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This paper  presents  a  critical  review of 
theoretical  studies of spin-dependent 
conductivity  in GMR (giant  magnetoresistive) 
materials.  Earlier  studies  used  relatively  simple 
models of the electronic  states  and  energy- 
band  structure.  Several  more recent 
calculations of electronic  transport in layered 
materials are based on ab initio treatment of 
the  spin-dependent  energy  bands  and  Fermi 
surface. By including  realistic  energy-band 
structures,  these  studies  have been able  to 
make quantitative  comparisons of alternative 
mechanisms  for  enhanced  magnetoresistance 
and to explain the relative importance of spin- 
dependent  scattering at interfaces. 

1. Introduction 
Giant  magnetoresistance  (GMR) was first observed in 
layered Fe/Cr  magnetic  structures by Baibich et  al. [l] and 
by Binasch et al. [2]. These  structures have magnetized 
layers separated by a nonmagnetic  spacer  metal. 
A material with magnetized layers or  granules  that is 
spontaneously  antiferromagnetic, or whose magnetization 
vectors  are  randomly  oriented, exhibits GMR when the 
electrical resistivity is significantly reduced by a magnetic 
field that  induces  parallel  magnetization  alignment.  GMR 
is characterized by the  magnetoresistance  ratio ARIR, 
where AR is the  total  decrease of electrical  resistance as 
the  applied  magnetic field is increased  to  saturation  and 

R is measured in the  state of parallel  magnetization. 
The underlying physical process in GMR  materials is 
dissipative scattering  that is stronger  for  one spin 
component of the  electronic  current density, depending  on 
magnetization. If the spin polarization of the  electrons is 
well-defined on a length  scale  that is large  compared with 
the spacing of magnetized layers or granules,  both spin 
components  are relatively  strongly scattered when  local 
magnetization  directions vary. If the  magnetization  vectors 
are  ferromagnetically  aligned,  the  more weakly scattered 
spin component  carries  electric  current with  lower 
resistivity and  shunts  out  the  more strongly scattered 
component. 

Although  the original experiments  were  done with 
nearly perfect crystalline films produced by molecular 
beam epitaxy (MBE), Parkin  et al.  [3] showed  that  GMR 
occurs  in  metallic films deposited by sputtering, allowing 
much simpler  fabrication.  An  experimental survey of 
GMR  for  Co/Ru,  Co/Cr,  and  Fe/Cr  sputtered  superlattice 
structures  revealed  that  the  saturation  magnetoresistance 
oscillates  with spacer layer thickness [3]. This  has  turned 
out  to  be  due  to oscillation of the  interlayer exchange 
coupling  between  magnetized layers,  which is not 
discussed here. If antiparallel  alignment is forced  on 
the  initial  structure,  the  GMR  ratio simply decreases 
monotonically with  spacer thickness [4]. Another  result 
discovered  using sputtered  samples is that Co/Cu layered 
structures have large  room-temperature  GMR  ratios if the 
Cu  spacer  thickness is chosen  to  make  the oscillatory 
exchange coupling between Co layers antiferromagnetic [S, 61. 
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While GMR was originally  observed for  layered 
elemental  metals, it was found  to  occur  for  ferromagnetic 
permalloy (Ni,,Fe,,) [7] and also for  granular  materials 
[8]. In  the  case of permalloy (Py), the  magnetoresistance 
ratio is reduced by compositional intermixing at PyiCu 
interfaces [9]. This is attributed  to  reduction of 
magnetization in the mixed layers. An inverse GMR effect 
is observed if thin  Cr layers are  intercalated  into  Fe in  an 
FeiCu multilayer structure [lo]. 

effect of interface  and bulk scattering in GMR  materials, 
Parkin [1 I] showed for many different  combinations of 
metals  that  the  magnetoresistance  depends exponentially 
on  the  thickness of an  interface layer,  with a  characteristic 
length  that is extremely short.  These  experiments were 
done with sputtered spin-valve structures  described as 
exchange-biased  sandwiches (EBS), of the  form 
F,iSiF,/FeMn.  The  magnetization of layer F ,  is pinned by 
exchange  coupling to  antiferromagnetic  FeMn,  and  the 
magnetization of layer F ,  is controlled by the  applied 
magnetic field. In  the principal experiment,  metals F ,  and 
F, were  permalloy (Py) and  the  spacer S was  Cu.  Very 
thin layers of Co  were  deposited  at  the PyiCu interfaces. 
These layers produced  a  large  increase in the  GMR  ratio, 
which approaches  a  saturation  value  on  a  length scale 
of atomic size (= 2.3 A) as the  Co layer thickness is 
increased.  This scale parameter is insensitive to  the 
thickness of the Py layers. In  order  to  examine  the  relative 
importance of bulk scattering, EBS samples  were  prepared 
with atomically  thin Co layers  displaced into  the  interior 
of the Py layers. Magnetoresistance  decreased rapidly with 
increasing displacement  distance, on the  same  length 
scale, and  saturated  at  the original  value for PyiCu. 
When Py interface layers were  inserted in a CoiCu EBS 
structure,  GMR  decreased with Py layer thickness  on  a 
length scale = 2.8 A. A survey of other  combinations of 
metals gave similar results in all cases  studied,  indicating 
the  predominant effect of the  magneticispacer  interface  on 
an atomic scale = 1.5 to 3 A. A  recent review of GMR 
experimental findings has  been given by Parkin [12]. 

Fert  and  Bruno [13] and Levy [I41 have  recently 
reviewed experimental  data  and  theory  relevant  to 
electrical conductivity  in GMR  materials.  These  authors 
discuss parametrized  theoretical  models  that have been 
used to  describe  the  enhanced  magnetoresistance 
characteristic of these  materials.  The  present  paper 
concentrates  on  the  theory of spin-dependent conductivity, 
developing a  general formalism applicable  to  GMR 
materials.  The physical basis of the  observed  enhanced 
magnetoresistance is discussed  in Section 2. A general 
review of semiclassical and  quantum  transport  theory is 
given in Section 3, while the  question of nonlocal  response 
is discussed in Section 4 in the  context of Maxwell’s 
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semiclassical and  quantum  models of GMR  are surveyed 
in Section 5. Section 6 surveys more  recent  theoretical 
studies  based  on ab initio energy-band  calculations  for  the 
conduction  electrons.  General conclusions are  summarized 
in the last section. 

2. The  physical  basis of enhanced 
magnetoresistance 
The  essential physical process in GMR  materials is spin- 
dependent dissipative scattering.  One  spin  component of 
the  electronic  current is everywhere  relatively weakly 
scattered if magnetization  vectors in magnetized sheets 
or  granules  are  aligned  parallel  to  one  another. In 
antiferromagnetic  alignment,  both spin components  are 
equally  strongly scattered.  Experimental  data  and 
theoretical  models  indicate  that  the  predominant spin- 
dependent  scattering  process is associated with the 
interfaces in  layered elemental  materials  and with the 
grain  boundaries in granular  materials.  This is consistent 
with data  indicating  a significant volume effect in 
permalloy,  since an alloy might be  considered  to  be a 
granular  material with grains of atomic size throughout its 
volume. Although most experiments have been  carried  out 
in CIP  geometry  (conduction  in-plane),  the  largest  GMR 
ratios  occur in CPP  geometry  (conduction  perpendicular 
to  the  plane).  This is consistent with a  predominantly 
interfacial  mechanism, since  in CPP  geometry  the  current 
must flow through all interfaces  between  the  measuring 
leads, while in CIP  geometry  each  conducting  spacer layer 
acts  as a  current  shunt. 

As  originally pointed  out by Mott [15-171 and discussed 
in the  textbook by Mott  and  Jones [18], the observed 
reduced conductivity of transition  metals as compared  to 
noble  metals is due  not  to  conduction by d-carriers but to 
transitions  into  empty  d-states  at  the  Fermi level in the 
transition  metals.  Because  the sip effective  mass is much 
less than  that of the  d-electrons, sip electrons  are  the 
principal charge  carriers in both  noble  and  transition 
metals.  Any  dissipative  mechanism for  scattering  into 
unoccupied  d-states  at  the  Fermi level reduces  the  lifetime 
of conduction  electrons.  In  a  magnetized  transition  metal, 
this  final-state  effect causes  the  mean  free  path of 
minority electrons  to differ from  that of majority 
electrons.  Hence,  the conductivity depends  on  spin. In the 
two-fluid model it is an  immediate  consequence of Ohm’s 
law that  the two spin components of the  conduction 
electrons,  subject  to  different resistivities but  sharing  a 
common voltage  drop, carry different  current  densities 
under  steady-state  conditions.  This implies that  the 
electronic  current is spin-polarized,  a  result confirmed in 
detailed  studies of the  Boltzmann  equation discussed 
below. A  correct  description of the  spin-dependent  Fermi 
surface is essential  to any realistic  theory of this Mott 
effect. If some  scattering  process is itself strongly  spin- 
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selective, it provides a  mechanism  for  spin-dependent 
conductivity in addition  to  the  Mott mechanism. An 
important  example is scattering by atoms  interchanged 
randomly across the  boundary of a  magnetized layer or 
across the  surface of a magnetized granule. 

A magnetic  material with spin-dependent conductivity 
must  exhibit magnetoresistance,  because within each 
magnetized layer or  granule  one spin component of the 
conduction  electrons is subject to lower resistivity. A spin 
component  can have  this “correct” spin polarization  sense 
throughout  the  material only if the local magnetization 
vectors  are  ferromagnetically  aligned. If the  alignment is 
antiferromagnetic  or  random,  the  electronic  current must 
flow at least in part  through  regions  or  domains in which 
the  magnetization  direction differs, so that  both spin 
components  are subject to relatively strong  scattering 
in some region. This implies enhanced resistivity. 
Magnetoresistance is always reduced by spin-flip 
scattering,  since  the  distinction between the two spin 
polarizations is lost. In  order  for  the spin sense  to  be 
retained  between  magnetized layers or  granules,  the 
intervening  distance must be  smaller  than  the  mean  free 
path  for spin-flip (spin diffusion length).  This is a 
necessary condition  for validity of the two-fluid model  and 
for  GMR  due  to  spin-dependent  scattering.  Values of the 
spin-dependent  mean  free  path  due  to spin-conserving 
dissipative scattering, which determines  the  spin- 
dependent conductivity, are generally  much shorter  than 
the  spin diffusion length. 

