co
due to atomic interdiffusion in the model superlattice
(CuCoCu){CuCoCu) are

(f) ca( ) =0.00291

co( 1) =2.15654

co(f) = 2.15946;

IBM J. RES. DEVELOP. VOL. 42 NO. 1 JANUARY 1998

co( ) =0.00480

N(a) co(1)=0.00480

co(a) = 0.00961.

The implied value of AR/R is 223.7. However, the
computed magnetoresistance ratio for pure bulk
scattering, parametrized as above, is 0.24. When these
physical mechanisms are combined for ¢ = (.05, the value
of AR/R is 6.63, significantly larger than the CIP ratio

but of the same order of magnitude.

Similar calculations have been reported for layered
CrFe, modeled as a superlattice with (001) tetragonal unit
cell (CrFeCr)(CrFeCr) on the bec Fe space lattice [98, 99].
Here a point of particular interest is the expected
reversal of the spin-sense of the polarized current flow
[79], compared with the favored majority spin current flow
in CuCo. The mechanism is shown very clearly in the
essentially quantitative calculation of impurity scattering in
Fe by Mertig et al. [77]. These authors find that residual
resistivities for majority carriers are much larger than for
minority carriers for Cr in Fe, whereas the opposite is true
for Cu in Co, from the calculations discussed above [76, 79]
and from unpublished results by Mertig [100] based on
impurity calculations by Stepanyuk et al. [96]. Superlattice
calculations on layered CrFe [99] give values of in-plane
co for the atomic interpenetration mechanism as

M(f) ca(1)=0.00032 co(|)=10.01632

ca(f) =0.01664;

N@) co(1)=0.00186 co(|)=0.00186

co(a) = 0.00372.

In contrast to CuCo, the conductivity here is dominated by
electrons of minority spin. If there are no transitions

by other scattering mechanisms, the implied
magnetoresistance ratio is 3.47.

Modeling the pure Mott effect, as discussed above for
CuCo, gives AR/R = 2.31. All ratios here are smaller than
in the case of layered CuCo, and the Mott final-state
effect is relatively more important. When pure bulk
scattering is modeled with empirical mean free path values
X = 40 A for both Cr and Fe, the magnetoresistance ratio
computed from the spin-polarized superlattice energy-
band structure is —0.05. When bulk and interface
scattering are combined, the rational formula evaluated
for ¢ = 0.05 gives AR/R = 1.07, consistent with estimates
of the experimental limit for the extreme case of single
atomic layers. These calculations [98, 99] included results
(not published) for CPP geometry, assuming that the local
electric field can be averaged over the (CrFeCr)(CrFeCr)
translational cell. As in the case of layered CuCo, all
ratios are found to be larger for CPP geometry than for
CIP geometry. The CPP magnetization ratio for spin-
dependent interface scattering alone is computed to be 67
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6.06, reduced to 2.11 for the pure Mott effect, and —0.18
for pure bulk scattering. Combining bulk and interface
scattering for interpenetration concentration ¢ = 0.05
gives AR/R = 1.26, greater than the CIP ratio but by a
smaller factor than that found for layered CuCo.

These calculations show the expected reversal of the
spin sense of the steady-state polarized electronic current
density, determined by spin-dependent dissipative
scattering due to interchange of atoms of two species
across an interface. Since this effect is governed by the
self-consistent f-matrices computed for these atoms in
their metallic environments, it is appropriate to
characterize this as an atomic mechanism, which appears
to be the principal underlying cause of GMR. By
implication, an electronic current passing through a
magnetized magnetic/spacer interface is spin-polarized to
the extent that the spin-indexed atomic f-matrices differ at
the Fermi energy. A second interface of this kind placed
within a spin diffusion length (determined by spin-flip
scattering or precession in a magnetic field) will act as a
polarization analyzer. If such a combination of polarizer
and analyzer could be realized experimentally, it would
constitute a micromagnetometer or magnetoelectric
switching device [98, 99]. A simple test of these ideas is
to fabricate a device with like interface elements, which
should show a resistance minimum for parallel-aligned
magnetization vectors, and compare with unlike interface
pair elements like CuCo and CrFe in the same structure,
for which the resistance should be maximized by parallel
magnetization. This has been realized to some extent
in a recent experiment showing inverse GMR [10], and
discussed by Zahn et al. [78] as a consequence of the
opposite spin sense for residual resistivity due to Cr and
Cu impurities, respectively, in Fe.