3. Transport theory 
A  quantitative  theory of electronic  transport  requires 
simultaneous  solution of the  coupled Maxwell and 
Schrodinger  equations of nonrelativistic  electrodynamics. 
This  formidable task  must be simplified  in order  to  derive 
any  useful results  for  GMR  materials,  somehow  without 
distorting  or overlooking important  elements of the 
problem.  These  elements  include  the necessarily irregular 
spin-dependent  Fermi  surfaces in these  heterogeneous 
materials,  and  scattering  processes  due  to  lattice 
vibrations,  structural  irregularities,  interfaces,  and 
displaced atoms. Spin-flip scattering by magnons may 
become  important  at  higher  temperatures.  There  are 
several simplifying aspects of the  GMR  problem  that 
can  be exploited in constructing  a  practical  theory. 
In  particular,  the  materials of primary interest  are 
macroscopic samples,  for which it is unlikely that  quantum 
effects beyond the usual electronic  structure  theory of 
metals  and alloys are  relevant.  The  interior regions 
of layers or  granules may be sufficiently large  and 
homogeneous  that they  have the  properties of bulk 
materials.  The  electric  and  magnetic fields are of 
moderate  strength, so that it is consistent  to work  in the 
linear-response limit of theory.  In  these  circumstances,  a 
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quantum  Boltzmann  equation is valid and  has  the  same 
physical validity as  the  more  fundamental  quantum Kubo 
theory [19-211. This  quantum formalism originated 
in work by Greenwood [22], who showed that  the 
semiclassical Boltzmann  equation  for impurity scattering 
could  be derived in the limit of large  relaxation  time  from 
the  equation of motion  for  the  quantum  density matrix. 
Results of theory  based  on  the semiclassical Boltzmann 
equation  and  on  the  Kubo formalism are  expected  to  be 
indistinguishable if both  describe  the  same physical system 
and  scattering  mechanisms  at  a  comparable level of 
internal accuracy [23-251. 

In  order  to  incorporate  the  Mott effect into  transport 
theory,  an  intermediate  form of Boltzmann  theory is used 
here. Identifying the  eigenstates of self-consistent  energy- 
band  calculations with the  electron  quasiparticles of Fermi 
liquid theory,  the  Boltzmann  theory is applied  to  the 
occupation  numbers of these  quasiparticles.  This 
formalism has  the  advantage of maintaining  conservation 
laws at  each  stage of computation,  and of treating all 
scattering  processes  at  a  common level of theory.  In this 
formalism,  the  distinction  among physical properties of 
CIP,  CPP,  and  granular  GMR  materials  occurs  at  the level 
of solution of Maxwell’s equations  for  macroscopic  current 
flow, based  on  a  common  theory of microscopically 
averaged linear  response  or conductivity. It is postulated 
that  the  electronic  states  considered in the semiclassical 
Boltzmann  theory of metallic conductivity [23] are  the 
electron  quasiparticles of Fermi liquid theory [26], 
computed with a  Hamiltonian  that  includes  electronic 
interactions  but  omits dissipative scattering processes. 
A  scattering  process is defined  as  “dissipative” here if it 
causes the  energy of a  quasiparticle  to  become complex. 
This distinguishes  such  processes  as phonon  scattering  or 
scattering by random  impurities  from  the  phase-coherent 
scattering  incorporated in the  self-consistent  construction 
of Bloch waves. The  postulated  electron  quasiparticles  are 
modeled by self-consistent energy-band  calculations using 
the  density-functional  theory [27, 281, which includes 
electronic  interactions  and  correlation. As eigenstates of 
the  model system, these  quasiparticles  do  not  scatter  from 
one  another.  A  quasiparticle  state is defined at  each  point 
on  the  spin-dependent  Fermi  surface.  Considered as an 
application of the  quantum Boltzmann equation [21], 
the  theory  developed  here builds the  real  part of the 
interaction self-energy into  the  energies of Bloch waves. 
The imaginary part of the self-energy is attributed to 
dissipative scattering processes.  Since the  energy-band 
model  omits dissipative scattering  completely, except in 
the  case of alloys, such processes must be  treated by 
perturbation  theory in the  quasiparticle basis.  Dissipative 
scattering  rates  are defined point-to-point over the  Fermi 
surface  as  transition  rates  between  quasiparticle  states. 
This  Boltzmann formalism in principle  requires 
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computation of the  net  lifetime,  subtracting  the  scattering- 
in rate  from  the decay rate  at all points  on  the  Fermi 
surface. 

For  a  regular  periodic solid or  superlattice  model 
system, noninteracting  quasiparticles  are indexed by a 
spin  index s, by a  band index b, and by momentum k. 
Each  quasiparticle  state is modeled by a wave packet 
constructed  from  a Bloch wave with  specified parameters 
(s, b, k). When  these  parameters  are  denoted by a single 
index k,  the energy of a  quasiparticle is a real number E,, 

determined by the  self-consistent  density-functional  model 
In  the  presence of a local electric field W, Ehrenfest's 
theorem  determines  mean time-derivatives of the 
momentum  and  position of an  electron  described 
by such a wave packet.  The implied group velocity is 
vk = (1/2fi)Vkek, given ek in Rydberg  units.  The  statistical 
distribution  function  for  quasiparticles is the  occupation 
number f k .  In  linear-response  theory,  the  steady-state 
occupation  probability f, is approximated by the 
Fermi-Dirac distribution  function f, plus an  incremental 
term g, = fk - f, that is proportional  to  the driving  field. 
The  mean value of electric  current density for  each 
quasiparticle is j, = -evg,. A  steady-state  Boltzmann 
transport  theory  based  on  these  postulates  and definitions 
is developed  here. 

thermal  gradient,  a Bloch wave defines the probability of 
finding an  electron with specified parameters (s, b, k) at  a 
point x. At  the  Fermi  surface,  the  mean velocity of such 
an  electron is the  Fermi velocity v,. If there is a  thermal 
gradient, f, must vary with position as the  temperature 
parameter  changes.  In  an  inhomogeneous  material,  the 
response  increment g, must vary with  position  as the local 
conductivity changes.  In  the  general case, fk(x) defines the 
local statistical  occupation probability of a  quasiparticle 
state  modeled by the Bloch wave +,(x). In  this 
interpretation of the  Boltzmann  theory,  phase  information 
is contained in the Bloch wave, but  not in the  distribution 
function f,. Neglecting thermal  gradients, f o  is constant, 
while both g, and W can  be  considered  to vary on  a  length 
scale larger  than  a typical atomic  radius,  but  smaller  than 
the  extent of a Bloch wave packet. If W varies  within a 
polyatomic translational unit  cell, the  continuity  equation 
for  the  current density requires g, to vary on  the  same 
scale. This  can  be  described in terms of nonlocal  response 
or by local  averaging for  inhomogeneous  materials.  Such 
extensions of the  theory  are discussed  in the following 
section. 

In  a  homogeneous  material  or  superlattice with no 

In  a  steady  state,  the  incremental  occupation  probability 
g, for  each  quasiparticle is determined by balancing the 
rate of change  at  a fixed point x due  to  transport away 
from  that  point,  and  to conversion of the  state (s, b ,  k) 
into  other  states (s', b ' ,  k') by the driving field, against 
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expressed in a  quasiparticle  Boltzmann  equation indexed 
by k = (s, b, k), 

assuming  symmetry of state-to-state  transition  probabilities 
P. Neglecting  spin-flip transitions,  the sum  over  index k '  
here  denotes  a sum over  band index b' and  an  integral 
over the  reduced Brillouin zone in k-space.  This  integral is 
weighted by the  number-of-states  element  for  each  spin, 
(Cl/16v3fihv)d~dS, for  energies in  rydbergs. Here Cl is the 
volume of the  translational  unit cell and dS is the  area 
element of an energy surface.  The  Mott final-state  effect 
results  from  the  dependence of this formula  on  electron 
velocity and  on  Fermi  surface  area.  The  electric field must 
be  a local solution of Maxwell's equations.  This implies 
nonuniformity in inhomogeneous  materials,  requiring 
consistent local  averaging of g, and 8. 

The two scattering  terms  on  the  right-hand side of 
Equation (1) represent  scattering-in  and  scattering-out, 
respectively. The  scattering-out  terms define a 
quasiparticle lifetime rk,our such that r,::,, = Ek,Pk, ,k .  To 
include  scattering-in  terms, it is convenient  to define a  net 
relaxation  time r(s, b ,  k) such that  the  right-hand  side of 
Equation (1) takes  the simple form -7-lg. The defining 
equation is 

again  using the symmetry of state-to-state  transition 
probabilities.  Since g is a  scalar  function of the  electric 
field vector, in linear  response  theory  it  must  take  the 
form Ch, W .  This defines a  vector  mean  free  path 
Ak = rkvk in terms of a  net  relaxation-time  tensor rk.  
With  these definitions, Equation (2) is equivalent  to 

for  iterative  computation of the  scattering-in  terms 
[29, 301. If there is a  thermal  gradient,  or in an 
inhomogeneous  material,  the  constant C becomes  a 
function C(x). In applying transport  theory  to 
substitutional alloys, random  composition implies a 
dissipative scattering effect at  the level of the self- 
consistent  coherent  potential  approximation  (CPA) [31]. 
So long  as the resulting energy width is small at  the  Fermi 
level, real  energies ek acquire  an imaginary part -(i/2)yk 
corresponding  to  a  quasiparticle  lifetime T ~ , ,  = fi/y,. 
This implies an  intrinsic  time decay of the  quasiparticle 
occupation  numbers. Since Equation (1) is expressed here 
in the  context of energy-band  theory with real  energy 
values,  such an  intrinsic  lifetime could be  parametrized by 
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adding  a  term of the  form T i ’ g  into  the  left-hand side of 
this equation  and  into  the  right-hand  side of Equation ( 2 ) .  
For consistency, scattering  due to random  occupation of 
lattice sites, treated by CPA, must then  be  omitted  from 
the  detailed mechanisms included in the  transition 
probabilities P,,,,. 

free  path given above, the  quasiparticle  Boltzmann 
equation  takes  the  form 

Using the definitions of Fermi velocity and  vector  mean 

This is an inhomogeneous diffusion equation  for  each 
quasiparticle  at  the  Fermi  surface.  The first term  here 
(diffusion term) vanishes in the  interior of a  homogeneous 
solid if there is no  thermal  gradient.  It  must  be included 
when considering effects near  an  external  bounding 
surface, as  in the semiclassical  Fuchs-Sondheimer theory 
[32, 331. The  electric  current density is the sum of terms 
j = -evg for all quasiparticle Bloch functions at  the Fermi 
level. This sum is related  to  the  mean local electric field 
by a conductivity tensor such that J ,  = CJ vi,EJ. The 
conductivity tensor is derived by weighting g, from 
Equation (4) by the density of states  and  integrating over 
an  energy  range  about  the  Fermi energy. If diffusion 
terms  are  neglected  and  the derivative of f o  is replaced by 
an energy delta  function,  this gives 

where n is a  unit  vector  normal  to  the  Fermi  surface.  The 
conductivity tensor is an integral over the  Fermi  surface 
of the  tensor n h .  If the  net relaxation time is a  scalar 
quantity, this reduces  to nA,n, where A, = rkuk, defined 
by values of T, and vk evaluated  at  each  point (s, b ,  k). 

The diffusion term in the  Boltzmann  equation describes 
the  net effect of transport by convection due  to  the  group 
velocities of quasiparticle wave packets.  This  can  be 
neglected in the  interior of a uniform metal if there is no 
thermal  gradient,  but  there is an asymmetrical  effect near 
an  external  boundary. Since all wave functions vanish 
outside such a  boundary  (neglecting field emission or 
tunneling  into  a classically forbidden  region),  transport  to 
an  internal  point by convection from  the  exterior must 
vanish. This  requires g, to vanish on  the  external 
boundary if the velocity v, is directed inward. If the 
driving field E is uniform,  the  value of g valid in the 
interior of a  uniform  metal is a  particular  solution of the 
Boltzmann  equation.  To satisfy the  boundary  condition, 
a  solution of the  homogeneous diffusion equation is 
subtracted which exactly cancels  the  particular  solution  at 
the  boundary  for  each  inward-directed  group velocity. This 

subtracted  term  decreases exponentially into  the  interior 
with a  length scale given by the  projected  mean  free  path 
n A, where n is the inward normal  vector  on  the 
boundary  surface.  Thus, this boundary  condition is 
propagated  into  the  interior of a  metal by the diffusion 
term in the  quasiparticle  Boltzmann  equation,  resulting in 
reduced conductivity. 

The Fuchs-Sondheimer theory [32, 331 sums  the 
g-functions  considered  here  over all quasiparticles  at  the 
Fermi level and imposes  this boundary  condition.  It is 
attributed to diffusive scattering  at  an  external  boundary. 
An additional  parameter p is used to  represent  the 
relative  probability of specular reflection, considered  to  be 
a physical process in competition with diffusive scattering. 
The discussion given above indicates  that this is a  false 
dichotomy.  Diffusive scattering is not  relevant  to  the 
truncation of wave functions  due  to  an  external  potential 
barrier. Standing-wave functions with a fixed nodal  surface 
establish a  coherent  phase  relationship  between two time- 
reversed  traveling-wave components.  Phase-coherent 
scattering  processes  due  to  static  potential  functions in the 
Schrodinger  equation  are fully taken  into  account in the 
construction of Bloch waves. Hence,  they affect the 
Boltzmann  equation only through  properties of these wave 
functions, in the  present  case  through vanishing electron 
number density outside  a physical boundary  surface. It is 
interesting to note  that in several  parametric  studies  of 
experimental  data  on  thin films and wires, summarized 
by Sondheimer [33], the best  value of the  “specular 
reflection” coefficient p was found  to  be p = 0. 

The most important  consequence of the Fuchs- 
Sondheimer  theory is that resistivity increases when 
geometrical  dimensions  are  reduced  to  the scale of the 
mean  free  path in a  metal.  Large effects are observed for 
current flow parallel  to  a  boundary  surface [33]. This 
might appear  to  be  counterintuitive,  but it is important to 
recognize that  electronic wave functions  are  not confined 
to  a single atomic layer or  to  a precisely  defined 
propagation  direction.  A useful conceptual  model is that 
even in the  absence of an  external driving field, a very 
large  number of electrons  are moving in all directions in a 
normal  metal,  at very high velocity (the  Fermi velocity). 
This dynamic  swarm does  not  transport  electric  current, 
because  the  statistical  net flow cancels exactly. An applied 
electric field produces  a relatively  small imbalance  biased 
in the  direction of the field, but  the  electron swarm still 
samples  the  entire  material within the  statistical  mean  free 
path.  In this model, it is clear  that any reduction of the 
mean  free  path must  affect all components of the 
conductivity tensor, so that  the  large  observed  CIP effect 
is not  inconsistent with confinement in the  direction 
normal  to  the  plane of net  current flow. 

Fermi liquid, the  quasiparticle  Boltzmann  theory is 
For any regular  periodic solid metal  described as a 
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expected  to  be  quantitatively  correct if the underlying 
energy-band  calculations  are  adequate.  For  metallic 
substitutional alloys, calculations  and  theoretical analysis 
by Butler  and  Stocks [31, 341 show that  the  Kubo 
formalism,  without vertex corrections,  and  the Boltzmann 
formalism,  without  scattering-in  terms,  are  at a common 
level of accuracy. Because a Green’s-function  formalism is 
used in the alloy theory,  extension  to  the  Kubo  theory is 
quite  natural,  but  the  calculation of vertex  corrections [24] 
appears  to  be very difficult to  implement.  Scattering-in 
terms  can  be  included in the  Boltzmann  equation by 
solving inhomogeneous  linear  equations of large 
dimension [31], for which an  iterative  method is available 
[29, 301. The  fact  that  scattering-out  and  scattering-in 
terms  are  computed  from  the  same  set of state-to-state 
transition  probabilities gives the  Boltzmann  theory  the 
practical  advantage  that  detailed  balance is maintained 
within the  formalism, avoiding artifacts such  as spurious 
accumulation of occupation  probabilities  that  are 
inconsistent with the basic steady-state  condition.  In  the 
Kubo formalism [24, 351, scattering-out  rates  correspond 
to lifetimes deduced  from self-energies, while scattering-in 
rates must be  computed  as  vertex  corrections. 

4. Nonlocality  and Maxwell’s equations 
Equation (1), the  quasiparticle  Boltzmann  equation, is 
expected  to  be valid for any crystalline metal if the local 
electric field is averaged  over  the  translational cell. If a 
homogeneous layer or  granule of this  metal is embedded 
in a  macroscopically inhomogeneous  material,  the bulk 
conductivity should  be valid for  the  interior of the layer or 
granule,  but special consideration of the  boundary region 
is needed. In the  case of a  cleaved surface of an  otherwise 
regular  periodic solid, all properties of electronic wave 
functions  remain valid in the  interior,  but  the wave 
functions must terminate  at  the  boundary.  This is modeled 
in the  Boltzmann  equation by allowing the  incremental 
distribution  function g to vary in space in the  boundary 
region, while retaining  the  energy  and  Fermi velocity 
of each Bloch function as  in the  uncut solid. In  CIP 
geometry,  the local electric field is constant  and  the 
current density is proportional  to  the  g-function.  In  CPP 
geometry,  the  current density is constant  and  the local 
electric field must vary inversely with the  g-function.  In 
either case,  conductivity is reduced in the  boundary 
region, as derived in the Fuchs-Sondheimer theory.  This 
example  shows that g and  the  electric field  must be 
treated consistently  in boundary  or  interface regions. 
Attributing  spatial  variation  to g does  not imply that wave 
functions  can  be localized on the  same scale. For example, 
the  truncated Bloch waves in  a  semi-infinite  solid are still 
delocalized  over  its  full  volume. It is consistent with the 
linear-response  model  to  represent a response varying on 
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unperturbed wave functions  that  are  uniform in  a larger 
region,  using  coefficients or weight functions  that vary on 
the lesser of the two length scales. Different  theoretical 
models,  discussed  below, consider wave functions defined 
globally for a layered  material  or only locally for a subset 
of layers. A global  definition may require a  density-matrix 
formalism for  an  inhomogeneous  material  or when the 
elastic mean  free  path is small compared with relevant 
geometrical  structures, such as layer  spacings, because  the 
phase  coherence implied by well-defined wave functions is 
lost. 

The  nonlocal conductivity tensor is defined  in the fully 
coupled  linear-response  theory as the  kernel of a linear 
integral  operator, 

where j is the  current density and Ce is the local  field 
derived by solving Maxwell’s equations as determined by 
the conductivity tensor. If magnetization  vectors  are 
collinear  and if spin-flip scattering  can  be  neglected,  each 
spin component of j satisfies  a  similar equation.  Because 
the  electric field cannot  carry  an  electronic spin  index, this 
defines  a separate conductivity tensor  for  each spin 
component of j. 

The  electric field relevant  to conductivity is an 
infinitesimal perturbation of the  Coulomb field in the 
density-functional  Schrodinger  equation. Averaging either 
this electric field or  the  current density over  an  atomic cell 
is assumed  here  to  be a  valid approximation, as  it should 
be except for very large  current density or very strong 
fields. If the local field varies sufficiently slowly on  an 
atomic  scale, only the  average of the conductivity tensor 
over each  atomic cell affects the Maxwell equations  for 
steady-state  current flow in a heterogeneous  macroscopic 
material. Averaging over  each  atomic cell, and 
approximating  the  electric field within each cell by its 
mean value  in that cell, Equation (6) for  the cell indexed 
by reduces  to a linear  algebraic expression, 

summed over  cells  indexed by v. It  should generally be 
valid for  GMR  materials  to  approximate  the  nonlocal 
(two-point) conductivity tensor by the  response matrix 
defined in Equation (7), indexed by atomic cells. This 
provides  a finite-element  representation of the classical 
Maxwell equations  for  steady-state  current flow. They 
could be solved by summing partial  solutions  obtained in  a 
diagonalized  representation of the  response matrix. 

For a regular  periodic solid or  superlattice  model of a 
layered or  inhomogeneous  material,  the conductivity 
response matrix  defined  in Equation (7) can  be  restricted 
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to indices for  atomic cells within a single translational cell, 
by summing  over all translationally  equivalent  atoms. 
Following Zhang  and Butler [36], the  linear Boltzmann 
equation  can easily be  adapted  to  compute  the 
incremental  distribution  function as a matrix with the 
same  structure  as  the conductivity  matrix,  indexed by 
atoms in a  translational cell. This is done  for  the 
quasiparticle  Boltzmann  equation by computing g, 
separately  for  constant  electric field elements,  one  for 
each  atomic cell and  for  each  coordinate axis, and  then 
constructing  linear  combinations of the  response  elements 
such that  the  equations of continuity  for  current density 
and  electric field are satisfied to  the  extent  consistent with 
averaging  over atomic cells. This  construction  requires 
only the subdivision of quasiparticle or Bloch wave 
occupation  numbers  into  partial  atomic  occupation 
probabilities, which are always computed in a self- 
consistent  energy-band  calculation. 

If the  electric field varies sufficiently slowly that it can 
be  replaced by an average, denoted by ie”, over atomic 
cells in a  neighborhood of a  particular cell p, and if the 
nonlocal  conductivity tensor alLV vanishes sufficiently 
rapidly  as the  distance  between  atomic cells v and p 

increases,  the  averaged value of 8 can  be  substituted  into 
Equation (7), which reduces  to  the  form 

u” = U”” 

These  assumptions  are  inherent in applications of the 
usual  semiclassical  Boltzmann equation  to  regular  periodic 
solids.  They  define a local response  model  (LRM).  When 
this model is valid in some region of an inhomogeneous 
system, the  solution of Maxwell’s equations simplifies in 
this  region to  solution of a classical potential  problem, 
since a  constant local  conductivity tensor is associated with 
each  atomic cell. The local electric field is computed by 
solving a  (tensorial) Laplace equation  for  the  scalar 
potential.  At  a cell boundary,  the  normal  component of 
the  current density and  the  tangential  component of the 
electric field must be continuous.  The  equation of 
continuity holds  rigorously for  the  current density. 

applying the  quasiparticle  Boltzmann  equation  to 
inhomogeneous macroscopic materials.  The basic idea is 
to  use  the best  possible representation of the  near 
environment of each  atomic cell to  compute  a set of Bloch 
wave functions  at  the  Fermi level, obtained by a self- 
consistent  supercell or layer KKR [37] calculation.  These 
wave functions  are  not localized, but they are  associated 
with an  atomic cell. The  construction  outlined  above, 
computing  the  linear  response  to  atomic  components of 

The local response  model provides a  rationale  for 
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the  electric field, then combining these  linear  elements  to 
satisfy the  continuity  conditions  required by Maxwell’s 
equations, gives a conductivity response  matrix indexed by 
atoms within a  translational unit  cell. Tensorial  elements 
of this  matrix are  determined by any three linearly 
independent  electric field solutions.  Designating  a 
particular  atomic cell by index p, the  quasiparticle 
Boltzmann  equation  for  each of these  electric field 
solutions defines an  incremental  distribution  function ga, 
for  quasiparticles indexed by k .  With all quantities 
averaged  over  atomic cells, the conductivity response is 

j ”  = -e v k g ; .  
k 

In this construction,  the  electric field elements %” must 
vary in proportion  to  the  particular  element %” when each 
electric field solution is multiplied by a  constant.  This 
implies that  the atomically averaged field elements  are 
related by constant  tensorial coefficients. Summing  these 
coefficients  over the  translational cell gives an effective 
single-atom  local response  corresponding  to  the  LRM. 
Thus,  the  LRM  model  can  be assumed  as an  Ansatz when 
calculations  are subdivided into  linear  elements  that are 
combined  to give a  total  g-function  and  electric field 
consistent with Maxwell’s equations, in the  step-function 
approximation implied by averaging all quantities  over 
atomic cells. This  construction  can  be  rationalized by 
noting  that it is physically impossible to  produce  a local 
electric field that  does  not satisfy Maxwell’s equations. 
A formalism that is valid only for such solutions is 
in fact  completely  general  for physical systems. 