The ab initio calculations support the conclusion that
spin-dependent interface scattering is decisive for the
largest observed GMR ratios. However, it is clear that the
Mott final-state effect implies spin-dependence for any
generic scattering mechanism (which may itself be
independent of spin) in the bulk of a magnetized
transition metal or alloy. The calculations by Nesbet
[79, 99] show that relatively large GMR can result from
the Mott effect alone, when state-to-state scattering
probabilities are spin-averaged. Since these calculations
model atomic layers that are all located at an interface,

they do not give specific information about bulk scattering.

It is relevant here that the spin asymmetry ratios a from
ab initio calculations compiled and summarized by Mertig
[100] in general are different if host and impurity species
are interchanged. For example, o for Co in Ni is 92.4,
while « for Ni in Co is 522.4. A simplified explanation

of this difference is that the spin asymmetry parameter

is determined both by the difference of atomic-cell
f-matrices, which would give equivalent effects if two
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species with similar band structure at the Fermi level
were interchanged, and by the Mott effect, which is
characteristic of the energy-band structure of the host
species, hence different in the two cases. The simplest
conclusion is that the two values of a are large because of
large At, but that they differ because of the Mott effect
for the different host metals. The computed value of o for
Fe in Ni is very large (an experimental value is 20 [43]),
while that for Ni in Fe is 5.48 (experimental value 3 [43]).
Although different values of « might be expected because
of the different lattice structures of hosts fcc Ni and bcc
Fe, the difference between Co in Ni and Ni in Co must be
due to the detailed band structure and minority-band
occupancy. In CPA theory, At is defined for each atom as
the difference between its atomic-cell -matrix and the
statistical f-matrix of the coherent potential. Including the
Mott effect, the large value of o for Fe in Ni implies a
substantial bulk scattering spin asymmetry in permalloy, as
computed in the ab initio CPA calculations of Butler et al.
[76, 89, 91]. Taking into account the very large values of «
for Co in Ni or Ni in Co, this is not inconsistent with the
experimental data of Parkin [11], which show that the
interface effect of a thin Co layer in permalloy dominates
any bulk scattering effect on GMR. It is interesting to
note that the parametric model study by Dieny [49] of
Py/Cu spin-valve structures finds A| = 6 A, indicating that
the minority-spin resistivity is high and minority-spin
current density is low even in a model of permalloy that
includes only bulk scattering parameters.

Summary and conclusions

This paper has reviewed theoretical models of spin-
dependent scattering in GMR materials. Experimental
data indicate that the magnitude of GMR in layered
materials is controlled primarily by some mechanism
associated with magnetic/spacer interfaces. Parametrized
semiclassical and quantum-theoretical models of spin-
polarized electron transport identify the parameters
relevant to this interface effect, emphasizing the spin
asymmetry o for impurities implanted in transition metals.
The interface effect is modeled in terms of spin-dependent
impurity scattering concentrated in an interface layer of
atomic dimensions. Recent ab initio calculations of the
spin-dependent energy-band structure and of the resulting
spin-dependent conductivity provide quantitative values of
the spin asymmetry ratio and demonstrate its relevancy to
GMR materials. These ab initio calculations study the
specific mechanism of spin-selective scattering by
transition-metal atoms embedded in a nonmagnetic
substrate or of nonmagnetic atoms embedded in a
transition-metal substrate, and of atoms displaced across
the boundaries of magnetized layers or granules. This
essentially atomic mechanism appears to be the principal
cause of the observed GMR in Fe/Cr and Co/Cu
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materials. These calculations include the basic mechanism
for spin-dependent scattering proposed by Mott, a
consequence of spin-polarized energy-band structure in
transition metals, which is omitted in parametric models
based on free-electron energy bands. The Mott effect

causes any generic scattering mechanism to be spin-
dependent in a magnetized transition metal and augments
the effect of spin-dependent interface scattering in GMR
materials. In the CPA model of a substitutional alloy, each
atom is surrounded by a statistical distribution of
neighbors. This implies that both Mott and atomic
interdiffusion effects are present in the interior of a
magnetic alloy. A parametrized model finds a very short
mean free path for minority-spin electrons in permalloy,
and ab initio calculations indicate significant spin-
dependent bulk scattering.
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