The usual Boltzmann  formalism  for  the conductivity 
tensor of a  model  superlattice assumes uniform  electric 
field in the  translational cell, which is not generally valid 
for polyatomic  cells. The modification proposed  here  for 
inhomogeneous  magnetic  materials is to  associate  a  spin- 
dependent conductivity tensor with each  atomic cell, 
appropriate  to its near  environment in the  actual  material 
under study. Spatial  variation of conductivity near  an 
external  boundary  should  be  computed as in the 
Fuchs-Sondheimer theory.  In  general,  the local electric 
field must be computed by combining partial  solutions of 
the  Boltzmann  equation so that  the sum is consistent with 
Maxwell’s equations,  although this may not  be necessary in 
simple geometries. If tetragonal symmetry is assumed for 
layered systems, the  principal axes of local  conductivity 
tensors  are  the  same in all layers. Thus, CIP and CPP 
geometries  are  separately  described by local  conductivity 
tensors whose elements have different  numerical values. 
In CIP geometry,  the  in-plane  electric field is constant in 
each uniform  layer and must be  continuous across  layer 
boundaries.  Hence,  the local field is uniform  throughout  a 
layered material,  and  the  current density  varies from layer 
to layer in proportion  to  the local in-plane conductivity. In 59 
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CPP  geometry,  the  current  density  normal  to  the layers 
must be  uniform  and  continuous, while the  electric field 
varies inversely to  the local normal conductivity. 

5. Parametrized  models 
In  the Fuchs-Sondheimer theory [32, 331 of thin-film 
conductivity, geometrical  confinement of conduction 
electrons is described by a boundary  condition on the 
electronic  distribution  function.  The  incremental  function 
g must vanish at  an  external  boundary  for velocities 
directed inward from  the  boundary.  The influence of this 
boundary  condition is propagated  into  the  interior of a 
conductor by the diffusion term in the  Boltzmann 
equation.  This  effect  on g occurs in  a surface layer  whose 
thickness is measured by the  mean  free  path of the 
electrons, which is several  hundred  angstroms in normal 
metals  at  laboratory  temperatures.  It explains an 
experimentally  observed  increase in resistivity for 
geometrical  confinement of electrons  on a length scale 
comparable  to or less than  their  unconstrained  mean  free 
path. Camley and BarnaS [38] extended this theory to 
magnetic multilayers. The  parametric  model of Camley 
and BarnaS has  been  used extensively to study GMR 
materials. A spin-dependent  incremental  electronic 
distribution  function g(vz ,  z )  is assumed  to  be a function 
only of the  coordinate z orthogonal  to  the  planes of a 
layered  material  and of the  component v, of the  Fermi 
velocity. The local electric field 8 is assumed  to  be a 
constant  vector in the  tangential  direction x. The 
simplified Boltzmann  equation  used in this  model is 

ag erg af, 
az m aux 

r v - + g = - - ,  

where f o  is the Fermi-Dirac function.  In  nonplanar 
geometry  the first term  becomes A - Vg [39]. Equation 
(11) is of the  same  form  as  the  quasiparticle  Boltzmann 
equation  (4) except that  the  distribution  functions  are 
summed  over all quasiparticles  at  the  Fermi level. Spin- 
dependent  relaxation  times  are  associated with the  interior 
of each layer. The  relaxation-time  parameters in this 
model  can  be  considered  to  be  averages of quasiparticle 
lifetimes whose detailed values  would  exhibit the  band- 
structure effects considered by Mott.  Empirical values 
of these  parameters  do  not distinguish among  different 
microscopic scattering mechanisms. 

Since the  incremental  distribution  function g in 
Equation (11)  varies with coordinate z ,  the  model  requires 
specifying the  relationship  between values of g across 
internal  boundaries.  The  rotation of spin  quantization axes 
between  magnetized layers is modeled by spin-dependent 
transmission  coefficients. Spin-dependent diffusive 
scattering  parameters  are assigned to  each  internal 

60 interface [38]. The physical basis for  the Fuchs- 
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Sondheimer  boundary  condition has been discussed 
above  in connection with the  quasiparticle  Boltzmann 
theory. For  reasons given there, it is not obvious that 
variation of g, considered as  a distribution of occupation 
numbers  for Bloch wave functions  that  are  continuous 
over  many atomic layers, can  be defined by boundary 
conditions  at  interfaces on the  atomic scale. In particular, 
introduction of specular reflection  coefficients at layer 
boundaries may not  be justified. In fact,  the reflection 
coefficients  have been  set  to  zero in applications of the 
Camley and BarnaS theory.  It was found  to  be difficult to 
fit the  strong  interface  scattering  observed  experimentally 
with the  spin-dependent diffusive scattering  parameters of 
the  original  theory.  Much  better  agreement was obtained 
when interface  scattering was treated as spin-dependent 
bulk  scattering in  a thin  interface mixing layer [40, 411. 
Inoue  and Maekawa [42] modeled  the  expected  strong 
spin-dependent  scattering effect of randomly displaced 
magnetized  interface  atoms in terms of random exchange 
potentials. 

describes  the effect of spin-selective  dissipative scattering 
at  an  interface. As noted by Baibich et al. [ l ]  in 
presenting  their original GMR  experimental  data,  this 
ratio  can  be  approximated by the  experimental  ratio 
a = pI/pT of the  incremental resistivities due  to  isolated 
impurities  in a magnetized host metal [43]. Camley and 
BarnaS [38] used  the  experimental value of a for  Cr 
impurities in bulk  Fe in their  model  calculations. If atoms 
of the  spacer  and  magnetic  metal  were exchanged 
randomly  across  an  interface,  the  resulting  spin-dependent 
impurity scattering  would  be  proportional  to this ratio, 
and  to  the  concentration of such displaced  atoms in the 
vicinity of the  interface.  Distortion  described as interface 
roughness  on a macroscopic scale requires  detailed 
modeling if the  length  scale of the  roughness is 
comparable  to  the  experimentally very short  mean  free 
path  associated with interface  scattering.  Geometrical 
irregularities  on a larger scale  could not affect an 
essentially atomic  scattering  mechanism.  Together with 
layer  thicknesses, the  important  parameters of the 
simplified Boltzmann  equation (11) are  bulk  mean  free 
paths  and  the  experimental  ratio a. Fert  and  Bruno [13] 
show that  these  parameters  can  be used  directly in a 
classical circuit model of the  magnetoresistance, which 
depends only on (Y in the limit of infinite  bulk mean  free 
path. A similar resistor  network  model  has  been  used by 
Mathon  and  collaborators [44-461. 

GMR  increases with decreasing  temperature  because 
spin-mixing due  to  magnon  scattering  decreases  and 
because  spin-independent bulk scattering by various 
mechanisms (structural  irregularities,  phonons)  decreases. 
The  model of Camley and BarnaS [38] omits effects of 
magnon  scattering  and  cannot distinguish spin-dependent 

The  ratio of diffusive scattering  parameters D /D 
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energy-band  effects  (the  Mott  effect)  from spin-selective 
impurity scattering. Using the  same bulk mean  free  path 
A for  Cr  and  Fe in CriFe, values of A required  to fit 
the  temperature  variation of GMR  increased  from 
180 8, to 6000 8, over  the  range  from  room  temperature 
down to 4.2  K  [38]. This  low-temperature value of A is 
unrealistically large.  An analytic solution of the simplified 
Boltzmann  equation was derived  and  applied  to study 
the  relationship  between  mean  free  path  and  the 
magnetoresistance  ratio [47], modeling  spin-dependent 
scattering only at  interfaces.  Values of the  mean  free  path 
at low temperatures  were  found  to  be in reasonable 
agreement with experimental values. Applications of the 
model of Camley and BarnaS include a study of FeiCr  and 
CoiAu multilayers [48], and a  study of spin-dependent 
bulk scattering in permalloy-based  spin-valve structures 

Valet  and  Fert [50, 511 used  the Camley and BarnaS 
[@I. 

model  to  consider  CPP geometry.  Assuming uniform 
current flow, the  Boltzmann  equation  determines  the 
electric field or  scalar  potential  function  consistent with 
steady-state  conditions. A spin-dependent  chemical 
potential is added  to  the  scalar  potential  to  account  for 
spin accumulation if that  should  occur.  When  the spin 
diffusion length is large  compared with the  mean  free 
path,  the simplified Boltzmann  equation  reduces  to a 
macroscopic model in which the  parameters  are  spin- 
dependent  mean  free  paths  and chemical potentials. 
Assuming  a spherical  Fermi  surface  not indexed by spin 
(constant  magnitude of the  Fermi velocity),  conductivity is 
proportional  to  mean  free  path with the  same  factor  for 
both  spin  directions,  and  the  spin-dependent  current 
density is proportional  to  the  product of conductivity and 
local electric field. This  derivation justifies  a formula  that 
equates a  simple function of measured resistivities to a 
linear  function of the  number of bilayers in a  multilayer 
material of fixed total thickness. The coefficients in this 
linear  formula  determine  the bulk  spin  asymmetry 
coefficient fl  and  the  interfacial spin  asymmetry  coefficient 
7, which can  thus  be  deduced  from  experimental  data 
[52-541.  If the  chemical  potential  parameters vanish, the 
macroscopic equations simply state Ohm’s law separately 
for  the two spin components of the  current density. The 
local electric field derived from Maxwell’s equations is not 
indexed by spin.  Valet  and  Fert [50, 511 consider only 
collinear  magnetization. If the  magnetization in successive 
magnetic layers is not  collinear,  the  quantization axis for 
electronic spin  must be  rotated, which may cause spin-flip 
scattering in analogy to  magnetic  domain  theory.  This 
subject is beyond the  scope of the  present review. 

Levy and  Zhang [14, 551 have  recently  reviewed 
parametric  models of GMR  based  on  quantum theory. 
The  theory was derived  for layered materials by Levy 
et al. [56, 571,  by Vedyayev et al. [58], and with some 

revisions by Camblong  et al. [59-621. Kubo formalism 
is used rather  than  the  Boltzmann  equation.  Green’s 
functions  are  computed using  a free-electron  Hamiltonian 
with delta  function  scattering  potentials whose spin- 
dependent coefficient parameters vary from layer to layer, 
including both bulk and  surface  terms.  Because a free- 
electron  model is used,  spin-dependent  Fermi  surface 
and  Mott effects are  not  included directly. The  essential 
parameters  are  the spin  asymmetry parameter a, which 
may be  different  for bulk and  surface  scattering,  and  the 
layer  thickness. 

In  the  Kubo  linear-response  theory [24, 351, the two- 
point conductivity tensor is a current-current  correlation 
function,  expressed in terms of the  Green’s  function  for  an 
exact solution of the  N-electron  Schrodinger  equation, 
including all potential  functions  or  operators  responsible 
for dissipative scattering. Since  dissipative scattering is a 
statistical process,  as  in the  case of random  impurities, 
some  statistical  assumption is already  inherent in the 
definition of this  Green’s  function.  This is explicit in 
applications  to  substitutional alloys, using the  CPA 
(coherent  potential  approximation)  model [31]. Camblong 
[60] develops the  Kubo  formalism in real  space,  for 
inhomogeneous  conductors.  In-plane periodicity is 
assumed. The formalism  uses  a mixed representation 
defined by in-plane  momentum  and  normal  coordinate z .  
If spin-flip transitions  are  neglected  and  magnetization is 
collinear,  then 

where 01 is a  spin  index. Here 

where  the  arrows  indicate  an  operator acting to  the right 
or left,  respectively, and 

AU(r ,  r’) = - Im Grl(r, r’), (14) 

in terms of the  retarded  Green’s  function. Assuming  in- 
plane uniformity of multilayers, which implies  a statistical 
average of dissipative scattering built into  the  Green’s 
function  and also that  the local electric field is uniform 
in each  plane,  the nonlocal  conductivity tensor can be 
integrated in each  plane  to give a  two-point tensor in 
the z coordinates only. This is 

where Ao(kl,; z ,  z ’ )  is the  in-plane  Fourier  transform of 
Equation (14). The  integral  here can be  carried  out 
analytically and expressed  in terms of the  functions 61 
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in which z ,  and z ,  are  the  lesser  and  greater of z ,   z ‘ ,  
respectively; AU is an  in-plane averaged spin-dependent 
mean  free  path.  The  principal  elements of the conductivity 
tensor  are 

where E,(x) = J,” dt and C, = e2ki16a2h. 
The  parametrized  quantum  theory  has clarified some 

questions  regarding  the  meaning of parameters  introduced 
in the Camley and BarnaS model.  In  particular, it supports 
the  use of angle-dependent transmission  coefficients to 
represent  the  effect of spin-dependent  scattering 
associated with interfaces [60]. The underlying physical 
model  for  interfaces is an atomically thin  transition layer, 
interposed  between two homogeneous  metallic layers,  in 
which very strong  spin-dependent  scattering  can  be  treated 
as a volume  effect.  Introduction of this model [40, 41, 
56, 63, 641 significantly improved  the  parametric fit to 
experimental  data  that  showed  strong  interface  scattering. 
Because  the  Green’s-function  formalism  derives a  nonlocal 
response  function, valid for any assumed local electric 
field,  it can  treat  both  CIP  and  CPP  geometries,  as well as 
granular  materials, with the  same  theoretical  model.  As 
pointed  out  above,  the  electric field must vary inversely to 
the local  conductivity in CPP  geometry. A very important 
general  result  obtained with the  parametrized  quantum 
theory [14, 61, 65, 661 is that  for  the  same  scattering 
model,  CPP  magnetoresistance will always be  greater  than 
CIP  magnetoresistance, possibly by a large  factor.  This 
follows from  the  fact  that  magnetoresistance  depends  on 
the  spin-dependent dissipative scattering  integrated  along 
a current  path.  CIP  magnetoresistance is always reduced 
by current  shunting  through  the  spacer layer,  going 
to  zero when the  spacer layer thickness  becomes  greater 
than  the  mean  free  path in the  spacer  metal.  CPP 
magnetoresistance  depends  on  the global pattern of 
magnetization,  not  on  the  internal  arrangement of 
magnetic layers [65]. This  supports a  simple classical 
resistance  model  that  has  been very useful  in interpreting 
CPP  experimental  data [54, 65, 671. The  theory  indicates 
that  properties of granular  materials  and layered materials 
in CPP  geometry  should  be similar [67, 681, and  has  been 
used to study granular Cu-Co alloys. Spin-dependent 
scattering is attributed  to  surface  boundaries of Co 
particles  and  to bulk scattering in the  interior of these 
particles [69]. 

The  quantum  model  has in general confirmed 
conclusions of the semiclassical Boltzmann  model,  but 
both have  similar limitations.  The implications of Mott’s 
analysis of electronic  conduction in transition  metals 
cannot  be  examined in terms of the simple spin- 
independent  spherical  Fermi  surfaces used in these 
models. While  the  Kubo formalism is in principle  more 
fundamental, its full implementation involves such formal 
and  practical difficulties that  essential  aspects of physical 
processes may be  omitted  or  overlooked.  Formalism  based 
on a nonlocal conductivity response  does  not  appear  to  be 
required in treating  either  the  CIP  or  CPP  geometry, as 
shown in the simplified Boltzmann  model of Valet  and 
Fert [50, 511 for  CPP  geometry.  Zhang  and  Butler [36] 
present a critical  evaluation of the  parametric  models 
discussed here.  These  authors  evaluate  CIP  and  CPP layer 
conductivities exactly, using the  Kubo  formula,  for  the 
quantum  model of free  electrons  and  random  point 
scatterers  (FERPS).  In  the semiclassical  limit, the exact 
Kubo  formula gives Equations (17),  in agreement with 
Camblong  and Levy [59, 601. Calculations using  exact 
theory in this limit agree well with the  parametrized 
Boltzmann  equation,  but differ from  the  approximate 
quantum  theory of  Levy et  al. [56, 571 when the  mean  free 
path is comparable  to layer  thicknesses.  Exact Kubo 
calculations in the  FERPS  model,  carried  out by Zhang 
and  Butler [70] for  FeCr multilayers,  confirm the  general 
conclusion that  an  important  cause of enhanced 
magnetoresistance is dissipative scattering  due  to 
interdiffusion of atoms  across  interfaces. 

The Fuchs-Sondheimer theory may have  nonphysical 
consequences  for microscopically thin films [71]. In 
particular, a  diffusely  reflective boundary would induce 
no resistivity in the  absence of impurity scattering. A 
modified theory [71], valid in the limit of vanishing  bulk 
scattering,  obtains  nonzero resistivity due  to  surface 
roughness as  a quantum effect. This  theory  agrees  better 
with experimental  data  on  thin films with  a very long 
mean  free  path [72] than  does Fuchs-Sondheimer theory, 
even assuming large values of the  specularity  parameter. 
Zhang  and  Butler [36] have recently  evaluated thin-film 
conductivity  in the  FERPS  model,  comparing  the exact 
Kubo  formula with Fuchs-Sondheimer theory. Existing 
experimental  data  can  be fitted by correcting semiclassical 
theory  for  zero-point  motion of the  electrons 
perpendicular  to  the film plane  and by allowing the  mean 
free  path  to  depend  on  the  direction of the  Fermi velocity. 

Although  quantum effects are probably not  important 
for typical  macroscopic GMR  materials, ballistic transport 
theory  has  been invoked in several  theoretical  models.  In 
the  extreme limits of high material  purity (very  long mean 
free  path)  and small geometrical  dimensions, a metallic 
conductor  acts as  a quantum wave guide  for  electrons. 
The  electronic wave functions,  determined by boundary 
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conditions,  provide a discrete  number of transmission 
channels  through  the wave-guide  region. If dissipative 
scattering in the wave guide is negligible, the  conductance 
given by the  Landauer-Biittiker  formula [73, 741 is the 
quantized expression (e2 ih)N,  where N is the  number of 
transmission channels. In this  ballistic  limit, dissipation of 
energy  takes  place only in the  contact region. Bauer [75] 
uses  the  Landauer-Buttiker  formula including internal 
scattering to study CPP  transport.  The  conductance G is 
the  sum over  all  transmission channels, 

,,m,s 

where tnm,r is the  scattering  amplitude  between 
transmission modes indexed by n and rn, with spin s, 
neglecting  spin-flip scattering. Spin-indexed  square-well 
potential  functions  were  used by Bauer  to  model  Fermi 
surface  and  Mott effects, together with impurity 
concentration  and  potential  parameters. A formula is 
derived  that  agrees with Zhang  and Levy [65] when the 
square-well potentials vanish. 

In its  original form,  the Fuchs-Sondheimer theory 
models  and explains the  increased resistivity of thin  strips 
or films due  to  geometrical  confinement.  As  applied by 
Camley and  Barnai, this was extended  to  include 
parametrized diffuse scattering  at  interfaces in layered 
structures  and  spin-dependent transmission  coefficients. 
Examined in detail,  the most important  source of the 
observed  GMR  appears  to  be spin-selective  dissipative 
scattering in or  near  the  interfaces  between  magnetic  and 
spacer layers, or at  the  boundaries of granules.  In  the two- 
fluid model,  the  strong  interface  scattering is essentially 
transparent  to  one of the spin  fluids, which is not  affected 
by this scattering when  layer magnetizations  are 
parallel.  For  antiparallel  or  randomly  oriented layer 
magnetizations,  mean  free  paths  are  reduced equally for 
both spin  fluids, and  the  total conductivity is reduced. 
Since  this happens  for layered  systems of considerable 
thickness, the  electronic wave functions  are well 
approximated by assuming  semi-infinite geometry,  and  are 
not confined to individual material layers. In view of this, 
the Fuchs-Sondheimer confinement effect is probably not 
directly inirolved in the observed large  magnetoresistance, 
although it must be  taken  into  account with respect  to  the 
outer  boundary (vacuum interface).  For a strip of given 
thickness, the  confinement effect produces  the  greatest 
reduction of conductivity for  the  largest value of mean 
free  path [33]. In  the two-fluid model, this occurs  for  the 
favored spin component.  It follows that  the  confinement 
effect  actually reduces  the  magnitude of the  GMR  ratio, 
whose large  observed values  must arise  from  some  more 
specific mechanism. 

The  mean  free  path in Equation (5) is a product of two 
factors, a relaxation  time T and  the  Fermi velocity u, 

which may be  determined by very different  aspects of the 
underlying physics. A parametrized  spin-dependent  mean 
free  path may not  help  to distinguish between  alternative 
microscopic  mechanisms. The  Fermi velocity is a property 
of the  spin-dependent  Fermi  surface  for  the  particular 
material  under  consideration, while the  relaxation  time is 
characteristic of dissipative scattering effects that may be 
unrelated  to  the  electronic  structure of this material. 
Equation (5) implies that conductivity is dominated by the 
largest values of the  mean  free  path.  Thus, in examining 
the  cause of enhanced  magnetoresistance in particular 
materials,  theory must consider  the  largest possible  values 
of the  Fermi velocity, hence  the sip conduction  electrons 
in transition  metals,  and mechanisms for spin-selective 
reduction of relaxation  time,  hence  strong  scattering by 
any  dissipative process. Since sip energy bands  are  the 
least sensitive to local magnetization, any large spin- 
dependent  effect must be  due  to a  significant  influence 
of magnetization  on  some  strong  scattering mechanism. 
To examine  this  issue requires a detailed  theoretical 
treatment of spin-dependent  scattering.  This  has  been 
done in the ab initio calculations discussed  below. 

6. Models using ab initio band structure 
Several groups have developed  methodology  capable of 
combining  self-consistent energy-band  calculations with 
transport theory. Butler et al. [76] use the layer KKR 
(LKKR) method [37] for self-consistent  local  density 
functional  calculations of the  electronic  structure of 
layered  materials.  Because  the LKKR method  constructs 
electronic  Green’s  functions directly,  it is compatible with 
the Kubo formalism,  and  also with the  coherent  potential 
approximation  (CPA)  for  substitutional alloys. This  has 
made it  possible to  study permalloy  spin-valve structures. 
Mertig  et al. [77, 781 combine self-consistent superlattice 
calculations  on layered magnetic  materials with  a Green’s- 
function  method  for  magnetic impurity scattering. 
Electrical conductivity is computed using the  quasiparticle 
Boltzmann  equation.  Nesbet [79] combines self-consistent 
superlattice  calculations, by the  LAC0  full-potential 
method [80, 811, with perturbation-theory  calculations of 
spin-dependent  scattering  from displaced atoms  at 
interfaces,  and  uses  the  quasiparticle  Boltzmann  equation 
to  compute  spin-dependent conductivity. Schep  et al. 
[82, 831 carry  out self-consistent superlattice  calculations, 
but  then  use  this  band  structure only for  calculations in 
ballistic transport  theory, which is not  appropriate  to 
current  CIP  and  CPP  experiments with normal  metals  and 
magnetic alloys. Coehoorn [84, 851 uses self-consistent 
superlattice  calculations  to discuss induced  moments  at 
interfaces. Ni moments  are  reduced by contact with Cu  at 
an  interface,  but  stabilized by a Co  monolayer.  Atomic 63 
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moments  are  found  to  depend strongly on  nearest- 
neighbor  environment  at  an  Fe/V  interface,  but  to  be 
insensitive to  environment  for  FeiCr. 

The  LKKR  method used by Butler  et al. [76] explicitly 
constructs  an  electronic  Green’s  function,  but in order  to 
facilitate  computations,  the  electronic  mean  free  path 
at  the  Fermi  surface is parametrized  and  used in the 
quasiparticle  Boltzmann  equation,  without  scattering-in 
corrections.  Calculations  were  done in CPP  geometry only. 
CoCu superlattices  were  studied with up  to six alternating 
layers of each  metal 1761. Interdiffusion of the two atomic 
species  at  a  concentration of 1% was treated by CPA alloy 
theory.  In  the  absence of any other dissipative scattering 
mechanism,  large values were  computed  for  the 
magnetoresistance  ratio, varying from  factors of 9.80 to 
21.23 depending  on  the  number of atomic layers.  Similar 
calculations  on permalloy (Ni,,Fe,,) (denoted  here 
by Py), in PyCu superlattices,  obtained extremely  large 
magnetoresistance  ratios, varying from  factors of 204 to 
1633 depending  on  the  number of layers. These very large 
ratios  result  from nearly zero resistivity computed  for bulk 
permalloy in the  absence of the dissipative scattering 
mechanisms present in the physical material  but  not 
modeled,  and also from  the  neglect of spin mixing in the 
alloy. Recent ab initio CPA  calculations by Banhart  and 
Ebert [86] on  NiFe alloys included  the  spin-orbit 
interaction  and  obtained  residual resistivities and 
anisotropic  magnetoresistance of the  same  magnitude 
as observed  data  at low temperatures. 

Systematic calculations of layer-dependent  nonlocal 
conductivity were  carried  out  for trilayer Co/Cu/Co spin- 
valve structures 187,  881, using Kubo  theory  without  vertex 
corrections.  The physical model is that of Cu layers of 
varying thickness  embedded in Co. The layers  have (111) 
orientation in an fcc lattice.  Quasiparticle lifetimes were 
parametrized,  not  computed  from  a first-principles model. 
In  this study, the  methodology was verified by computing 
the  layer-dependent conductivity of a  free-electron gas, 
subject to  a specified  bulk relaxation  time,  and by 
comparing  results with the analytical model of Zhang 
and  Butler [36]. Similar tests of both CIP and  CPP 
conductivity were  made  for  pure Cu and  for  both spin 
components of the  current density of pure Co. 

It  has  been known for  some  time  that  the  energy-band 
structure of Cu  at  the  Fermi level is very similar to  that of 
the majority-spin bands in magnetized  Co,  but  different 
from  the minority-spin bands.  This implies  qualitatively 
that  spin-up  (majority)  conduction  electrons move  freely 
between  the two metals, while  spin-down electrons  are 
impeded by a  potential mismatch.  How  this  affects 
conductivity, which depends  on dissipative scattering,  has 
been discussed by Nesbet 1791, who computed  the implied 
strong spin-selective scattering  due  to  interdiffusion of 

64 atoms across a layer interface.  Butler et al. 187, 881 compute 

several quantities  that  are  related  to this  mismatch at 
interface  boundaries.  The  number of majority-spin 
electrons  per  atom in the  layered  structures is very similar 
for Cu and  Co, 5.5 and 5.35, respectively, while the 
number of minority-spin electrons  on Co is only 3.65. The 
density of states  at  the  Fermi level is very similar for 
majority electrons in Cu and Co but is much  larger  for 
minority electrons in Co, as are  the  d-wave  phase shifts 
for  the  phase-coherent  potential  scattering  that  determines 
energy-band  structure.  These  data  are  consistent with 
strong  spin-dependent  (or spin-selective)  dissipative 
scattering by atoms displaced at  an  interface.  Calculations 
in which a  parametrized value of the  quasiparticle  lifetime 
was set  equal  for all states  at  the  Fermi level gave very 
small magnetoresistance. A more  detailed  model used 
different  relaxation-time  parameters  for  Cu  and Co, the 
same  for  both spins. The  values used were  appropriate  to 
room-temperature bulk resistivities of 2.8 pa-cm  for Cu 
and  14.8  pa-cm  for Co. The  scattering  rate  for majority- 
spin Co  at  the  interface was set  equal  to twice the bulk 
value and,  for minority electrons,  to 24 times  the bulk 
rate.  These  numbers  were  taken  from  CPA alloy 
calculations  for Cu impurities in Co  and  for spin-aligned 
Co impurities in  Cu. Layer-dependent conductivities 
computed with these  parameters show large 
magnetoresistance. 

In  a  third  series of calculations, the  Molt  final-state 
effect was modeled by assuming that  the  electron  lifetime 
for majority carriers in the Co bulk layers is seven times 
the  corresponding  rate  for minority carriers.  With  lifetime 
parameters assigned separately  to  Cu  and  Co,  spin-up  and 
spin-down, and  to bulk vs. interface layers, the layer- 
dependent conductivity was computed  and showed large 
magnetoresistance.  These  calculations  reinforce  the 
conclusion that  spin-dependent  scattering  from  atoms 
displaced  across  an interface is an  important  mechanism 
for  enhanced  magnetoresistance,  and they add new 
information  on purely band-structure  effects. Similar 
calculations  were  carried  out by Nicholson et al. [89] 
to study the  reduction of magnetoresistance  due  to 
nonferromagnetic  atoms  at NiiCu and PyiCu interfaces in 
spin-valve structures.  The Ni atomic  moment is found  to 
be  reduced by contact with Cu. At PyiCu interfaces,  the 
Fe  moments  become  disordered  due  to  weakening of the 
effective interatomic exchange interaction.  Butler  et  al. 
1901 give details of the  theory  relevant  to alloys. Results  of 
these  studies have been  summarized  and discussed by 
Butler  et  al. 1911. This  summary  includes  a survey of spin- 
dependent  matching of effective potential  functions in the 
transition  metals,  and  indicates  that  the close match of 
spin-up  potentials in layered  CoCu  has  counterparts in 
PyCu,  with a three-way match  among Ni, Fe,  and Cu, and 
in FeCr, favoring  spin-down electrons in the  latter  case. 
Studies by this group show quite  large  ratios  between 
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majority and  minority  carrier conductivities in NiFe  and 
NiCo alloys. 

Strong spin  asymmetry of scattering by impurities in 
transition-metal  matrices is well established  experimentally 
and  has  been  considered  to  be  a likely cause of enhanced 
magnetoresistance since the first observations of GMR [1]. 
Quantitative  theoretical  studies of residual resistivity have 
been  carried  out by Mertig  et al. [92-941 on Ni and 
ternary alloys. The  method  used,  described in detail by 
Zeller [95] and  applied  to  dilute  Co alloys by Stepanyuk 
et  al. 1961,  is an  application of multiple-scattering 
theory using the muffin-tin model  and local-density 
approximation  (LDA) in a  Green’s-function formalism. 
Spin-dependent  charge  densities,  taken  from self- 
consistent  calculations  on  the  elemental  metals,  are used 
to  construct  the  structural  Green’s-function matrix for  the 
host  crystal. Each muffin-tin sphere is characterized by a 
scattering t-matrix, so that  an  isolated  substitutional 
impurity  defines  an incremental matrix At at  the  site of 
substitution.  The  Green’s  function  for  the  perturbed 
system is related  to  that of the host  crystal and  to At  by a 
matrix Dyson equation.  The local scattering  matrix At is 
transformed  into  a  nonlocal matrix T that  incorporates 
multiple  scattering effects,  using another  algebraic 
equation  that involves the  structural  Green’s  function [93]. 
Point-to-point  transition  probabilities  over  the  Fermi 
surface  are  computed  from  the T-matrix and  used in the 
quasiparticle  Boltzmann  equation  to  compute  the  residual 
resistivity proportional  to  the  concentration of impurity 
atoms. Scattering-in terms  are  computed by iterative 
solution of Equation  (3) [29]. The  required  integrals 
over the  Fermi  surface  are  evaluated using a modified 
tetrahedron  method 1301. These  calculations  were designed 
to  be fully quantitative within the  limitations of the  LDA 
and muffin-tin  models. The  results most relevant  to  GMR 
are  those  for  3d/4s/4p  transition  and  noble metals. For 
atomic  impurities  Fe  through  Zn in Ni, the majority-spin 
conductivity is very little  affected by impurity scattering, 
while large  effects  are  found  for minority-spin 
conductivity. This implies that  scattering by an isolated 
impurity  atom in this series is strongly  spin-selective. 
Similar calculations  were  carried  out  for  ternary alloys 
1941. 

Calculations using  this methodology  to  study  GMR  were 
carried  out  for  FeCr multilayers 177,  781. Spin-dependent 
residual resistivities were  computed  for  transition  and 
noble-metal  impurities in bcc Fe, using the  methods 
applied  earlier. In agreement with qualitative  ideas drawn 
from  comparison of band  structures  for  the  elemental 
metals,  an  interesting reversal of spin-dependent effects is 
found  for impurity atoms  that respectively precede  and 
follow Fe in the  periodic  table.  Comparing  Cr with Ni, 
both in Fe,  the  former shows strong impurity scattering of 
majority  electrons, while the  latter shows strong  scattering 
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of minority electrons, as in the  case of CuCo discussed 
above.  For Co in Fe,  electrons of neither spin are strongly 
scattered.  This spin-selective scattering effect was 
examined in calculations of magnetoresistance  for  FeCr 
multilayers.  Self-consistent LDA  calculations  were  carried 
out  for  a  series of layered materials with a  superlattice 
unit  cell of composition Fe,Crn with n = 2, 12  for  parallel 
magnetization vectors, twice as large  for  antiparallel 
magnetization.  The layered structure is described by a 
(100) tetragonal  unit cell on  the fcc Fe  lattice.  The 
Boltzmann  equation was used to  model impurity scattering 
by a  concentration c of Cr  atoms in the  Fe layers. An 
averaged  relaxation  time  computed  from  the  T-matrices 
obtained in calculations  on  Cr impurity scatterers in Fe 
was assigned to all Bloch states of majority spin,  and  a 
corresponding  averaged  parameter value was assigned to 
all states of minority spin.  The  ratio of these  parameters is 
the spin  asymmetry ratio as obtained in calculations of 
residual resistivity. Large  GMR  ratios  were  found in these 
calculations, which omitted all scattering mechanisms 
other  than  the  Cr impurity scattering  that was modeled. 
As a  function of spacer layer  thickness, the  computed 
GMR showed  oscillations described by the  authors as 
quantum  coherence oscillations due  to  the  supercell 
geometry.  Because  the conductivity tensor is computed 
directly in the  Boltzmann formalism, results  were  obtained 
for  both  CIP  and  CPP  geometries.  The  latter values of the 
GMR  ratio  are  larger  for all spacer thicknesses, by 
approximately a  factor of 4. Similar calculations using 
spin-independent  relaxation  times gave much smaller 
GMR  ratios,  consistent with other  models  based solely on 
Fermi-surface effects [97]. From  the  residual resistivity 
studies, it is expected  that  Cr  and Cu atoms as scattering 
centers in Fe  should have opposite  spin-dependent  effects. 
This was studied by Zahn  et  al. 1781. The  combination of 
both  impurities was found  to  reduce  the  computed  GMR 
ratio significantly. An effect of this kind has  been 
observed as inverse spin-valve magnetoresistance  [lo]. 

All three of the  methods  cited above that have been 
used for ab initio calculations of the  electronic  structure of 
GMR  materials  are versions of multiple-scattering  theory. 
In this theory, local solutions of the  LDA  Schrodinger 
equation  are  computed by numerical  integration in each 
atomic cell or  sphere  and  then  combined  into  solutions 
that satisfy global continuity  and  boundary  conditions. 
Solutions  corresponding  to  poles of the  Green’s  function 
exist at energy  values E ( S ,  k) determined by the  secular 
equation 

det (I - gt) = 0. (19) 

Here t(E) is an atomic-cell scattering matrix and g ( E ,  k) is 
a matrix of structure  constants. Matrix t is constructed 
from local solutions of the  Schrodinger  equation, while g 
is a matrix representation of the  free-electron  Green’s 65 
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function  for  a given geometrical  structure.  The energy 
bands of magnetic  and  spacer  metals in typical layered 
GMR  materials  match closely at  the  Fermi  energy in one 
spin direction, while there is a  substantial mismatch for 
the  opposite spin  [87]. Because energy bands in a fixed- 
space  lattice  are  determined  entirely by the  t-matrices, 
the  spin-dependent  t-matrices of the two atomic  species at 
the  Fermi  energy must  also be very similar for  one  spin 
direction  and  different  for  the  other.  This  observation 
immediately  implies a possible mechanism  for  enhanced 
magnetoresistance [79]: If these two species  interdiffuse 
across a layer boundary in a  magnetized  material,  the 
resultant impurity scattering is determined by the 
difference At of the  spin-dependent  t-matrices.  This will 
be  large  for  one spin direction  and small for  the  other, 
which implies spin-dependent dissipative scattering  for 
random  interpenetration of the  adjacent  metals.  This in 
turn implies magnetoresistance. Since this  scattering 
mechanism  must be concentrated at layer interfaces 
or grain boundaries, it is consistent with the  strong 
interfacial  spin-dependent  scattering effect deduced  from 
experimental  data  and  parametric  theories.  The  question 
to be resolved is whether  the  magnitude of resistivity due 
to this scattering  mechanism is large  enough to make  a 
significant contribution  to  observed  GMR ratios. 
Calculations designed to examine  this question  were 
carried  out  on  superlattice  models of layered CuCo 1791 
and  CrFe [98, 991. The answer was found  to  be clearly 
affirmative, in qualitative  agreement with the  large  GMR 
effects found in calculations by Butler  et al. [76, 881 and 
by Zahn  et al. 1781. The  general conclusion of these 
ah initio studies is that  this is in fact  the  dominant 
mechanism for  the  observed  GMR. 

In the  LAC0  method,  as used for ab initio GMR 
calculations,  multiple-scattering  theory is expressed in 
terms of t-matrices  computed  for space-filling  local atomic 
(Wigner-Seitz) cells. This allows a  more  direct  treatment 
of the  outer region of each  atom  than  does  the muffin-tin 
approximation, used for example in LKKR calculations. 
In  the  reported study of layered  CuCo, preliminary 
self-consistent calculations  on fcc Cu and  on  both 
paramagnetic  and  ferromagnetic  Co  (on  the fcc Cu  lattice 
provided initial radial density functions  for (001)- 
tetragonal  (CuCoCu)(CuCoCu), also on  the fcc Cu  space 
lattice.  This defines the  supercell of a layered model 
system in which the  magnetization of successive Co  planes 
can  be  set  either  parallel ( f f  ) or  antiparallel (Ti). 
Self-consistent calculations  were  carried to convergence 
for  both  magnetization  alignments using an energy- 
dependent basis set  designated by spd(fg)  for  each  atomic 
cell 1811. These  calculations  provided  the raw data  needed 
for  perturbation  theory  computations of point-to-point 
scattering  rates  over  the  Fermi  surface  due  to a 

66 concentration c of impurity atoms  Cu in Co  (hence 
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concentration c/2 of interchanged  Co  atoms in each  Cu 
layer) due  to diffusion across  the  CoCu  interface [79]. The 
calculations  assumed  that spin polarization was preserved 
for  the displaced atoms  and  their  neighbors,  and simplified 
the  scattering  problem by neglecting Green's-function 
corrections  to  the  bare  scattering matrix At and by 
omitting  scattering-in  corrections. All results given here 
are  internally  consistent,  but  numbers differ from  the 
original CuCo  publication 1791 because of some  program 
upgrades  and  a redefinition of e .  

Retaining impurity concentration c as an unknown 
parameter,  calculations in the  sparse impurity limit give 
relaxation times in the  form CT for  each Bloch wave state 
at  the  Fermi level. The  results show large spin dependence 
and  large  variation with magnetization  alignment.  The 
computed values,  in atomic units, differ by orders of 
magnitude: 

t f ( f )  CT( 7 )  2- i o 4  CT( 1) = IO'; 

ti ( a )  CT( f ) = 10' CT(  4 ) 10'. 

The  resulting conductivity tensor is strongly  spin- 
dependent.  The  computed  in-plane conductivities (CIP) 
are, in atomic  units, 

ft ( f )  ca (  t ) = 0.53096 e a (  1 ) = 0.00068 

cu ( f )  = 0.53163; 

(a )  c a (  t ) = 0.00668 c a (  1 ) = 0.00668 

c a ( a )  = 0.01336. 

If this were  the only dissipative scattering  mechanism  at 
work, the implied magnetoresistance  ratio, defined here by 
[ a ( f )  - a(a)]/a(a), would be  the very large  factor 38.79. 
LKKR  calculations [76] of spin-dependent  scattering  due 
to  atomic diffusion in Cu/Co/Cu gave GMR  ratios  of 
similar magnitude.  The  results given above for  spin- 
dependent  scattering  include  the  Mott final-state effect.  In 
order to evaluate  its  contribution  to  GMR,  calculations 
were  carried  out with the  same  spin-dependent  transition 
probabilities,  but  these  were averaged  over  initial state 
and  spin. Explicitly, in the  general  formula = Ek,Pk,,k 
for  the  quasiparticle lifetime, evaluated  at  each  quadrature 
grid point  on  the  spin-dependent  Fermi  surface,  the 
summation symbol includes  the  spin-dependent density of 
final states. If the  transition  probabilities P are  averaged 
over  initial states,  the  computed  lifetime T depends only 
on  the  mean density of final states of given spin and 
models  the  spin-dependent  Mott  effect.  The modified 
values of e a  computed in this way are 

tf ( f )  ea(  t ) = 0.00863 ca (  1 ) = 0.00053 

c a ( f )  = 0.00916; 

tj, ( a )  ea( t ) = 0.00057 ea( 1 ) = 0.00057 

c a ( a )  = 0.00114. 
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The implied magnetoresistance  ratio is 7.04. Hence, 
the  Mott effect by itself can  produce  enhanced 
magnetoresistance,  but  the specific effect of spin- 
dependent  interface  scattering gives much larger  GMR. 

These very large  magnetoresistance  ratios  are valid 
only in the  absence of dissipative scattering by other 
mechanisms. The  observed  ratios  combine this specific 
interface  scattering effect with the bulk resistivity of the 
pure  metals.  Under  experimental  conditions,  mean  free 
paths in the nominally pure  metals  are by no  means 
infinite.  Using estimates of h(Cu) = 200 8, and  h(Co) = 

70 A, and weighting l/h  for  each  species by the relative 
number of atoms in the  supercell,  the  resulting spin- 
averaged  mean  free  path is given by l / h  = (nc,/hc, + 
nColhCo)l(ncu + nCJ.  Bulk scattering was modeled by 
substituting  this value of scalar A into  Equation ( 5 ) .  The 
implied  values of a for  spin-independent  bulk  scattering 
are 

ft ( f )  a( t ) = 0.41071 a( J ) = 0.38671 

a( f )  = 0.79741; 

TJ ( a )  a( t ) = 0.47604 a( ) = 0.47604 

a(a)  = 0.95209. 

The implied magnetoresistance  ratio  for  spin-independent 
bulk scattering is -0.16, opposite in sign from  the 
observed  GMR, if spin-dependent impurity scattering is 
neglected.  This  result  indicates  that  despite  the spin 
dependence of the  Fermi  surface,  purely  spin-independent 
scattering  cannot  account  for  GMR.  For  comparison with 
observed  data, resistivities due  to  bulk  scattering  and  to 
spin-dependent  interface  scattering must be  combined. 
Resistivities are  added  separately  for  each  spin;  then  the 
resulting spin-indexed  conductivities are  added.  This gives 
a rational  function of interpenetration  concentration c 
that  interpolates ARIR between  pure bulk and  interface 
scattering limits. If c is taken  to  be 0.05, and  other 
quantities  are  taken  from  the  data given above,  this 
formula gives ARIR = 0.96, which is comparable  to 
estimates of the  empirical limit of GMR values for this 
extreme example of single atomic layers. 

These  superlattice  calculations  obtain similar results  for 
the  perpendicular  principal axis of the conductivity tensor, 
relevant  to  CPP  geometry if the local electric field can  be 
averaged over the  tetragonal  translational  unit cell of this 
model.  From  the  Fermi  surface  and  relaxation  times used 
above for  CIP  geometry,  the  corresponding  results  for cazz 
due  to  atomic  interdiffusion in the  model  superlattice 
(CuCoCu)(CuCoCu)  are 

77 ( f )  ca( f ) = 2.15654 ca( J ) = 0.00291 

c a ( f )  = 2.15946; 

'TJ (a)  cu(  t ) = 0.00480 ca( J ) = 0.00480 

ca (a )  = 0.00961. 

The implied  value of ARIR is  223.7. However, the 
computed  magnetoresistance  ratio  for  pure  bulk 
scattering,  parametrized  as  above, is 0.24. When  these 
physical mechanisms are  combined  for c = 0.05, the value 
of ARIR is 6.63, significantly larger  than  the  CIP  ratio 
but of the  same  order of magnitude. 

Similar calculations have been  reported  for  layered 
CrFe,  modeled as  a superlattice with (001) tetragonal unit 
cell (CrFeCr)(CrFeCr)  on  the bcc Fe  space  lattice [98, 991. 
Here a point of particular  interest is the  expected 
reversal of the spin-sense of the  polarized  current flow 
[79], compared  with  the  favored majority  spin current flow 
in CuCo.  The  mechanism is shown very clearly in the 
essentially quantitative  calculation of impurity scattering in 
Fe by Mertig  et  al. [77]. These  authors find that  residual 
resistivities for majority carriers  are much larger  than  for 
minority  carriers  for  Cr in Fe,  whereas  the  opposite is true 
for  Cu in Co,  from  the  calculations discussed  above [76, 791 
and  from  unpublished  results by Mertig  [loo]  based  on 
impurity calculations by Stepanyuk  et al. [96]. Superlattice 
calculations  on layered CrFe [99] give values of in-plane 
c a  for  the  atomic  interpenetration  mechanism  as 

f? ( f )  ca( t ) = 0.00032 ca(  1 ) = 0.01632 

c a ( f )  = 0.01664; 

TJ ( a )  ca( t ) = 0.00186 ca( i )  = 0.00186 

ca (a )  = 0.00372. 

In  contrast  to  CuCo,  the conductivity here is dominated by 
electrons of minority spin. If there  are no transitions 
by other  scattering  mechanisms,  the implied 
magnetoresistance  ratio is 3.47. 

Modeling  the  pure  Mott  effect, as  discussed  above for 
CuCo, gives ARIR = 2.31. All ratios  here  are  smaller  than 
in the  case of layered CuCo,  and  the  Mott final-state 
effect is relatively more  important.  When  pure bulk 
scattering is modeled with empirical  mean  free  path values 
h = 40 8, for  both  Cr  and  Fe,  the  magnetoresistance  ratio 
computed  from  the  spin-polarized  superlattice energy- 
band  structure is -0.05. When bulk and  interface 
scattering  are  combined,  the  rational  formula  evaluated 
for c = 0.05 gives AR/R = 1.07, consistent with estimates 
of the  experimental limit for  the  extreme  case of single 
atomic layers. These  calculations [98, 991 included  results 
(not  published)  for  CPP  geometry, assuming that  the local 
electric field can  be  averaged  over  the  (CrFeCr)(CrFeCr) 
translational cell. As in the  case of layered CuCo, all 
ratios  are  found  to  be  larger  for  CPP  geometry  than  for 
CIP  geometry.  The  CPP  magnetization  ratio  for spin- 
dependent  interface  scattering  alone is computed  to  be 
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6.06, reduced  to 2.11 for  the  pure  Mott effect, and -0.18 
for  pure bulk scattering.  Combining bulk and  interface 
scattering  for  interpenetration  concentration c = 0.05 
gives ARiR 2- 1.26,  greater  than  the  CIP  ratio  but by a 
smaller  factor  than  that  found  for layered CuCo. 

These  calculations show the  expected reversal of the 
spin sense of the  steady-state  polarized  electronic  current 
density, determined by spin-dependent dissipative 
scattering  due  to  interchange of atoms of two species 
across  an interface. Since this effect is governed by the 
self-consistent t-matrices  computed  for  these  atoms in 
their metallic environments, it is appropriate  to 
characterize  this as an  atomic  mechanism, which appears 
to  be  the principal  underlying cause of GMR. By 
implication,  an  electronic  current passing through  a 
magnetized  magneticispacer  interface is spin-polarized  to 
the  extent  that  the  spin-indexed  atomic  t-matrices differ at 
the  Fermi energy. A  second  interface of this  kind placed 
within a spin  diffusion length  (determined by spin-flip 
scattering or precession in a  magnetic field) will act  as a 
polarization analyzer. If such a combination of polarizer 
and analyzer  could be realized  experimentally, it would 
constitute  a  micromagnetometer  or  magnetoelectric 
switching device [98, 991. A simple test of these  ideas is 
to  fabricate  a device with like interface  elements, which 
should show a resistance minimum for  parallel-aligned 
magnetization vectors, and  compare with unlike interface 
pair  elements like CuCo  and  CrFe in the  same  structure, 
for which the  resistance  should  be maximized by parallel 
magnetization.  This has been realized to  some  extent 
in a  recent  experiment showing  inverse GMR  [lo],  and 
discussed by Zahn  et al. [78] as a  consequence of the 
opposite spin sense  for  residual resistivity due  to  Cr  and 
Cu impurities, respectively, in Fe. 

The ab initio calculations  support  the conclusion that 
spin-dependent  interface  scattering is decisive for  the 
largest observed GMR  ratios. However,  it is clear  that  the 
Mott  final-state effect  implies spin-dependence  for any 
generic  scattering  mechanism (which may itself be 
independent of spin) in the bulk of a magnetized 
transition  metal  or alloy. The  calculations by Nesbet 
[79, 991 show that relatively large  GMR can result  from 
the  Mott effect alone, when state-to-state  scattering 
probabilities  are spin-averaged.  Since these  calculations 
model  atomic layers that  are all located  at  an  interface, 
they do  not give specific information  about bulk scattering. 
It is relevant here  that  the spin  asymmetry ratios a from 
ab initio calculations  compiled  and  summarized by Mertig 
[loo] in general  are  different if host  and impurity species 
are  interchanged.  For example, a for  Co in Ni is 92.4, 
while a for Ni in Co is 522.4. A simplified explanation 
of this difference is that  the spin  asymmetry parameter 
is determined  both by the  difference of atomic-cell 

6% t-matrices, which would give equivalent  effects if two 
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species with similar band  structure  at  the  Fermi level 
were interchanged,  and by the  Mott  effect, which is 
characteristic of the  energy-band  structure of the host 
species, hence  different in the two cases. The simplest 
conclusion is that  the two values of a are  large  because of 
large At, but  that  they  differ  because of the Mot1 effect 
for  the  different host metals.  The  computed value of a for 
Fe in Ni is very large  (an  experimental  value is  20 [43]), 
while that  for Ni in Fe is 5.48 (experimental value 3 [43]). 
Although  different values of a might be  expected  because 
of the  different  lattice  structures of hosts fcc Ni and bcc 
Fe,  the  difference  between  Co in Ni and Ni in Co  must  be 
due  to  the  detailed  band  structure  and  minority-band 
occupancy. In  CPA  theory, At is defined for  each  atom as 
the  difference  between its  atomic-cell t-matrix  and  the 
statistical  t-matrix of the  coherent  potential. Including the 
Mott effect, the  large  value of a for  Fe in Ni implies a 
substantial bulk scattering spin  asymmetry in permalloy, as 
computed in the ab initio CPA  calculations of Butler  et  al. 
[76, 89, 911. Taking  into  account  the very large values of a 
for  Co in Ni or Ni in Co,  this is not  inconsistent with the 
experimental  data of Parkin [11], which show that  the 
interface effect of a  thin  Co layer  in  permalloy dominates 
any bulk scattering effect on  GMR.  It is interesting  to 
note  that  the  parametric  model study by Dieny [49] of 
PyiCu spin-valve structures finds A ,  = 6 A, indicating that 
the minority-spin resistivity is high and minority-spin 
current density is low even in a  model of permalloy that 
includes only bulk  scattering  parameters. 

Summary  and  conclusions 
This  paper has  reviewed theoretical  models of spin- 
dependent  scattering in GMR  materials.  Experimental 
data  indicate  that  the  magnitude of GMR in layered 
materials is controlled primarily by some  mechanism 
associated with magneticispacer  interfaces.  Parametrized 
semiclassical and  quantum-theoretical  models of spin- 
polarized  electron  transport identify the  parameters 
relevant to this interface  effect,  emphasizing  the spin 
asymmetry a for  impurities  implanted in transition  metals. 
The  interface effect is modeled in terms of spin-dependent 
impurity scattering  concentrated in an  interface layer of 
atomic  dimensions.  Recent ab initio calculations of the 
spin-dependent  energy-band  structure  and of the resulting 
spin-dependent conductivity  provide quantitative values of 
the spin  asymmetry ratio  and  demonstrate its  relevancy to 
GMR  materials.  These ab initio calculations study the 
specific mechanism of spin-selective scattering by 
transition-metal  atoms  embedded in a nonmagnetic 
substrate  or of nonmagnetic  atoms  embedded in a 
transition-metal  substrate,  and of atoms displaced  across 
the  boundaries of magnetized layers or  granules.  This 
essentially atomic  mechanism  appears  to  be  the  principal 
cause of the observed GMR in Fe/Cr  and CoICu 
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materials.  These  calculations  include  the basic  mechanism 
for  spin-dependent  scattering  proposed by Mott,  a 
consequence of spin-polarized  energy-band  structure in 
transition  metals, which is omitted in parametric  models 
based on free-electron energy bands.  The  Mott effect 
causes any generic  scattering mechanism to  be  spin- 
dependent in a magnetized transition  metal  and  augments 
the effect of spin-dependent  interface  scattering in GMR 
materials. In the  CPA model of a  substitutional alloy, each 
atom is surrounded by a  statistical  distribution of 
neighbors.  This implies that  both  Mott  and  atomic 
interdiffusion effects are  present in the  interior of a 
magnetic alloy. A parametrized  model finds a very short 
mean  free  path  for minority-spin electrons in  permalloy, 
and ab initio calculations  indicate significant spin- 
dependent bulk scattering. 
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